JP2021040855A - スリットランプ顕微鏡、眼科情報処理装置、眼科システム、スリットランプ顕微鏡の制御方法、プログラム、及び記録媒体 - Google Patents

スリットランプ顕微鏡、眼科情報処理装置、眼科システム、スリットランプ顕微鏡の制御方法、プログラム、及び記録媒体 Download PDF

Info

Publication number
JP2021040855A
JP2021040855A JP2019164262A JP2019164262A JP2021040855A JP 2021040855 A JP2021040855 A JP 2021040855A JP 2019164262 A JP2019164262 A JP 2019164262A JP 2019164262 A JP2019164262 A JP 2019164262A JP 2021040855 A JP2021040855 A JP 2021040855A
Authority
JP
Japan
Prior art keywords
unit
image
slit lamp
lamp microscope
transmission information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019164262A
Other languages
English (en)
Inventor
リウ・ジョナサン
Liu Jonathan
清水 仁
Hitoshi Shimizu
清水  仁
央 塚田
Hiroshi Tsukada
央 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2019164262A priority Critical patent/JP2021040855A/ja
Priority to PCT/JP2020/021726 priority patent/WO2021049104A1/ja
Priority to CN202080062719.1A priority patent/CN114364306A/zh
Priority to US17/637,082 priority patent/US20220280036A1/en
Publication of JP2021040855A publication Critical patent/JP2021040855A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/13Ophthalmic microscopes
    • A61B3/135Slit-lamp microscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0041Operational features thereof characterised by display arrangements
    • A61B3/0058Operational features thereof characterised by display arrangements for multiple images
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0083Apparatus for testing the eyes; Instruments for examining the eyes provided with means for patient positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

【課題】画像の明るさの管理及び3次元的情報の提供を可能とすることで、徹照法の欠点が解消された新規な眼科観察法を提供する。【解決手段】例示的な態様のスリットランプ顕微鏡は、スキャン部と、レンダリング部とを含む。スキャン部は、被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集する。レンダリング部は、スキャン部により収集された複数の断面画像に基づく3次元画像にレンダリングを適用する。【選択図】図1

Description

本発明は、スリットランプ顕微鏡、眼科情報処理装置、眼科システム、スリットランプ顕微鏡の制御方法、プログラム、及び記録媒体に関する。
眼科分野において画像診断は重要な位置を占める。画像診断には、様々な眼科撮影装置が用いられる。眼科撮影装置の種類には、スリットランプ顕微鏡、眼底カメラ、走査型レーザー検眼鏡(SLO)、光干渉断層計(OCT)などがある。
これら様々な眼科装置のうち最も広く且つ頻繁に使用される装置がスリットランプ顕微鏡である。スリットランプ顕微鏡は、スリット光で被検眼を照明し、照明された断面を斜方や側方から顕微鏡で観察したり撮影したりするために使用される(例えば、特許文献1〜3を参照)。
スリットランプ顕微鏡の主な用途の1つに前眼部観察がある。前眼部観察において、医師は、スリット光による照明野やフォーカス位置を移動させつつ前眼部全体を観察して異常の有無を判断する。また、コンタクトレンズのフィッティング状態の確認など、視力補正器具の処方において、スリットランプ顕微鏡が用いられることもある。
前眼部観察に徹照法を用いることがある(例えば、特許文献3を参照)。徹照法は、照明光の網膜反射を利用して眼内の状態を描出する観察法であり、典型的には、水晶体の混濁部を網膜からの反帰光線の影として描出する手法である。徹照法により得られる像は徹照像と呼ばれる。徹照法は白内障眼の観察などに広く利用されている一般的な手法であるが、次のような問題を有している。
第1に、網膜からの反射光を利用することから徹照像の明るさを管理することは困難であり、画質の管理(制御、調整)も困難であるため、定量的な診断に適していないという問題がある。したがって、徹照法を用いた診断は読影者の主観に大きく依存し、例えば白内障のグレードを客観的に評価することができない。また、解析プログラムや機械学習を用いた自動画像解析が近年急速に発展しているが、画質管理の困難性は、徹照像に対する自動画像解析の適用を妨げる要因の1つとなっている。
第2に、徹照像は、眼底を2次光源とする平面画像(投影画像、射影画像)であり、奥行き方向(深さ方向、Z方向)の情報を有さないため、3次元的な混濁分布を把握できないという問題がある。すなわち、徹照像は、Z方向に直交するXY平面における混濁分布を提供するに過ぎず、Z方向における混濁分布を提供することができない。
特開2016−159073号公報 特開2016−179004号公報 特開2009−56149号公報
本発明の目的は、徹照法の欠点が解消された新規な眼科観察法を提供することにある。
幾つかの例示的な態様のスリットランプ顕微鏡は、被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集するスキャン部と、複数の断面画像に基づく3次元画像にレンダリングを適用するレンダリング部とを含む。
幾つかの例示的な態様のスリットランプ顕微鏡において、レンダリング部は、所定の平面に対するプロジェクションを3次元画像に適用する。
幾つかの例示的な態様のスリットランプ顕微鏡において、所定の平面は、被検眼の奥行き方向に直交する。
幾つかの例示的な態様のスリットランプ顕微鏡は、スキャン部により収集された複数の断面画像に3次元再構成を適用する再構成部と、3次元画像を設定するために、再構成部により構築された3次元再構成画像にセグメンテーションを適用するセグメンテーション部とを更に含む。
幾つかの例示的な態様のスリットランプ顕微鏡において、セグメンテーション部は、3次元再構成画像から水晶体領域を特定し、3次元画像は、水晶体領域の少なくとも一部を含む。
幾つかの例示的な態様のスリットランプ顕微鏡において、レンダリング部は、水晶体領域にレンダリングを適用する。
幾つかの例示的な態様のスリットランプ顕微鏡において、セグメンテーション部は、水晶体領域にセグメンテーションを適用して、被検眼の奥行き方向における部分領域を特定し、レンダリング部は、部分領域にレンダリングを適用する。
幾つかの例示的な態様のスリットランプ顕微鏡において、セグメンテーション部は、水晶体領域から嚢領域及び核領域の少なくとも一方の領域を特定し、この領域に基づいて部分領域を特定する。
幾つかの例示的な態様のスリットランプ顕微鏡において、スキャン部は、前眼部にスリット光を照射する照明系と、照明系とは異なる方向から前眼部を撮影する撮影系と、照明系及び撮影系を移動する移動機構とを含む。
幾つかの例示的な態様のスリットランプ顕微鏡において、撮影系は、スリット光が照射された前眼部からの光を導く光学系と、光学系により導かれた光を撮像面で受光する撮像素子とを含み、照明系の光軸に沿う物面と光学系と撮像面とがシャインプルーフの条件を満足する。
幾つかの例示的な態様のスリットランプ顕微鏡は、レンダリング部により構築されたレンダリング画像を表示する表示部を更に含む。
幾つかの例示的な態様の眼科情報処理装置は、被検眼の前眼部をスリット光でスキャンして収集された複数の断面画像を受け付ける受付部と、複数の断面画像に基づく3次元画像にレンダリングを適用するレンダリング部とを含む。
幾つかの例示的な態様の眼科システムは、スリットランプ顕微鏡と情報処理装置と読影端末とを含む。スリットランプ顕微鏡は、被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集するスキャン部と、スキャン部により収集された複数の断面画像を含む第1送信情報を、通信回線を通じて情報処理装置に送信する送信部とを含む。情報処理装置は、第1送信情報を受信する受信部と、第1送信情報を記憶する記憶部と、第1送信情報に含まれる複数の断面画像を少なくとも含む第2送信情報を、通信回線を通じて読影端末に送信する送信部とを含む。読影端末は、第2送信情報を受信する受信部と、第2送信情報に含まれる複数の断面画像に基づく3次元画像にレンダリングを適用するレンダリング部と、レンダリング部により構築されたレンダリング画像をユーザが読影するためのユーザーインターフェイスと、ユーザーインターフェイスを用いて入力された情報を含む第3送信情報を、通信回線を通じて情報処理装置に送信する送信部とを含む。情報処理装置は、受信部により第3送信情報を受信し、第3送信情報を第1送信情報に関連付けて記憶部に記憶する。
幾つかの例示的な態様の眼科システムは、スリットランプ顕微鏡と情報処理装置と読影装置とを含む。スリットランプ顕微鏡は、被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集するスキャン部と、スキャン部により収集された複数の断面画像を含む第1送信情報を、通信回線を通じて情報処理装置に送信する送信部とを含む。情報処理装置は、第1送信情報を受信する受信部と、第1送信情報を記憶する記憶部と、第1送信情報に含まれる複数の断面画像を少なくとも含む第2送信情報を、通信回線を通じて読影装置に送信する送信部とを含む。読影装置は、第2送信情報を受信する受信部と、第2送信情報に含まれる複数の断面画像に基づく3次元画像にレンダリングを適用するレンダリング部と、レンダリング部により構築されたレンダリング画像を読影する読影処理部と、読影処理部により取得された情報を含む第4送信情報を、通信回線を通じて情報処理装置に送信する送信部とを含む。情報処理装置は、受信部により第4送信情報を受信し、第4送信情報を第1送信情報に関連付けて記憶部に記憶する。
幾つかの例示的な態様の方法は、プロセッサと、被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集するスキャン部とを含むスリットランプ顕微鏡を制御する方法であって、スキャン部により収集された複数の断面画像に基づく3次元画像にレンダリングを適用する処理を、プロセッサに実行させる。
幾つかの例示的な態様のプログラムは、いずれかの態様の方法をコンピュータに実行させる。
幾つかの例示的な態様の記録媒体は、いずれかの態様のプログラムが記録された、コンピュータ可読な非一時的記録媒体である。
例示的な態様が提供する眼科観察法によれば、画像の明るさを管理可能であり、3次元的情報を提供可能である。
例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。 例示的な態様に係るスリットランプ顕微鏡の動作を説明するための概略図である。 例示的な態様に係るスリットランプ顕微鏡の動作を説明するための概略図である。 例示的な態様に係るスリットランプ顕微鏡の動作を説明するための概略図である。 例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。 例示的な態様に係るスリットランプ顕微鏡の構成を表す概略図である。 例示的な態様に係るスリットランプ顕微鏡の動作を表すフローチャートである。 例示的な態様に係るスリットランプ顕微鏡の動作を説明するための図である。 例示的な態様に係る眼科情報処理装置の構成を表す概略図である。 例示的な態様に係る眼科情報処理装置の構成を表す概略図である。 例示的な態様に係る眼科システムの構成を表す概略図である。 例示的な態様に係る眼科システムの構成を表す概略図である。 例示的な態様に係る眼科システムの構成を表す概略図である。 例示的な態様に係る眼科システムの構成を表す概略図である。 例示的な態様に係る眼科システムの構成を表す概略図である。 例示的な態様におけるレンダリングを説明するための概略図である。 例示的な態様におけるレンダリングを説明するための概略図である。
幾つかの例示的な態様について図面を参照しながら詳細に説明する。なお、本明細書にて引用した文献に開示された事項などの任意の公知技術を例示的な態様に組み合わせることができる。
例示的な態様に係るスリットランプ顕微鏡は、設置型でも可搬型でもよい。例示的な態様に係るスリットランプ顕微鏡は、スリット光で前眼部をスキャンして複数の断面画像を取得する(自動)スキャン機能を有し、典型的には、同装置に関する専門技術保持者(熟練者)が側にいない状況や環境で使用される。なお、例示的な態様に係るスリットランプ顕微鏡は、熟練者が側にいる状況や環境で使用されてもよいし、熟練者が遠隔地から監視、指示、操作することが可能な状況や環境で使用されてもよい。
スリットランプ顕微鏡が設置される施設の例として、眼鏡店、オプトメトリスト、医療機関、健康診断会場、検診会場、患者の自宅、福祉施設、公共施設、検診車などがある。
例示的な態様に係るスリットランプ顕微鏡は、少なくともスリットランプ顕微鏡としての機能を有する眼科撮影装置であり、他の撮影機能(モダリティ)を更に備えていてもよい。他のモダリティの例として、前眼部カメラ、眼底カメラ、SLO、OCTなどがある。例示的な態様に係るスリットランプ顕微鏡は、被検眼の特性を測定する機能を更に備えていてもよい。測定機能の例として、視力測定、屈折測定、眼圧測定、角膜内皮細胞測定、収差測定、視野測定などがある。例示的な態様に係るスリットランプ顕微鏡は、撮影画像や測定データを解析するためのアプリケーションを更に備えていてもよい。例示的な態様に係るスリットランプ顕微鏡は、治療や手術のための機能を更に備えていてもよい。その例として光凝固治療や光線力学的療法がある。
例示的な態様に係る眼科情報処理装置は、上記のスキャン機能を有するスリットランプ顕微鏡により収集された複数の断面画像を処理するプロセッサ(回路)を含む。例示的な態様の眼科情報処理装置は、スリットランプ顕微鏡の周辺機器であってもよいし、スリットランプ顕微鏡とLANを介して接続されてもよいし、スリットランプ顕微鏡と広域ネットワークを介して接続されてもよい。或いは、例示的な態様の眼科情報処理装置は、記録媒体に記録された複数の断面画像の入力を受け付ける機能を有していてもよい。
例示的な態様に係る眼科システム(第1の眼科システム)は、1以上のスリットランプ顕微鏡と、1以上の情報処理装置と、1以上の読影端末とを含んでいてよく、例えば遠隔医療のために使用可能である。スリットランプ顕微鏡は、いずれかの例示的な態様に係るスリットランプ顕微鏡であってもよいし、その少なくとも一部を具備したスリットランプ顕微鏡であってもよい。
情報処理装置は、スリットランプ顕微鏡により取得された画像を受けてこれを読影端末に送信する。また、情報処理装置は、スリットランプ顕微鏡により取得された画像を管理する機能を有していてよい。
読影端末は、医師(典型的には、眼科医又は読影医等の専門医)がスリットランプ顕微鏡により取得された画像の読影(画像を観察して診療上の所見を得ること)を行うために使用されるコンピュータである。読影者が読影端末に入力した情報は、例えば、読影端末又は他のコンピュータにより読影レポート又は電子カルテ情報に変換されて情報処理装置に送信されてよい。他の例において、読影者が読影端末に入力した情報を情報処理装置に送信することができる。この場合、情報処理装置又は他のコンピュータは、読影者が入力した情報を読影レポート又は電子カルテ情報に変換することができる。情報処理装置は、読影レポート又は電子カルテ情報を自身で管理してもよいし、他の医療システム(例えば電子カルテシステム)に転送してもよい。
他の例示的な態様に係る眼科システム(第2の眼科システム)は、1以上のスリットランプ顕微鏡と、1以上の情報処理装置と、1以上の読影装置とを含んでいてよい。スリットランプ顕微鏡及び情報処理装置の少なくとも一方は、第1の眼科システムのそれと同様であってよい。
読影装置は、例えば画像処理プロセッサ及び/又は人工知能エンジンを利用して、スリットランプ顕微鏡により取得された画像の読影を行うコンピュータである。読影装置が画像から導出した情報は、例えば、読影装置又は他のコンピュータにより読影レポート又は電子カルテ情報に変換されて情報処理装置に送信されてよい。他の例において、読影装置が画像から導出した情報を情報処理装置に送信することができる。この場合、情報処理装置又は他のコンピュータは、読影装置が画像から導出した情報を読影レポート又は電子カルテ情報に変換することができる。情報処理装置は、読影レポート又は電子カルテ情報を自身で管理してもよいし、他の医療システムに転送してもよい。
このように例示的な態様に係るスリットランプ顕微鏡、眼科情報処理装置及び眼科システムは遠隔医療に使用可能である。一方、従来のスリットランプ顕微鏡を用いて良好な画像を得ることは容易ではなく、また、読影や診断を有効に行うには前眼部の広い範囲の画像を「予め」取得する必要がある。このような事情から、スリットランプ顕微鏡を用いた有効な遠隔医療は実現されていないと言える。その実現に寄与する技術を例示的な態様は提供可能である。なお、他の用途のために例示的な態様を応用することも可能である。
以下、幾つかの例示的な態様について説明する。これら態様のうちのいずれか2つ又はそれ以上を少なくとも部分的に組み合わせることが可能である。また、このような組み合わせに対して任意の公知技術に基づく変形(付加、置換、省略等)を施すことが可能である。
以下に例示する態様において、「プロセッサ」は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路(circuit)や回路構成(circuitry)を含む。例えば、プロセッサは、記憶回路や記憶装置に格納されているプログラムやデータを読み出し実行することで、その態様に係る機能を実現する。或いは、プロセッサは、人工知能やコグニティブ・コンピューティングにおいて用いられる回路を含んでいてよく、典型的には機械学習が適用されたコンピュータシステムを含む。
<第1の態様>
第1の態様に係るスリットランプ顕微鏡の例を図1に示す。
スリットランプ顕微鏡1は、被検眼Eの前眼部撮影に用いられ、照明系2と、撮影系3と、移動機構6と、制御部7と、データ処理部8と、出力部9とを含む。なお、符号Cは角膜を示し、符号CLは水晶体を示す。
スリットランプ顕微鏡1は、単一の装置であってもよいし、2以上の装置を含むシステムであってもよい。システムの例として、スリットランプ顕微鏡1は、照明系2、撮影系3、及び移動機構6を含む本体装置と、制御部7、データ処理部8、及び出力部9を含むコンピュータと、本体装置とコンピュータとの間の通信を担う通信デバイスとを含む。システムの他の例として、スリットランプ顕微鏡1は、照明系2、撮影系3、及び移動機構6を含む本体装置と、制御部7及びデータ処理部8を含むコンピュータと、出力部9を含む出力装置と、本体装置とコンピュータと出力装置との間の通信を担う通信デバイスとを含む。コンピュータは、例えば、本体装置とともに設置されてもよいし、ネットワーク上に設置されていてもよい。出力装置についても同様である。
<照明系2>
照明系2は、被検眼Eの前眼部にスリット光を照射する。符号2aは、照明系2の光軸(照明光軸)を示す。照明系2は、従来のスリットランプ顕微鏡の照明系と同様の構成を備えていてよい。例えば、図示は省略するが、照明系2は、被検眼Eから遠い側から順に、照明光源と、正レンズと、スリット形成部と、対物レンズとを含む。
照明光源は照明光を出力する。照明系2は複数の照明光源を備えていてよい。例えば、照明系2は、連続光を出力する照明光源と、フラッシュ光を出力する照明光源とを含んでいてよい。また、照明系2は、前眼部用照明光源と後眼部用照明光源とを含んでいてよい。また、照明系2は、出力波長が異なる2以上の照明光源を含んでいてよい。典型的な照明系2は、照明光源として可視光源を含む。照明系2は、赤外光源を含んでいてもよい。照明光源から出力された照明光は、正レンズを通過してスリット形成部に投射される。
スリット形成部は、照明光の一部を通過させてスリット光を生成する。典型的なスリット形成部は、一対のスリット刃を有する。これらスリット刃の間隔(スリット幅)を変更することで照明光が通過する領域(スリット)の幅を変更し、これによりスリット光の幅が変更される。また、スリット形成部は、スリット光の長さを変更可能に構成されてもよい。スリット光の長さとは、スリット幅に対応するスリット光の断面幅方向に直交する方向におけるスリット光の断面寸法である。スリット光の幅やスリット光の長さは、典型的には、スリット光の前眼部への投影像の寸法として表現されるが、これには限定されず、例えば、任意の位置におけるスリット光の断面における寸法として表現することや、スリット形成部により形成されるスリットの寸法として表現することも可能である。
スリット形成部により生成されたスリット光は、対物レンズにより屈折されて被検眼Eの前眼部に照射される。
照明系2は、スリット光のフォーカス位置を変更するための合焦機構を更に含んでいてもよい。合焦機構は、例えば、対物レンズを照明光軸2aに沿って移動させる。対物レンズの移動は、自動及び/又は手動で実行可能である。なお、対物レンズとスリット形成部との間の照明光軸2a上の位置に合焦レンズを配置し、この合焦レンズを照明光軸2aに沿って移動させることによってスリット光のフォーカス位置を変更可能としてもよい。
なお、図1は上面図であり、同図に示すように、本態様では、被検眼Eの軸に沿う方向をZ方向とし、これに直交する方向のうち被検者にとって左右の方向をX方向とし、X方向及びZ方向の双方に直交する方向をY方向とする。典型的には、X方向は左眼と右眼との配列方向であり、Y方向は被検者の体軸に沿う方向(体軸方向)である。
<撮影系3>
撮影系3は、照明系2からのスリット光が照射されている前眼部を撮影する。符号3aは、撮影系3の光軸(撮影光軸)を示す。本態様の撮影系3は、光学系4と、撮像素子5とを含む。
光学系4は、スリット光が照射されている被検眼Eの前眼部からの光を撮像素子5に導く。撮像素子5は、光学系4により導かれた光を撮像面にて受光する。
光学系4により導かれる光(つまり、被検眼Eの前眼部からの光)は、前眼部に照射されているスリット光の戻り光を含み、他の光を更に含んでいてよい。戻り光の例として、反射光、散乱光、蛍光がある。他の光の例として、スリットランプ顕微鏡1の設置環境からの光(室内光、太陽光など)がある。前眼部全体を照明するための前眼部照明系が照明系2とは別に設けられている場合、この前眼部照明光の戻り光が、光学系4により導かれる光に含まれてもよい。
撮像素子5は、2次元の撮像エリアを有するエリアセンサであり、例えば、電荷結合素子(CCD)イメージセンサや相補型金属酸化膜半導体(CMOS)イメージセンサであってよい。
光学系4は、例えば、従来のスリットランプ顕微鏡の撮影系と同様の構成を備えていてよい。例えば、光学系4は、被検眼Eに近い側から順に、対物レンズと、変倍光学系と、結像レンズとを含む。スリット光が照射されている被検眼Eの前眼部からの光は、対物レンズ及び変倍光学系を通過し、結像レンズにより撮像素子5の撮像面に結像される。
撮影系3は、例えば、第1撮影系と第2撮影系とを含んでいてよい。典型的には、第1撮影系と第2撮影系とは同じ構成を有する。撮影系3が第1撮影系と第2撮影系とを含む場合については他の態様において説明する。
撮影系3は、そのフォーカス位置を変更するための合焦機構を更に含んでいてもよい。合焦機構は、例えば、対物レンズを撮影光軸3aに沿って移動させる。対物レンズの移動は、自動及び/又は手動で実行可能である。なお、対物レンズと結像レンズとの間の撮影光軸3a上の位置に合焦レンズを配置し、この合焦レンズを撮影光軸3aに沿って移動させることによってフォーカス位置を変更可能としてもよい。
照明系2及び撮影系3は、シャインプルーフカメラとして機能する。すなわち、照明光軸2aに沿う物面と、光学系4と、撮像素子5の撮像面とが、いわゆるシャインプルーフの条件を満足するように、照明系2及び撮影系3が構成される。より具体的には、照明光軸2aを通るYZ面(物面を含む)と、光学系4の主面と、撮像素子5の撮像面とが、同一の直線上にて交差する。これにより、物面内の全ての位置(照明光軸2aに沿う方向における全ての位置)にピントを合わせて撮影を行うことができる。
本態様では、例えば、少なくとも角膜Cの前面と水晶体CLの後面とによって画成される範囲に撮影系3のピントが合うように、照明系2及び撮影系3が構成される。つまり、図1に示す角膜Cの前面の頂点(Z=Z1)から水晶体CLの後面の頂点(Z=Z2)までの範囲全体に撮影系3のピントが合っている状態で、撮影を行うことが可能である。なお、Z=Z0は、照明光軸2aと撮影光軸3aとの交点のZ座標を示す。
このような条件は、典型的には、照明系2に含まれる要素の構成及び配置、撮影系3に含まれる要素の構成及び配置、並びに、照明系2と撮影系3との相対位置によって実現される。照明系2と撮影系3との相対位置を示すパラメータは、例えば、照明光軸2aと撮影光軸3aとがなす角度θを含む。角度θは、例えば、17.5度、30度、又は45度に設定される。なお、角度θは可変であってもよい。
<移動機構6>
移動機構6は、照明系2及び撮影系3を移動する。移動機構6は、例えば、照明系2及び撮影系3が搭載された可動ステージと、制御部7から入力される制御信号にしたがって動作するアクチュエータと、このアクチュエータにより発生された駆動力に基づき可動ステージを移動する機構とを含む。他の例において、移動機構6は、照明系2及び撮影系3が搭載された可動ステージと、図示しない操作デバイスに印加された力に基づき可動ステージを移動する機構とを含む。操作デバイスは、例えばレバーである。可動ステージは、少なくともX方向に移動可能であり、更にY方向及び/又はZ方向に移動可能であってよい。
本態様において、移動機構6は、例えば、照明系2及び撮影系3を一体的にX方向に移動する。つまり、移動機構6は、上記したシャインプルーフの条件が満足された状態を保持しつつ照明系2及び撮影系3をX方向に移動する。この移動と並行して、撮影系3は、例えば所定の時間間隔(撮影レート)で動画撮影を行う。これにより、被検眼Eの前眼部の3次元領域がスリット光でスキャンされ、この3次元領域内の複数の断面に対応する複数の画像(断面画像群)が収集される。
<制御部7>
制御部7は、スリットランプ顕微鏡1の各部を制御する。例えば、制御部7は、照明系2の要素(照明光源、スリット形成部、合焦機構など)、撮影系3の要素(合焦機構、撮像素子など)、移動機構6、データ処理部8、出力部9などを制御する。また、制御部7は、照明系2と撮影系3との相対位置を変更するための制御を実行可能であってもよい。
制御部7は、プロセッサ、主記憶装置、補助記憶装置などを含む。補助記憶装置には、制御プログラム等が記憶されている。制御プログラム等は、スリットランプ顕微鏡1がアクセス可能なコンピュータや記憶装置に記憶されていてもよい。制御部7の機能は、制御プログラム等のソフトウェアと、プロセッサ等のハードウェアとの協働によって実現される。
制御部7は、被検眼Eの前眼部の3次元領域をスリット光でスキャンするために、照明系2、撮影系3及び移動機構6に対して次のような制御を適用することができる。
まず、制御部7は、照明系2及び撮影系3を所定のスキャン開始位置に配置するように移動機構6を制御する(アライメント制御)。スキャン開始位置は、例えば、X方向における角膜Cの端部(第1端部)に相当する位置、又は、それよりも被検眼Eの軸から離れた位置である。図2Aの符号X0は、X方向における角膜Cの第1端部に相当するスキャン開始位置の例を示している。また、図2Bの符号X0’は、X方向における角膜Cの第1端部に相当する位置よりも被検眼Eの軸EAから離れたスキャン開始位置の例を示している。
制御部7は、照明系2を制御して、被検眼Eの前眼部に対するスリット光の照射を開始させる(スリット光照射制御)。なお、アライメント制御の実行前に、又は、アライメント制御の実行中に、スリット光照射制御を行ってもよい。スリット光は、典型的には連続光であるが、断続光(パルス光)であってもよい。パルス光の点灯制御は、撮影系3の撮影レートに同期される。また、スリット光は、典型的には可視光であるが、赤外光であってもよいし、可視光と赤外光との混合光であってもよい。
制御部7は、撮影系3を制御して、被検眼Eの前眼部の動画撮影を開始させる(撮影制御)。なお、アライメント制御の実行前に、又は、アライメント制御の実行中に、撮影制御を行ってもよい。典型的には、スリット光照射制御と同時に、又は、スリット光照射制御よりも後に、撮影制御が実行される。
アライメント制御、スリット光照射制御、及び撮影制御の実行後、制御部7は、移動機構6を制御して、照明系2及び撮影系3の移動を開始する(移動制御)。移動制御により、照明系2及び撮影系3が一体的に移動される。つまり、照明系2と撮影系3との相対位置(角度θなど)を維持しつつ照明系2及び撮影系3が移動される。典型的には、前述したシャインプルーフの条件が満足された状態を維持しつつ照明系2及び撮影系3が移動される。照明系2及び撮影系3の移動は、前述したスキャン開始位置から所定のスキャン終了位置まで行われる。スキャン終了位置は、例えば、スキャン開始位置と同様に、X方向において第1端部の反対側の角膜Cの端部(第2端部)に相当する位置、又は、それよりも被検眼Eの軸から離れた位置である。このような場合、スキャン開始位置からスキャン終了位置までの範囲がスキャン範囲となる。
典型的には、X方向を幅方向とし且つY方向を長手方向とするスリット光を前眼部に照射しつつ、且つ、照明系2及び撮影系3をX方向に移動しつつ、撮影系3による動画撮影が実行される。
ここで、スリット光の長さ(つまり、Y方向におけるスリット光の寸法)は、例えば、被検眼Eの表面において角膜Cの径以上に設定される。すなわち、スリット光の長さは、Y方向における角膜径以上に設定されている。また、前述のように、移動機構6による照明系2及び撮影系3の移動距離(つまり、スキャン範囲)は、X方向における角膜径以上に設定されている。これにより、少なくとも角膜C全体をスリット光でスキャンすることができる。
このようなスキャンにより、スリット光の照射位置が異なる複数の前眼部画像が得られる。換言すると、スリット光の照射位置がX方向に移動する様が描写された動画像が得られる。本態様においては、シャインプルーフの条件が満足されているため、撮影時(キャプチャ時)におけるスリット光照射領域(断面)が高精細に描出された複数の断面画像が得られる。このような複数の前眼部画像(つまり、動画像を構成するフレーム群)の例を図3に示す。
図3は、複数の前眼部画像(フレーム群、断面画像群)F1、F2、F3、・・・、FNを示す。これら前眼部画像Fn(n=1、2、・・・、N)の添字nは、時系列順序を表している。つまり、第n番目に取得された前眼部画像が符号Fnで表される。前眼部画像Fnには、スリット光照射領域Anが含まれている。図3に示すように、スリット光照射領域A1、A2、A3、・・・、ANは、時系列に沿って右方向に移動している。図3に示す例では、スキャン開始位置及びスキャン終了位置は、X方向における角膜Cの両端に対応する。なお、スキャン開始位置及び/又はスキャン終了位置は本例に限定されず、例えば、角膜端部よりも被検眼Eの軸から離れた位置であってよい。また、スキャンの向きや回数についても任意に設定することが可能である。
<データ処理部8>
データ処理部8は、各種のデータ処理を実行する。処理されるデータは、スリットランプ顕微鏡1により取得されたデータ、及び、外部から入力されたデータのいずれでもよい。例えば、データ処理部8は、撮影系3によって取得された画像を処理することができる。なお、データ処理部8の構成や機能については、本態様での説明に加え、他の態様においても説明する。
データ処理部8は、プロセッサ、主記憶装置、補助記憶装置などを含む。補助記憶装置には、データ処理プログラム等が記憶されている。データ処理プログラム等は、スリットランプ顕微鏡1がアクセス可能なコンピュータや記憶装置に記憶されていてもよい。データ処理部8の機能は、データ処理プログラム等のソフトウェアと、プロセッサ等のハードウェアとの協働によって実現される。
データ処理部8の幾つかの例を説明する。図4A及び図4Bは、それぞれ、データ処理部8の第1及び第2の例であるデータ処理部8A及び8Bを示す。なお、データ処理部8の構成はこれらに限定されない。例えば、同じ結果又は類似の結果を得るための任意の要素をデータ処理部8に設けることが可能である。
図4Aに示すデータ処理部8Aは、レンダリング部81を含む。レンダリング部81は、上記のスキャンによって収集された複数の前眼部画像に基づく3次元画像にレンダリングを適用する。
レンダリングの対象となる3次元画像は、3次元座標系を用いて画素位置が定義された画像であり、例えば、複数の前眼部画像の3次元再構成画像の一部又は全部である。3次元再構成画像は、例えば、スタックデータ又はボリュームデータである。
スタックデータは、それぞれが別々の2次元座標系(2次元画像空間)により定義された複数の前眼部画像を、単一の3次元座標系(3次元画像空間)で表現することによって構築される。換言すると、スタックデータは、複数の前眼部画像を同じ3次元画像空間に埋め込むことによって構築される。例えば、各前眼部画像の埋め込み位置は、複数の前眼部画像の相対位置関係に基づき決定される。
複数の前眼部画像の相対位置関係は、例えば、前述のスキャン制御(スリット光照射制御、撮影制御、移動制御など)の内容から決定される。その例として、移動制御の内容(スキャン範囲)と撮影制御の内容(撮影レート)とに基づいて複数の前眼部画像の相対位置関係(配置間隔など)を求めることが可能である。
他の例では、前眼部の複数の断面画像(複数の前眼部画像)を収集するためのスキャンと並行して前眼部の正面画像を収集する。典型的には、前眼部正面撮影はスキャンに同期され、複数の正面画像のそれぞれにおけるスリット光照射領域から複数の断面画像の相対位置関係を求めることができる。
ボリュームデータはボクセルデータとも呼ばれ、典型的には、公知のボクセル化処理をスタックデータに適用することによって構築される。なお、本態様の3次元画像はスタックデータ及びボリュームデータに限定されない。
レンダリング部81は、このような3次元画像に対してレンダリングを適用する。レンダリング法としては、ボリュームレンダリング、サーフェスレンダリング、最大値投影(MIP)、最小値投影(MinIP)、多断面再構成(MPR)などがあるが、本態様では主としてプロジェクションが採用される。
プロジェクションは、3次元画像に含まれる画素群を所定方向に投影する(積算する、積分する)画像処理を含む。換言すると、プロジェクションは、3次元画像に含まれる画像群を所定の平面に投影する画像処理を含む。典型的には、レンダリング部81は、XYZ座標系で定義された3次元画像をZ方向に投影することによって、XY座標系で定義された2次元画像(プロジェクション画像)を構築することができる。
言うまでも無いが、プロジェクション以外のレンダリング法を採用することも可能である。また、複数のレンダリング法を実行可能なレンダリング部81を準備し、これらを選択的に実行可能としてもよい。
図4Bに示すデータ処理部8Bは、データ処理部8Aと同様のレンダリング部81に加え、再構成部82とセグメンテーション部83とを含む。
再構成部82は、前述したスキャンによって収集された複数の前眼部画像に3次元再構成を適用する。これにより、複数の前眼部画像に基づく3次元再構成画像が構築される。典型的な3次元再構成画像は、スタックデータ又はボリュームデータである。
3次元再構成画像の生成に適用される3次元再構成法は任意である。典型的には、再構成部82は、スタックデータを構築するために、複数の前眼部画像に公知の3次元再構成法を適用する。また、再構成部82は、ボリュームデータを構築するために、スタックデータに公知のボクセル化処理を適用する。
再構成部82は、3次元再構成において実行可能な公知の処理、及び、3次元再構成とともに実行可能な公知の処理のいずれかを実行することができる。例えば、再構成部82は、ノイズ除去、輝度補正、歪み補正、コントラスト補正、色補正、ガンマ補正、などの任意の補正処理を、複数の前眼部画像及び/又は3次元再構成画像に適用することができる。また、再構成部82は、移動平均フィルタ、ガウシアンフィルタ、メディアンフィルタ、ソーベルフィルタ、平滑化フィルタ、鮮鋭化フィルタ、細線化フィルタなどの任意のフィルタを、複数の前眼部画像及び/又は3次元再構成画像に適用することができる。
セグメンテーション部83は、再構成部82により構築された3次元再構成画像(スタックデータ、ボリュームデータなど)にセグメンテーションを適用する。セグメンテーションは画像を複数の領域に分割するための技術であり、本態様では3次元再構成画像の部分領域を特定するために利用される。
本態様に適用可能なセグメンテーション法は任意である。例えば、セグメンテーション部83は、公知のセグメンテーションアルゴリズムを実行するためのプログラムにしたがって動作するプロセッサを含む。或いは、セグメンテーション部83は、人工知能エンジンを含んでいてよい。この人工知能エンジンは、典型的には、畳み込みニューラルネットワーク(CNN)を含み、この畳み込みニューラルネットワークは、スリットランプ顕微鏡により取得された多数の画像とそれらのセグメンテーション結果とを含む訓練データを用いて、事前に訓練される。
例えば、セグメンテーション部83は、再構成部82により構築された3次元再構成画像から、所定の組織(所定の部位)に対応する画像領域を特定するように構成されてよい。特定対象の組織は、一般に、スリットランプ顕微鏡1により撮影可能な任意の組織であってよい。例えば、特定対象の組織は、角膜、角膜のサブ組織(角膜前面、角膜後面、角膜上皮、ボーマン膜、固有層、デュア層、デスメ膜、角膜内皮など)、虹彩、虹彩前面、瞳孔、前房、水晶体、水晶体のサブ組織(水晶体前面、水晶体後面、水晶体上皮、水晶体嚢など)、硝子体、病変部、血管、及び、他の眼組織のうちのいずれかであってよい。
また、セグメンテーション部83は、再構成部82により構築された3次元再構成画像から、眼組織の任意の部分に対応する画像領域を特定するように構成されてよい。例えば、特定対象の部分は、例えば、前部、中央部、後部、縁部、端部、及び、他の部分のいずれかであってよい。
前述したように、徹照法には、画像の明るさを管理できないこと、そして、3次元的情報を提供できないこと、という欠点がある。スリットランプ顕微鏡1は、このような欠点が解消された新規な水晶体観察法を提供することを1つの目的としている。
そのために、セグメンテーション部83は、再構成部82により構築された3次元再構成画像から、水晶体に対応する画像領域(水晶体領域)を特定するように構成されてよい。
セグメンテーション部83により水晶体領域が特定された場合、この水晶体領域の少なくとも一部が、レンダリング部81によりレンダリングが適用される3次元画像に設定される。
例えば、レンダリング部81は、セグメンテーション部83により特定された水晶体領域の全体にレンダリングを適用するように構成されてよい。この場合、再構成部82により構築された3次元再構成画像中の水晶体領域の全体を表すレンダリング画像が得られる。
なお、本態様において、典型的には、スリット光は可視光であり、スキャンで収集される複数の前眼部画像には虹彩の裏側の領域は描出されない。よって、3次元再構成画像中の水晶体領域は、被検眼Eの水晶体のうち瞳孔後方に位置する部分に対応する画像領域のみである。
また、スリットランプ顕微鏡1は、スリット光により照明されている断面(例えばYZ断面)を斜方から撮影するように構成されているため、この断面を撮影して得られた前眼部画像にはこの断面の状態が描出されており、特に水晶体内の混濁の2次元的な分布(例えばYZ方向における分布)が描出されている。そして、このような断面を移動しつつ撮影を繰り返すことにより(例えば、YZ断面をX方向に移動しつつ動画撮影を行うことにより)、水晶体内の混濁の3次元的な分布を表現した3次元再構成画像が得られる。この3次元再構成画像にセグメンテーションを適用することにより、3次元的混濁分布の情報を含む水晶体領域が得られる。
レンダリング部81は、このような水晶体領域にZ方向への投影(XY平面への投影)を適用することができる。これにより、XY座標系で定義されたプロジェクション画像が構築される。Z方向への投影は、Z方向に沿って配列された画素群の画素値の積算を含むので、これにより構築されるプロジェクション画像は、水晶体内の混濁の位置及び状態に関する情報を含む。
このようにして構築されたプロジェクション画像は、徹照像と同様に2次元的混濁分布(XY平面における分布)を表すだけでなく、3次元再構成画像から受け継いだ深さ方向(Z方向、奥行き方向)の混濁分布情報も含んでいる。
徹照像と同様の2次元画像(平面画像)としてプロジェクション画像を表示する場合、深さ方向の情報を空間的に表示することはできない。そこで、各混濁部の深さ情報を表示色や表示濃度や表示パターンで表現することができる。例えば、深さを色で表現する場合、深さと色との対応関係を示す情報(カラーバー)をプロジェクション画像とともに表示することができる。
混濁部の深さ情報は、この混濁部の最前部の位置(最も角膜側の位置)、最後部の位置、中央位置など、この混濁部の任意の位置を示す情報を含んでいてよい。また、混濁部の深さ情報は、この混濁部の深さ方向の寸法を示す情報を含んでいてよい。
深さ方向に2以上の混濁部が重なっている場合、これら混濁部の深さ情報を共に表示してもよいし、これら混濁部の深さ情報を選択的に表示してもよい。
また、混濁の程度を示す情報を表示してもよい。混濁の程度は、混濁の密度、重症度、寸法などの情報を含んでいてよい。このような混濁の程度は、例えば、表示色、表示濃度、表示パターンによって表現される。
3次元再構成画像中の水晶体領域の全体にレンダリングを適用した場合、水晶体領域全体に対応するレンダリング画像の一部を抽出して表示することができる。レンダリング画像の一部を抽出する処理は、例えば、セグメンテーション部83と同様のセグメンテーションによって行われる。
また、3次元再構成画像中の水晶体領域の一部(部分領域)にレンダリングを適用してもよい。この場合、セグメンテーション部83は、3次元再構成画像に第1のセグメンテーションを適用して水晶体領域を特定し、更に、この水晶体領域に第2のセグメンテーションを適用してその部分領域を特定するように構成されてよい。或いは、セグメンテーション部83は、3次元再構成画像にセグメンテーションを適用して水晶体領域の部分領域を特定するように構成されてもよい。
例えば、セグメンテーション部83は、被検眼Eの深さ方向(Z方向)における水晶体の部分領域を水晶体領域(又は3次元再構成画像)から特定するように構成されてよい。この部分領域は、例えば、核領域、核の前方領域、核の後方領域、嚢領域、所定深さ位置よりも浅い領域、所定深さ位置よりも深い領域、第1深さ位置と第2深さ位置とに挟まれた領域、及び、他の部分領域であってよい。レンダリング部81は、セグメンテーション部83により特定された部分領域にレンダリングを適用することができる。これにより、当該部分領域における混濁の分布を提供することが可能となる。例えば、ユーザが所望する深さ範囲における混濁の分布を提供することができる。
セグメンテーション部83は、被検眼Eの深さ方向(Z方向)に直交する方向(例えば、X方向、Y方向、XY方向)における水晶体の部分領域を水晶体領域(又は3次元再構成画像)から特定するように構成されてよい。例えば、水晶体領域を等角度の複数のセクタに分割し、セクタ毎の混濁の状態(分布、量、割合、程度など)を求めることが可能である。
セグメンテーションにより水晶体の核領域及び嚢領域の少なくとも一方が特定された場合、当該領域に基づいて水晶体の部分領域の特定を行うことができる。例えば、水晶体の核領域が特定された場合、この核領域の輪郭を基準として部分領域を特定することができる。具体的には、核領域を所定寸法だけ拡大又は縮小して部分領域を設定してもよい。また、水晶体の嚢領域が特定された場合、嚢領域の形状(曲面形状)に合わせて部分領域を設定することができる。例えば、前嚢領域と同一又は類似の曲面を前面とする部分領域を設定してもよい。
<出力部9>
出力部9は、スリットランプ顕微鏡1から情報を出力する。出力部9は、典型的には、スリットランプ顕微鏡1と他の装置との間におけるデータ通信を行う通信デバイス(通信部)、及び、情報を表示する表示デバイス(表示部)のいずれか一方又は双方を含む。また、出力部9は、記録媒体に情報を書き込む記録デバイス(データライター、ドライブ装置等)、印刷媒体に情報を記録するプリンターなどを含んでもよい。
出力部9に含まれる通信部は、スリットランプ顕微鏡1と他の装置との間におけるデータ通信を行う。すなわち、通信部は、他の装置へのデータの送信と、他の装置から送信されたデータの受信とを行う。通信部が実行するデータ通信の方式は任意である。例えば、通信部は、インターネットに準拠した通信インターフェイス、専用線に準拠した通信インターフェイス、LANに準拠した通信インターフェイス、近距離通信に準拠した通信インターフェイスなど、各種の通信インターフェイスのうちの1以上を含む。データ通信は有線通信でも無線通信でもよい。通信部により送受信されるデータは暗号化されていてよい。その場合、例えば、制御部7及び/又はデータ処理部8は、通信部により送信されるデータを暗号化する暗号化処理部、及び、通信部により受信されたデータを復号化する復号化処理部の少なくとも一方を含む。
出力部9に含まれる表示部は、制御部7の制御を受けて各種の情報を表示する。表示部は、液晶ディスプレイ(LCD)などのフラットパネルディスプレイを含んでいてよい。なお、表示部は、スリットランプ顕微鏡1の周辺機器であってもよい。
<他の要素>
図1に示す要素に加え、スリットランプ顕微鏡1は操作デバイスを備えていてよい。或いは、操作デバイスは、スリットランプ顕微鏡1の周辺機器であってもよい。操作デバイスは、スリットランプ顕微鏡1を操作するためのデバイスや、情報を入力するためのデバイスを含む。操作デバイスは、例えば、ボタン、スイッチ、レバー、ダイアル、ハンドル、ノブ、マウス、キーボード、トラックボール、操作パネルなどを含む。タッチスクリーンのように、表示デバイスと操作デバイスとが一体化したデバイスが用いられてもよい。被検者や補助者は、表示デバイス及び操作デバイスを用いることで、スリットランプ顕微鏡1の操作を行うことができる。
<アライメント>
被検眼Eに対するスリットランプ顕微鏡1のアライメントについて説明する。一般に、アライメントは、被検眼Eの撮影や測定のために好適な位置に装置光学系を配置させる動作である。本態様のアライメントは、図3に示すような動画像(複数の前眼部画像)を取得するために好適な位置に照明系2及び撮影系3を配置させる動作である。
眼科装置のアライメントには様々な手法がある。以下、幾つかのアライメント手法を例示するが、本態様に適用可能な手法はこれらに限定されない。
本態様に適用可能なアライメント手法としてステレオアライメントがある。ステレオアライメントは、2以上の異なる方向から前眼部を撮影可能な眼科装置において適用可能であり、その具体的な手法は、本出願人による特開2013−248376号公報などに開示されている。ステレオアライメントは、例えば次の工程を含む:2以上の前眼部カメラが前眼部を異なる方向から撮影して2以上の撮影画像を取得する工程;プロセッサがこれら撮影画像を解析して被検眼の3次元位置を求める工程;求められた3次元位置に基づいてプロセッサが光学系の移動制御を行う工程。これにより、光学系(本例では照明系2及び撮影系3)が、被検眼に対して好適な位置に配置される。典型的なステレオアライメントでは、被検眼の瞳孔(瞳孔の中心又は重心)の位置が基準とされる。
このようなステレオアライメントの他にも、アライメント光により得られるプルキンエ像を利用した手法や、光テコを利用した手法や、アライメント指標を利用した手法など、任意の公知のアライメント手法を採用することが可能である。プルキンエ像を利用した手法や光テコやアライメント指標を利用した手法では、被検眼の角膜頂点の位置が基準とされる。
なお、以上の例示を含む従来の典型的なアライメント手法は、被検眼の軸と光学系の光軸とを一致させることを目的として行われるが、本態様では、スキャン開始位置に対応する位置に照明系2及び撮影系3を配置させるようにアライメントを実行することが可能である。
本態様におけるアライメントの第1の例として、上記したアライメント手法のいずれかを適用して被検眼Eの瞳孔又は角膜頂点を基準としたアライメントを行った後、予め設定された角膜半径の標準値に相当する距離だけ照明系2及び撮影系3を(X方向に)移動することができる。なお、標準値を用いる代わりに、被検眼Eの角膜半径の測定値を用いてもよい。
第2の例として、上記したアライメント手法のいずれかを適用して被検眼Eの瞳孔又は角膜頂点を基準としたアライメントを行った後、被検眼Eの前眼部の画像を解析して角膜半径を測定し、この測定値に相当する距離だけ照明系2及び撮影系3を(X方向に)移動することができる。本例で解析される前眼部の画像は、例えば、撮影系3により得られた前眼部画像、又は、他の画像である。他の画像は、前眼部カメラにより得られた画像、前眼部OCTにより得られた画像など、任意の画像であってよい。
第3の例として、ステレオアライメント用の前眼部カメラ又は撮影系3により得られた前眼部の画像を解析して角膜の第1端部を求め、ステレオアライメントを適用してこの第1端部に対応する位置に照明系2及び撮影系3を移動することができる。
なお、上記したアライメント手法のいずれかを適用して被検眼Eの瞳孔又は角膜頂点を基準としたアライメントを実行し、これにより決定された位置からスリット光による前眼部スキャンを開始するようにしてもよい。この場合においても、角膜Cの全体をスキャンするようにスキャンシーケンスを設定することができる。例えば、当該アライメントにより決定された位置から左方にスキャンを行った後、右方にスキャンを行うように、スキャンシーケンスが設定される。
<その他の事項>
スリットランプ顕微鏡1は、被検眼Eを固視させるための光(固視光)を出力する固視系を備えていてよい。固視系は、典型的には、少なくとも1つの可視光源(固視光源)、又は、風景チャートや固視標等の画像を表示する表示デバイスを含む。固視系は、例えば、照明系2又は撮影系3と同軸又は非同軸に配置される。固視系は、装置光学系の光路を通じて固視標を被検者に提示する内部固視系、及び/又は、当該光路の外から固視標を被検者に提示する外部固視系を含んでいてよい。
スリットランプ顕微鏡1により取得可能な画像の種別は、前述した前眼部の動画像(複数の前眼部画像)に限定されない。例えば、スリットランプ顕微鏡1は、この動画像に基づく3次元画像、この3次元画像に基づくレンダリング画像、徹照像、被検眼に装用されたコンタクトレンズの動きを表す動画像、蛍光剤適用によるコンタクトレンズと角膜表面との隙間を表す画像などがある。また、眼底撮影、角膜内皮細胞撮影、マイボーム腺撮影などが可能であってもよい。徹照像を取得可能である場合、例えば、前述のレンダリング画像と徹照像とを表示することや、レンダリング画像と徹照像とを合成することや、レンダリング画像及び徹照像の一方を他方に基づき加工することや、レンダリング画像及び徹照像の一方を他方に基づき解析することなどが可能である。
<動作>
スリットランプ顕微鏡1の動作を説明する。動作の一例を図5に示す。
図示は省略するが、任意の段階において、ユーザー(被検者、検者、補助者など)は、スリットランプ顕微鏡1に被検者情報を入力する。入力された被検者情報は、制御部7に保存される。被検者情報は、典型的には、被検者の識別情報(被検者ID)を含む。
更に、背景情報の入力を行うことができる。背景情報は、被検者に関する任意の情報であって、その例として、被検者の問診情報、所定のシートに被検者が記入した情報、被検者の電子カルテに記録された情報などがある。典型的には、背景情報は、性別、年齢、身長、体重、疾患名、候補疾患名、検査結果(視力値、眼屈折力値、眼圧値など)、屈折矯正具(眼鏡、コンタクトレンズなど)の装用歴や度数、検査歴、治療歴などがある。これらは例示であって、背景情報はこれらに限定されない。
また、撮影の準備として、スリットランプ顕微鏡1が設置されているテーブル、被検者が座るイス、スリットランプ顕微鏡1の顎受け台の調整が行われる(いずれも図示を省略する)。例えば、テーブル、イス、顎受け台の高さ調整が行われる。顎受け台には、被検者の顔を安定配置させるための顎受け部及び額当てが設けられている。
準備が完了したら、被検者は、イスに腰掛け、顎受けに顎を載せ、額当てに額を当接させる。これらの動作の前又は後に、ユーザーは、被検眼の撮影を開始するための指示操作を行う。この操作は、例えば、図示しない撮影開始トリガーボタンの押下、指示音声の入力などであってよい。或いは、制御部7が準備フェーズの完了を検知して撮影フェーズに自動で移行してもよい。また、図示しない固視標を被検者(被検眼E又はその僚眼)に提示してもよい。
(S1:アライメント)
撮影開始に対応し、スリットランプ顕微鏡1は、まず、被検眼Eに対する照明系2及び撮影系3のアライメントを行う。被検眼Eの角膜頂点や瞳孔中心に光学系光軸を合わせるための一般的なアライメントと異なり、ステップS1のアライメントは、ステップS2で行われる前眼部スキャンの開始位置に照明系2及び撮影系3を配置させるために実行される。
ステップS1のアライメントの態様は任意であってよく、例えば、ステレオアライメント、プルキンエ像を用いた手動又は自動アライメント、光テコを用いた手動又は自動アライメント、及び、アライメント指標を用いた手動又は自動アライメントのうちのいずれかであってよい。
幾つかの態様では、このような従来の手法により、角膜頂点又は瞳孔中心を目標としたアライメントが実行される。更に、制御部7は、角膜頂点や瞳孔中心を目標としたアライメントにより移動された照明系2及び撮影系3を、スキャン開始位置(これに対応する位置)まで更に移動する。
他の幾つかの態様では、初めからスキャン開始位置を目標としてアライメントが実行される。このアライメントは、例えば、前眼部の画像(例えば、正面又は斜方からの画像)を解析してスキャン開始位置(例えば、前述した角膜の第1端部、又は、第1端部に対して被検眼Eの軸とは反対の方向に所定距離だけ離れた位置)を特定する処理と、特定されたスキャン開始位置に対応する位置に照明系2及び撮影系3を移動する処理とを含む。
アライメントの開始前、実行中、及び/又は終了後に、所定の動作を実行するようにしてもよい。例えば、照明光量(スリット光の強度)の調整、スリットの調整(スリット幅の調整、スリット長の調整、スリットの向きの調整)、撮像素子5の調整(感度調整、ゲイン調整など)、フォーカス調整を行ってもよい。
(S2:前眼部スキャン)
スリットランプ顕微鏡1は、前述した要領で、照明系2によるスリット光の照射と、撮影系3による動画撮影と、移動機構6による照明系2及び撮影系3の移動とを組み合わせることで、被検眼Eの前眼部をスキャンする。
図6は、実際に行われた前眼部スキャンを正面から連続撮影して得られた幾つかの画像を示す。これらの画像により、前眼部に照射されているスリット光が移動する様が理解できよう。
1回のスキャン(スキャン開始位置からスキャン終了位置までのスキャン)により、例えば、図3に示す画像群(複数の前眼部画像)F1〜FNが得られる。
データ処理部8は、スキャンで得られた画像に所定の処理を施してもよい。例えば、ノイズ除去、コントラスト調整、輝度調整、色補正など、任意の信号処理や任意の画像処理を適用することが可能である。
(S3:3次元再構成画像を構築)
再構成部82は、ステップS2で収集された複数の前眼部画像に3次元再構成を適用する。これにより、3次元再構成画像が構築される。
(S4:水晶体領域を特定)
セグメンテーション部83は、ステップS3で構築された3次元再構成画像にセグメンテーションを適用して水晶体領域を特定する。
なお、セグメンテーション部83は、この水晶体領域に更なるセグメンテーションを適用して水晶体の所定の部分領域に対応する画像領域を特定することができる。
(S5:XY平面へのプロジェクション)
ステップS4で特定された水晶体領域は、XYZ座標系で定義された3次元画像である。レンダリング部81は、この水晶体領域に対してXY平面へのプロジェクションを適用する。これにより、徹照像に類似した、水晶体内の混濁状態を表すプロジェクション画像が構築される。
(S6:プロジェクション画像を表示)
制御部7は、ステップS5で構築されたプロジェクション画像を、出力部9の表示部に表示させる。
前述したように、制御部7は、混濁部の深さ情報、混濁の程度を示す情報など、複数の前眼部画像及び/又は3次元再構成画像から取得された情報を、プロジェクション画像とともに表示させることができる。
ここで、混濁部は、例えば、水晶体領域(又は、3次元再構成画像若しくは複数の前眼部画像)にセグメンテーションを適用することによって特定される。また、混濁部の特定のために、プロジェクション画像及び/又は他のレンダリング画像を利用することができる。例えば、プロジェクション画像にセグメンテーションを適用して混濁部のXY分布を求め、これを参照して水晶体領域(又は、3次元再構成画像若しくは複数の前眼部画像)を解析して混濁部の3次元分布を求めることができる。
また、制御部7は、出力部9の通信部を制御して、複数の前眼部画像、3次元再構成画像、プロジェクション画像などの情報を、他の装置に送信することができる。
情報の送信先となる装置の例として情報処理装置や記憶装置がある。情報処理装置は、例えば、広域回線上のサーバ、LAN上のサーバ、コンピュータ端末などである。記憶装置は、広域回線上に設けられた記憶装置、LAN上に設けられた記憶装置などである。
表示及び/又は送信される情報は、前述した背景情報を含んでいてよい。或いは、背景情報は画像の付帯情報であってもよい。一般に、表示及び/又は送信される情報のデータ構造は任意である。
また、表示及び/又は送信される情報は、典型的には、被検者の右眼の画像と、左眼の画像とを含む。右眼の画像及び左眼の画像は、本例の動作を右眼及び左眼にそれぞれ適用することにより得られる。右眼の画像及び左眼の画像には前述の被検眼情報がそれぞれ付帯され、それにより右眼の画像と左眼の画像とが識別される。
スリットランプ顕微鏡1により取得された画像とともに被検者の識別情報が送信される。この識別情報は、スリットランプ顕微鏡1に入力された被検者IDでもよいし、被検者IDに基づき生成された識別情報でもよい。例えば、スリットランプ顕微鏡1が設置されている施設内での個人識別に用いられる被検者ID(内部識別情報)を、当該施設外にて用いられる外部識別情報に変換することができる。これにより、画像や背景情報などの個人情報に関する情報セキュリティの向上を図ることができる。
以上で、本例に係る動作の説明を終える。
<効果>
本態様のスリットランプ顕微鏡1が奏する幾つかの効果について説明する。
本態様のスリットランプ顕微鏡1は、スキャン部(照明系2、撮影系3、及び移動機構6)と、レンダリング部81とを含む。スキャン部は、被検眼Eの前眼部をスリット光でスキャンして複数の断面画像F1〜FNを収集する。レンダリング部81は、スキャン部により収集された複数の断面画像に基づく3次元画像にレンダリングを適用する。レンダリングが適用される3次元画像は、例えば、スキャン部により収集された複数の断面画像の3次元再構成画像の全体又は一部である。
このような本態様のスリットランプ顕微鏡1によれば、水晶体の混濁部を網膜からの反帰光線の影として描出する徹照法ではなく、前眼部をスリット光でスキャンして得られた断面画像群から混濁部を描出する新規な観察法を実施することが可能である。したがって、照明光量(及び撮影感度)を調整することができる。これにより、像の明るさを管理することができ、画質を管理することが可能である。
このような利点により、本態様のスリットランプ顕微鏡1で得た画像を定量的な診断に用いることが可能となる。例えば、白内障のグレードの主観的な評価に加え、客観的な評価にも用いることができる。また、本態様のスリットランプ顕微鏡1で得た画像に、解析プログラムや機械学習を用いた自動画像解析を適用することが可能となる。
また、本態様のスリットランプ顕微鏡1によれば、水晶体の混濁部の2次元的な分布しか提供できない徹照法とは異なり、その3次元的な分布を提供することが可能である。
このように、本態様のスリットランプ顕微鏡1は、徹照法の欠点が解消された新規な眼科観察法を提供することが可能である。
本態様において、レンダリング部81は、所定の平面に対するプロジェクションを、スキャン部により収集された複数の断面画像に基づく3次元画像に適用するように構成されてよい。ここで、所定の平面は、被検眼Eの奥行き方向(Z方向)に直交するように設定されてよい(XY平面)。この構成は、例えば、徹照像に類似した平面画像(2次元画像)の構築に利用可能である。
本態様のスリットランプ顕微鏡1は、再構成部82とセグメンテーション部83とを更に含んでいてよい。再構成部82は、スキャン部により収集された複数の断面画像に3次元再構成を適用する。セグメンテーション部83は、レンダリング部81によりレンダリングが適用される3次元画像を設定するために、再構成部82により構築された3次元再構成画像にセグメンテーションを適用する。
この構成によれば、スリット光でスキャンされた領域のうちの所望の部分にレンダリングを施すことが可能となる。
本態様において、セグメンテーション部83は、再構成部82により構築された3次元再構成画像から水晶体領域を特定するように構成されてよい。この場合、レンダリング部81によりレンダリングが適用される3次元画像は、セグメンテーション部83により特定された水晶体領域の少なくとも一部を含む。この構成は、例えば、徹照像に類似した平面画像(2次元画像)の構築に利用可能である。
本態様において、レンダリング部81は、セグメンテーション部83により特定された水晶体領域にレンダリングを適用するように構成されてよい。
この構成によれば、スリット光を用いたスキャンにより画像化された水晶体の全領域についてレンダリング画像を構築することが可能である。
本態様において、セグメンテーション部83は、再構成部82により構築された3次元再構成画像から特定された水晶体領域に更なるセグメンテーションを適用して、被検眼Eの奥行き方向(Z方向)における部分領域を特定するように構成されてよい。更に、レンダリング部81は、水晶体領域の当該部分領域にレンダリングを適用するように構成されてよい。
この構成によれば、水晶体領域の部分のレンダリング画像を構築することができる。例えば、水晶体領域内の所望の部分についてレンダリング画像を構築することが可能である。
本態様において、セグメンテーション部83は、再構成部82により構築された3次元再構成画像から特定された水晶体領域から嚢領域及び核領域の少なくとも一方の領域を特定し、この領域に基づいて部分領域を特定するように構成されてよい。
この構成によれば、レンダリング部81によりレンダリングが適用される水晶体の部分領域を設定するために、水晶体の主要な構造(嚢、核)を参照することができる。それにより、レンダリングが適用される領域を好適に設定することが可能になる。例えば、水晶体の層構造に沿って領域設定を行うことができる。
本態様のスリットランプ顕微鏡1は、次のような構成によって、スリット光による前眼部のスキャンを実現している。すなわち、スキャン部は、照明系2と、撮影系3と、移動機構6とを含む。照明系2は、被検眼Eの前眼部にスリット光を照射する。撮影系3は、照明系2とは異なる方向から前眼部を撮影する。移動機構6は、照明系2及び撮影系3を移動する。撮影系3は、移動機構6による照明系2及び撮影系3の移動と並行して繰り返し撮影を行う。この繰り返し撮影は、例えば、所定の撮影レートの動画撮影である。
本態様では、移動機構6は、スリット光による前眼部のスキャンにおいて、照明系2及び撮影系3をX方向に移動している。また、移動機構6は、アライメントにおいて、照明系2及び撮影系3を3次元的に移動可能であってよい。
更に、本態様のスリットランプ顕微鏡1は、例えば角膜前面から水晶体後面までの範囲を一度に撮影するために、シャインプルーフカメラとしての機能を有していてよい。そのために、撮影系3は、スリット光が照射された前眼部からの光を導く光学系4と、光学系4により導かれた光を撮像面で受光する撮像素子5とを含んでいてよい。更に、スリットランプ顕微鏡1は、照明系2の光軸に沿う物面と光学系4と撮像素子5(撮像面)とがシャインプルーフの条件を満足するように構成されていてよい。
<第2の態様>
本態様では、眼科情報処理装置について説明する。第1の態様において説明された事項のいずれかを本態様に組み合わせることが可能である。
本態様の一例を図7に示す。眼科情報処理装置500は、制御部510と、受付部520と、データ処理部530とを含む。制御部510は、眼科情報処理装置500の各部の制御を行う。
受付部520は、被検眼の前眼部をスリット光でスキャンして収集された複数の断面画像を受け付ける。複数の断面画像は、例えば、第1のスリットランプ顕微鏡1のスキャン部と同様の構成を有する眼科撮影装置によって取得される。受付部520は、複数の断面画像を外部(例えば、眼科装置、画像アーカイビングシステム、記録媒体)から受け付ける。受付部520は、例えば通信デバイス又はドライブ装置を含んでいてよい。
データ処理部530はレンダリング部531を含む。レンダリング部531は、受付部520により受け付けられた複数の断面画像に基づく3次元画像にレンダリングを適用する。レンダリング部531は、例えば、第1の態様のレンダリング部81と同様の機能及び構成を有する。レンダリングが適用される3次元画像についても第1の態様におけるそれと同様であってよい。
本態様の他の例を図8に示す。眼科情報処理装置500Aは、制御部510と、受付部520と、データ処理部530Aとを含む。制御部510及び受付部520は、図7の例と同様である。
データ処理部530Aは、図7の例と同様のレンダリング部531に加えて、再構成部532とセグメンテーション部533とを含む。再構成部532は、例えば、第1の態様における再構成部82と同様の機能及び構成を有する。セグメンテーション部533は、例えば、第1の態様におけるセグメンテーション部83と同様の機能及び構成を有する。
このような本態様の眼科情報処理装置500(500A)によれば、例えば、第1の態様のスリットランプ顕微鏡1のスキャン部と同様の構成を有する眼科撮影装置との組み合わせにより、徹照法の欠点が解消された新規な眼科観察法を提供することが可能である。
第1の態様で説明した事項のいずれかを本態様に組み合わせた場合、組み合わせられた事項に応じた効果が奏される。
<第3の態様>
本態様では、眼科撮影装置と情報処理装置と読影端末とを含む眼科システムについて説明する。眼科撮影装置は、少なくともスリットランプ顕微鏡(第1の態様のスキャン部)としての機能を有する。眼科撮影装置に含まれるスリットランプ顕微鏡は、第1の態様のスリットランプ顕微鏡であってよい。なお、眼科撮影装置は、レンダリング部を有していなくてよい。以下、第1の態様の要素や構成や符号を適宜に準用しつつ説明を行う。
図9に例示された眼科システム1000は、眼科撮影が行われるT個の施設(第1施設〜第T施設)のそれぞれと、サーバ4000と、読影端末5000mとを結ぶ通信路(通信回線)1100を利用して構築されている。
ここで、眼科撮影は、スリットランプ顕微鏡を用いた前眼部撮影を少なくとも含む。この前眼部撮影は、少なくとも、第1の態様で説明した、スリット光を用いた前眼部スキャンを含む。
各施設(第t施設:t=1〜T、Tは1以上の整数)には、眼科撮影装置2000−i(i=1〜K、Kは1以上の整数)が設置されている。つまり、各施設(第t施設)には、1以上の眼科撮影装置2000−iが設置されている。眼科撮影装置2000−iは、眼科システム1000の一部を構成する。なお、眼科以外の検査を実施可能な検査装置が眼科システム1000に含まれていてもよい。
本例の眼科撮影装置2000−iは、被検眼の撮影を実施する「撮影装置」としての機能と、各種データ処理や外部装置との通信を行う「コンピュータ」としての機能の双方を備えている。他の例において、撮影装置とコンピュータとを別々に設けることが可能である。この場合、撮影装置とコンピュータとは互いに通信可能に構成されてよい。更に、撮影装置の数とコンピュータの数とはそれぞれ任意であり、例えば単一のコンピュータと複数の撮影装置とを設けることができる。
眼科撮影装置2000−iにおける「撮影装置」は、少なくともスリットランプ顕微鏡を含む。このスリットランプ顕微鏡は、第1の態様のスリットランプ顕微鏡であってよい。
更に、各施設(第t施設)には、補助者や被検者により使用可能な情報処理装置(端末3000−t)が設置されている。端末3000−tは、当該施設において使用されるコンピュータであり、例えば、タブレット端末やスマートフォン等のモバイル端末、当該施設に設置されたサーバなどであってよい。更に、端末3000−tは、無線型イヤフォン等のウェアラブルデバイスを含んでいてもよい。なお、端末3000−tは、当該施設においてその機能を使用可能なコンピュータであれば十分であり、例えば、当該施設の外に設置されたコンピュータ(クラウドサーバ等)であってもよい。
眼科撮影装置2000−iと端末3000−tとは、第t施設内に構築されたネットワーク(施設内LAN等)や、広域ネットワーク(インターネット等)や、近距離通信技術を利用して通信を行えるように構成されてよい。
眼科撮影装置2000−iは、サーバ等の通信機器としての機能を備えていてよい。この場合、眼科撮影装置2000−iと端末3000−tとが直接に通信を行うように構成することができる。これにより、サーバ4000と端末3000−tとの間の通信を眼科撮影装置2000−iを介して行うことができるので、端末3000−tとサーバ4000との間で通信を行う機能を設ける必要がなくなる。
サーバ4000は、典型的には、第1〜第T施設のいずれとも異なる施設に設置され、例えば管理センタに設置されている。サーバ4000は、ネットワーク(LAN、広域ネットワーク等)を介して、読影端末5000m(m=1〜M、Mは1以上の整数)と通信が可能である。更に、サーバ4000は、第1〜第T施設に設置された眼科撮影装置2000−iの少なくとも一部との間で、広域ネットワークを介して通信が可能である。
サーバ4000は、例えば、眼科撮影装置2000−iと読影端末5000mとの間の通信を中継する機能と、この通信の内容を記録する機能と、眼科撮影装置2000−iにより取得されたデータや情報を記憶する機能と、読影端末5000mにより取得されたデータや情報を記憶する機能とを備える。サーバ4000は、データ処理機能を備えてもよい。
読影端末5000mは、眼科撮影装置2000−iによって取得された被検眼の画像(例えば、前眼部スキャンで得られた複数の断面画像、又は、これらに基づく3次元画像のレンダリング画像)の読影と、レポート作成とに使用可能なコンピュータを含む。読影端末5000mは、データ処理機能を備えてもよい。
サーバ4000について説明する。図10に例示されたサーバ4000は、制御部4010と、通信確立部4100と、通信部4200とを備える。
制御部4010は、サーバ4000の各部の制御を実行する。制御部4010は、その他の演算処理を実行可能であってよい。制御部4010はプロセッサを含む。制御部4010は、更に、RAM、ROM、ハードディスクドライブ、ソリッドステートドライブなどを含んでいてよい。
制御部4010は、通信制御部4011と転送制御部4012とを含む。
通信制御部4011は、複数の眼科撮影装置2000−iと複数の端末3000−tと複数の読影端末5000mとを含む複数の装置の間における通信の確立に関する制御を実行する。例えば、通信制御部4011は、眼科システム1000に含まれる複数の装置のうちから後述の選択部4120によって選択された2以上の装置のそれぞれに向けて、通信を確立するための制御信号を送る。
転送制御部4012は、通信確立部4100(及び通信制御部4011)により通信が確立された2以上の装置の間における情報のやりとりに関する制御を行う。例えば、転送制御部4012は、通信確立部4100(及び通信制御部4011)により通信が確立された少なくとも2つの装置のうちの一方の装置から送信された情報を他の装置に転送するように機能する。
具体例として、眼科撮影装置2000−iと読影端末5000mとの間の通信が確立された場合、転送制御部4012は、眼科撮影装置2000−iから送信された情報(例えば、複数の断面画像)を読影端末5000mに転送することができる。逆に、転送制御部4012は、読影端末5000mから送信された情報(例えば、眼科撮影装置2000−iへの指示、読影レポートなど)を眼科撮影装置2000−iに転送することができる。
転送制御部4012は、送信元の装置から受信した情報を加工する機能を有していてもよい。この場合、転送制御部4012は、受信した情報と、加工処理により得られた情報との少なくとも一方を転送先の装置に送信することができる。
例えば、転送制御部4012は、眼科撮影装置2000−i等から送信された情報の一部を抽出して読影端末5000m等に送信することができる。
また、眼科撮影装置2000−i等から送信された情報(例えば、複数の断面画像)又はそれを加工した情報をサーバ4000又は他の装置によって解析し、その解析結果(及び元の情報)を読影端末5000m等に送信するようにしてもよい。例えば、眼科撮影装置2000−iから送信された複数の断面画像(又は、それらに基づく3次元画像若しくはそのレンダリング画像)の読影を人工知能エンジン等を用いて実行し、その結果を複数の断面画像とともに読影端末5000mに送信することができる。
眼科撮影装置2000−iから複数の断面画像が送信された場合、サーバ4000又は他の装置が、複数の断面画像から3次元画像(例えば、スタックデータ又はボリュームデータ等の3次元再構成画像)を構築し、転送制御部4012が、構築された3次元画像を読影端末5000mに送信するように構成することが可能である。
眼科撮影装置2000−iからスタックデータが送信された場合、サーバ4000又は他の装置が、このスタックデータからボリュームデータを構築し、転送制御部4012が、構築されたボリュームデータを読影端末5000mに送信するように構成することが可能である。
サーバ4000又は他の装置により実行可能なデータ加工処理は、上記した例には限定されず、任意のデータ処理を含んでいてよい。例えば、サーバ4000又は他の装置は、3次元画像のレンダリング、アーティファクト除去、歪み補正、計測などを実行可能であってよい。
通信確立部4100は、複数の眼科撮影装置2000−iと複数の端末3000−tと複数の読影端末5000mとを含む複数の装置のうちから選択された少なくとも2つの装置の間における通信を確立するための処理を実行する。本態様において「通信の確立」とは、例えば、(1)通信が切断された状態から一方向通信を確立すること、(2)通信が切断された状態から双方向通信を確立すること、(3)受信のみが可能な状態から送信も可能な状態に切り替えること、(4)送信のみが可能な状態から受信も可能な状態に切り替えること、のうちの少なくとも1つを含む概念である。
更に、通信確立部4100は、確立されている通信を切断する処理を実行可能である。本態様において「通信の切断」とは、例えば、(1)一方向通信が確立された状態から通信を切断すること、(2)双方向通信が確立された状態から通信を切断すること、(3)双方向通信が確立された状態から一方向通信に切り替えること、(4)送信及び受信が可能な状態から受信のみが可能な状態に切り替えること、(5)送信及び受信が可能な状態から送信のみが可能な状態に切り替えること、のうちの少なくとも1つを含む概念である。
眼科撮影装置2000−i、端末3000−t、及び読影端末5000mのそれぞれは、他の装置(そのユーザー)を呼び出すための通信要求(呼び出し要求)と、他の2つの装置の間の通信に割り込むための通信要求(割り込み要求)とのうちの少なくとも一方をサーバ4000に送信することができる。呼び出し要求及び割り込み要求は、手動又は自動で発信される。サーバ4000(通信部4200)は、眼科撮影装置2000−i、端末3000−t、又は読影端末5000mから送信された通信要求を受信する。
本態様において、通信確立部4100は選択部4120を含んでいてよい。選択部4120は、例えば、眼科撮影装置2000−i、端末3000−t、又は読影端末5000mから送信された通信要求に基づいて、眼科撮影装置2000−i、端末3000−t、及び読影端末5000mのうちから、当該通信要求を送信した装置以外の1以上の装置を選択する。
選択部4120が実行する処理の具体例を説明する。眼科撮影装置2000−i又は端末3000−tからの通信要求(例えば、眼科撮影装置2000−iにより取得された画像の読影の要求)を受けた場合、選択部4120は、例えば、複数の読影端末5000mのうちのいずれかを選択する。通信確立部4100は、選択された読影端末5000mと、眼科撮影装置2000−i及び端末3000−tの少なくとも一方との間の通信を確立する。
通信要求に応じた装置の選択は、例えば、予め設定された属性に基づいて実行される。この属性の例として、検査の種別(例えば、撮影モダリティの種別、画像の種別、疾患の種別、候補疾患の種別など)や、要求される専門度・熟練度や、言語の種別などがある。本例では、例えば、読影者の専門分野や熟練度が参照される。本例に係る処理を実現するために、通信確立部4100は、予め作成された属性情報が記憶された記憶部4110を含んでいてよい。属性情報には、読影端末5000m及び/又はそのユーザー(医師、オプトメトリスト等)の属性が記録されている。
ユーザーの識別は、事前に割り当てられたユーザーIDによって行われる。また、読影端末5000mの識別は、例えば、事前に割り当てられた装置IDやネットワークアドレスによって行われる。典型的な例において、属性情報は、各ユーザーの属性として、専門分野(例えば、診療科、専門とする疾患など)、専門度・熟練度、使用可能な言語の種別などを含む。
選択部4120が属性情報を参照する場合、眼科撮影装置2000−i、端末3000−t、又は読影端末5000mから送信される通信要求は、属性に関する情報を含んでいてよい。例えば、眼科撮影装置2000−iから送信される読影要求(診断要求)は、次のいずれかの情報を含んでいてよい:(1)撮影モダリティの種別を示す情報;(2)画像の種別を示す情報;(3)疾患名や候補疾患名を示す情報;(4)読影の難易度を示す情報;(5)眼科撮影装置2000−i及び/又は端末3000−tのユーザーの使用言語を示す情報。
このような読影要求を受信した場合、選択部4120は、この読影要求と記憶部4110に記憶された属性情報とに基づいて、いずれかの読影端末5000mを選択することができる。このとき、選択部4120は、読影要求に含まれる属性に関する情報と、記憶部4110に記憶された属性情報に記録された情報とを照合する。それにより、選択部4120は、例えば、次のいずれかの属性に該当する医師(又はオプトメトリスト)に対応する読影端末5000mを選択する:(1)当該撮影モダリティを専門とする医師;(2)当該画像種別を専門とする医師;(3)当該疾患(当該候補疾患)を専門とする医師;(4)当該難易度の読影が可能な医師;(5)当該言語を使用可能な医師。
なお、医師やオプトメトリストと、読影端末5000mとの間の対応付けは、例えば、読影端末5000m(又は眼科システム1000)へのログイン時に入力されたユーザーIDによってなされる。
通信部4200は、他の装置(例えば、眼科撮影装置2000−i、端末3000−t、及び読影端末5000mのいずれか)との間でデータ通信を行う。データ通信の方式や暗号化については、眼科撮影装置2000−iに設けられた通信部(第1の態様における出力部9の通信部)と同様であってよい。
サーバ4000は、データ処理部4300を含む。データ処理部4300は、各種のデータ処理を実行する。データ処理部4300は、眼科撮影装置2000−i(特に、スリットランプ顕微鏡)により取得された複数の断面画像又は3次元画像を処理することができる。データ処理部4300は、プロセッサ、主記憶装置、補助記憶装置などを含む。補助記憶装置には、データ処理プログラム等が記憶されている。データ処理部4300の機能は、データ処理プログラム等のソフトウェアと、プロセッサ等のハードウェアとの協働によって実現される。
サーバ4000は、データ処理部4300により得られたデータを他の装置に提供することができる。例えば、データ処理部4300が、眼科撮影装置2000−iにより取得された複数の断面画像から3次元画像を構築した場合、サーバ4000は、通信部4200により、この3次元画像を読影端末5000mに送信することができる。データ処理部4300が、眼科撮影装置2000−i又はデータ処理部4300により構築された3次元画像をレンダリングした場合、サーバ4000は、通信部4200により、構築されたレンダリング画像を読影端末5000mに送信することができる。データ処理部4300が、1以上の断面画像又は3次元画像に計測処理を適用した場合、サーバ4000は、得られた計測データを通信部4200によって読影端末5000mに送信することができる。データ処理部4300が、1以上の断面画像又は3次元画像に歪み補正を適用した場合、サーバ4000は、通信部4200により、補正された画像を読影端末5000mに送信することができる。
続いて、読影端末5000mについて説明する。図11に例示された読影端末5000mは、制御部5010と、データ処理部5100と、通信部5200と、操作部5300とを備える。
データ処理部5100は、第1の態様のデータ処理部8と同様の機能及び構成を有していてよい。例えば、データ処理部5100は、第1の態様のレンダリング部81の機能及び構成を少なくとも有し、再構成部82の機能及び構成並びにセグメンテーション部83の機能及び構成を更に有していてもよい。
制御部5010は、読影端末5000mの各部の制御を実行する。制御部5010は、その他の演算処理を実行可能であってよい。制御部5010は、プロセッサ、RAM、ROM、ハードディスクドライブ、ソリッドステートドライブなどを含む。
制御部5010は表示制御部5011を含む。表示制御部5011は、表示装置6000mを制御する。表示装置6000mは、読影端末5000mに含まれてもよいし、読影端末5000mに接続された周辺機器であってもよい。表示制御部5011は、被検眼Eの前眼部の画像を表示装置6000mに表示させる。例えば、表示制御部5011は、被検眼の前眼部の複数の断面画像に基づく3次元画像のレンダリング画像を表示装置6000mに表示させることができる。
制御部5010はレポート作成制御部5012を含む。レポート作成制御部5012は、表示制御部5011により表示された情報に関するレポートを作成するための各種の制御を実行する。例えば、レポート作成制御部5012は、レポートを作成するための画面やグラフィカルユーザーインターフェイス(GUI)を表示装置6000mに表示させる。また、レポート作成制御部5012は、ユーザーが入力した情報や、前眼部の画像や、計測データや、解析データなどを、所定のレポートテンプレートに入力する。
データ処理部5100は、各種のデータ処理を実行する。データ処理部5100は、眼科撮影装置2000−i(特に、スリットランプ顕微鏡)により取得された複数の断面画像又は3次元画像を処理することができる。また、データ処理部5100は、サーバ4000等の他の情報処理装置により構築された3次元画像又はレンダリング画像を処理することができる。データ処理部5100は、プロセッサ、主記憶装置、補助記憶装置などを含む。補助記憶装置には、データ処理プログラム等が記憶されている。データ処理部5100の機能は、データ処理プログラム等のソフトウェアと、プロセッサ等のハードウェアとの協働によって実現される。
通信部5200は、他の装置(例えば、眼科撮影装置2000−i、端末3000−t、及びサーバ4000のいずれか)との間でデータ通信を行う。データ通信の方式や暗号化については、眼科撮影装置2000−iの通信部と同様であってよい。
操作部5300は、読影端末5000mの操作、読影端末5000mへの情報入力などに使用される。本態様では、操作部5300はレポートの作成に使用される。操作部5300は、操作デバイスや入力デバイスを含む。操作部5300は、例えば、マウス、キーボード、トラックボール、操作パネル、スイッチ、ボタン、ダイアルなどを含む。操作部5300は、タッチスクリーンを含んでもよい。
本態様の眼科システム1000は、次のような動作を実行可能である。
まず、眼科撮影装置2000−i(スリットランプ顕微鏡)が、被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集する。眼科撮影装置2000−iは、収集された複数の断面画像を含む第1送信情報を、通信回線1100を通じてサーバ4000に送信する。このような眼科撮影装置2000−iの動作は、第1の態様と同じ要領で実行されてよい。また、眼科撮影装置2000−iは、第1の態様における任意の処理を実行可能であってよい。
サーバ4000は、眼科撮影装置2000−iから送信された第1送信情報を通信部4200(受信部)によって受信し、この第1送信情報を記憶部4110に記憶する。更に、サーバ4000は、通信部4200(送信部)を用いて、第1送信情報に含まれる複数の断面画像を少なくとも含む第2送信情報を、通信回線1100を通じて読影端末5000mに送信する。
読影端末5000mは、サーバ4000から送信された第2送信情報を通信部5200(受信部)によって受信する。読影端末5000mのユーザー(読影者)は、ユーザーインターフェイス(操作部5300、表示装置6000m、レポート作成制御部5012等)を利用して、複数の断面画像に基づく読影を行う。例えば、データ処理部5100は、複数の断面画像に基づく3次元画像にレンダリングを適用する。これにより構築されたレンダリング画像は、表示制御部5011によって表示装置6000mに表示される。このレンダリング画像は、例えば、徹照像に類似した正面画像である。ユーザーは、この正面画像を読影することで、例えば白内障のグレードを評価し、その結果を読影端末5000mに入力する。読影端末5000mは、通信部5200(送信部)によって、ユーザーインターフェイスを用いて入力された情報(読影レポート等)を含む第3送信情報を、通信回線1100を通じてサーバ4000に送信する。
サーバ4000は、読影端末5000mから送信された第3送信情報を通信部4200(受信部)により受信し、この第3送信情報を第1送信情報に関連付けて記憶部4110に記憶する。
このような眼科システム1000によれば、第1の態様の効果から分かるように、予め取得された前眼部の画像に基づいて読影を好適に行うことができる。前眼部の画像の取得は、遠隔地にて行われてもよい。従来においては、医師が遠隔地から操作を行いつつ診察を行っているが、本態様では、医師は、事前に取得された画像に基づく読影を行うだけでよい。つまり、本態様では、撮影の手間や時間から医師を解放することができ、読影に集中することが可能となる。よって、本態様は、高品質なスリットランプ顕微鏡検査の提供範囲の拡大に寄与する。
<第4の態様>
本態様では、眼科撮影装置と情報処理装置と読影装置とを含む眼科システムについて説明する。第3の態様との相違は、読影端末の代わりに読影装置が設けられている点である。なお、第3の態様と第4の態様とを組み合わせ、読影端末及び読影装置の双方を含む眼科システムを構築することも可能である。以下、第1、第2及び第3の態様のいずれかの要素や構成や符号を適宜に準用しつつ説明を行う。
図12に例示された眼科システム1000Aは、前述したように、第3の態様の眼科システム1000の読影端末5000mを読影装置7000mに置き換えたものである。読影装置7000mは、例えば画像処理プロセッサ及び/又は人工知能エンジンを利用して、眼科撮影装置2000−i(スリットランプ顕微鏡)により取得された複数の断面画像の読影を行うコンピュータである。
読影装置7000mの構成例を図13に示す。本例の読影装置7000mは、読影処理部7100と通信部7200とデータ処理部7300とを含む。通信部7200は、他の装置(例えば、眼科撮影装置2000−i、端末3000−t、及びサーバ4000のいずれか)との間でデータ通信を行う。
データ処理部7300は、第1の態様のデータ処理部8と同様の機能及び構成を有していてよい。例えば、データ処理部7300は、第1の態様のレンダリング部81の機能及び構成を少なくとも有し、再構成部82の機能及び構成並びにセグメンテーション部83の機能及び構成を更に有していてもよい。
読影処理部7100は、例えば、読影用のプログラムにしたがって動作する読影プロセッサを含み、複数の断面画像(それらに基づく画像)を解析して所見を得る。幾つかの態様において、読影処理部7100は、複数の断面画像(それらに基づく画像)から所見を得るために、第1の態様における人工知能エンジンを含んでいてもよい。本態様では、データ処理部7300が、複数の断面画像に基づく3次元画像のレンダリング画像を構築し、読影処理部7100が、このレンダリング画像の読影を行って所見を得る。更に、読影処理部7100は、取得された所見に基づきレポートを作成する。
本態様の眼科システム1000Aは、次のような動作を実行可能である。
まず、眼科撮影装置2000−i(スリットランプ顕微鏡)が、被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集する。眼科撮影装置2000−iは、収集された複数の断面画像を含む第1送信情報を、通信回線1100を通じてサーバ4000に送信する。このような眼科撮影装置2000−iの動作は、第1の態様と同じ要領で実行されてよい。また、眼科撮影装置2000−iは、第1の態様における任意の処理を実行可能であってよい。
サーバ4000は、眼科撮影装置2000−iから送信された第1送信情報を通信部4200(受信部)によって受信し、この第1送信情報を記憶部4110に記憶する。更に、サーバ4000は、通信部4200(送信部)を用いて、第1送信情報に含まれる複数の断面画像を少なくとも含む第2送信情報を、通信回線1100を通じて読影装置7000mに送信する。
読影装置7000mは、サーバ4000から送信された第2送信情報を通信部7200(受信部)によって受信する。読影装置7000mは、データ処理部7300によって、第2送信情報に含まれる複数の断面画像に基づく3次元画像にレンダリングを適用し、レンダリング画像を構築する。このレンダリング画像は、例えば、徹照像に類似した正面画像である。読影処理部7100によりこのレンダリング画像の読影を行う。例えば、読影処理部7100は、徹照像に類似した正面画像を読影することで、例えば白内障のグレードを評価する。読影装置7000mは、通信部7200(送信部)によって、読影処理部7100により取得された情報を含む第4送信情報を、通信回線1100を通じてサーバ4000に送信する。
サーバ4000は、読影装置7000mから送信された第4送信情報を通信部4200(受信部)により受信し、この第4送信情報を第1送信情報に関連付けて記憶部4110に記憶する。
このような眼科システム1000Aによれば、第1の態様の効果から分かるように、予め取得された前眼部の画像に基づいて自動読影を好適に行うことができる。前眼部の画像の取得は、遠隔地にて行われてもよい。従来においては、医師が遠隔地から操作を行いつつ診察を行っているが、本態様では、医師は、事前に取得された画像に基づく自動読影の結果を参照しながら読影を行うだけでよい。つまり、本態様では、撮影の手間や時間から医師を解放することができるとともに、自動読影の結果を医師に提供することができるので、読影作業の大幅な効率化を図ることが可能となる。また、読影の正確性向上も期待される。よって、本態様は、高品質なスリットランプ顕微鏡検査の提供範囲の拡大に寄与する。
〈その他の事項〉
例示的な態様において実行されるレンダリングの幾つかの例を説明する。図14は、XY平面に定義されたプロジェクション画像を構築するためのレンダリングの例を示す。符号Kは、図3に示す複数の前眼部画像F1〜FNの3次元再構成画像(例えばスタックデータ)を示す。例示的な態様のレンダリング部は、Z方向へのプロジェクションを3次元再構成画像Kに適用する。それにより、Z方向に直交するXY平面に定義されたレンダリング画像(プロジェクション画像)Gが構築される。
図15は、XY平面上に定義されたプロジェクション画像を構築するためのレンダリングの他の例を示す。例示的な態様のセグメンテーション部は、複数の前眼部画像F1〜FNの3次元再構成画像から水晶体領域H1を抽出する。水晶体領域H1は3次元画像である。例示的な態様のレンダリング部は、Z方向へのプロジェクションを水晶体領域H1に適用する。それにより、Z方向に直交するXY平面に定義された、水晶体領域H1のレンダリング画像(プロジェクション画像)H2が構築される。
いずれかの態様に係るスリットランプ顕微鏡を制御する方法を提供することができる。スリットランプ顕微鏡は、プロセッサと、被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集するスキャン部とを含む。本制御方法は、スキャン部により収集された複数の断面画像に基づく3次元画像にレンダリングを適用する処理を、プロセッサに実行させる。
この制御方法をコンピュータに実行させるプログラムを構成することが可能である。更に、このプログラムを記録したコンピュータ可読な非一時的記録媒体を作成することが可能である。この非一時的記録媒体は任意の形態であってよく、その例として、磁気ディスク、光ディスク、光磁気ディスク、半導体メモリなどがある。
同様に、第1〜第4の態様のいずれかにおいて開示された任意の制御方法を提供することができる。また、第1〜第4の態様のいずれかにおいて開示された任意の処理方法(演算方法、画像処理方法、画像解析方法等)を提供することができる。更に、この処理方法をコンピュータに実行させるプログラムを構成することが可能である。加えて、このプログラムを記録したコンピュータ可読な非一時的記録媒体を作成することが可能である。
以上に説明した幾つかの態様は本発明の例示に過ぎない。したがって、本発明の要旨の範囲内における任意の変形(省略、置換、付加等)を上記の態様に対して適宜に施すことが可能である。
1 スリットランプ顕微鏡
2 照明系
3 撮影系
4 光学系
5 撮像素子
6 移動機構
7 制御部
8 データ処理部
9 出力部
81 レンダリング部
82 再構成部
83 セグメンテーション部

Claims (17)

  1. 被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集するスキャン部と、
    前記複数の断面画像に基づく3次元画像にレンダリングを適用するレンダリング部と
    を含む、スリットランプ顕微鏡。
  2. 前記レンダリング部は、所定の平面に対するプロジェクションを前記3次元画像に適用する、
    請求項1のスリットランプ顕微鏡。
  3. 前記所定の平面は、前記被検眼の奥行き方向に直交する、
    請求項2のスリットランプ顕微鏡。
  4. 前記スキャン部により収集された前記複数の断面画像に3次元再構成を適用する再構成部と、
    前記3次元画像を設定するために、前記再構成部により構築された3次元再構成画像にセグメンテーションを適用するセグメンテーション部と
    を更に含む、請求項1〜3のいずれかのスリットランプ顕微鏡。
  5. 前記セグメンテーション部は、前記3次元再構成画像から水晶体領域を特定し、
    前記3次元画像は、前記水晶体領域の少なくとも一部を含む、
    請求項4のスリットランプ顕微鏡。
  6. 前記レンダリング部は、前記水晶体領域に前記レンダリングを適用する、
    請求項5のスリットランプ顕微鏡。
  7. 前記セグメンテーション部は、前記水晶体領域にセグメンテーションを適用して、前記被検眼の奥行き方向における部分領域を特定し、
    前記レンダリング部は、前記部分領域に前記レンダリングを適用する、
    請求項5のスリットランプ顕微鏡。
  8. 前記セグメンテーション部は、前記水晶体領域から嚢領域及び核領域の少なくとも一方の領域を特定し、この領域に基づいて前記部分領域を特定する、
    請求項7のスリットランプ顕微鏡。
  9. 前記スキャン部は、
    前記前眼部に前記スリット光を照射する照明系と、
    前記照明系とは異なる方向から前記前眼部を撮影する撮影系と、
    前記照明系及び前記撮影系を移動する移動機構と
    を含む、
    請求項1〜8のいずれかのスリットランプ顕微鏡。
  10. 前記撮影系は、
    前記スリット光が照射された前記前眼部からの光を導く光学系と、
    前記光学系により導かれた前記光を撮像面で受光する撮像素子と
    を含み、
    前記照明系の光軸に沿う物面と前記光学系と前記撮像面とがシャインプルーフの条件を満足する、
    請求項9のスリットランプ顕微鏡。
  11. 前記レンダリング部により構築されたレンダリング画像を表示する表示部を更に含む、
    請求項1〜10のいずれかのスリットランプ顕微鏡。
  12. 被検眼の前眼部をスリット光でスキャンして収集された複数の断面画像を受け付ける受付部と、
    前記複数の断面画像に基づく3次元画像にレンダリングを適用するレンダリング部と
    を含む、眼科情報処理装置。
  13. スリットランプ顕微鏡と情報処理装置と読影端末とを含む眼科システムであって、
    前記スリットランプ顕微鏡は、
    被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集するスキャン部と、
    前記スキャン部により収集された前記複数の断面画像を含む第1送信情報を、通信回線を通じて前記情報処理装置に送信する送信部と
    を含み、
    前記情報処理装置は、
    前記第1送信情報を受信する受信部と、
    前記第1送信情報を記憶する記憶部と、
    前記第1送信情報に含まれる前記複数の断面画像を少なくとも含む第2送信情報を、通信回線を通じて前記読影端末に送信する送信部と
    を含み、
    前記読影端末は、
    前記第2送信情報を受信する受信部と、
    前記第2送信情報に含まれる前記複数の断面画像に基づく3次元画像にレンダリングを適用するレンダリング部と、
    前記レンダリング部により構築されたレンダリング画像をユーザが読影するためのユーザーインターフェイスと、
    前記ユーザーインターフェイスを用いて入力された情報を含む第3送信情報を、通信回線を通じて前記情報処理装置に送信する送信部と
    を含み、
    前記情報処理装置は、前記受信部により前記第3送信情報を受信し、前記第3送信情報を前記第1送信情報に関連付けて前記記憶部に記憶する、
    眼科システム。
  14. スリットランプ顕微鏡と情報処理装置と読影装置とを含む眼科システムであって、
    前記スリットランプ顕微鏡は、
    被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集するスキャン部と、
    前記スキャン部により収集された前記複数の断面画像を含む第1送信情報を、通信回線を通じて前記情報処理装置に送信する送信部と
    を含み、
    前記情報処理装置は、
    前記第1送信情報を受信する受信部と、
    前記第1送信情報を記憶する記憶部と、
    前記第1送信情報に含まれる前記複数の断面画像を少なくとも含む第2送信情報を、通信回線を通じて前記読影装置に送信する送信部と
    を含み、
    前記読影装置は、
    前記第2送信情報を受信する受信部と、
    前記第2送信情報に含まれる前記複数の断面画像に基づく3次元画像にレンダリングを適用するレンダリング部と、
    前記レンダリング部により構築されたレンダリング画像を読影する読影処理部と、
    前記読影処理部により取得された情報を含む第4送信情報を、通信回線を通じて前記情報処理装置に送信する送信部と
    を含み、
    前記情報処理装置は、前記受信部により前記第4送信情報を受信し、前記第4送信情報を前記第1送信情報に関連付けて前記記憶部に記憶する、
    眼科システム。
  15. プロセッサと、被検眼の前眼部をスリット光でスキャンして複数の断面画像を収集するスキャン部とを含むスリットランプ顕微鏡を制御する方法であって、
    前記スキャン部により収集された前記複数の断面画像に基づく3次元画像にレンダリングを適用する処理を、前記プロセッサに実行させる、
    スリットランプ顕微鏡の制御方法。
  16. 請求項15の方法をコンピュータに実行させるためのプログラム。
  17. 請求項16のプログラムが記録された、コンピュータ可読な非一時的記録媒体。

JP2019164262A 2019-09-10 2019-09-10 スリットランプ顕微鏡、眼科情報処理装置、眼科システム、スリットランプ顕微鏡の制御方法、プログラム、及び記録媒体 Pending JP2021040855A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019164262A JP2021040855A (ja) 2019-09-10 2019-09-10 スリットランプ顕微鏡、眼科情報処理装置、眼科システム、スリットランプ顕微鏡の制御方法、プログラム、及び記録媒体
PCT/JP2020/021726 WO2021049104A1 (ja) 2019-09-10 2020-06-02 スリットランプ顕微鏡、眼科情報処理装置、眼科システム、スリットランプ顕微鏡の制御方法、及び記録媒体
CN202080062719.1A CN114364306A (zh) 2019-09-10 2020-06-02 裂隙灯显微镜、眼科信息处理装置、眼科系统、裂隙灯显微镜的控制方法以及记录介质
US17/637,082 US20220280036A1 (en) 2019-09-10 2020-06-02 Slit lamp microscope, ophthalmic information processing apparatus, ophthalmic system, method of controlling slit lamp microscope, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019164262A JP2021040855A (ja) 2019-09-10 2019-09-10 スリットランプ顕微鏡、眼科情報処理装置、眼科システム、スリットランプ顕微鏡の制御方法、プログラム、及び記録媒体

Publications (1)

Publication Number Publication Date
JP2021040855A true JP2021040855A (ja) 2021-03-18

Family

ID=74864604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019164262A Pending JP2021040855A (ja) 2019-09-10 2019-09-10 スリットランプ顕微鏡、眼科情報処理装置、眼科システム、スリットランプ顕微鏡の制御方法、プログラム、及び記録媒体

Country Status (4)

Country Link
US (1) US20220280036A1 (ja)
JP (1) JP2021040855A (ja)
CN (1) CN114364306A (ja)
WO (1) WO2021049104A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037658A1 (ja) * 2021-09-08 2023-03-16 株式会社トプコン 眼科装置、眼科装置を制御する方法、眼画像を処理する方法、プログラム、及び記録媒体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507296A (ja) * 2000-08-21 2004-03-11 ザ ジェネラル ホスピタル コーポレーション 神経変性状態の診断方法
JP2019024618A (ja) * 2017-07-26 2019-02-21 株式会社トプコン 眼科システム及び眼科情報処理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000197607A (ja) * 1998-12-30 2000-07-18 Canon Inc 検眼装置
JP6923384B2 (ja) * 2017-07-27 2021-08-18 株式会社トプコン 眼科システム及び眼科情報処理装置
JP7133950B2 (ja) * 2018-03-14 2022-09-09 株式会社トプコン 眼科システム、眼科情報処理装置、プログラム、及び記録媒体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507296A (ja) * 2000-08-21 2004-03-11 ザ ジェネラル ホスピタル コーポレーション 神経変性状態の診断方法
JP2019024618A (ja) * 2017-07-26 2019-02-21 株式会社トプコン 眼科システム及び眼科情報処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037658A1 (ja) * 2021-09-08 2023-03-16 株式会社トプコン 眼科装置、眼科装置を制御する方法、眼画像を処理する方法、プログラム、及び記録媒体

Also Published As

Publication number Publication date
US20220280036A1 (en) 2022-09-08
WO2021049104A1 (ja) 2021-03-18
CN114364306A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
JP7466607B2 (ja) スリットランプ顕微鏡
JP6923384B2 (ja) 眼科システム及び眼科情報処理装置
JP7321678B2 (ja) スリットランプ顕微鏡及び眼科システム
WO2019240149A1 (ja) スリットランプ顕微鏡及び眼科システム
WO2019176231A1 (ja) 眼科システム、眼科情報処理装置、プログラム、及び記録媒体
WO2021049341A1 (ja) スリットランプ顕微鏡、眼科情報処理装置、眼科システム、スリットランプ顕微鏡の制御方法、プログラム、及び記録媒体
WO2021256130A1 (ja) スリットランプ顕微鏡
JP2022105634A (ja) スリットランプ顕微鏡及び眼科システム
WO2021049104A1 (ja) スリットランプ顕微鏡、眼科情報処理装置、眼科システム、スリットランプ顕微鏡の制御方法、及び記録媒体
JP2022050738A (ja) スリットランプ顕微鏡システム
WO2021261103A1 (ja) スリットランプ顕微鏡
JP2022035168A (ja) スリットランプ顕微鏡システム
JP7345610B2 (ja) スリットランプ顕微鏡
JP7237219B2 (ja) 眼科システム、眼科情報処理装置、プログラム、及び記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240521