JP2021040012A - Manufacturing method for semiconductor device - Google Patents

Manufacturing method for semiconductor device Download PDF

Info

Publication number
JP2021040012A
JP2021040012A JP2019159839A JP2019159839A JP2021040012A JP 2021040012 A JP2021040012 A JP 2021040012A JP 2019159839 A JP2019159839 A JP 2019159839A JP 2019159839 A JP2019159839 A JP 2019159839A JP 2021040012 A JP2021040012 A JP 2021040012A
Authority
JP
Japan
Prior art keywords
bump electrode
semiconductor
oxide film
temperature
semiconductor chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019159839A
Other languages
Japanese (ja)
Inventor
隆章 赤羽
Takaaki Akabane
隆章 赤羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Kioxia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kioxia Corp filed Critical Kioxia Corp
Priority to JP2019159839A priority Critical patent/JP2021040012A/en
Priority to TW109123312A priority patent/TWI764193B/en
Priority to CN202010709013.1A priority patent/CN112447607B/en
Publication of JP2021040012A publication Critical patent/JP2021040012A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81053Bonding environment
    • H01L2224/81054Composition of the atmosphere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81053Bonding environment
    • H01L2224/81095Temperature settings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81909Post-treatment of the bump connector or bonding area
    • H01L2224/8192Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81909Post-treatment of the bump connector or bonding area
    • H01L2224/8193Reshaping
    • H01L2224/81935Reshaping by heating means, e.g. reflowing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81909Post-treatment of the bump connector or bonding area
    • H01L2224/81948Thermal treatments, e.g. annealing, controlled cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)

Abstract

To provide a manufacturing method for a semiconductor device by which a failure due to short-circuiting between adjacent metal bumps between a plurality of stacked semiconductor chips can be suppressed.SOLUTION: In a manufacturing method for a semiconductor device according to the embodiment, first and second semiconductor chips are stacked so that a plurality of first metal terminals provided to the first semiconductor chip and a plurality of second metal terminals provided to the second semiconductor chip and coated with an oxide film are brought into contact with each other. A first step of heating the first and second semiconductor chips at first temperature higher than or equal to the melting point of the second metal terminals is performed without introducing reducing gas that reduces the oxide film. A second step of heating the first and second semiconductor chips at second temperature higher than or equal to the temperature that activates the reducing gas and lower than or equal to the melting point of the second metal terminals is performed by introducing the reducing gas. A third step of heating the first and second semiconductor chips at third temperature higher than or equal to the melting point of the second metal terminals is performed.SELECTED DRAWING: Figure 6

Description

本実施形態は、半導体装置の製造方法に関する。 The present embodiment relates to a method for manufacturing a semiconductor device.

半導体装置において、小型化や高機能化のために、1パッケージ内に複数の半導体チップを積層するSiP (System in Package) 構造が開発されている。SiP構造において、複数の半導体チップを積層してフリップチップ接続する場合、ギ酸リフロー方式を用いて、上下に隣接する複数の半導体チップのはんだバンプ同士を互いに溶融して接続する場合がある。ギ酸リフロー方式では、はんだバンプの表面に形成された酸化膜をギ酸ガスで還元除去しつつ、はんだバンプを溶融して接続する。 In semiconductor devices, a SiP (System in Package) structure has been developed in which a plurality of semiconductor chips are laminated in one package in order to reduce the size and enhance the functionality. In the SiP structure, when a plurality of semiconductor chips are laminated and flip-chip connected, the solder bumps of a plurality of semiconductor chips adjacent to each other may be melted and connected to each other by using the formic acid reflow method. In the formic acid reflow method, the oxide film formed on the surface of the solder bumps is reduced and removed with formic acid gas, and the solder bumps are melted and connected.

しかし、ギ酸ガスが一部の酸化膜のみを還元除去すると、はんだバンプは、酸化膜の無い部分から溶融し始め、特定の方向に流出する。はんだバンプが特定の方向に流出すると、その方向に隣接する他のはんだバンプと接触し、ショート不良を引き起こすおそれがある。 However, when the formic acid gas reduces and removes only a part of the oxide film, the solder bumps start to melt from the portion without the oxide film and flow out in a specific direction. If the solder bumps flow out in a specific direction, they may come into contact with other solder bumps adjacent in that direction, causing a short circuit defect.

特許第5378078号公報Japanese Patent No. 5378078 特許第5732623号公報Japanese Patent No. 5732623 米国特許第8757474号公報U.S. Pat. No. 8,757,474

積層された複数の半導体チップ間において隣接する金属バンプ同士のショート不良を抑制することができる半導体装置の製造方法を提供する。 Provided is a method for manufacturing a semiconductor device capable of suppressing short-circuit defects between adjacent metal bumps between a plurality of stacked semiconductor chips.

本実施形態による半導体装置の製造方法では、第1半導体チップに設けられた複数の第1金属端子と第2半導体チップに設けられ酸化膜で被覆された複数の第2金属端子とを互いに接触させるように第1および第2半導体チップを積層する。酸化膜を還元する還元ガスを導入することなく、第2金属端子の融点以上の第1温度で第1および第2半導体チップを熱処理する第1工程を実行する。還元ガスを導入して、該還元ガスを活性化させる温度以上かつ第2金属端子の融点以下の第2温度で第1および第2半導体チップを熱処理する第2工程を実行する。第2金属端子の融点以上の第3温度で第1および第2半導体チップを熱処理する第3工程を実行する。 In the method for manufacturing a semiconductor device according to the present embodiment, a plurality of first metal terminals provided on the first semiconductor chip and a plurality of second metal terminals provided on the second semiconductor chip and coated with an oxide film are brought into contact with each other. The first and second semiconductor chips are laminated as described above. The first step of heat-treating the first and second semiconductor chips at a first temperature equal to or higher than the melting point of the second metal terminal is executed without introducing a reducing gas that reduces the oxide film. The second step of introducing the reducing gas and heat-treating the first and second semiconductor chips at a second temperature equal to or higher than the temperature at which the reducing gas is activated and lower than the melting point of the second metal terminal is executed. The third step of heat-treating the first and second semiconductor chips at a third temperature equal to or higher than the melting point of the second metal terminal is executed.

第1実施形態による半導体装置の製造方法の一例を示す断面図。The cross-sectional view which shows an example of the manufacturing method of the semiconductor device by 1st Embodiment. 図1に続く、半導体装置の製造方法の一例を示す断面図。FIG. 1 is a cross-sectional view showing an example of a method for manufacturing a semiconductor device, following FIG. 図2に続く、半導体装置の製造方法の一例を示す断面図。FIG. 2 is a cross-sectional view showing an example of a method for manufacturing a semiconductor device, following FIG. リフロー工程に用いられる熱処理装置の構成例を示すブロック図。The block diagram which shows the structural example of the heat treatment apparatus used for a reflow process. バンプ電極のリフロー工程の一例を示す断面図。The cross-sectional view which shows an example of the reflow process of a bump electrode. 図5に続く、リフロー工程の一例を示す断面図。FIG. 5 is a cross-sectional view showing an example of a reflow process following FIG. 図6に続く、リフロー工程の一例を示す断面図。FIG. 6 is a cross-sectional view showing an example of a reflow process following FIG. リフロー工程におけるチャンバ内の温度および気圧を示すグラフ。The graph which shows the temperature and the air pressure in a chamber in a reflow process. 半導体パッケージの一例を示す断面図。Sectional drawing which shows an example of a semiconductor package.

以下、図面を参照して本発明に係る実施形態を説明する。本実施形態は、本発明を限定するものではない。図面は模式的または概念的なものであり、各部分の比率などは、必ずしも現実のものと同一とは限らない。明細書と図面において、既出の図面に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings. The present embodiment is not limited to the present invention. The drawings are schematic or conceptual, and the ratio of each part is not always the same as the actual one. In the specification and the drawings, the same elements as those described above with respect to the existing drawings are designated by the same reference numerals, and detailed description thereof will be omitted as appropriate.

(第1実施形態)
図1〜図3は、第1実施形態による半導体装置の製造方法の一例を示す断面図である。まず、半導体基板10の第1面F1上に半導体素子20を形成する。半導体基板10は、例えば、シリコン基板等でよい。半導体素子20は、例えば、複数のメモリセルを三次元配置した立体型メモリセルアレイと、メモリセルアレイを制御するCMOS(Complementary Metal-Oxide-Semiconductor)回路とでよい。即ち、半導体装置は、NAND型フラッシュメモリの半導体チップであってもよい。尚、半導体素子20は、他のLSI(Large-Scale Integration)であってもよい。また、半導体素子20は、第2面F2に形成されてもよい。
(First Embodiment)
1 to 3 are cross-sectional views showing an example of a method for manufacturing a semiconductor device according to the first embodiment. First, the semiconductor element 20 is formed on the first surface F1 of the semiconductor substrate 10. The semiconductor substrate 10 may be, for example, a silicon substrate or the like. The semiconductor element 20 may be, for example, a three-dimensional memory cell array in which a plurality of memory cells are three-dimensionally arranged, and a CMOS (Complementary Metal-Oxide-Semiconductor) circuit that controls the memory cell array. That is, the semiconductor device may be a semiconductor chip of a NAND flash memory. The semiconductor element 20 may be another LSI (Large-Scale Integration). Further, the semiconductor element 20 may be formed on the second surface F2.

次に、半導体基板10に、TSV(Through-Silicon Via)等の貫通電極30が形成される。貫通電極30は、第1面F1とその反対側にある第2面F2との間に設けられ、半導体基板10を貫通する貫通孔40に金属材料を埋め込むことによって形成される。貫通電極30には、例えば、銅、ニッケル、タングステン等の低抵抗金属が用いられる。 Next, a through electrode 30 such as a TSV (Through-Silicon Via) is formed on the semiconductor substrate 10. The through electrode 30 is provided between the first surface F1 and the second surface F2 on the opposite side thereof, and is formed by embedding a metal material in a through hole 40 penetrating the semiconductor substrate 10. For the through electrode 30, for example, a low resistance metal such as copper, nickel, or tungsten is used.

第1面F1上には、貫通電極30に接続する第1電極端子としてのバンプ電極50が形成される。バンプ電極50には、例えば、銅、ニッケル、タングステン等の低抵抗金属が用いられる。 A bump electrode 50 as a first electrode terminal connected to the through electrode 30 is formed on the first surface F1. For the bump electrode 50, for example, a low resistance metal such as copper, nickel, or tungsten is used.

第2面F2上には、貫通電極30に接続する第2電極端子としてのバンプ電極60が形成される。バンプ電極60には、例えば、はんだ(スズ)等の低抵抗金属が用いられる。バンプ電極60の幅は、5μm〜50μmである。隣接するバンプ電極60間の距離は、10μm〜100μmである。 A bump electrode 60 as a second electrode terminal connected to the through electrode 30 is formed on the second surface F2. For the bump electrode 60, for example, a low resistance metal such as solder (tin) is used. The width of the bump electrode 60 is 5 μm to 50 μm. The distance between the adjacent bump electrodes 60 is 10 μm to 100 μm.

また、半導体基板10の第2面F2上には、接着剤70が形成されている。接着剤70には、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド等の樹脂または、これらの混合樹脂が用いられる。 Further, an adhesive 70 is formed on the second surface F2 of the semiconductor substrate 10. As the adhesive 70, for example, a resin such as an epoxy resin, a phenol resin, or a polyimide, or a mixed resin thereof is used.

以上の半導体ウェハまたは半導体チップはフリップチップ接続される。尚、複数の半導体ウェハは、ウェハ状態のまま積層され、その後、ダイシングされてもよい。代替的に、半導体ウェハは、それぞれチップ状態にダイシングで個片化されてから積層されてもよい。以下、半導体ウェハは、半導体チップにダイシングされ、積層されるものとして説明する。 The above semiconductor wafers or semiconductor chips are flip-chip connected. The plurality of semiconductor wafers may be laminated in the wafer state and then diced. Alternatively, the semiconductor wafers may be individually diced into chips and then laminated. Hereinafter, the semiconductor wafer will be described as being diced and laminated on the semiconductor chip.

次に、図2に示すように、配線基板120上に複数の半導体チップを積層する。半導体ウェハは、ダイシングによって半導体チップに個片化されている。リードフレーム100上に接着剤110で配線基板120を接着する。その後、複数の半導体チップを配線基板120上に積層する。即ち、複数の半導体チップは、フリップチップ接続される。 Next, as shown in FIG. 2, a plurality of semiconductor chips are laminated on the wiring board 120. The semiconductor wafer is separated into semiconductor chips by dicing. The wiring board 120 is adhered onto the lead frame 100 with an adhesive 110. After that, a plurality of semiconductor chips are laminated on the wiring board 120. That is, the plurality of semiconductor chips are flip-chip connected.

配線基板120の代わりに、貫通電極30が形成されていない半導体チップの上に複数の半導体チップを積層してもよい。この場合、配線基板120の代わりの半導体チップは、その上に積層される半導体チップと略同等の回路構成を有するが、貫通電極30が形成されていないことが他の半導体チップと異なる。 Instead of the wiring board 120, a plurality of semiconductor chips may be laminated on a semiconductor chip on which the through electrode 30 is not formed. In this case, the semiconductor chip instead of the wiring board 120 has a circuit configuration substantially equivalent to that of the semiconductor chip laminated on the semiconductor chip, but is different from other semiconductor chips in that the through electrode 30 is not formed.

図3は、複数の半導体チップC1〜C4を配線基板120上に積層したときの構成を示す断面図である。半導体チップC1〜C3は、例えば、NANDメモリチップであり、半導体チップC4は、例えば、コントローラチップである。積層方向(D1方向)に隣接する複数の半導体チップC1〜C4は、接着剤70で互いに接着されており積層体STを構成し、バンプ電極60および貫通電極30によって電気的に接続されている。尚、本実施形態では、半導体チップC1〜C4のみ示しているが、半導体チップの数は、3以下であっても、5以上であってもよい。 FIG. 3 is a cross-sectional view showing a configuration when a plurality of semiconductor chips C1 to C4 are laminated on the wiring board 120. The semiconductor chips C1 to C3 are, for example, NAND memory chips, and the semiconductor chip C4 is, for example, a controller chip. A plurality of semiconductor chips C1 to C4 adjacent to each other in the stacking direction (D1 direction) are adhered to each other with an adhesive 70 to form a laminated body ST, and are electrically connected by a bump electrode 60 and a through electrode 30. In this embodiment, only the semiconductor chips C1 to C4 are shown, but the number of semiconductor chips may be 3 or less or 5 or more.

ここで、図2から図3へ半導体チップC1〜C4を積層する際のリフロー工程をより詳細に説明する。 Here, the reflow process when laminating the semiconductor chips C1 to C4 from FIGS. 2 to 3 will be described in more detail.

図4は、リフロー工程に用いられる熱処理装置200の構成例を示すブロック図である。熱処理装置200は、チャンバ201と、ヒータ202と、ステージ203と、薬液タンク204と、不活性ガス供給部205と、配管206、207と、マスフローコントローラMFCと、真空ポンプ208と、除害装置209とを備えている。 FIG. 4 is a block diagram showing a configuration example of the heat treatment apparatus 200 used in the reflow process. The heat treatment apparatus 200 includes a chamber 201, a heater 202, a stage 203, a chemical liquid tank 204, an inert gas supply unit 205, pipes 206 and 207, a mass flow controller MFC, a vacuum pump 208, and an abatement apparatus 209. And have.

チャンバ201は、ヒータ202およびステージ203を収容する。ステージ203は、チャンバ201内に搬入された複数の積層体STを載置することができる。ヒータ202は、複数の積層体STを加熱することができる。これにより、チャンバ201内部で半導体チップ間のバンプ電極60をリフローすることができる。 Chamber 201 houses the heater 202 and stage 203. The stage 203 can mount a plurality of laminated bodies ST carried into the chamber 201. The heater 202 can heat a plurality of laminated bodies ST. As a result, the bump electrodes 60 between the semiconductor chips can be reflowed inside the chamber 201.

薬液タンク204は、薬液Cを収容可能であり、配管206を介してチャンバ201および不活性ガス供給部205に接続されている。薬液Cは、還元剤として、例えば、ギ酸(HCOOH)を含む。ギ酸は、例えば、酸化されたはんだ(酸化スズ(SnO、SnO))を還元する還元剤として用いられる。薬液Cは、薬液タンク204内で気化され、酸化スズ(SnO、SnO)を還元する還元ガスとして配管206を介してチャンバ201内に導入される。 The chemical solution tank 204 can accommodate the chemical solution C and is connected to the chamber 201 and the inert gas supply unit 205 via the pipe 206. The chemical solution C contains, for example, formic acid (HCOOH) as a reducing agent. Formic acid is used, for example, as a reducing agent for reducing oxidized solder (tin oxide (SnO, SnO 2)). The chemical solution C is vaporized in the chemical solution tank 204 and introduced into the chamber 201 via the pipe 206 as a reducing gas for reducing tin oxide (SnO, SnO 2).

不活性ガス供給部205は、配管206を介して薬液タンク204またはチャンバ201内に不活性ガスを供給する。不活性ガスは、例えば、窒素、希ガス等でよい。薬液タンク204において、不活性ガスは、薬液Cの気化に用いられる。また、不活性ガスは、還元ガスの濃度を調整するために用いられたり、チャンバ201内部のクリーニングのために用いられる。以下、薬液Cは、ギ酸溶液であり、還元ガスは、ギ酸ガスを主成分として含むものとして説明を進める。 The inert gas supply unit 205 supplies the inert gas into the chemical solution tank 204 or the chamber 201 via the pipe 206. The inert gas may be, for example, nitrogen, a rare gas or the like. In the chemical solution tank 204, the inert gas is used for vaporizing the chemical solution C. The inert gas is also used for adjusting the concentration of the reducing gas and for cleaning the inside of the chamber 201. Hereinafter, the description will proceed assuming that the chemical solution C is a formic acid solution and the reducing gas contains formic acid gas as a main component.

真空ポンプ208は、配管207を介してチャンバ201に接続されており、チャンバ201内部を減圧したり、チャンバ201内部の気圧を制御することができる。除害装置209は、真空ポンプ208によって排気されたガスを無害化する。 The vacuum pump 208 is connected to the chamber 201 via a pipe 207, and can reduce the pressure inside the chamber 201 and control the air pressure inside the chamber 201. The abatement device 209 detoxifies the gas exhausted by the vacuum pump 208.

このような構成を有する熱処理装置200によって、積層体STは熱処理される。 The laminated body ST is heat-treated by the heat treatment apparatus 200 having such a configuration.

図5(A)〜図7は、バンプ電極60のリフロー工程の一例を示す断面図である。
図5(A)〜図7では、第1半導体チップとしての半導体チップC1の第1面F1上に第2半導体チップとしての半導体チップC2が積層される様子を示している。
5 (A) to 7 are cross-sectional views showing an example of a reflow process of the bump electrode 60.
5A to 7 show a state in which the semiconductor chip C2 as the second semiconductor chip is laminated on the first surface F1 of the semiconductor chip C1 as the first semiconductor chip.

まず、図5(A)に示すように、第1半導体チップとしての半導体チップC1の第1面F1と第2半導体チップとしての半導体チップC2の第2面F2とを対向させて、半導体チップC1側のバンプ電極(第1バンプ電極)50と半導体チップC2側のバンプ電極(第2バンプ電極)60とを互いに接触可能なように位置合わせをする。 First, as shown in FIG. 5A, the first surface F1 of the semiconductor chip C1 as the first semiconductor chip and the second surface F2 of the semiconductor chip C2 as the second semiconductor chip are opposed to each other, and the semiconductor chip C1 The bump electrode (first bump electrode) 50 on the side and the bump electrode (second bump electrode) 60 on the semiconductor chip C2 side are aligned so as to be in contact with each other.

半導体チップC1において、バンプ電極50の側面には、酸化膜51が形成されている。バンプ電極50には、例えば、ニッケルが用いられている。酸化膜51は、バンプ電極50の自然酸化膜であり、例えば、ニッケル酸化膜である。バンプ電極50の表面には、金メッキ80が形成されている。バンプ電極50の周辺の第1面F1上には、ポリイミド膜90が設けられており、隣接するバンプ電極50間を電気的に絶縁している。貫通電極30には、例えば、ニッケルが用いられている。貫通電極30は、導電体52を介してバンプ電極50に電気的に接続されている。 In the semiconductor chip C1, an oxide film 51 is formed on the side surface of the bump electrode 50. For example, nickel is used for the bump electrode 50. The oxide film 51 is a natural oxide film of the bump electrode 50, for example, a nickel oxide film. Gold plating 80 is formed on the surface of the bump electrode 50. A polyimide film 90 is provided on the first surface F1 around the bump electrode 50, and electrically insulates the adjacent bump electrodes 50 from each other. For example, nickel is used for the through electrode 30. The through electrode 30 is electrically connected to the bump electrode 50 via the conductor 52.

一方、半導体チップC2において、バンプ電極60の周囲には、酸化膜61が形成されている。酸化膜61は、バンプ電極60の自然酸化膜であり、例えば、酸化スズ(SnO、SnO)膜で構成されている。貫通電極30の側面には、例えば、ニッケル酸化膜が形成されている。貫通電極30とバンプ電極60との間には、銅膜31が設けられており、貫通電極30とバンプ電極60とを良好に接続している。 On the other hand, in the semiconductor chip C2, an oxide film 61 is formed around the bump electrode 60. The oxide film 61 is a natural oxide film of the bump electrode 60, and is composed of, for example, a tin oxide (SnO, SnO 2 ) film. For example, a nickel oxide film is formed on the side surface of the through electrode 30. A copper film 31 is provided between the through electrode 30 and the bump electrode 60, and the through electrode 30 and the bump electrode 60 are well connected.

このような半導体チップC1、C2を加熱しつつ、D1方向に接近させ圧接する。このとき、半導体チップC1、C2の温度は、バンプ電極60の融点未満である。例えば、バンプ電極60がはんだバンプである場合、約150℃前後でよい。これにより、バンプ電極50とバンプ電極60とが仮固定される。仮固定は、リフロー工程のときに熱処理装置200に半導体チップC1、C2を搬入する際に、半導体チップC1,C2が外れない程度に接続することを言う。従って、仮固定は、リフロー工程後の半導体チップC1,C2の接続よりも弱い接続である。また、仮固定は、バンプ電極50とバンプ電極60とを物理的に接続すればよく、この段階では電気的に接続していなくてもよい。バンプ電極50とバンプ電極60との仮固定は、例えば、パルスヒータ加熱型ボンダを用いて、バンプ電極60(例えば、はんだ)をその融点未満に加熱しつつ、半導体チップC1、C2を互いに押し付けてバンプ電極50とバンプ電極60とを圧接することで実現される。また、仮固定は、図示しない感光性接着剤または非導電性接着剤で半導体チップC1と半導体チップC2とを接着することで実現してもよい。 While heating such semiconductor chips C1 and C2, they are brought close to each other in the D1 direction and pressure-welded. At this time, the temperatures of the semiconductor chips C1 and C2 are lower than the melting point of the bump electrode 60. For example, when the bump electrode 60 is a solder bump, the temperature may be around 150 ° C. As a result, the bump electrode 50 and the bump electrode 60 are temporarily fixed. Temporary fixing refers to connecting the semiconductor chips C1 and C2 to the extent that they do not come off when the semiconductor chips C1 and C2 are carried into the heat treatment apparatus 200 during the reflow process. Therefore, the temporary fixing is a weaker connection than the connection of the semiconductor chips C1 and C2 after the reflow process. Further, for temporary fixing, the bump electrode 50 and the bump electrode 60 may be physically connected, and may not be electrically connected at this stage. For temporary fixing of the bump electrode 50 and the bump electrode 60, for example, a pulse heater heating type bonder is used to heat the bump electrode 60 (for example, solder) below its melting point while pressing the semiconductor chips C1 and C2 against each other. This is achieved by pressure contacting the bump electrode 50 and the bump electrode 60. Further, the temporary fixing may be realized by adhering the semiconductor chip C1 and the semiconductor chip C2 with a photosensitive adhesive or a non-conductive adhesive (not shown).

仮固定において、図5(B)に示すように、バンプ電極60は、半導体チップC1と半導体チップC2との間で或る程度潰れて変形し、略楕円形状となる。従って、隣接するバンプ電極60間の距離(間隙)DSTが狭くなる。 In the temporary fixing, as shown in FIG. 5B, the bump electrode 60 is crushed and deformed to some extent between the semiconductor chip C1 and the semiconductor chip C2 to form a substantially elliptical shape. Therefore, the distance (gap) DST between the adjacent bump electrodes 60 becomes narrower.

このとき、酸化膜61は、バンプ電極60を被覆したままバンプ電極60に追従して変形する。従って、バンプ電極50とバンプ電極60とは、酸化膜61を介して接続されており、まだ電気的には接続されていない。このように、バンプ電極50とバンプ電極60とを互いに接触させて仮固定するように半導体チップC1と半導体チップC2とを積層する。同様に、半導体チップC1は、配線基板120上に仮固定され、他の半導体チップC3、C4も、半導体チップC1、C2の上に仮固定される。積層された配線基板120および半導体チップC1〜C4を以下積層体STともいう。 At this time, the oxide film 61 is deformed following the bump electrode 60 while covering the bump electrode 60. Therefore, the bump electrode 50 and the bump electrode 60 are connected via the oxide film 61, and are not yet electrically connected. In this way, the semiconductor chip C1 and the semiconductor chip C2 are laminated so that the bump electrode 50 and the bump electrode 60 are brought into contact with each other and temporarily fixed. Similarly, the semiconductor chip C1 is temporarily fixed on the wiring board 120, and the other semiconductor chips C3 and C4 are also temporarily fixed on the semiconductor chips C1 and C2. The laminated wiring board 120 and semiconductor chips C1 to C4 are also hereinafter referred to as a laminated body ST.

次に、仮固定された積層体STを、図4に示す熱処理装置200のチャンバ201内へ搬入する。積層体STは、ステージ203上に載置される。リフロー工程は、図8に示す条件で実行される。 Next, the temporarily fixed laminated body ST is carried into the chamber 201 of the heat treatment apparatus 200 shown in FIG. The laminated body ST is placed on the stage 203. The reflow step is executed under the conditions shown in FIG.

図8は、リフロー工程におけるチャンバ201内の温度および気圧を示すグラフである。横軸はリフロー工程の時間を示す。左縦軸はステージ203またはバンプ電極60の温度を示し、右縦軸はチャンバ201内の気圧を示す。Th1は、還元ガスとしてのギ酸ガスが還元性を発揮する(活性化される)閾値温度である。Th1未満の場合、ギ酸ガスは不活性状態であり、還元性をあまり発揮し得ない。Th1以上の場合、ギ酸ガスは活性状態となり、還元性を発揮することができる。Th1は、例えば、150℃〜180℃である。Th2は、バンプ電極60の材料としてのはんだの融点であり、例えば、約232℃である。さらに、Th3は、酸化膜61の材料としての酸化スズ(SnO、SnO)の融点であり、例えば、約840℃である。ラインLtは、ステージ203の温度またはバンプ電極60に実際にかかる温度を示し、ラインLpは、チャンバ201内の気圧を示す。ここで、ステージ203の温度と、積層体STの最上段(ステージ203からもっとも遠い)の温度とは例えば10℃程度異なることもある。そのため、例えば、積層体STの最上段の半導体チップのバンプ電極60の温度をギ酸ガスの還元性を発揮させたい閾値温度Th1にしたい場合、ステージ203の温度は閾値温度Th1よりも少し上昇させる場合がある。従って、ステージ203の温度は、ステージ203の温度とバンプ電極60の実際の温度とに差がある場合、バンプ電極60の実際の温度を考慮して設定されるものとする。このように、バンプ電極60の実際の温度を考慮して設定されたステージ203の温度を、ここでは、“バンプ電極60の温度”と呼ぶ。 FIG. 8 is a graph showing the temperature and air pressure in the chamber 201 in the reflow process. The horizontal axis shows the time of the reflow process. The left vertical axis shows the temperature of the stage 203 or the bump electrode 60, and the right vertical axis shows the air pressure in the chamber 201. Th1 is a threshold temperature at which formic acid gas as a reducing gas exhibits (activates) reducibility. If it is less than Th1, the formic acid gas is in an inactive state and cannot exert much reducing property. When Th1 or more, the formic acid gas becomes an active state and can exhibit reducing property. Th1 is, for example, 150 ° C to 180 ° C. Th2 is the melting point of solder as a material for the bump electrode 60, for example, about 232 ° C. Further, Th3 is the melting point of tin oxide (SnO, SnO 2 ) as a material of the oxide film 61, for example, about 840 ° C. The line Lt indicates the temperature of the stage 203 or the temperature actually applied to the bump electrode 60, and the line Lp indicates the air pressure in the chamber 201. Here, the temperature of the stage 203 and the temperature of the uppermost stage (farthest from the stage 203) of the laminated body ST may differ from each other by, for example, about 10 ° C. Therefore, for example, when the temperature of the bump electrode 60 of the uppermost semiconductor chip of the laminated body ST is to be set to the threshold temperature Th1 in which the reducing property of formic acid gas is desired to be exhibited, the temperature of the stage 203 is slightly higher than the threshold temperature Th1. There is. Therefore, when there is a difference between the temperature of the stage 203 and the actual temperature of the bump electrode 60, the temperature of the stage 203 is set in consideration of the actual temperature of the bump electrode 60. The temperature of the stage 203 set in consideration of the actual temperature of the bump electrode 60 in this way is referred to here as the “temperature of the bump electrode 60”.

積層体STがチャンバ201内に搬入された後、t0〜t1において、チャンバ201内が減圧される。チャンバ201内が充分に減圧されると、t1〜t2において、ヒータ202がステージ203の温度またはバンプ電極60の温度をTh2以上かつTh3未満の第1温度T1へ上昇させる。 After the laminated body ST is carried into the chamber 201, the pressure inside the chamber 201 is reduced at t0 to t1. When the inside of the chamber 201 is sufficiently depressurized, at t1 to t2, the heater 202 raises the temperature of the stage 203 or the temperature of the bump electrode 60 to the first temperature T1 which is Th2 or more and less than Th3.

t2〜t3において、ギ酸ガスを導入することなく、第1温度T1にて積層体STを熱処理する(第1工程)。このとき、熱処理装置200は、ギ酸ガスをチャンバ201へ導入せず、不活性ガス供給部205から不活性ガス(例えば、窒素)をチャンバ201へ導入する。これにより、酸化膜(酸化スズ)61は還元されず、バンプ電極60の周囲を被覆したまま残る。 At t2 to t3, the laminate ST is heat-treated at the first temperature T1 without introducing formic acid gas (first step). At this time, the heat treatment apparatus 200 does not introduce the formic acid gas into the chamber 201, but introduces the inert gas (for example, nitrogen) from the inert gas supply unit 205 into the chamber 201. As a result, the oxide film (tin oxide) 61 is not reduced and remains covered around the bump electrode 60.

一方、酸化膜61の内部のバンプ電極(はんだ)60は、図6(A)に示すように、溶融し界面張力により球形に近付き丸くなる。このとき、バンプ電極60は、溶融するものの、酸化膜61によって被覆されているため、酸化膜61から流出しない。また、酸化膜61は、充分に薄く、バンプ電極60の変形に従って同様に変形する。従って、酸化膜61は、バンプ電極60の流出を抑制しつつ、バンプ電極60の変形に追従する。このように、バンプ電極60は、酸化膜61から流出することなく潰れた楕円形から球形に近付くように変形することによって、図5(B)および図6(A)に示すように、隣接するバンプ電極60間の距離DSTが広がる。 On the other hand, as shown in FIG. 6A, the bump electrode (solder) 60 inside the oxide film 61 melts and approaches a sphere due to interfacial tension and becomes round. At this time, although the bump electrode 60 melts, it does not flow out from the oxide film 61 because it is covered with the oxide film 61. Further, the oxide film 61 is sufficiently thin and is similarly deformed according to the deformation of the bump electrode 60. Therefore, the oxide film 61 follows the deformation of the bump electrode 60 while suppressing the outflow of the bump electrode 60. As described above, the bump electrodes 60 are adjacent to each other as shown in FIGS. 5 (B) and 6 (A) by being deformed so as to approach a spherical shape from a crushed ellipse without flowing out from the oxide film 61. The distance DST between the bump electrodes 60 increases.

次に、図8のt3の前後において、ヒータ202がステージ203の温度またはバンプ電極60の温度をTh1以上かつTh2未満の第2温度T2へ低下させる。t3〜t4において、ギ酸ガスを導入しつつ、第2温度T2にて積層体STを熱処理する(第2工程)。このとき、熱処理装置200は、ギ酸ガスをチャンバ201へ導入するので、図6(B)に示すように、酸化膜(酸化スズ)61が還元されて除去される。しかし、第2温度T2はバンプ電極60の融点未満であるので、酸化膜61内のバンプ電極60は凝固しており、流出しない。即ち、隣接するバンプ電極60間の距離DSTは、図6(A)のそれと同じか、酸化膜61の分だけ拡げつつ、酸化膜61を除去することができる。 Next, before and after t3 in FIG. 8, the heater 202 lowers the temperature of the stage 203 or the temperature of the bump electrode 60 to a second temperature T2 which is Th1 or more and less than Th2. At t3 to t4, the laminate ST is heat-treated at the second temperature T2 while introducing formic acid gas (second step). At this time, since the heat treatment apparatus 200 introduces the formic acid gas into the chamber 201, the oxide film (tin oxide) 61 is reduced and removed as shown in FIG. 6 (B). However, since the second temperature T2 is lower than the melting point of the bump electrode 60, the bump electrode 60 in the oxide film 61 is solidified and does not flow out. That is, the distance DST between the adjacent bump electrodes 60 is the same as that in FIG. 6A, or the oxide film 61 can be removed while expanding by the amount of the oxide film 61.

次に、図8のt4の前後において、ヒータ202がステージ203の温度またはバンプ電極60の温度をTh2以上かつTh3未満の第3温度T3へ上昇させる。第3温度T3は、第1温度T1と同一温度でもよいし、あるいは、異なる温度でもよい。t4〜t5において、ギ酸ガスを導入しつつ、第3温度T3にて積層体STを熱処理する(第3工程)。このとき、バンプ電極60は溶融するものの、図6(B)および図7に示すように、酸化膜61はすでに除去されているので、バンプ電極60の一部が特定の方向へ流出することは抑制される。また、酸化膜61は除去されているので、バンプ電極60は、溶融して界面張力によりさらに球形に近付き、かつ、半導体チップC1のバンプ電極50に電気的に接続される。尚、第3工程において、チャンバ201にギ酸ガスを導入することによって、バンプ電極60の表面に酸化膜が形成されることを抑制している。 Next, before and after t4 in FIG. 8, the heater 202 raises the temperature of the stage 203 or the temperature of the bump electrode 60 to a third temperature T3 which is Th2 or more and less than Th3. The third temperature T3 may be the same temperature as the first temperature T1 or may be a different temperature. At t4 to t5, the laminate ST is heat-treated at the third temperature T3 while introducing formic acid gas (third step). At this time, although the bump electrode 60 melts, as shown in FIGS. 6B and 7, since the oxide film 61 has already been removed, a part of the bump electrode 60 may flow out in a specific direction. It is suppressed. Further, since the oxide film 61 has been removed, the bump electrode 60 melts and becomes more spherical due to interfacial tension, and is electrically connected to the bump electrode 50 of the semiconductor chip C1. In the third step, formic acid gas is introduced into the chamber 201 to prevent the formation of an oxide film on the surface of the bump electrode 60.

次に、図8に示すように、t5以降、ヒータ202がステージ203の温度またはバンプ電極60の温度をTh1以下へ低下させ、積層体STをチャンバ201から取り出せる温度(例えば、50℃)にする。同時に、ギ酸ガスの供給を停止し、チャンバ201内を減圧する。チャンバ201内を充分に減圧した後、不活性ガスをチャンバ201へ供給し、チャンバ201内の気圧を大気圧へ近づける。 Next, as shown in FIG. 8, after t5, the heater 202 lowers the temperature of the stage 203 or the temperature of the bump electrode 60 to Th1 or less so that the laminated body ST can be taken out from the chamber 201 (for example, 50 ° C.). .. At the same time, the supply of formic acid gas is stopped and the pressure inside the chamber 201 is reduced. After sufficiently depressurizing the inside of the chamber 201, an inert gas is supplied to the chamber 201 to bring the pressure inside the chamber 201 close to the atmospheric pressure.

その後、積層体STはチャンバ201から搬出され、半導体パッケージとして組み立てられる。例えば、図9は、半導体パッケージの一例を示す断面図である。実装基板300上に、積層体STを熱硬化性樹脂330で接着し、積層体STと実装基板との間をワイヤーボンディング(図示せず)やバンプ電極340等で接続する。その後、実装基板上の積層体STを樹脂310で封止し、実装基板の底面に外部接続端子320を形成する。これにより、半導体パッケージ(SiP)が完成する。尚、図9では、積層体STに含まれる半導体チップCn(nは整数)は、図3に示す積層体STよりも多い。また、積層体STは、半導体チップCnを実装基板300に向けて実装されている。積層体STの最上層の配線基板120は貫通電極30の形成されていない半導体チップでもよい。 After that, the laminated body ST is carried out from the chamber 201 and assembled as a semiconductor package. For example, FIG. 9 is a cross-sectional view showing an example of a semiconductor package. The laminate ST is adhered onto the mounting substrate 300 with a thermosetting resin 330, and the laminate ST and the mounting substrate are connected by wire bonding (not shown), bump electrodes 340, or the like. After that, the laminate ST on the mounting board is sealed with the resin 310, and the external connection terminal 320 is formed on the bottom surface of the mounting board. As a result, the semiconductor package (SiP) is completed. In FIG. 9, the number of semiconductor chips Cn (n is an integer) included in the laminated body ST is larger than that of the laminated body ST shown in FIG. Further, in the laminated body ST, the semiconductor chip Cn is mounted toward the mounting substrate 300. The wiring board 120 on the uppermost layer of the laminated body ST may be a semiconductor chip on which the through electrodes 30 are not formed.

このように、本実施形態による半導体装置の製造方法では、複数の半導体チップC1〜C4を積層して仮固定した後、リフロー工程において、まず、ギ酸ガスを導入することなく、バンプ電極60の融点以上の第1温度T1で積層体STを熱処理する(第1工程)。このような第1工程を追加することによって、酸化膜61を除去する第2工程前に、バンプ電極60の形状を界面張力により球形に近づけることができ、隣接するバンプ電極60間の距離DSTを拡げることができる。これにより、隣接するバンプ電極60間の意図しない短絡不良を抑制することができる。 As described above, in the method for manufacturing a semiconductor device according to the present embodiment, after a plurality of semiconductor chips C1 to C4 are laminated and temporarily fixed, in the reflow step, first, the melting point of the bump electrode 60 is obtained without introducing formic acid gas. The laminated body ST is heat-treated at the above first temperature T1 (first step). By adding such a first step, the shape of the bump electrode 60 can be brought closer to a spherical shape by interfacial tension before the second step of removing the oxide film 61, and the distance DST between the adjacent bump electrodes 60 can be set. Can be expanded. This makes it possible to suppress an unintended short-circuit defect between adjacent bump electrodes 60.

例えば、図5(B)に示すように複数の半導体チップを仮固定した後、ギ酸ガスをチャンバ201へ導入しつつ、同時にTh2以上の温度で熱処理した場合、バンプ電極60は、酸化膜61が除去された部分から溶融して流出する。つまり、酸化膜61はバンプ電極60の周囲全体から一度に同時に除去されるわけではなく、徐々に膜厚が薄くなっていき、バンプ電極60の周囲の一部から除去される。従って、溶融したバンプ電極60は、酸化膜61が最初に除去された特定の方向に流出し易い。このとき、もし、バンプ電極60が隣接する他のバンプ電極の方向へ流出した場合、バンプ電極60は、隣接する他のバンプ電極と短絡するおそれがある。さらに、複数の半導体チップが仮固定されている場合、図5(B)に示すように、隣接するバンプ電極60間の距離DSTは、非常に短くなっている。従って、バンプ電極60が隣接する他のバンプ電極の方向へ流出した場合、バンプ電極60は、隣接する他のバンプ電極と短絡する可能性がさらに高くなる。 For example, when a plurality of semiconductor chips are temporarily fixed as shown in FIG. 5B, and then formic acid gas is introduced into the chamber 201 and heat-treated at a temperature of Th2 or higher at the same time, the bump electrode 60 has an oxide film 61. It melts and flows out from the removed part. That is, the oxide film 61 is not removed from the entire periphery of the bump electrode 60 at the same time, but the film thickness gradually decreases and is removed from a part of the periphery of the bump electrode 60. Therefore, the molten bump electrode 60 tends to flow out in the specific direction in which the oxide film 61 is first removed. At this time, if the bump electrode 60 flows out in the direction of another adjacent bump electrode, the bump electrode 60 may be short-circuited with another adjacent bump electrode. Further, when a plurality of semiconductor chips are temporarily fixed, the distance DST between the adjacent bump electrodes 60 is very short, as shown in FIG. 5 (B). Therefore, when the bump electrode 60 flows out toward the other adjacent bump electrode, the bump electrode 60 is more likely to be short-circuited with the other adjacent bump electrode.

一方、本実施形態によるリフロー工程では、第1工程において、酸化膜61でバンプ電極60を被覆したまま、バンプ電極60の形状を界面張力により球形に近づけ、隣接するバンプ電極60間の距離DSTを拡げている(図6(A)、図6(B)参照)。これにより、隣接するバンプ電極60間の意図せぬ短絡不良を抑制することができる。即ち、酸化膜61は、本来不要なものであるが、本実施形態によれば、酸化膜61は、バンプ電極60の流出を抑制しながらその形状を球形に近づけるために利用されている。 On the other hand, in the reflow step according to the present embodiment, in the first step, the shape of the bump electrode 60 is brought closer to a spherical shape by interfacial tension while the bump electrode 60 is covered with the oxide film 61, and the distance DST between the adjacent bump electrodes 60 is set. It is expanded (see FIGS. 6 (A) and 6 (B)). This makes it possible to suppress an unintended short-circuit defect between adjacent bump electrodes 60. That is, the oxide film 61 is originally unnecessary, but according to the present embodiment, the oxide film 61 is used to make the shape of the bump electrode 60 closer to a sphere while suppressing the outflow of the bump electrode 60.

さらに、第2工程において、ギ酸ガスをチャンバ201へ導入し、かつ、第2温度T2で積層体STを熱処理する。第2温度T2は、ギ酸ガスの還元性を発揮させる温度以上かつバンプ電極60の融点未満の温度である。従って、バンプ電極60は凝固したまま流動せず、尚かつ、酸化膜61は除去され得る。その後、第3工程において、バンプ電極60の融点以上の第3温度T3で、バンプ電極60をリフローする。このとき、酸化膜61はすでに除去されており、バンプ電極60は、特定の方向に流出することなく、界面張力によりさらに球形に近付く。よって、バンプ電極60間の距離DSTはさらに広がる。従って、バンプ電極60が他のバンプ電極と意図せず短絡することを抑制することができる。また、酸化膜61が無いので、バンプ電極60は、他の半導体チップのバンプ電極50と電気的に接続され得る。その結果、バンプ電極60とバンプ電極50とを確実に接続しながら、意図しない短絡を抑制することができ、信頼性を向上させることができる。
(変形例)
図6(A)に示す第1工程において、不活性ガス供給部205が、酸化ガスを敢えてチャンバ201に導入してもよい。この場合、図6(A)に示すバンプ電極60は酸化され、酸化膜61は自然酸化膜よりもさらに厚く形成される。これにより、酸化膜61は、第1工程中において破れることを抑制し、内部のバンプ電極60が流出することを抑制することができる。
Further, in the second step, formic acid gas is introduced into the chamber 201, and the laminate ST is heat-treated at the second temperature T2. The second temperature T2 is a temperature equal to or higher than the temperature at which the reducing property of the formic acid gas is exhibited and lower than the melting point of the bump electrode 60. Therefore, the bump electrode 60 does not flow while being solidified, and the oxide film 61 can be removed. Then, in the third step, the bump electrode 60 is reflowed at a third temperature T3 equal to or higher than the melting point of the bump electrode 60. At this time, the oxide film 61 has already been removed, and the bump electrode 60 further approaches a spherical shape due to interfacial tension without flowing out in a specific direction. Therefore, the distance DST between the bump electrodes 60 is further increased. Therefore, it is possible to prevent the bump electrode 60 from being unintentionally short-circuited with another bump electrode. Further, since there is no oxide film 61, the bump electrode 60 can be electrically connected to the bump electrode 50 of another semiconductor chip. As a result, it is possible to suppress an unintended short circuit while reliably connecting the bump electrode 60 and the bump electrode 50, and it is possible to improve reliability.
(Modification example)
In the first step shown in FIG. 6A, the inert gas supply unit 205 may dare to introduce the oxidizing gas into the chamber 201. In this case, the bump electrode 60 shown in FIG. 6A is oxidized, and the oxide film 61 is formed to be thicker than the natural oxide film. As a result, the oxide film 61 can be prevented from being torn during the first step, and the internal bump electrode 60 can be suppressed from flowing out.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.

10 半導体基板、20 半導体素子、30 貫通電極、40 貫通孔、50 バンプ電極、61 酸化膜、70 接着剤、100 リードフレーム、110 接着剤、120 配線基板、C1〜C4 半導体チップ、ST 積層体、200 熱処理装置 10 Semiconductor Substrates, 20 Semiconductor Devices, 30 Through Electrodes, 40 Through Holes, 50 Bump Electrodes, 61 Oxide Films, 70 Adhesives, 100 Lead Frames, 110 Adhesives, 120 Wiring Substrates, C1-C4 Semiconductor Chips, ST Laminates, 200 heat treatment equipment

Claims (7)

第1半導体チップに設けられた複数の第1金属端子と第2半導体チップに設けられ酸化膜で被覆された複数の第2金属端子とを互いに接触させるように前記第1および第2半導体チップを積層し、
前記酸化膜を還元する還元ガスを導入することなく、前記第2金属端子の融点以上の第1温度で前記第1および第2半導体チップを熱処理する第1工程を実行し、
前記還元ガスを導入して、該還元ガスを活性化させる温度以上かつ前記第2金属端子の融点以下の第2温度で前記第1および第2半導体チップを熱処理する第2工程を実行し、
前記第2金属端子の融点以上の第3温度で前記第1および第2半導体チップを熱処理する第3工程を実行することを具備する、半導体装置の製造方法。
The first and second semiconductor chips are provided so that the plurality of first metal terminals provided on the first semiconductor chip and the plurality of second metal terminals provided on the second semiconductor chip and coated with the oxide film are in contact with each other. Laminate,
The first step of heat-treating the first and second semiconductor chips at a first temperature equal to or higher than the melting point of the second metal terminal is executed without introducing a reducing gas that reduces the oxide film.
The second step of introducing the reducing gas and heat-treating the first and second semiconductor chips at a second temperature equal to or higher than the temperature at which the reducing gas is activated and lower than the melting point of the second metal terminal is executed.
A method for manufacturing a semiconductor device, comprising performing a third step of heat-treating the first and second semiconductor chips at a third temperature equal to or higher than the melting point of the second metal terminal.
前記還元ガスは、少なくともギ酸を含むガスである、
請求項1に記載の半導体装置の製造方法。
The reducing gas is a gas containing at least formic acid.
The method for manufacturing a semiconductor device according to claim 1.
前記第1工程において、酸化ガスを導入して、前記第1および第2半導体チップを熱処理する、請求項1または請求項2に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1 or 2, wherein in the first step, an oxidizing gas is introduced to heat-treat the first and second semiconductor chips. 前記第1および第2半導体チップを積層する際に、前記第1および第2半導体チップを互いに押し付けながら前記第2金属端子の融点未満の温度で熱処理する、請求項1から請求項3のいずれか一項に記載の半導体装置の製造方法。 Any of claims 1 to 3, wherein when the first and second semiconductor chips are laminated, the first and second semiconductor chips are pressed against each other and heat-treated at a temperature lower than the melting point of the second metal terminal. The method for manufacturing a semiconductor device according to item 1. 前記第2金属端子は、スズ(Sn)を含み、
前記酸化膜は、酸化スズ(SnO、SnO)を含む、請求項1から請求項4のいずれか一項に記載の半導体装置の製造方法。
The second metal terminal contains tin (Sn) and contains tin (Sn).
The method for manufacturing a semiconductor device according to any one of claims 1 to 4, wherein the oxide film contains tin oxide (SnO, SnO 2).
前記第2工程において、前記酸化膜は前記還元ガスによって除去される、請求項1から請求項5のいずれか一項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 5, wherein in the second step, the oxide film is removed by the reducing gas. 前記第1温度は、前記第2金属端子の融点以上、かつ、前記酸化膜の融点以下である、請求項1から請求項6のいずれか一項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 6, wherein the first temperature is equal to or higher than the melting point of the second metal terminal and lower than the melting point of the oxide film.
JP2019159839A 2019-09-02 2019-09-02 Manufacturing method for semiconductor device Pending JP2021040012A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019159839A JP2021040012A (en) 2019-09-02 2019-09-02 Manufacturing method for semiconductor device
TW109123312A TWI764193B (en) 2019-09-02 2020-07-10 Manufacturing method of semiconductor device
CN202010709013.1A CN112447607B (en) 2019-09-02 2020-07-22 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019159839A JP2021040012A (en) 2019-09-02 2019-09-02 Manufacturing method for semiconductor device

Publications (1)

Publication Number Publication Date
JP2021040012A true JP2021040012A (en) 2021-03-11

Family

ID=74733143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019159839A Pending JP2021040012A (en) 2019-09-02 2019-09-02 Manufacturing method for semiconductor device

Country Status (3)

Country Link
JP (1) JP2021040012A (en)
CN (1) CN112447607B (en)
TW (1) TWI764193B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3990347B2 (en) * 2003-12-04 2007-10-10 ローム株式会社 Semiconductor chip, manufacturing method thereof, and semiconductor device
JP5210496B2 (en) * 2006-03-27 2013-06-12 神港精機株式会社 Manufacturing method of semiconductor device
CN102593012B (en) * 2011-01-14 2014-12-10 株式会社东芝 Manufacturing method of semiconductor device
JP2013065761A (en) * 2011-09-20 2013-04-11 Toshiba Corp Manufacturing method and manufacturing apparatus of semiconductor device
JP5732623B2 (en) * 2011-10-03 2015-06-10 パナソニックIpマネジメント株式会社 Mounting method of semiconductor element
KR101607790B1 (en) * 2012-01-17 2016-03-30 파나소닉 아이피 매니지먼트 가부시키가이샤 Semiconductor device manufacturing method and semiconductor device
JP6578900B2 (en) * 2014-12-10 2019-09-25 株式会社デンソー Semiconductor device and manufacturing method thereof
CN106158798A (en) * 2016-07-11 2016-11-23 中航(重庆)微电子有限公司 A kind of chip structure and method for packing thereof
JP7143156B2 (en) * 2018-04-27 2022-09-28 日東電工株式会社 Semiconductor device manufacturing method

Also Published As

Publication number Publication date
CN112447607B (en) 2024-04-09
TW202123352A (en) 2021-06-16
CN112447607A (en) 2021-03-05
TWI764193B (en) 2022-05-11

Similar Documents

Publication Publication Date Title
US20210111127A1 (en) Semiconductor Package and Method
TWI529886B (en) Packages, methods of packaging a device and package on package devices
JP2008218926A (en) Semiconductor and method of manufacturing the same
TWI493672B (en) Semiconductor device, electronic device, and semiconductor device manufacturing method
KR20030019187A (en) Semiconductor device and manufacturing method thereof
JP2010272737A (en) Method for manufacturing semiconductor device
JP2015090937A (en) Semiconductor device manufacturing method
TWI502666B (en) Electronic parts mounting body, electronic parts, substrate
JP2007208210A (en) Semiconductor device, and method for fabrication thereof
TW201705321A (en) Method for manufacturing semiconductor device
TW201411793A (en) Semiconductor device and method for manufacturing same
JP2007242684A (en) Laminated semiconductor device and laminating method of device
JP2000286304A (en) Manufacture of semiconductor element, semiconductor element, and manufacture of semiconductor device, and mounting module
TWI734338B (en) Semiconductor device
JP2021040012A (en) Manufacturing method for semiconductor device
JP2009054684A (en) Semiconductor pop device
JP2013118264A (en) Semiconductor device and method of manufacturing the same
TW202133697A (en) Semiconductor device and manufacturing method thereof
JP2007134489A (en) Semiconductor device and method for manufacturing same
US20150179594A1 (en) Package substrate and method for manufacturing the same
JP2007115789A (en) Laminated semiconductor device and its manufacturing method
TWM589366U (en) Chip package assembly with enhanced interconnects
JP2015225997A (en) Method of manufacturing wiring board
JP2015173139A (en) Method of manufacturing semiconductor device and semiconductor chip laminate
JP2007142128A (en) Semiconductor device and its production process