JP2019040199A - Optical film and organic light-emitting display device comprising the same - Google Patents

Optical film and organic light-emitting display device comprising the same Download PDF

Info

Publication number
JP2019040199A
JP2019040199A JP2018201321A JP2018201321A JP2019040199A JP 2019040199 A JP2019040199 A JP 2019040199A JP 2018201321 A JP2018201321 A JP 2018201321A JP 2018201321 A JP2018201321 A JP 2018201321A JP 2019040199 A JP2019040199 A JP 2019040199A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
retardation
optical film
crystal coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018201321A
Other languages
Japanese (ja)
Inventor
禧▲キュン▼ 金
Hee-Kyung Kim
禧▲キュン▼ 金
文然 李
Moon Yeon Lee
文然 李
慶雅 呉
Kyoung Ah Oh
慶雅 呉
奎烈 印
Kyu Yeol In
奎烈 印
志訓 李
Ji-Hoon Lee
志訓 李
明燮 鄭
Mingbian Zheng
明燮 鄭
尚娥 甘
Sang Ah Gam
尚娥 甘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Samsung SDI Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd, Samsung SDI Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2019040199A publication Critical patent/JP2019040199A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details

Abstract

To provide an optical compensation film with an improved compensation effect, and an organic light-emitting display device comprising the same.SOLUTION: An optical film 300 includes: a liquid crystal coating 330; and a base layer on the liquid crystal coating, where the liquid crystal coating has reversed wavelength dispersion and in-plane retardation (Ro) for a reference wavelength ranging from 126 nm to 153 nm, and the base layer has in-plane retardation ranging from 0 to 50 nm and out-of-plane retardation ranging from 0 nm to 100 nm. An organic light emitting display device includes: an organic light emitting display panel; and the optical film on the organic light emitting display panel.SELECTED DRAWING: Figure 3

Description

本発明は、光学フィルムおよびこれを備える表示装置に関する。   The present invention relates to an optical film and a display device including the same.

現在最も汎用されているフラットパネル表示装置は、自己発光する発光表示装置と、別途の光源を必要とする受光型表示装置とに大別でき、これらの画質を改善するために、位相差フィルムなどの光学的補償フィルムが用いられることが多い。   Flat panel display devices that are currently most widely used can be broadly divided into self-luminous light-emitting display devices and light-receiving display devices that require a separate light source. In order to improve their image quality, retardation films, etc. The optical compensation film is often used.

発光型表示装置、たとえば、有機発光表示装置(organic light emitting display;OLED)の場合、電極などの金属による外部光の反射によって視認性とコントラスト比が低下することがある。これを低減するために、偏光板と位相差フィルムを用いて直線偏光を円偏光に変えることによって、有機発光表示装置によって反射された外部光が外側に漏れ出ないようにしている。   In the case of a light-emitting display device, for example, an organic light emitting display (OLED), visibility and contrast ratio may be reduced due to reflection of external light by a metal such as an electrode. In order to reduce this, the linearly polarized light is changed to circularly polarized light using a polarizing plate and a retardation film, so that external light reflected by the organic light emitting display device does not leak to the outside.

受光型表示装置である液晶表示装置(liquid crystal displayay;LCD)は、透過型、半透過型、反射型などその種類に応じて外部光の反射およびサングラス効果を解決するために、直線偏光を円偏光に変えることによって画質を改善している。   A liquid crystal display (LCD), which is a light-receiving display device, uses circularly polarized light to solve the reflection of external light and the sunglass effect according to its type, such as a transmissive type, a semi-transmissive type, and a reflective type. Image quality is improved by changing to polarized light.

しかしながら、現在開発されている光学補償フィルムには補償効果が十分ではないという欠点がある。   However, the currently developed optical compensation film has a drawback that the compensation effect is not sufficient.

米国特許出願公開第2010/0072422号明細書US Patent Application Publication No. 2010/0072422

本発明の目的は、光学フィルムの特性を改善することのできる光学フィルムおよびこれを備える有機発光表示装置を提供することである。   The objective of this invention is providing the optical film which can improve the characteristic of an optical film, and an organic light emitting display provided with the same.

上記の目的を達成するために、本発明の一実施形態による光学フィルムは、液晶塗布膜と、前記液晶塗布膜の上の基材層とを備え、前記液晶塗布膜は逆波長分散性を有し、基準波長に対する面内位相差(Ro)が126nm〜153nmの範囲であり、前記基材層の面内位相差が0〜50nmであり、厚さ方向の位相差が0nm〜100nmである。   In order to achieve the above object, an optical film according to an embodiment of the present invention includes a liquid crystal coating film and a base material layer on the liquid crystal coating film, and the liquid crystal coating film has reverse wavelength dispersion. The in-plane retardation (Ro) with respect to the reference wavelength is in the range of 126 nm to 153 nm, the in-plane retardation of the base material layer is 0 to 50 nm, and the retardation in the thickness direction is 0 to 100 nm.

好ましくは、前記液晶塗布膜の面内位相差(Ro)が130nm〜142nmの範囲である。   Preferably, the in-plane retardation (Ro) of the liquid crystal coating film is in the range of 130 nm to 142 nm.

好ましくは、前記液晶塗布膜の短波長分散性(=約450nmの入射光に対する遅延値/約550nmの入射光に対する遅延値)は1より小さく、長波長分散性(=約650nmの入射光に対する遅延値/約550nmの入射光に対する遅延値)は1より大きい。   Preferably, the short wavelength dispersion (= delay value for incident light of about 450 nm / delay value for incident light of about 550 nm) of the liquid crystal coating film is smaller than 1, and long wavelength dispersion (= delay for incident light of about 650 nm). Value / delay value for incident light of about 550 nm) is greater than 1.

さらに、好ましくは、前記基材層の面内位相差が0〜10nmであり、厚さ方向の位相差が0nm〜70nmである。   Further preferably, the in-plane retardation of the base material layer is 0 to 10 nm, and the retardation in the thickness direction is 0 nm to 70 nm.

さらに、好ましくは、前記基材層の面内位相差が0nmであり、厚さ方向の位相差が0nm〜60nmである。   Further preferably, the in-plane retardation of the base material layer is 0 nm, and the retardation in the thickness direction is 0 nm to 60 nm.

さらに、好ましくは、前記光学フィルムは、前記液晶塗布膜の下部に配設される下地膜と、前記下地膜と前記液晶塗布膜との間に配設される配向膜と、をさらに備える。   Further preferably, the optical film further includes a base film disposed under the liquid crystal coating film, and an alignment film disposed between the base film and the liquid crystal coating film.

さらに、好ましくは、前記配向膜は、所定の方向に配列された凹凸構造を有する。   Further preferably, the alignment film has a concavo-convex structure arranged in a predetermined direction.

さらに、好ましくは、前記配向膜の凹凸構造は、ナノインプリント方式により形成されている。   More preferably, the uneven structure of the alignment film is formed by a nanoimprint method.

さらに、好ましくは、前記配向膜は、光感応性樹脂を含む。   Further preferably, the alignment film includes a photosensitive resin.

さらに、好ましくは、前記液晶塗布膜は、四分の一波長板である。   Further preferably, the liquid crystal coating film is a quarter-wave plate.

さらに、好ましくは、前記光学フィルムは、前記液晶塗布膜の上に配設される偏光層をさらに備える。   Further preferably, the optical film further includes a polarizing layer disposed on the liquid crystal coating film.

上記の目的を達成するために、本発明の一実施形態による有機発光表示装置は、有機発光表示板と、前記有機発光表示板の上に配設される光学フィルムとを備え、前記光学フィルムは液晶塗布膜とその上の基材層とを備え、前記液晶塗布膜は逆波長分散性を有し、基準波長に対する前記液晶塗布膜の面内位相差(Ro)が126nm〜153nmの範囲であり、前記基材層の面内位相差が0〜50nmであり、厚さ方向の位相差が0nm〜100nmである。   To achieve the above object, an organic light emitting display device according to an embodiment of the present invention includes an organic light emitting display plate and an optical film disposed on the organic light emitting display plate, the optical film comprising: A liquid crystal coating film and a base material layer thereon; the liquid crystal coating film has reverse wavelength dispersion; and the in-plane retardation (Ro) of the liquid crystal coating film with respect to a reference wavelength is in a range of 126 nm to 153 nm. The in-plane retardation of the base material layer is 0 to 50 nm, and the thickness direction retardation is 0 nm to 100 nm.

好ましくは、前記液晶塗布膜の面内位相差(Ro)が130nm〜142nmの範囲である。   Preferably, the in-plane retardation (Ro) of the liquid crystal coating film is in the range of 130 nm to 142 nm.

好ましくは、前記液晶塗布膜の短波長分散性(=約450nmの入射光に対する遅延値/約550nmの入射光に対する遅延値)は1より小さく、長波長分散性(=約650nmの入射光に対する遅延値/約550nmの入射光に対する遅延値)は1より大きい。   Preferably, the short wavelength dispersion (= delay value for incident light of about 450 nm / delay value for incident light of about 550 nm) of the liquid crystal coating film is smaller than 1, and long wavelength dispersion (= delay for incident light of about 650 nm). Value / delay value for incident light of about 550 nm) is greater than 1.

さらに、好ましくは、前記基材層の面内位相差が0〜10nmであり、厚さ方向の位相差が0nm〜70nmである。   Further preferably, the in-plane retardation of the base material layer is 0 to 10 nm, and the retardation in the thickness direction is 0 nm to 70 nm.

さらに、好ましくは、前記基材層の面内位相差が0nmであり、厚さ方向の位相差が0nm〜60nmである。   Further preferably, the in-plane retardation of the base material layer is 0 nm, and the retardation in the thickness direction is 0 nm to 60 nm.

さらに、好ましくは、前記光学フィルムは、前記液晶塗布膜の下部に配設される下地膜と、前記下地膜と前記液晶塗布膜との間に配設される配向膜と、をさらに備える。   Further preferably, the optical film further includes a base film disposed under the liquid crystal coating film, and an alignment film disposed between the base film and the liquid crystal coating film.

さらに、好ましくは、前記配向膜は、所定の方向に配列された凹凸構造を有する。   Further preferably, the alignment film has a concavo-convex structure arranged in a predetermined direction.

本発明によれば、光学フィルムの特性が良くなる。   According to the present invention, the characteristics of the optical film are improved.

本発明の一実施形態による表示装置用光学フィルムの概略断面図である。It is a schematic sectional drawing of the optical film for display apparatuses by one Embodiment of this invention. 本発明の一実施形態による表示装置用光学フィルムの概略断面図である。It is a schematic sectional drawing of the optical film for display apparatuses by one Embodiment of this invention. 本発明の他の実施形態による表示装置用光学フィルムの概略断面図である。It is a schematic sectional drawing of the optical film for display apparatuses by other embodiment of this invention. 図3に示す光学フィルムの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the optical film shown in FIG. 図3に示す光学フィルムの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the optical film shown in FIG. 本発明の一実施形態による配向膜の平面図である。It is a top view of the alignment film by one Embodiment of this invention. 本発明の他の実施形態による表示装置用光学フィルムの概略断面図である。It is a schematic sectional drawing of the optical film for display apparatuses by other embodiment of this invention. 本発明の一実施形態による表示装置用光学フィルムの偏光層の概略断面図である。It is a schematic sectional drawing of the polarizing layer of the optical film for display apparatuses by one Embodiment of this invention. 本発明の他の実施形態による表示装置用光学フィルムの概略断面図である。It is a schematic sectional drawing of the optical film for display apparatuses by other embodiment of this invention. 本発明の一実施形態による有機発光表示装置の概略断面図である。1 is a schematic cross-sectional view of an organic light emitting display device according to an embodiment of the present invention. 本発明の一実施形態による有機発光表示板の概略断面図である。1 is a schematic cross-sectional view of an organic light emitting display panel according to an embodiment of the present invention. 実験例による光学フィルムにおいて、光学遅延層の面内位相差の様々な値に対する光学フィルムの反射率を示すグラフである。In the optical film by an experimental example, it is a graph which shows the reflectance of the optical film with respect to various values of the in-plane retardation of an optical delay layer. 実験例による光学フィルムの反射率を光学遅延層の面内位相差の関数で示すグラフである。It is a graph which shows the reflectance of the optical film by an experiment example as a function of the in-plane phase difference of an optical delay layer. 実験例による光学フィルムの反射率を光学遅延層の面内位相差の関数で示すグラフである。It is a graph which shows the reflectance of the optical film by an experiment example as a function of the in-plane phase difference of an optical delay layer. 実験例による光学フィルムの反射率を光学遅延層の面内位相差の関数で示すグラフである。It is a graph which shows the reflectance of the optical film by an experiment example as a function of the in-plane phase difference of an optical delay layer. 実験例による光学フィルムにおいて、基材層の厚さ方向の位相差(Rth)の様々な値に対する光学フィルムの反射率を示すグラフである。In the optical film by an experimental example, it is a graph which shows the reflectance of the optical film with respect to various values of the phase difference (Rth) of the thickness direction of a base material layer. 実験例による光学フィルムの反射率を基材層の厚さ方向の位相差の関数で示すグラフである。It is a graph which shows the reflectance of the optical film by an experiment example as a function of the phase difference of the thickness direction of a base material layer. 実験例による光学フィルムの反射率を基材層の厚さ方向の位相差の関数で示すグラフである。It is a graph which shows the reflectance of the optical film by an experiment example as a function of the phase difference of the thickness direction of a base material layer. 実験例による光学フィルムの反射率を基材層の厚さ方向の位相差の関数で示すグラフである。It is a graph which shows the reflectance of the optical film by an experiment example as a function of the phase difference of the thickness direction of a base material layer. 実験例による光学フィルムにおいて、基材層の面内位相差(Ro)および厚さ方向の位相差(Rth)の様々な値に対する光学フィルムの反射率を示すグラフである。In the optical film by an experimental example, it is a graph which shows the reflectance of an optical film with respect to various values of the in-plane retardation (Ro) of a base material layer, and the thickness direction retardation (Rth). 基材層の様々な面内位相差(Ro)値に対して、実験例による光学フィルムの最大反射率を基材層の厚さ方向の位相差(Rth)の関数で示すグラフである。It is a graph which shows the maximum reflectance of the optical film by an experiment example with respect to various in-plane phase difference (Ro) value of a base material layer as a function of the phase difference (Rth) of the thickness direction of a base material layer. 実験例による光学フィルムの最大反射率を基材層の面内位相差(Ro)および厚さ方向の位相差(Rth)の関数で示すグラフである。It is a graph which shows the maximum reflectance of the optical film by an experiment example as a function of the in-plane phase difference (Ro) of a base material layer, and the thickness direction retardation (Rth).

以下、添付図面に基づき、本発明の実施形態による光学フィルムについて本発明が属する技術分野において通常の知識を有する者が容易に実施できるように詳しく説明する。本発明は様々な異なる形態にて実現可能であり、ここで説明する実施形態に何ら限定されない。図中、本発明を明確に説明するために説明とは無関係な部分の説明は省略し、明細書全体にわたって同じまたは類似の構成要素に対しては同じ図面符号を附した。   Hereinafter, an optical film according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings so that a person having ordinary knowledge in the technical field to which the present invention can easily carry out. The present invention can be realized in various different forms and is not limited to the embodiments described herein. In the drawings, the description of the parts not related to the description is omitted to clearly describe the present invention, and the same or similar components are denoted by the same reference numerals throughout the specification.

まず、図1および図2に基づき、本発明の一実施形態による表示装置用光学フィルムについて詳細に説明する。   First, based on FIG. 1 and FIG. 2, the optical film for display apparatuses by one Embodiment of this invention is demonstrated in detail.

図1および図2は、本発明の実施形態による表示装置用光学フィルムの概略断面図である。   1 and 2 are schematic cross-sectional views of an optical film for a display device according to an embodiment of the present invention.

図1を参照すると、本発明の一実施形態による表示装置用光学フィルム100は、入射光の波長が大きくなるにつれて遅延値が大きくなる逆波長分散性を有する液晶物質または液晶組成物を含み得る。例えば、光学フィルム100の短波長分散性(=約450nmの入射光に対する遅延値/約550nmの入射光に対する遅延値)は約1より小さく、長波長分散性(=約650nmの入射光に対する遅延値/約550nmの入射光に対する遅延値)は約1より大きくてもよい。逆波長分散性を有する液晶材料の例については、特許文献1に詳細に記載されており、この内容は本出願に含まれる。   Referring to FIG. 1, an optical film 100 for a display device according to an embodiment of the present invention may include a liquid crystal material or a liquid crystal composition having reverse wavelength dispersion in which a delay value increases as the wavelength of incident light increases. For example, the short wavelength dispersion (= delay value for incident light of about 450 nm / delay value for incident light of about 550 nm) of the optical film 100 is smaller than about 1, and long wavelength dispersibility (= delay value for incident light of about 650 nm). / Delay value for incident light of about 550 nm) may be greater than about 1. Examples of liquid crystal materials having reverse wavelength dispersion are described in detail in Patent Document 1, and the contents thereof are included in the present application.

本発明の一実施形態によれば、約550nmの波長(以下、「基準波長」と称する。)の入射光に対する光学フィルム100の面内位相差(Ro)は約126nm〜約153nmの範囲であってもよく、さらに、約130nm〜約142nmであってもよい。面内位相差(Ro)はRo=(n−n)×dとして与えられ、dは層の厚さ、n、nは厚さ方向に垂直な平面の二つの直交方向に対する屈折率であり、n≧nである。このため、光学フィルム100は、四分の一波長板の役割を果たすことができる。 According to an embodiment of the present invention, the in-plane retardation (Ro) of the optical film 100 with respect to incident light having a wavelength of about 550 nm (hereinafter referred to as “reference wavelength”) is in the range of about 126 nm to about 153 nm. Further, it may be about 130 nm to about 142 nm. Plane retardation (Ro) is given as Ro = (n x -n y) × d, d is the thickness of the layer, n x, n y is a refractive for the two orthogonal directions of the plane perpendicular to the thickness direction is the rate, which is n xn y. For this reason, the optical film 100 can serve as a quarter-wave plate.

一実施形態によれば、光学フィルム100の厚さは、約2.8μm〜約3.4μmであってもよい。   According to one embodiment, the optical film 100 may have a thickness of about 2.8 μm to about 3.4 μm.

図2を参照すると、本発明の他の実施形態による光学フィルム200は、下地膜(base layer)210と、下地膜210上の液晶塗布膜220と、を備えていてもよい。   Referring to FIG. 2, an optical film 200 according to another embodiment of the present invention may include a base layer 210 and a liquid crystal coating film 220 on the base film 210.

液晶塗布膜220は逆波長分散性を有していてもよく、厚さは約2.8μm〜約3.4μmであってもよい。基準波長の入射光に対する液晶塗布膜220の面内位相差(Ro)が約126nm〜約153nmの範囲であってもよく、さらに、約130nm〜約142nmであってもよい。   The liquid crystal coating film 220 may have reverse wavelength dispersion and may have a thickness of about 2.8 μm to about 3.4 μm. The in-plane retardation (Ro) of the liquid crystal coating film 220 with respect to the incident light of the reference wavelength may be in the range of about 126 nm to about 153 nm, and may be about 130 nm to about 142 nm.

次いで、図3から図6に基づき、本発明の一実施形態による表示装置用光学フィルムについて詳細に説明する。   Next, an optical film for a display device according to an embodiment of the present invention will be described in detail with reference to FIGS.

図3は、本発明の他の実施形態による表示装置用光学フィルムの概略断面図であり、図4および図5は、図3に示す光学フィルムを一実施形態によって製造する方法を示す断面図であり、図6は、一実施形態による配向膜の平面図である。   FIG. 3 is a schematic cross-sectional view of an optical film for a display device according to another embodiment of the present invention, and FIGS. 4 and 5 are cross-sectional views illustrating a method for manufacturing the optical film shown in FIG. 3 according to an embodiment. FIG. 6 is a plan view of an alignment film according to an embodiment.

図3を参照すると、本発明の他の実施形態による光学フィルム300は、順次に積層された下地膜310と、配向膜320および液晶塗布膜330を備えていてもよい。   Referring to FIG. 3, an optical film 300 according to another embodiment of the present invention may include a base film 310, an alignment film 320, and a liquid crystal coating film 330 that are sequentially stacked.

配向膜320は、光反応性物質、たとえば、光感応性樹脂を含むことができ、所定の方向に並んでいる複数の凹凸構造322を有していてもよい。このような凹凸構造322は、たとえば、ナノインプリントやリソグラフィにより形成することができる。   The alignment film 320 can include a photoreactive substance, for example, a photosensitive resin, and may include a plurality of concavo-convex structures 322 arranged in a predetermined direction. Such a concavo-convex structure 322 can be formed by, for example, nanoimprinting or lithography.

他の一実施形態によれば、配向膜320は熱感応性樹脂を含むこともできる。   According to another embodiment, the alignment layer 320 may include a heat sensitive resin.

液晶塗布膜330は逆波長分散性を有していてもよく、厚さは約2.8μm〜約3.4μmであってもよい。基準波長の入射光に対する液晶塗布膜330の面内位相差(Ro)が約126nm〜約153nmの範囲であってもよく、さらに、約130nm〜約142nmであってもよい。   The liquid crystal coating film 330 may have reverse wavelength dispersion and may have a thickness of about 2.8 μm to about 3.4 μm. The in-plane retardation (Ro) of the liquid crystal coating film 330 with respect to the incident light of the reference wavelength may be in the range of about 126 nm to about 153 nm, and may be about 130 nm to about 142 nm.

図4を参照すると、本発明の実施形態による光学フィルム300を形成するためにまず、下地膜310の上に光感応性または熱感応性樹脂を塗布して配向膜320を形成する。図5および図6を参照すると、凹凸パターン付き微細モールド360を用いて配向膜320を押し付けることによって、配向膜320に所定の方向に並んでいる凹凸構造322を形成する。次いで、光硬化または熱硬化の方法によって配向膜320を硬化させる。最後に、液晶物質を塗布して液晶塗布膜330を形成する。液晶塗布膜330は、たとえば、光重合性液晶単量体および光反応開始剤を配向膜320の上に塗布して乾燥した後に、光硬化、たとえば、紫外線硬化させることによって形成することができる。   Referring to FIG. 4, in order to form the optical film 300 according to the embodiment of the present invention, first, an alignment film 320 is formed by applying a light sensitive or heat sensitive resin on the base film 310. Referring to FIG. 5 and FIG. 6, the concavo-convex structure 322 aligned in a predetermined direction is formed on the alignment film 320 by pressing the alignment film 320 using the fine mold 360 with the concavo-convex pattern. Next, the alignment film 320 is cured by a photocuring or heat curing method. Finally, a liquid crystal material is applied to form a liquid crystal coating film 330. The liquid crystal coating film 330 can be formed, for example, by applying a photopolymerizable liquid crystal monomer and a photoreaction initiator on the alignment film 320 and drying, followed by photocuring, for example, UV curing.

このような方法によって配向膜320を形成すると、ラビングを用いる場合よりは損傷が少なく、且つ、光配向よりは工程が簡単になる。   When the alignment film 320 is formed by such a method, the damage is less than when rubbing is used, and the process becomes simpler than the optical alignment.

上述した方法に加えて、AFMラビング方式または光干渉方式によって配向膜320に凹凸構造を形成してもよい。   In addition to the above-described method, an uneven structure may be formed on the alignment film 320 by an AFM rubbing method or an optical interference method.

図1から図6に示す光学フィルム100、200、300は、偏光層と貼合されて表示装置の反射防止フィルムとして用いられてもよい。   The optical films 100, 200, and 300 shown in FIGS. 1 to 6 may be bonded to a polarizing layer and used as an antireflection film for a display device.

次いで、図7および図8に基づき、本発明の他の実施形態による表示装置用光学フィルムについて詳細に説明する。   Next, based on FIGS. 7 and 8, an optical film for a display device according to another embodiment of the present invention will be described in detail.

図7は、本発明の一実施形態による表示装置用光学フィルムの概略断面図であり、図8は、本発明の一実施形態による表示装置用光学フィルムの偏光層の概略断面図である。   FIG. 7 is a schematic cross-sectional view of an optical film for a display device according to an embodiment of the present invention, and FIG. 8 is a schematic cross-sectional view of a polarizing layer of the optical film for a display device according to an embodiment of the present invention.

図7を参照すると、本発明の実施形態による表示装置用光学フィルム400は、光学遅延層410と、その上に配設される偏光層420と、を備える。   Referring to FIG. 7, an optical film 400 for a display device according to an embodiment of the present invention includes an optical retardation layer 410 and a polarizing layer 420 disposed thereon.

偏光層420は、入射光の偏光を直線偏光に変換する直線偏光子であってもよく、たとえば、ヨードがドープされたポリビニールアルコール(PVA)を含んでいてもよい。   The polarizing layer 420 may be a linear polarizer that converts the polarization of incident light into linearly polarized light, and may include, for example, polyvinyl alcohol (PVA) doped with iodine.

偏光層420は単一層であってもよく、2層以上の膜を備えていてもよい。   The polarizing layer 420 may be a single layer or may include two or more layers.

たとえば、図8を参照すると、本発明の一実施形態による偏光層420は、偏光膜422と、その両面の上に配設される一対の保護膜424、426と、を備えていてもよい。   For example, referring to FIG. 8, a polarizing layer 420 according to an embodiment of the present invention may include a polarizing film 422 and a pair of protective films 424 and 426 disposed on both surfaces thereof.

保護膜424、426は、偏光膜422を保護するためのものであり、たとえば、トリアセチルセルロース(TAC)を含んでいてもよい。最外側の保護膜426は、反射防止(anti−reflection)、低反射(low−reflection)、眩しさ防止(anti−glare)またはハードコーティング(hard coating)などの特性を有していてもよい。2つの保護膜424、426のうちの一方は省略してもよい。   The protective films 424 and 426 are for protecting the polarizing film 422 and may contain, for example, triacetyl cellulose (TAC). The outermost protective layer 426 may have characteristics such as anti-reflection, low-reflection, anti-glare, or hard coating. One of the two protective films 424 and 426 may be omitted.

光学遅延層410は、図1から図6に基づいて説明した光学フィルム100、200、300と実質的に同じであってもよい。   The optical retardation layer 410 may be substantially the same as the optical films 100, 200, and 300 described with reference to FIGS.

光学遅延層410と偏光層420は、単軸性であってもよい。   The optical retardation layer 410 and the polarizing layer 420 may be uniaxial.

次いで、図9に基づき、本発明の他の実施形態による表示装置用光学フィルムについて詳細に説明する。   Next, an optical film for a display device according to another embodiment of the present invention will be described in detail with reference to FIG.

図9は、本発明の他の実施形態による表示装置用光学フィルムの概略断面図である。   FIG. 9 is a schematic cross-sectional view of an optical film for a display device according to another embodiment of the present invention.

図9を参照すると、本発明の実施形態による表示装置用光学フィルム450は、光学遅延層460と、その上に順次に配設される基材層470および偏光層480を備える。   Referring to FIG. 9, an optical film 450 for a display device according to an embodiment of the present invention includes an optical retardation layer 460, and a base material layer 470 and a polarizing layer 480 that are sequentially disposed thereon.

光学遅延層460は、図1から図6に基づいて説明した光学フィルム100、200、300と実質的に同じであってもよい。   The optical retardation layer 460 may be substantially the same as the optical films 100, 200, and 300 described with reference to FIGS.

基材層470は、たとえば、負のc−プレートであって、二軸性(biaxial)であってもよい。基材層470の面内位相差が0〜50nmであり、厚さ方向の位相差が0nm〜100nmであってもよいが、たとえば、基材層470の面内位相差が0〜10nmであり、厚さ方向の位相差が0nm〜70nmであってもよい。一実施形態によれば、基材層470の面内位相差が0nmであり、厚さ方向の位相差が0nm〜60nmであってもよい。   The base material layer 470 may be, for example, a negative c-plate and may be biaxial. The in-plane retardation of the base material layer 470 may be 0 to 50 nm and the retardation in the thickness direction may be 0 nm to 100 nm. For example, the in-plane retardation of the base material layer 470 is 0 to 10 nm. The retardation in the thickness direction may be 0 nm to 70 nm. According to one embodiment, the in-plane retardation of the base material layer 470 may be 0 nm, and the retardation in the thickness direction may be 0 nm to 60 nm.

偏光層480は、入射光の偏光を直線偏光に変換する直線偏光子であってもよく、たとえば、ヨードがドープされたポリビニールアルコール(PVA)を含んでいてもよい。   The polarizing layer 480 may be a linear polarizer that converts the polarized light of incident light into linearly polarized light. For example, the polarizing layer 480 may include polyvinyl alcohol (PVA) doped with iodine.

偏光層480は、単一層であってもよく、2以上の膜を備えていてもよい。たとえば、偏光層620は、図8に示す構造を有していてもよい。   The polarizing layer 480 may be a single layer or may include two or more films. For example, the polarizing layer 620 may have the structure shown in FIG.

光学遅延層460と偏光層480は、単軸性(uniaxial)であってもよい。   The optical retardation layer 460 and the polarizing layer 480 may be uniaxial.

図1から図9に示す光学フィルム100、200、300、400、450は、表示装置、特に、有機発光表示装置や液晶表示装置などのフラットパネル表示装置に用いられてもよい。   The optical films 100, 200, 300, 400, and 450 shown in FIGS. 1 to 9 may be used for display devices, particularly flat panel display devices such as organic light emitting display devices and liquid crystal display devices.

図10および図11に基づき、本発明の一実施形態による有機発光表示装置について詳細に説明する。   An OLED display according to an exemplary embodiment of the present invention will be described in detail with reference to FIGS. 10 and 11.

図10は、本発明の一実施形態による有機発光表示装置の概略断面図であり、図11は、有機発光表示板の概略断面図である。   FIG. 10 is a schematic cross-sectional view of an OLED display according to an embodiment of the present invention, and FIG. 11 is a schematic cross-sectional view of an OLED display panel.

図10を参照すると、本発明の一実施形態による有機発光表示装置500は、映像を表示する有機発光表示板510と、その上に貼り付けられている光学フィルム520と、を備えていてもよい。   Referring to FIG. 10, the organic light emitting display device 500 according to an embodiment of the present invention may include an organic light emitting display plate 510 that displays an image, and an optical film 520 attached thereto. .

図11を参照すると、有機発光表示板510は、相対向する一対の電極514、516と、これらの間に介装され、有機発光物質からなる発光層512と、を備えていてもよい。   Referring to FIG. 11, the organic light emitting display panel 510 may include a pair of electrodes 514 and 516 opposed to each other and a light emitting layer 512 made of an organic light emitting material interposed therebetween.

光学フィルム520は、図7に示すように、光学遅延層410と偏光層420を備えていてもよく、図9に示すように、光学遅延層460と、基材層470および偏光層480を備えていてもよい。   The optical film 520 may include an optical retardation layer 410 and a polarizing layer 420 as shown in FIG. 7, and includes an optical retardation layer 460, a base material layer 470, and a polarizing layer 480 as shown in FIG. It may be.

このような有機発光表示装置500においては、外部光が光学フィルム520を通過して有機発光表示板510に入射して有機発光表示板510の反射体、たとえば、電極などによって反射され得る。この場合、外部光は偏光層524を通過して直線偏光され、光学遅延層522を通過しながら波長の約1/4だけ遅延されて円偏光に変わり得る。光学遅延層522を通過した光は有機発光表示板510の反射体によって反射でき、反射された光は光学遅延層522を再び通過することができる。光学遅延層522を再び通過しながら光は波長の約1/4だけ遅延され、これにより、円偏光が再び直線偏光に変換され得る。要するに、偏光層524を介して入射された外部光は光学遅延層522を二回通過しながら偏光軸が約90°だけ回転するため偏光層524を再び通過して外側に出射されることがほとんど不可能になる。   In the organic light emitting display device 500, external light may pass through the optical film 520 and enter the organic light emitting display plate 510 to be reflected by a reflector of the organic light emitting display plate 510, for example, an electrode. In this case, the external light may be linearly polarized through the polarizing layer 524 and delayed by about ¼ of the wavelength while passing through the optical delay layer 522 to be changed into circularly polarized light. The light that has passed through the optical delay layer 522 can be reflected by the reflector of the organic light emitting display panel 510, and the reflected light can pass through the optical delay layer 522 again. While passing through the optical retardation layer 522 again, the light is delayed by about ¼ of the wavelength, so that circularly polarized light can be converted back to linearly polarized light. In short, external light that has entered through the polarizing layer 524 passes through the optical delay layer 522 twice and the polarization axis rotates by about 90 °, so that it almost passes through the polarizing layer 524 and is emitted to the outside. It becomes impossible.

以下、図12から図15に基づき、実験例による光学フィルムについて詳細に説明する。   Hereinafter, the optical film according to the experimental example will be described in detail with reference to FIGS.

図12は、実験例による光学フィルムにおいて、光学遅延層の面内位相差の様々な値に対する光学フィルムの反射率を示すグラフであり、図13から図15は、実験例による光学フィルムの反射率を光学遅延層の面内位相差の関数で示すグラフである。   FIG. 12 is a graph showing the reflectance of the optical film with respect to various values of the in-plane retardation of the optical retardation layer in the optical film according to the experimental example, and FIGS. 13 to 15 illustrate the reflectance of the optical film according to the experimental example. Is a graph showing a function of in-plane retardation of the optical retardation layer.

シミュレーション実験装置であるLCDマスターを用いて光学フィルムの反射率を計算した。光学フィルムは図7に示すような構造を有し、光学遅延層は図3に示すような構造を有する。   The reflectance of the optical film was calculated using an LCD master, which is a simulation experimental apparatus. The optical film has a structure as shown in FIG. 7, and the optical retardation layer has a structure as shown in FIG.

シミュレーション実験において塗布されて光学遅延層をなす液晶物質の屈折率異方性は約0.0045であり、短波長分散性(=約450nmの入射光に対する遅延値/約550nmの入射光に対する遅延値)は約0.88であり、長波長分散性(=約650nmの入射光に対する遅延値/約550nmの入射光に対する遅延値)は約1.02であった。   The refractive index anisotropy of the liquid crystal material applied in the simulation experiment to form the optical retardation layer is about 0.0045 and has short wavelength dispersion (= delay value for incident light of about 450 nm / delay value for incident light of about 550 nm). ) Was about 0.88, and long wavelength dispersion (= delay value for incident light of about 650 nm / delay value for incident light of about 550 nm) was about 1.02.

反射体は、理想的な反射体を想定した。   As the reflector, an ideal reflector was assumed.

図12において、光学遅延層の厚さを約2μmから約2.9μmまで約0.1μmずつ上げながら実験を行った。このとき、光学遅延層の面内位相差は約118nmから約174nmまで約6nmずつ変化した。   In FIG. 12, the experiment was performed while increasing the thickness of the optical retardation layer by about 0.1 μm from about 2 μm to about 2.9 μm. At this time, the in-plane retardation of the optical retardation layer changed by about 6 nm from about 118 nm to about 174 nm.

図13から図15において、極角は約0°、約30°、約45°および約60°に変化させ、図13は方位角120°、図14は方位角60°、図15は方位角40°にした。   13 to 15, the polar angle is changed to about 0 °, about 30 °, about 45 °, and about 60 °, FIG. 13 shows an azimuth angle of 120 °, FIG. 14 shows an azimuth angle of 60 °, and FIG. 40 °.

図12を参照すると、全体的にみたときに、基準波長に対する光学遅延層の面内位相差(Ro)が約130nm〜約142nmの範囲であるときに反射率が低いことが分かる。   Referring to FIG. 12, it can be seen that the reflectance is low when the in-plane retardation (Ro) of the optical retardation layer with respect to the reference wavelength is in the range of about 130 nm to about 142 nm.

図13を参照すると、方位角が約120°であるときには、極角30°を基準として光学遅延層の面内位相差(Ro)が約118nm〜約153nmである場合の反射率が約0.02よりも低いことが分かる。   Referring to FIG. 13, when the azimuth angle is about 120 °, the reflectivity when the in-plane retardation (Ro) of the optical retardation layer is about 118 nm to about 153 nm with respect to the polar angle of 30 ° is about 0. It can be seen that it is lower than 02.

図14を参照すると、方位角が約60°であるときには、極角30°を基準として光学遅延層の面内位相差(Ro)が約125nm〜約170nmである場合の反射率が約0.02よりも低いことが分かる。   Referring to FIG. 14, when the azimuth angle is about 60 °, the reflectance when the in-plane retardation (Ro) of the optical retardation layer is about 125 nm to about 170 nm with reference to the polar angle of 30 ° is about 0. It can be seen that it is lower than 02.

図15を参照すると、方位角が40°であるときには、極角30°を基準として光学遅延層の面内位相差(Ro)が約126nm〜約169nmである場合の反射率が約0.02よりも低いことが分かる。   Referring to FIG. 15, when the azimuth angle is 40 °, the reflectance when the in-plane retardation (Ro) of the optical retardation layer is about 126 nm to about 169 nm with reference to the polar angle of 30 ° is about 0.02. You can see that it is lower.

このため、図7に示す光学フィルムの場合には、光学遅延層の面内位相差(Ro)が約126nm〜約153nmの範囲である場合に方位角約120°、約60°、約40°に対する反射率が約0.02よりも低いことが分かる。   Therefore, in the case of the optical film shown in FIG. 7, when the in-plane retardation (Ro) of the optical retardation layer is in the range of about 126 nm to about 153 nm, the azimuth angle is about 120 °, about 60 °, about 40 °. It can be seen that the reflectance with respect to is lower than about 0.02.

以下、図16から図19に基づき、本発明の他の実験例による光学フィルムについて詳細に説明する。   Hereinafter, an optical film according to another experimental example of the present invention will be described in detail with reference to FIGS.

図16は、実験例による光学フィルムにおいて、基材層の厚さ方向の位相差(Rth)の様々な値に対する光学フィルムの反射率を示すグラフであり、図17から図19は、実験例による光学フィルムの反射率を基材層の厚さ方向の位相差の関数で示すグラフである。   FIG. 16 is a graph showing the reflectance of the optical film with respect to various values of retardation (Rth) in the thickness direction of the base material layer in the optical film according to the experimental example, and FIGS. 17 to 19 are according to the experimental example. It is a graph which shows the reflectance of an optical film as a function of the phase difference of the thickness direction of a base material layer.

シミュレーション実験装置であるLCDマスターを用いて、光学フィルムの反射率を計算した。光学フィルムは図9に示すような構造を有し、光学遅延層は図3に示すような構造を有する。   The reflectance of the optical film was calculated using an LCD master, which is a simulation experimental apparatus. The optical film has a structure as shown in FIG. 9, and the optical retardation layer has a structure as shown in FIG.

シミュレーション実験において塗布されて光学遅延層をなす液晶物質の屈折率異方性は約0.0045であり、短波長分散性(=約450nmの入射光に対する遅延値/約550nmの入射光に対する遅延値)は約0.88であり、長波長分散性(=約650nmの入射光に対する遅延値/約550nmの入射光に対する遅延値)は約1.02であった。   The refractive index anisotropy of the liquid crystal material applied in the simulation experiment to form the optical retardation layer is about 0.0045 and has short wavelength dispersion (= delay value for incident light of about 450 nm / delay value for incident light of about 550 nm). ) Was about 0.88, and long wavelength dispersion (= delay value for incident light of about 650 nm / delay value for incident light of about 550 nm) was about 1.02.

反射体は、理想的な反射体を想定した。   As the reflector, an ideal reflector was assumed.

光学遅延層の面内位相差は約142nm、基材層の面内位相差は約0に固定した。   The in-plane retardation of the optical retardation layer was fixed at about 142 nm, and the in-plane retardation of the base material layer was fixed at about 0.

図16において、基材層の厚さ方向の位相差(Rth)は約0nmから約100nmまで約25nmずつ変化させた。   In FIG. 16, the thickness direction retardation (Rth) of the base material layer was changed from about 0 nm to about 100 nm by about 25 nm.

図17から図19において、極角は約0°、約30°、約45°、約60°および約70°に変化させ、図17は方位角120°、図18は方位角60°、図19は方位角40°にした。   17 to 19, the polar angle is changed to about 0 °, about 30 °, about 45 °, about 60 ° and about 70 °, FIG. 17 shows an azimuth angle of 120 °, FIG. 18 shows an azimuth angle of 60 °, 19 has an azimuth angle of 40 °.

図16を参照すると、基材層の厚さ方向の位相差(Rth)が小さいほど反射率が減少することが分かる。   Referring to FIG. 16, it can be seen that the reflectance decreases as the retardation (Rth) in the thickness direction of the base material layer decreases.

図17を参照すると、方位角が約120°であるときには、基材層の厚さ方向の位相差(Rth)が約0nm〜約60nmの範囲において、極角30°の反射率が約0.02よりも低く、極角45°の反射率が約0.04よりも低いことが分かる。   Referring to FIG. 17, when the azimuth angle is about 120 °, the reflectivity at the polar angle of 30 ° is about 0.1 when the thickness direction retardation (Rth) of the base material layer is about 0 nm to about 60 nm. It can be seen that the reflectivity at a polar angle of 45 ° is lower than about 0.04.

図18を参照すると、方位角が約60°であるときには、基材層の厚さ方向の位相差(Rth)が約0nm〜約100nmの範囲において、極角30°の反射率が約0.02よりも低く、極角45°の反射率が約0.04よりも低いことが分かる。   Referring to FIG. 18, when the azimuth angle is about 60 °, the reflectance at the polar angle of 30 ° is about 0.1 when the retardation (Rth) in the thickness direction of the base material layer is about 0 nm to about 100 nm. It can be seen that the reflectivity at a polar angle of 45 ° is lower than about 0.04.

図19を参照すると、方位角が約40°であるときには、基材層の厚さ方向の位相差(Rth)が約0nm〜約65nmの範囲において、極角30°の反射率が約0.02よりも低く、極角45°の反射率が約0.04よりも低いことが分かる。   Referring to FIG. 19, when the azimuth angle is about 40 °, the reflectivity at the polar angle of 30 ° is about 0.1 when the thickness direction retardation (Rth) of the base material layer is about 0 nm to about 65 nm. It can be seen that the reflectivity at a polar angle of 45 ° is lower than about 0.04.

このため、基材層の厚さ方向の位相差(Rth)が約0nm〜約60nmの範囲において、方位角が約120°、約60°、約40°である場合にいずれも極角30°の反射率が約0.02よりも低く、極角45°の反射率が約0.04よりも低いことが分かる。   For this reason, when the retardation (Rth) in the thickness direction of the base material layer is in the range of about 0 nm to about 60 nm and the azimuth is about 120 °, about 60 °, and about 40 °, the polar angle is 30 °. It can be seen that the reflectance at a polar angle of 45 ° is lower than about 0.04.

以下、図20〜図22に基づき、本発明の他の実験例による光学フィルムについて詳細に説明する。   Hereinafter, based on FIGS. 20-22, the optical film by the other experiment example of this invention is demonstrated in detail.

図20は、実験例による光学フィルムにおいて、基材層の面内位相差(Ro)および厚さ方向の位相差(Rth)の様々な値に対する光学フィルムの反射率を示すグラフであり、図21は、基材層の様々な面内位相差(Ro)値に対して、実験例による光学フィルムの最大反射率を基材層の厚さ方向の位相差(Rth)の関数で示すグラフであり、図22は、実験例による光学フィルムの最大反射率を基材層の面内位相差(Ro)および厚さ方向の位相差(Rth)の関数で示すグラフである。   FIG. 20 is a graph showing the reflectance of the optical film with respect to various values of the in-plane retardation (Ro) and the thickness direction retardation (Rth) of the base material layer in the optical film according to the experimental example. FIG. 5 is a graph showing the maximum reflectance of the optical film according to the experimental example as a function of the retardation (Rth) in the thickness direction of the substrate layer with respect to various in-plane retardation (Ro) values of the substrate layer. FIG. 22 is a graph showing the maximum reflectance of the optical film according to the experimental example as a function of the in-plane retardation (Ro) of the base material layer and the retardation in the thickness direction (Rth).

シミュレーション実験装置であるLCDマスターを用いて光学フィルムの反射率を計算した。光学フィルムは、図7(Ro=0、Rth=0)および図9に示すような構造を有し、光学遅延層は図3に示すような構造を有する。   The reflectance of the optical film was calculated using an LCD master, which is a simulation experimental apparatus. The optical film has a structure as shown in FIG. 7 (Ro = 0, Rth = 0) and FIG. 9, and the optical retardation layer has a structure as shown in FIG.

シミュレーション実験において塗布されて光学遅延層をなす液晶物質の屈折率異方性は約0.0045であり、短波長分散性(=約450nmの入射光に対する遅延値/約550nmの入射光に対する遅延値)は約0.88であり、長波長分散性(=約650nmの入射光に対する遅延値/約550nmの入射光に対する遅延値)は約1.02であった。   The refractive index anisotropy of the liquid crystal material applied in the simulation experiment to form the optical retardation layer is about 0.0045 and has short wavelength dispersion (= delay value for incident light of about 450 nm / delay value for incident light of about 550 nm). ) Was about 0.88, and long wavelength dispersion (= delay value for incident light of about 650 nm / delay value for incident light of about 550 nm) was about 1.02.

反射体は、理想的な反射体を想定した。   As the reflector, an ideal reflector was assumed.

図20および図21において、基材層の厚さ方向の位相差(Rth)は約0nm、約10nm、約25nm、約50nmに変化させ、基材層の面内位相差(Ro)は約0nm、約10nm、約25nm、約50nm、約100nmに変化させた。   20 and 21, the retardation (Rth) in the thickness direction of the base material layer is changed to about 0 nm, about 10 nm, about 25 nm, and about 50 nm, and the in-plane retardation (Ro) of the base material layer is about 0 nm. , About 10 nm, about 25 nm, about 50 nm, and about 100 nm.

基材層の厚さ方向の位相差(Rth)と面内位相差(Ro)による最大反射率を表1に示す。   Table 1 shows the maximum reflectance based on the thickness direction retardation (Rth) and in-plane retardation (Ro) of the base material layer.

表1と図20から図22を参照すると、基材層の面内位相差(Ro)が大きくなるほど、かつ、厚さ方向の位相差(Rth)が小さくなるほど反射率が小さくなることが分かる。特に、基材層の厚さ方向の位相差(Rth)が約0nm〜約60nmである場合に、位相差とは無関係に約0.12cd/m以下の低い反射率を示す。 Referring to Table 1 and FIGS. 20 to 22, it can be seen that the reflectance decreases as the in-plane retardation (Ro) of the base material layer increases and the retardation in the thickness direction (Rth) decreases. In particular, when the retardation (Rth) in the thickness direction of the base material layer is about 0 nm to about 60 nm, a low reflectance of about 0.12 cd / m 2 or less is exhibited regardless of the phase difference.

より具体的に、基材層の面内位相差が0〜50nmであれば、厚さ方向の位相差が0nm〜100nmである場合に反射率が低く、基材層の面内位相差が0〜10nmであれば、厚さ方向の位相差が0nm〜70nmである場合に反射率が低く、基材層の面内位相差が0nmであり、かつ、厚さ方向の位相差が0nm〜60nmであれば反射率が低いことが分かる。   More specifically, when the in-plane retardation of the base material layer is 0 to 50 nm, the reflectance is low when the thickness direction retardation is 0 nm to 100 nm, and the in-plane retardation of the base material layer is 0. When the thickness is 10 nm to 10 nm, the reflectance is low when the thickness direction retardation is 0 nm to 70 nm, the in-plane retardation of the base material layer is 0 nm, and the thickness direction retardation is 0 nm to 60 nm. If so, it can be seen that the reflectance is low.

以上、本発明の好適な実施形態について詳述したが、本発明の権利範囲はこれに何ら限定されるものではなく、下記の請求範囲において定義している本発明の基本概念を用いた当業者の種々の変形および改良形態もまた本発明の権利範囲に属するものである。   The preferred embodiment of the present invention has been described in detail above, but the scope of the present invention is not limited to this, and a person skilled in the art using the basic concept of the present invention defined in the following claims. Various modifications and improvements are also within the scope of the present invention.

100、200、300、400、450、520 光学フィルム
210、310 下地膜
220、330 液晶塗布膜
320 配向膜
322 凹凸構造
360 微細モールド
410、460、522 光学遅延層
420、480、524、620 偏光層
422 偏光膜
424、426 保護膜
470 基材層
510 有機発光表示板
512 発光層
514、516 電極
100, 200, 300, 400, 450, 520 Optical film 210, 310 Base film 220, 330 Liquid crystal coating film 320 Alignment film 322 Uneven structure 360 Micro mold 410, 460, 522 Optical retardation layer 420, 480, 524, 620 Polarizing layer 422 Polarizing film 424, 426 Protective film 470 Base material layer 510 Organic light emitting display panel 512 Light emitting layer 514, 516 Electrode

Claims (18)

液晶塗布膜と、
前記液晶塗布膜の上の基材層とを備え、
前記液晶塗布膜が逆波長分散性を有し、基準波長に対する面内位相差(Ro)が126nm〜153nmの範囲であり、
前記基材層の面内位相差が0〜50nmであり、厚さ方向の位相差が0nm〜100nmであることを特徴とする光学フィルム。
A liquid crystal coating film;
A substrate layer on the liquid crystal coating film,
The liquid crystal coating film has reverse wavelength dispersion, and an in-plane retardation (Ro) with respect to a reference wavelength is in a range of 126 nm to 153 nm,
An optical film, wherein the substrate layer has an in-plane retardation of 0 to 50 nm and a thickness direction retardation of 0 to 100 nm.
前記液晶塗布膜の面内位相差(Ro)が130nm〜142nmの範囲であることを特徴とする請求項1に記載の光学フィルム。   The optical film according to claim 1, wherein an in-plane retardation (Ro) of the liquid crystal coating film is in a range of 130 nm to 142 nm. 前記液晶塗布膜の短波長分散性である450nmの入射光に対する遅延値/550nmの入射光に対する遅延値が1より小さく、長波長分散性である650nmの入射光に対する遅延値/550nmの入射光に対する遅延値が1より大きいことを特徴とする請求項1に記載の光学フィルム。   The delay value for 450 nm incident light, which is short wavelength dispersion of the liquid crystal coating film, is less than 1 for the incident light of 550 nm, and the delay value for 650 nm incident light, which is long wavelength dispersion, for the incident light of 550 nm. The optical film according to claim 1, wherein the delay value is larger than 1. 前記基材層の面内位相差が0〜10nmであり、厚さ方向の位相差が0nm〜70nmであることを特徴とする請求項3に記載の光学フィルム。   The in-plane retardation of the base material layer is 0 to 10 nm, and the retardation in the thickness direction is 0 nm to 70 nm. 前記基材層の面内位相差が0nmであり、厚さ方向の位相差が0nm〜60nmであることを特徴とする請求項4に記載の光学フィルム。   The optical film according to claim 4, wherein an in-plane retardation of the base material layer is 0 nm, and a retardation in the thickness direction is 0 nm to 60 nm. 前記液晶塗布膜の下部に配設される下地膜と、
前記下地膜と前記液晶塗布膜との間に配設される配向膜と、
をさらに備えることを特徴とする請求項1から5のいずれか一項に記載の光学フィルム。
A base film disposed under the liquid crystal coating film;
An alignment film disposed between the base film and the liquid crystal coating film;
The optical film according to claim 1, further comprising:
前記配向膜が、所定の方向に配列された凹凸構造を有することを特徴とする請求項6に記載の光学フィルム。   The optical film according to claim 6, wherein the alignment film has a concavo-convex structure arranged in a predetermined direction. 前記配向膜の凹凸構造が、ナノインプリント方式により形成されていることを特徴とする請求項7に記載の光学フィルム。   The optical film according to claim 7, wherein the uneven structure of the alignment film is formed by a nanoimprint method. 前記配向膜が、光感応性樹脂を含むことを特徴とする請求項7に記載の光学フィルム。   The optical film according to claim 7, wherein the alignment film includes a photosensitive resin. 前記液晶塗布膜が、四分の一波長板であることを特徴とする請求項1から5のいずれか一項に記載の光学フィルム。   The optical film according to any one of claims 1 to 5, wherein the liquid crystal coating film is a quarter-wave plate. 前記液晶塗布膜の上に配設される偏光層をさらに備えることを特徴とする請求項10に記載の光学フィルム。   The optical film according to claim 10, further comprising a polarizing layer disposed on the liquid crystal coating film. 有機発光表示板と、
前記有機発光表示板の上に配設される光学フィルムと
を備え、
前記光学フィルムが液晶塗布膜とその上の基材層とを備え、
前記液晶塗布膜が逆波長分散性を有し、基準波長に対する前記液晶塗布膜の面内位相差(Ro)が126nm〜153nmの範囲であり、
前記基材層の面内位相差が0〜50nmであり、厚さ方向の位相差が0nm〜100nmであることを特徴とする有機発光表示装置。
An organic light-emitting display board;
An optical film disposed on the organic light emitting display plate,
The optical film comprises a liquid crystal coating film and a base material layer thereon,
The liquid crystal coating film has reverse wavelength dispersion, and the in-plane retardation (Ro) of the liquid crystal coating film with respect to a reference wavelength is in the range of 126 nm to 153 nm,
The in-plane retardation of the base material layer is 0 to 50 nm, and the retardation in the thickness direction is 0 nm to 100 nm.
前記液晶塗布膜の面内位相差(Ro)が130nm〜142nmの範囲であることを特徴とする請求項12に記載の有機発光表示装置。   The organic light emitting display device according to claim 12, wherein an in-plane retardation (Ro) of the liquid crystal coating film is in a range of 130 nm to 142 nm. 前記液晶塗布膜の短波長分散性である450nmの入射光に対する遅延値/550nmの入射光に対する遅延値が1より小さく、長波長分散性である650nmの入射光に対する遅延値/550nmの入射光に対する遅延値が1より大きいことを特徴とする請求項12に記載の有機発光表示装置。   The delay value for 450 nm incident light, which is short wavelength dispersion of the liquid crystal coating film, is less than 1 for the incident light of 550 nm, and the delay value for 650 nm incident light, which is long wavelength dispersion, for the incident light of 550 nm. The organic light emitting display device according to claim 12, wherein the delay value is greater than one. 前記基材層の面内位相差が0〜10nmであり、厚さ方向の位相差が0nm〜70nmであることを特徴とする請求項14に記載の有機発光表示装置。   The organic light emitting display device according to claim 14, wherein an in-plane retardation of the base material layer is 0 to 10 nm, and a retardation in a thickness direction is 0 nm to 70 nm. 前記基材層の面内位相差が0nmであり、厚さ方向の位相差が0nm〜60nmであることを特徴とする請求項15に記載の有機発光表示装置。   The organic light emitting display device according to claim 15, wherein an in-plane retardation of the base material layer is 0 nm and a thickness direction retardation is 0 nm to 60 nm. 前記液晶塗布膜の下部に配設される下地膜と、
前記下地膜と前記液晶塗布膜との間に配設される配向膜と、
をさらに備えることを特徴とする請求項12から16のいずれか一項に記載の有機発光表示装置。
A base film disposed under the liquid crystal coating film;
An alignment film disposed between the base film and the liquid crystal coating film;
The organic light emitting display device according to claim 12, further comprising:
前記配向膜が、所定の方向に配列された凹凸構造を有することを特徴とする請求項17に記載の有機発光表示装置。   The organic light emitting display device according to claim 17, wherein the alignment film has a concavo-convex structure arranged in a predetermined direction.
JP2018201321A 2012-12-27 2018-10-25 Optical film and organic light-emitting display device comprising the same Pending JP2019040199A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0155343 2012-12-27
KR20120155343 2012-12-27
KR1020130157414A KR20140085316A (en) 2012-12-27 2013-12-17 Multilayered optical film and display device including optical film
KR10-2013-0157414 2013-12-17

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013264997A Division JP2014130352A (en) 2012-12-27 2013-12-24 Optical film and organic light emitting display device having the same

Publications (1)

Publication Number Publication Date
JP2019040199A true JP2019040199A (en) 2019-03-14

Family

ID=51735001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018201321A Pending JP2019040199A (en) 2012-12-27 2018-10-25 Optical film and organic light-emitting display device comprising the same

Country Status (2)

Country Link
JP (1) JP2019040199A (en)
KR (2) KR20140085316A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160076701A (en) 2014-12-23 2016-07-01 동우 화인켐 주식회사 Optical film and organic light-emitting display device comprising thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515080A (en) * 2003-01-28 2006-05-18 エルジー・ケム・リミテッド Vertical alignment liquid crystal display device with positive compensation film
WO2007029788A1 (en) * 2005-09-09 2007-03-15 Nitto Denko Corporation Polarizing plate with optical compensation layer, liquid crystal panel using polarizing plate with optical compensation layer, and image display unit
JP2012018396A (en) * 2010-06-10 2012-01-26 Fujifilm Corp Stereoscopic image recognition device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515080A (en) * 2003-01-28 2006-05-18 エルジー・ケム・リミテッド Vertical alignment liquid crystal display device with positive compensation film
WO2007029788A1 (en) * 2005-09-09 2007-03-15 Nitto Denko Corporation Polarizing plate with optical compensation layer, liquid crystal panel using polarizing plate with optical compensation layer, and image display unit
JP2012018396A (en) * 2010-06-10 2012-01-26 Fujifilm Corp Stereoscopic image recognition device

Also Published As

Publication number Publication date
KR20170117014A (en) 2017-10-20
KR20140085316A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP6628230B2 (en) Polarizer
JP6373625B2 (en) Inverse wavelength dispersion phase retardation film and display device including the same
JP6089343B2 (en) Optical film
WO2015050075A1 (en) Set of polarizing plates and front plate-integrated liquid crystal display panel
JP6929586B2 (en) Anti-reflection optical filter and organic light emitting device
TWI645976B (en) Optical filter for anti-reflection and organic light-emitting device
KR20120055129A (en) Antireflective polarizing plate and image display apparatus comprising the same
TWI708077B (en) Elliptical polarizing plate and organic light emitting device
US9921348B2 (en) Multilayered optical film and display device
KR102140552B1 (en) Optical element, manufacturing method of optical element and liquid crystal display device
US9986603B2 (en) Multilayered optical film and display device including optical film
WO2017170019A1 (en) Polarizing plate set and ips mode liquid crystal display using same
TW201825934A (en) Optical filter for anti-reflection and organic light-emitting device
JP2019040199A (en) Optical film and organic light-emitting display device comprising the same
JP2018060152A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
KR20160142798A (en) Multilayered optical film and display device including optical film
KR20140085131A (en) Multilayered optical film and display device including optical film
WO2023176659A1 (en) Lens unit and laminated film
JP6916940B2 (en) Image display device
JP7379970B2 (en) λ/2 retardation plates, optical supplies and reflective projection systems
WO2023176661A1 (en) Display system and lamination film
JP2018155907A (en) Optical film and image display device
JP2022182619A (en) Optical element, laminate, display device, and manufacturing method of optical element
TW202131031A (en) Retardation plate, and circularly polarizing plate, liquid crystal display, and organic el display including the same
JP2018054884A (en) Polarizing plate set and IPS mode liquid crystal display device using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201207