JP2021039940A - Quantum dot, ink composition, electroluminescent element, and photoelectric conversion element - Google Patents

Quantum dot, ink composition, electroluminescent element, and photoelectric conversion element Download PDF

Info

Publication number
JP2021039940A
JP2021039940A JP2020134320A JP2020134320A JP2021039940A JP 2021039940 A JP2021039940 A JP 2021039940A JP 2020134320 A JP2020134320 A JP 2020134320A JP 2020134320 A JP2020134320 A JP 2020134320A JP 2021039940 A JP2021039940 A JP 2021039940A
Authority
JP
Japan
Prior art keywords
group
substituent
layer
ink composition
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020134320A
Other languages
Japanese (ja)
Other versions
JP7567267B2 (en
Inventor
瑞穂 土屋
Mizuho Tsuchiya
瑞穂 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Publication of JP2021039940A publication Critical patent/JP2021039940A/en
Application granted granted Critical
Publication of JP7567267B2 publication Critical patent/JP7567267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Filters (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

To provide a quantum dot and an ink composition having excellent stability over time, and capable of maintaining a high fluorescence quantum yield even after aging.SOLUTION: A quantum dot is a semiconductor fine particle surface-treated with a ligand compound having an aliphatic heterocyclic site containing a sulfur atom represented by the general formula (1) and a charge transporting site. [In the general formula (1), Q is an aliphatic heterocyclic group containing a sulfur atom, X is a direct bond or a divalent linking group, and A is a charge transporting group].SELECTED DRAWING: None

Description

本発明は、硫黄原子を含有する脂肪族複素環基と電荷輸送性基を有する化合物で表面処理された半導体微粒子である量子ドット、該量子ドットを含むインク組成物、電界発光素子及び光電変換素子に関する。 The present invention relates to quantum dots, which are semiconductor fine particles surface-treated with a compound having an aliphatic heterocyclic group containing a sulfur atom and a charge transporting group, an ink composition containing the quantum dots, an electroluminescent element, and a photoelectric conversion element. Regarding.

量子ドットは、量子力学に従う独特な光学特性を発現させるために、電子を微小な空間に閉じ込めるために形成された極小さな粒(ドット)である。1つの量子ドットの大きさは直径1nmから数10nmであり、約1万個以下の原子で構成されている。量子ドットは、発する蛍光の波長が粒の大きさで連続的に制御できること、及び、蛍光強度の波長分布が対称性の高いシャープな発光が得られることから近年注目を集めており、人体を透過しやすい波長に蛍光を調整でき体内のあらゆる場所に送達できることより発光材料として生体イメージング用途や、褪色の恐れがない波長変換材料として太陽電池用途、更には、鮮明な発光材料若しくは波長変換材料としてエレクトロニクス・フォトニクス用途等への検討が行われている。 Quantum dots are tiny particles (dots) formed to confine electrons in a minute space in order to express unique optical properties that follow quantum mechanics. The size of one quantum dot is from 1 nm to several tens of nm in diameter, and is composed of about 10,000 or less atoms. Quantum dots have been attracting attention in recent years because the wavelength of fluorescence emitted can be continuously controlled by the size of the grain and the wavelength distribution of fluorescence intensity can provide sharp light emission with high symmetry. Since fluorescence can be adjusted to a wavelength that is easy to use and can be delivered to anywhere in the body, it can be used for bioimaging as a light emitting material, for solar cells as a wavelength conversion material that does not have a risk of fading, and for electronics as a clear light emitting material or wavelength conversion material. -Study is underway for photonics applications.

一方、上記用途に展開する場合に必要な特性として、蛍光の量子収率が挙げられる。非特許文献1には、半導体微粒子に芳香族系チオールであるベンゼンチオールを被覆した量子ドットを用いて蛍光量子収率を向上させることが記載されている。 On the other hand, the quantum yield of fluorescence can be mentioned as a characteristic required for development in the above applications. Non-Patent Document 1 describes that the fluorescence quantum yield is improved by using quantum dots in which semiconductor fine particles are coated with benzenethiol, which is an aromatic thiol.

Nanotechnology 27(24):245203Nanotechnology 27 (24): 245203

しかしながら、非特許文献1に記載のベンゼンチオールで被覆された量子ドットは、被覆材であるベンゼンチオール自体が比較的酸化されやすく、経時の安定性に課題がある。これにより、当該量子ドットを溶剤やバインダー成分と混合した組成物は経時安定性が不十分であり、量子ドットの凝集や沈殿が発生するという課題がある。また、蛍光の量子収率維持率が大きく低下するという課題がある。
よって本発明の課題は、経時安定性に優れ、経時後も高い蛍光量子収率を維持可能な量子ドット及びインク組成物を提供することにある。また本発明の課題は、経時後も高い蛍光量子収率を維持可能な量子ドットを用いた、信頼性の高い電界発光素子を提供することにある。
However, in the quantum dots coated with benzenethiol described in Non-Patent Document 1, the benzenethiol itself, which is a coating material, is relatively easily oxidized, and there is a problem in stability over time. As a result, the composition in which the quantum dots are mixed with a solvent or a binder component has insufficient stability over time, and there is a problem that aggregation and precipitation of the quantum dots occur. In addition, there is a problem that the quantum yield maintenance rate of fluorescence is significantly reduced.
Therefore, an object of the present invention is to provide a quantum dot and an ink composition which are excellent in stability with time and can maintain a high fluorescence quantum yield even after a lapse of time. Another object of the present invention is to provide a highly reliable electroluminescent device using quantum dots capable of maintaining a high fluorescence quantum yield even after a lapse of time.

また本発明の課題は、優れた耐久性を有する光電変換素子を提供することにある。 Another object of the present invention is to provide a photoelectric conversion element having excellent durability.

本発明は、以下の発明に関する。
〔1〕 下記一般式(1)で示される化合物で表面処理された半導体微粒子である、量子ドット。
The present invention relates to the following inventions.
[1] Quantum dots, which are semiconductor fine particles surface-treated with a compound represented by the following general formula (1).

一般式(1)

Figure 2021039940
[一般式(1)中、Qは硫黄原子を含有する脂肪族複素環基であり、Xは直接結合又は2
価の連結基であり、Aは電荷輸送性基である。] General formula (1)
Figure 2021039940
[In the general formula (1), Q is an aliphatic heterocyclic group containing a sulfur atom, and X is a direct bond or 2
It is a valence linking group and A is a charge transporting group. ]

〔2〕 前記半導体微粒子が化合物半導体である、〔1〕に記載の量子ドット。 [2] The quantum dot according to [1], wherein the semiconductor fine particles are compound semiconductors.

〔3〕 前記半導体微粒子がコア・シェル型である、〔1〕又は〔2〕に記載の量子ドット。 [3] The quantum dot according to [1] or [2], wherein the semiconductor fine particles are of a core-shell type.

〔4〕 前記電荷輸送性基が正孔輸送性基である、〔1〕〜〔3〕いずれか1項に記載の量子ドット。 [4] The quantum dot according to any one of [1] to [3], wherein the charge transporting group is a hole transporting group.

〔5〕 〔1〕〜〔4〕いずれか1項に記載の量子ドットと溶剤とを含むインク組成物。 [5] An ink composition containing the quantum dots according to any one of [1] to [4] and a solvent.

〔6〕 インクジェット方式で用いられる、〔5〕に記載のインク組成物。 [6] The ink composition according to [5], which is used in an inkjet method.

〔7〕 基板上に、陽極と、発光層と、陰極と、を備え、 前記発光層が、〔1〕〜〔5〕いずれか1項に記載の量子ドットを含む、電界発光素子。 [7] An electroluminescent device comprising an anode, a light emitting layer, and a cathode on a substrate, wherein the light emitting layer contains the quantum dots according to any one of [1] to [5].

〔8〕 一対の電極間に光電変換層を有してなる光電変換素子であって、前記光電変換層が、〔1〕〜〔5〕いずれか1項に記載の量子ドットを含む、光電変換素子。 [8] A photoelectric conversion element having a photoelectric conversion layer between a pair of electrodes, wherein the photoelectric conversion layer contains the quantum dots according to any one of [1] to [5]. element.

本発明により、経時安定性に優れ、経時後も高い蛍光量子収率を維持可能な量子ドット及びインク組成物を提供することができる。また本発明により、経時後も高い蛍光量子収率を維持可能な量子ドットを用いた信頼性の高い電界発光素子を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a quantum dot and an ink composition which are excellent in stability with time and can maintain a high fluorescence quantum yield even after a lapse of time. Further, according to the present invention, it is possible to provide a highly reliable electroluminescent device using quantum dots capable of maintaining a high fluorescence quantum yield even after a lapse of time.

また本発明により、耐久性に優れる光電変換素子を提供することができる。 Further, according to the present invention, it is possible to provide a photoelectric conversion element having excellent durability.

<量子ドット>
本発明の量子ドットは、一般式(1)で示される化合物で表面処理された半導体微粒子である。「表面処理された」とは、半導体微粒子表面の少なくとも一部に当該化合物を有していることであり、このような半導体微粒子の表面に存在する化合物をリガンドともいう。一般式(1)で示される化合物は、硫黄原子を含有する脂肪族複素環基と電荷輸送性基を有する。前記硫黄原子を含有する脂肪族複素環基は、高い耐酸化性を有しており、量子ドット表面において経時でも安定して存在することができる。これにより、本願発明の量子ドットは、電荷輸送性に加えて優れた経時安定性を発揮する。その結果、ベンゼンチオール等で被覆された従来の量子ドットと比較して、沈降が発生せず経時安定性に優れ、さらに、高い蛍光量子収率維持率を有し、発光材料として好適である。
以下、本発明を詳細に説明する。特段記載のない限り、「部」及び「%」は「質量部」及び「質量%」を表す。
<Quantum dot>
The quantum dots of the present invention are semiconductor fine particles surface-treated with the compound represented by the general formula (1). "Surface-treated" means that the compound is contained in at least a part of the surface of the semiconductor fine particles, and the compound present on the surface of such semiconductor fine particles is also referred to as a ligand. The compound represented by the general formula (1) has an aliphatic heterocyclic group containing a sulfur atom and a charge transporting group. The aliphatic heterocyclic group containing a sulfur atom has high oxidation resistance and can stably exist on the surface of quantum dots even with time. As a result, the quantum dots of the present invention exhibit excellent stability over time in addition to charge transportability. As a result, as compared with the conventional quantum dots coated with benzenethiol or the like, precipitation does not occur, the stability over time is excellent, and the fluorescence quantum yield retention rate is high, which is suitable as a light emitting material.
Hereinafter, the present invention will be described in detail. Unless otherwise specified, "parts" and "%" represent "parts by mass" and "% by mass".

<半導体微粒子>
半導体微粒子の材質としては、炭素(C)(不定形炭素、グラファイト、グラフェン、カーボンナノチューブ等)、ケイ素(Si)、ゲルマニウム(Ge)、錫(Sn)等の周期表第IV族元素の単体;リン(P)(黒リン)等の周期表第V族元素の単体;セレン(Se)、テルル(Te)等の周期表第VI族元素の単体;酸化錫(IV)、窒化ホウ素(BN)、リン化ホウ素(BP)、砒化ホウ素(BAs)、窒化アルミニウム(AlN)、リン化アルミニウム(AlP)、砒化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、砒化ガリウム(GaAs)、アンチモン化ガリウム(GaSb)、窒化インジウム(InN)、リン化インジウム(InP)、砒化インジウム(InAs)、アンチモン化インジウム(InSb)等の周期表第III族元素と周期表第V族元素との化合物;硫化アルミニウム(Al23)、セレン化アルミニウム(Al2Se3)、硫化ガリウム(Ga23)、セレン化ガリウム(GaSe、Ga2Se3)テルル化ガリウム(GaTe、Ga2Te3)、酸化インジウム(In23)、硫化インジウム(In23、InS)、セレン化インジウム(In2Se3)、テルル化インジウム(In2Te3)等の周期表第III族元素と周期表第VI族元素との化合物;酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、硫化水銀(HgS)、セレン化水銀(HgSe)、テルル化水銀(HgTe)等の周期表第II族元素と周期表第VI族元素との化合物;酸化銅(I)(Cu2O)、硫化銅(I)(Cu2S)、セレン化銅(I)(Cu2Se)、硫化銀(I)(Ag2S)、セレン化銀(I)(Ag2Se)、テルル化銀(I)(Ag2Te)、硫化金(I)(Au2S)、セレン化金(I)(Au2Se)、テルル化金(I)(Au2Te)等の周期表第I族元素と周期表第VI族元素との化合物;塩化銅(I)(CuCl)、臭化銅(I)(CuBr)、ヨウ化銅(I)(CuI)、塩化銀(AgCl)、臭化銀(AgBr)等の周期表第I族元素と周期表第VII族元素との化合物;硫化スズ(II)(SnS)、セレン化スズ(II)(SnSe)、テルル化スズ(II)(SnTe)、硫化鉛(II)(PbS)、セレン化鉛(II)(PbSe)、テルル化鉛(II)(PbTe)等の周期表第IV族元素と周期表第VI族元素との化合物;硫化アンチモン(III)(Sb23)、硫化ビスマス(III)(Bi23)等の周期表第V族元素と周期表第VI族元素との化合物;硫化鉄(FeS2)、セレン化鉄(FeSe2)、テルル化鉄(FeTe2)等の周期表第VIII族元素と周期表第VI族元素との化合物;硫化ユーロピウム(EuS)、セレン化ユーロピウム(EuSe)、テルル化ユーロピウム(EuTe)等のランタノイド元素と周期表第VI族元素との化合物等が挙げられ、必要によりこれらの2種以上を併用してもよい。これらの半導体は、構成元素以外の元素を含有してもよい。例えばIII−V族を例にとれば、InGaP、InGaNの様な合金系であってもよく、複数の族の元素を含むCuInS2、CuInSe2、CuInTe2のような合金系であってもよい。また上記材料中に、希土類元素あるいは遷移金属元素がドープされた半導体微粒子を用いることができ、例えば、ZnS:Mn、ZnS:Tb、ZnS:Ce、LaPO4:Ce等が挙げられる。
<Semiconductor fine particles>
As the material of the semiconductor fine particles, a single element of Group IV of the periodic table such as carbon (C) (atypical carbon, graphite, graphene, carbon nanotubes, etc.), silicon (Si), germanium (Ge), tin (Sn); Single elements of Group V of the Periodic Table such as phosphorus (P) (black phosphorus); Single elements of Group VI of the Periodic Table such as selenium (Se) and Tellur (Te); Tin (IV) oxide, Boron (BN) nitride , Boron phosphide (BP), borron arsenide (BAs), aluminum nitride (AlN), aluminum phosphide (AlP), aluminum arsenide (AlAs), aluminum antimonized (AlSb), gallium nitride (GaN), gallium phosphide With Group III elements of the Periodic Table such as GaP), gallium arsenide (GaAs), gallium antimonized (GaSb), indium nitride (InN), indium phosphate (InP), indium arsenide (InAs), and indium antimonized (InSb). Compounds with Group V Elements of the Periodic Table; Aluminum Sulfate (Al 2 S 3 ), Aluminum Serene (Al 2 Se 3 ), Gallium Sulfide (Ga 2 S 3 ), Gallium Selenium (Ga Se , Ga 2 Se 3 ) Telluru Gallium oxide (Ga Te, Ga 2 Te 3 ), indium oxide (In 2 O 3 ), indium sulfide (In 2 S 3 , In S), indium selenium (In 2 Se 3 ), indium telluride (In 2 Te 3 ) Compounds of Group III elements of the Periodic Table and Group VI of the Periodic Table; zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenium (ZnSe), zinc tellurate (ZnTe), cadmium oxide (CdO) , Periodic Table Group II elements and periodic table of cadmium sulfide (CdS), cadmium selenium (CdSe), cadmium telluride (CdTe), mercury sulfide (HgS), mercury selenium (HgSe), mercury telluride (HgTe), etc. Compounds with Group VI Elements in Table; Copper (I) (Cu 2 O), Copper (I) (Cu 2 S), Copper (I) Serene (Cu 2 Se), Silver (I) (Ag) 2 S), silver selenium (I) (Ag 2 Se), silver telluride (I) (Ag 2 Te), gold sulfide (I) (Au 2 S), gold selenium (I) (Au 2 Se) , Compounds of Group I elements of the Periodic Table and Group VI of the Periodic Table such as tellurized gold (I) (Au 2 Te); copper (I) chloride (CuCl), copper (I) bromide (CuBr), Copper iodide (I) (CuI), silver chloride (AgC) l), Compounds of Group I elements of the Periodic Table and Group VII elements of the Periodic Table such as silver bromide (AgBr); tin sulfide (II) (SnS), tin selenium (II) (SnSe), tin telluride Periodic Table Group IV and Periodic Table Group VI elements such as (II) (SnTe), lead sulfide (II) (PbS), lead selenium (II) (PbSe), lead telluride (II) (PbTe) Compounds with Group V elements of the Periodic Table and Group VI elements of the Periodic Table, such as Antimon Sulfurized (III) (Sb 2 S 3 ) and Bismus Sulfurized (III) (Bi 2 S 3); 2 ), Compounds of Group VIII elements of the Periodic Table and Group VI of the Periodic Table, such as iron selenium (FeSe 2 ) and iron tellurate (FeTe 2); Examples include compounds of a lanthanoid element such as europium tellurized (EuTe) and a Group VI element of the periodic table, and two or more of these may be used in combination if necessary. These semiconductors may contain elements other than the constituent elements. For example, taking Group III-V as an example, it may be an alloy system such as InGaP or InGaN, or it may be an alloy system such as CuInS 2 , CuInSe 2 or CuInTe 2 containing elements of a plurality of groups. .. Further, semiconductor fine particles doped with a rare earth element or a transition metal element can be used in the above materials, and examples thereof include ZnS: Mn, ZnS: Tb, ZnS: Ce, and LaPO 4 : Ce.

更に、半導体微粒子の材質としては、ペロブスカイト結晶も好適に用いることができる。ペロブスカイト結晶は、下記式(I)で表される組成を有し、3次元結晶構造を持つものである。
式(I): AQX3
[式(I)において、Aは、[CH3NH3+、[NH3CHNH]+、Rb+、Cs+またはFr+であり、Qは、Pb2+またはSn2+であり、Xは、I-、Br-、Cl-またはF-である。]
Further, as the material of the semiconductor fine particles, perovskite crystals can also be preferably used. The perovskite crystal has a composition represented by the following formula (I) and has a three-dimensional crystal structure.
Equation (I): AQX 3
[In formula (I), A is [CH 3 NH 3 ] + , [NH 3 CHNH] + , Rb + , Cs + or Fr + , Q is Pb 2+ or Sn 2+ , and X. it is, I -, Br -, Cl - or F - a. ]

電界発光素子に用いられる半導体微粒子としては、ケイ素(Si)、ゲルマニウム(Ge)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、砒化ガリウム(GaAs)、窒化インジウム(InN)、リン化インジウム(InP)、砒化インジウム(InAs)、セレン化ガリウム(GaSe、Ga2Se3)、硫化インジウム(In23、InS)、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、InGaP、InGaN等の合金系が好ましく用いられ、特に、リン化インジウム(InP)、セレン化カドミウム(CdSe)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)が特に好ましく用いられる。とりわけ、InPをコアに、ZnS及び/又はZnSeをシェルに用いることが好ましい。 Semiconductor fine particles used in the electric field light emitting element include silicon (Si), germanium (Ge), gallium nitride (GaN), gallium cadmium (GaP), gallium arsenide (GaAs), indium nitride (InN), and indium phosphate (InN). InP), indium arsenide (InAs), gallium selenide (GaSe, Ga 2 Se 3 ), indium sulfide (In 2 S 3 , InS), zinc oxide (ZnO), zinc sulfide (ZnS), zinc cadmium (ZnSe) , Zinc telluride (ZnTe), cadmium oxide (CdO), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium selenide (CdTe), InGaP, InGaN and other alloys are preferably used. Indium (InP), cadmium selenide (CdSe), zinc sulfide (ZnS), and zinc selenide (ZnSe) are particularly preferably used. In particular, it is preferable to use InP as the core and ZnS and / or ZnSe as the shell.

光電変換素子に用いられる半導体微粒子は、波長700〜2500nmの電磁波を吸収し得ることが好ましい。例えば、ペロブスカイト結晶構造を有する化合物半導体や金属カルコゲナイド(例えば、酸化物、硫化物、セレン化物、及びテルル化物など)が挙げられる。ペロブスカイト結晶構造を有する化合物半導体としては、具体的には、CH3NH3PbF3、CH3NH3PbCl3、CH3NH3PbBr3、CH3NH3PbI3、CsPbF3、CsPbCl3、CsPbBr3、CsPbI3、RbPbF3、RbPbCl3、RbPbBr3、RbPbI3、KPbF3、KPbCl3、KPbBr3、KPbI3などが挙げられる。また、金属カルコゲナイドとしては、具体的には、PbS、PbSe、PbTe、CdS、CdSe、CdTe、Sb23、Bi23、Ag2S、Ag2Se、Ag2Te、Au2S、Au2Se、Au2Te、Cu2S、Cu2Se、Cu2Te、Fe2S、Fe2Se、Fe2Te、In2S3、SnS、SnSe、SnTe、CuInS2、CuInSe2、CuInTe2、EuS、EuSe、EuTeなどが挙げられる。これらの中でも、PbS、PbSe、Ag2Sが好ましい。 It is preferable that the semiconductor fine particles used in the photoelectric conversion element can absorb electromagnetic waves having a wavelength of 700 to 2500 nm. Examples include compound semiconductors and metal chalcogenides having a perovskite crystal structure (eg, oxides, sulfides, seleniums, tellurides, etc.). Specific examples of the compound semiconductor having a perovskite crystal structure include CH 3 NH 3 PbF 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbI 3 , CsPbF 3 , CsPbCl 3 , and CsPbBr. 3 , CsPbI 3 , RbPbF 3 , RbPbCl 3 , RbPbBr 3 , RbPbI 3 , KPbF 3 , KPbCl 3 , KPbBr 3 , KPbI 3 and the like. Specific examples of the metal chalcogenide include PbS, PbSe, PbTe, CdS, CdSe, CdTe, Sb 2 S 3 , Bi 2 S 3 , Ag 2 S, Ag 2 Se, Ag 2 Te, Au 2 S, and so on. Au 2 Se, Au 2 Te, Cu 2 S, Cu 2 Se, Cu 2 Te, Fe 2 S, Fe 2 Se, Fe 2 Te, In 2 S3, SnS, SnSe, SnTe, CuInS 2 , CuInSe 2 , CuInTe 2 , EuS, EuSe, EuTe and the like. Among these, PbS, PbSe, Ag 2 S is preferred.

電界発光素子に用いられる半導体微粒子は、コア・シェル構造を有するコア・シェル型の半導体微粒子が好ましい。コア・シェル型の半導体微粒子は、コアと、コアを形成する材質と異なる成分からなる材質でコアを被覆したシェルと、を有する構造を備える。シェルにバントギャップの大きい半導体を選択することで、光励起によって生成された励起子(電子−正孔対)はコア内に閉じ込められる。その結果、粒子表面での無輻射遷移の確率が減少し、発光の量子収率及び蛍光特性の安定性が向上する。また、シェルは複数層あってもよい。更に、コアとシェル、及び、あるシェルと他のシェルの境界は明確であっても濃度勾配を設けて徐々に接合されたグラージェント構造であってもよい。更に、シェルはコアの一部だけを被覆しても、全体を被覆していてもよい。 The semiconductor fine particles used in the electroluminescent device are preferably core-shell type semiconductor fine particles having a core-shell structure. The core-shell type semiconductor fine particles have a structure having a core and a shell in which the core is coated with a material different from the material forming the core. By selecting a semiconductor with a large bunt gap for the shell, excitons (electron-hole pairs) generated by photoexcitation are confined in the core. As a result, the probability of non-radiative transition on the particle surface is reduced, and the quantum yield of emission and the stability of fluorescence characteristics are improved. Further, the shell may have a plurality of layers. Further, the boundary between the core and the shell, and one shell and the other shell may be clear or may be a gradient structure in which the core and the shell are gradually joined with a concentration gradient. Further, the shell may cover only a part of the core or the whole core.

コアとシェルとを含めた半導体微粒子の平均粒径は、通常0.5nm〜100nmであ
り、好ましくは1〜50nmであり、更に好ましくは1〜15nmである。
The average particle size of the semiconductor fine particles including the core and the shell is usually 0.5 nm to 100 nm, preferably 1 to 50 nm, and more preferably 1 to 15 nm.

ここで平均粒径とは、半導体微粒子を透過型電子顕微鏡で観察し、無作為に30個のサイズを計測してその平均値を採用した値を指す。この際、半導体微粒子は後述の有機リガンドを伴う。これに対し、エネルギー分散型X線分析が付帯した走査型透過電子顕微鏡を用いることで、有機リガンドを除く半導体微粒子を特定し、粒径を計測する。半導体微粒子の特定は、透過型電子顕微鏡像において電子密度の違いから有機リガンドに対し半導体微粒子部分が暗く撮像されることを利用する。半導体微粒子の形状は、球状に限らず、棒状、円盤状、その他形状であってもよい。 Here, the average particle size refers to a value obtained by observing semiconductor fine particles with a transmission electron microscope, randomly measuring 30 sizes, and adopting the average value. At this time, the semiconductor fine particles are accompanied by an organic ligand described later. On the other hand, by using a scanning transmission electron microscope accompanied by energy dispersive X-ray analysis, semiconductor fine particles excluding organic ligands are specified and the particle size is measured. The identification of the semiconductor fine particles utilizes the fact that the semiconductor fine particles are imaged darker than the organic ligand in the transmission electron microscope image due to the difference in electron density. The shape of the semiconductor fine particles is not limited to a spherical shape, and may be a rod shape, a disk shape, or any other shape.

<リガンド:一般式(1)で示される化合物>
一般式(1)で示される化合物は、前記半導体微粒子表面の少なくとも一部を覆うものであり、半導体微粒子の表面処理に用いられる。
<Ligand: Compound represented by general formula (1)>
The compound represented by the general formula (1) covers at least a part of the surface of the semiconductor fine particles and is used for the surface treatment of the semiconductor fine particles.

一般式(1)

Figure 2021039940
[一般式(1)中、Qは硫黄原子を含有する脂肪族複素環基であり、Xは直接結合又は2価の連結基であり、Aは電荷輸送性基である。] General formula (1)
Figure 2021039940
[In the general formula (1), Q is an aliphatic heterocyclic group containing a sulfur atom, X is a direct bond or a divalent linking group, and A is a charge transporting group. ]

硫黄原子を含有する脂肪族複素環基は、少なくとも1つの硫黄原子を環構成ヘテロ原子として含む脂肪族ヘテロ環であり、例えば、硫黄原子を含有し炭素数2〜30の脂肪族複素環基であることが好ましく、具体的には、硫黄原子を含有する脂肪族複素環基としては、例えば、エチレンスルフィド環、トリメチレンスルフィド環、テトラヒドロチオフェン環、チアン環、チエパン環、チオカン環、チオナン環、チアゾリジン環、1,2−ジチアン環、1,3−ジチアン環、1,4−ジチアン環、チオモルフォリン環等が挙げられる。 The aliphatic heterocyclic group containing a sulfur atom is an aliphatic heterocycle containing at least one sulfur atom as a ring-constituting heteroatom, for example, an aliphatic heterocyclic group containing a sulfur atom and having 2 to 30 carbon atoms. Specifically, examples of the aliphatic heterocyclic group containing a sulfur atom include an ethylene sulfide ring, a trimethylene sulfide ring, a tetrahydrothiophene ring, a dithiane ring, a thiepan ring, a thiocan ring, and a thionan ring. Examples thereof include a thiazolidine ring, a 1,2-dithiane ring, a 1,3-dithiane ring, a 1,4-dithiane ring, a thiomorpholin ring and the like.

前記脂肪族複素環基は、硫黄原子以外のヘテロ原子を環構成に含んでもよく、硫黄原子と窒素原子及び酸素原子から選択される少なくとも1種の原子とを環構成ヘテロ原子として含んでもよい。脂肪族複素環基として、より好ましくは、硫黄原子と窒素原子とを環構成ヘテロ原子として含むものである。
また、脂肪族複素環基の環員数としては、3〜8員環が好ましく、5員環又は6員環がより好ましい。
The aliphatic heterocyclic group may contain a hetero atom other than the sulfur atom in the ring structure, or may contain a sulfur atom and at least one atom selected from a nitrogen atom and an oxygen atom as the ring structure hetero atom. The aliphatic heterocyclic group more preferably contains a sulfur atom and a nitrogen atom as a ring-constituting heteroatom.
Further, as the number of ring members of the aliphatic heterocyclic group, a 3- to 8-membered ring is preferable, and a 5-membered ring or a 6-membered ring is more preferable.

2価の連結基としては、2価の炭化水素基、酸素原子、アミド基、カルボニル基、エステル基、イミド基、アゾメチン基、アゾ基、スルフィド基、スルホン基、若しくは、これらを組み合わせてなる2価の連結基が挙げられる。 The divalent linking group consists of a divalent hydrocarbon group, an oxygen atom, an amide group, a carbonyl group, an ester group, an imide group, an azomethine group, an azo group, a sulfide group, a sulfone group, or a combination thereof. A valuation linking group can be mentioned.

2価の炭化水素基としては、例えば、アルキレン基、シクロアルキレン基、アリーレン基等が挙げられ、これらの内、炭素数1〜12のアルキレン基、炭素数5〜12のシクロアルキレン基、炭素数6〜12のアリーレン基が好ましい。具体的には、メチレン基、エチレン基、プロピレン基、へキシレン基、ドデシレン基、シクロヘキシレン基、フェニレン基等を挙げることができる。Xとして好ましくは、直接結合である。 Examples of the divalent hydrocarbon group include an alkylene group, a cycloalkylene group, an arylene group and the like, among which an alkylene group having 1 to 12 carbon atoms, a cycloalkylene group having 5 to 12 carbon atoms and a carbon number of carbon atoms are used. 6-12 arylene groups are preferred. Specific examples thereof include a methylene group, an ethylene group, a propylene group, a hexylene group, a dodecylene group, a cyclohexylene group, a phenylene group and the like. As X, it is preferably a direct bond.

電荷輸送性基には、正孔輸送性基と電子輸送性基がある。正孔輸送性基は、主として正孔の輸送を担うため、正孔に対する安定性すなわち酸化安定性が求められ、一方、電子輸送性基は電子の輸送を担うため、電子に対する安定性すなわち還元安定性が求められる。
正孔輸送性基としては、例えば、トリフェニルアミンやジフェニルアミン等の第三級芳香族アミン、カルバゾール、チオフェン等の単位を含む基が使用できる。
電子輸送性基としては、例えば、オキサジアゾール、トリアジン、トリアゾール、オキ
サゾール、イソオキサゾール、チアゾール、イソチアゾール、チアジアゾール、キノキサリン等の単位を含む基が使用できる。
これらの電荷輸送性基は、電荷輸送性を損なわない範囲で置換基を有していてもよい。有してもよい置換基としては、アルキル基、アルコキシ基、カルボニル基、シアノ基、トリフルオロメチル基又はトリメチルシリル基等が挙げられる。
The charge transporting group includes a hole transporting group and an electron transporting group. Since the hole-transporting group is mainly responsible for the transport of holes, stability for holes, that is, oxidative stability is required, while the electron-transporting group is responsible for the transport of electrons, so that it is stable for electrons, that is, reduction stability. Sex is required.
As the hole transporting group, for example, a group containing a unit such as a tertiary aromatic amine such as triphenylamine or diphenylamine, carbazole, or thiophene can be used.
As the electron-transporting group, for example, a group containing units such as oxadiazole, triazine, triazole, oxazole, isoxazole, thiazole, isothiazole, thiadiazole, and quinoxalin can be used.
These charge transporting groups may have a substituent as long as the charge transporting property is not impaired. Examples of the substituent which may be possessed include an alkyl group, an alkoxy group, a carbonyl group, a cyano group, a trifluoromethyl group, a trimethylsilyl group and the like.

電荷輸送性基として、好ましくは正孔輸送性基であり、より好ましくは、第三級芳香族アミン又はカルバゾールの単位を含む基である。 The charge-transporting group is preferably a hole-transporting group, more preferably a group containing a unit of a tertiary aromatic amine or carbazole.

したがって、一般式(1)で示される化合物として、好ましくは、Qが、硫黄原子と窒素原子とを環員原子として含む脂肪族複素環基であり、Xが直接結合であり、Aが第三級芳香族アミン又はカルバゾールの単位を含む電荷輸送性残基である化合物である。 Therefore, as the compound represented by the general formula (1), preferably Q is an aliphatic heterocyclic group containing a sulfur atom and a nitrogen atom as ring member atoms, X is a direct bond, and A is a third. A compound that is a charge-transporting residue containing a unit of a higher aromatic amine or carbazole.

さらに、一般式(1)で示される化合物好ましい構造として、下記一般式(2)〜(11)で示される化合物が挙げられる。 Further, as a preferable structure of the compound represented by the general formula (1), compounds represented by the following general formulas (2) to (11) can be mentioned.

Figure 2021039940
Figure 2021039940

[一般式(2)中、R1〜R14は、それぞれ独立して、水素原子、置換基を有していてもよい炭化水素基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキルチオ基、シアノ基、ニトロ基またはトリメチルシリル基であり、X1は、直接結合、置換基を有していてもよいアルキレン基、置換基を有していてもよいアルキレンオキシカルボニル基、置換基を有していてもよいアリーレン基またはアゾメチン基であり、Q1は、置換基を有していてもよいチアゾリジニル基、置換基を有していてもよいチオモルフォリニル基、置換基を有していてもよいテトラヒドロチオピラニル基または置換基を有していてもよい1,3‐ジチアニル基である。] [In the general formula (2), R 1 to R 14 are independent of each other, a hydrogen atom, a hydrocarbon group which may have a substituent, an alkoxy group which may have a substituent, and a substituent. It is an amino group which may have a substituent, an alkylthio group which may have a substituent, a cyano group, a nitro group or a trimethylsilyl group, and X 1 is an alkylene which may have a direct bond and a substituent. A group, an alkyleneoxycarbonyl group which may have a substituent, an arylene group or an azomethine group which may have a substituent, and Q 1 is a thiazolidinyl group which may have a substituent, a substituent. A thiomorpholinyl group which may have a group, a tetrahydrothiopyranyl group which may have a substituent, or a 1,3-dithianyl group which may have a substituent. ]

Figure 2021039940
Figure 2021039940

[一般式(3)中、R15〜R24は、それぞれ独立して、水素原子、置換基を有していてもよい炭化水素基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキルチオ基、シアノ基、ニトロ基またはトリメチルシリル基であり、X2は、直接結合、置換基を有していてもよいアルキレン基、置換基を有していてもよいアルキレンオキシカルボニル基、置換基を有していてもよいアリーレン基またはアゾメチン基であり、Q2は、置換基を有していてもよいチアゾリジニル基、置換基を有していてもよいチオモルフォリニル基、置換基を有していてもよいテトラヒドロチオピラニル基または置換基を有していてもよい1,3‐ジチアニル基である。] [In the general formula (3), R 15 to R 24 are independently hydrogen atoms, hydrocarbon groups which may have substituents, alkoxy groups which may have substituents, and substituents, respectively. It is an amino group which may have a substituent, an alkylthio group which may have a substituent, a cyano group, a nitro group or a trimethylsilyl group, and X 2 is an alkylene which may have a direct bond and a substituent. A group, an alkyleneoxycarbonyl group which may have a substituent, an arylene group or an azomethine group which may have a substituent, and Q 2 is a thiazolidinyl group which may have a substituent, a substituent. A thiomorpholinyl group which may have a group, a tetrahydrothiopyranyl group which may have a substituent, or a 1,3-dithianyl group which may have a substituent. ]

Figure 2021039940
Figure 2021039940

[一般式(4)中、R25〜R32は、それぞれ独立して、水素原子、置換基を有していてもよい炭化水素基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキルチオ基、シアノ基、ニトロ基またはトリメチルシリル基であり、X2は、直接結合、置換基を有していてもよいアルキレン基、置換基を有していてもよいアルキレンオキシカルボニル基、置換基を有していてもよいアリーレン基またはアゾメチン基であり、Q3は、置換基を有していてもよいチアゾリジニル基、置換基を有していてもよいチオモルフォリニル基、置換基を有していてもよいテトラヒドロチオピラニル基または置換基を有していてもよい1,3‐ジチアニル基である。] [In the general formula (4), R 25 to R 32 are independent of each other, a hydrogen atom, a hydrocarbon group which may have a substituent, an alkoxy group which may have a substituent, and a substituent. It is an amino group which may have a substituent, an alkylthio group which may have a substituent, a cyano group, a nitro group or a trimethylsilyl group, and X 2 is an alkylene which may have a direct bond and a substituent. A group, an alkyleneoxycarbonyl group which may have a substituent, an arylene group or an azomethine group which may have a substituent, and Q 3 is a thiazolidinyl group which may have a substituent, a substituent. A thiomorpholinyl group which may have a group, a tetrahydrothiopyranyl group which may have a substituent, or a 1,3-dithianyl group which may have a substituent. ]

Figure 2021039940
Figure 2021039940

[一般式(5)中、R33〜R40は、それぞれ独立して、水素原子、置換基を有していてもよい炭化水素基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキルチオ基、シアノ基、ニトロ基またはトリメチルシリル基であり、X4は、直接結合、置換基を有していてもよいアルキレン基、置換基を有していてもよいアルキレンオキシカルボニル基、置換基を有していてもよいアリーレン基またはアゾメチン基であり、Q4は、置換基を有していてもよいチアゾリジニル基、置換基を有していてもよいチオモルフォリニル基、置換基を有していてもよいテトラヒドロチオピラニル基または置換基を有していてもよい1,3‐ジチアニル基である。] [In the general formula (5), R 33 to R 40 are independent of each other, a hydrogen atom, a hydrocarbon group which may have a substituent, an alkoxy group which may have a substituent, and a substituent. It is an amino group which may have a substituent, an alkylthio group which may have a substituent, a cyano group, a nitro group or a trimethylsilyl group, and X 4 is an alkylene which may have a direct bond and a substituent. A group, an alkyleneoxycarbonyl group which may have a substituent, an arylene group or an azomethine group which may have a substituent, and Q 4 is a thiazolidinyl group which may have a substituent, a substituent. A thiomorpholinyl group which may have a group, a tetrahydrothiopyranyl group which may have a substituent, or a 1,3-dithianyl group which may have a substituent. ]

Figure 2021039940
Figure 2021039940

[一般式(6)中、R41〜R43は、それぞれ独立して、水素原子、置換基を有していてもよい炭化水素基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキルチオ基、シアノ基、トロ基またはトリメチルシリル基であり、X5は、直接結合、置換基を有していてもよいアルキレン基、置換基を有していてもよいアルキレンオキシカルボニル基、置換基を有していてもよいアリーレン基またはアゾメチン基であり、Q5は、置換基を有していてもよいチアゾリジニル基、置換基を有していてもよいチオモルフォリニル基、置換基を有していてもよいテトラヒドロチオピラニル基または置換基を有していてもよい1,3‐ジチアニル基である。] [In the general formula (6), R 41 to R 43 independently represent a hydrogen atom, a hydrocarbon group which may have a substituent, an alkoxy group which may have a substituent, and a substituent. It is an amino group which may have a substituent, an alkylthio group which may have a substituent, a cyano group, a tro group or a trimethylsilyl group, and X 5 is an alkylene which may have a direct bond and a substituent. group, which may have a substituent alkyleneoxy carbonyl group, optionally having a substituent is also an arylene group or azomethine group, Q 5 is an optionally substituted thiazolidinyl group, a substituted A thiomorpholinyl group which may have a group, a tetrahydrothiopyranyl group which may have a substituent, or a 1,3-dithianyl group which may have a substituent. ]

Figure 2021039940
Figure 2021039940

[一般式(7)中、R44〜R46は、それぞれ独立して、水素原子、置換基を有していてもよい炭化水素基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキルチオ基、シアノ基、ニトロ基またはトリメチルシリル基であり、X6は、直接結合、置換基を有していてもよいアルキレン基、置換基を有していてもよいアルキレンオキシカルボニル基、置換基を有していてもよいアリーレン基またはアゾメチン基であり、Q6は、置換基を有していてもよいチアゾリジニル基、置換基を有していてもよいチオモルフォリニル基、置換基を有していてもよいテトラヒドロチオピラニル基または置換基を有していてもよい1,3‐ジチアニル基である。] [In the general formula (7), R 44 to R 46 are independent of each other, a hydrogen atom, a hydrocarbon group which may have a substituent, an alkoxy group which may have a substituent, and a substituent. It is an amino group which may have a substituent, an alkylthio group which may have a substituent, a cyano group, a nitro group or a trimethylsilyl group, and X 6 is an alkylene which may have a direct bond and a substituent. A group, an alkyleneoxycarbonyl group which may have a substituent, an arylene group or an azomethine group which may have a substituent, and Q 6 is a thiazolidinyl group which may have a substituent, a substituent. A thiomorpholinyl group which may have a group, a tetrahydrothiopyranyl group which may have a substituent, or a 1,3-dithianyl group which may have a substituent. ]

Figure 2021039940
Figure 2021039940

[一般式(8)中、R47及びR48は、それぞれ独立して、水素原子、置換基を有していてもよい炭化水素基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキルチオ基、シアノ基、ニトロ基またはトリメチルシリル基であり、X7は、直接結合、置換基を有していてもよいアルキレン基、置換基を有していてもよいアルキレンオキシカルボニル基、置換基を有していてもよいアリーレン基またはアゾメチン基であり、Q7は、置換基を有していてもよいチアゾリジニル基、置換基を有していてもよいチオモルフォリニル基、置換基を有していてもよいテトラヒドロチオピラニル基または置換基を有していてもよい1,3‐ジチアニル基である。] [In the general formula (8), R 47 and R 48 are independent of each other, a hydrogen atom, a hydrocarbon group which may have a substituent, an alkoxy group which may have a substituent, and a substituent. It is an amino group which may have a substituent, an alkylthio group which may have a substituent, a cyano group, a nitro group or a trimethylsilyl group, and X 7 is an alkylene which may have a direct bond and a substituent. A group, an alkyleneoxycarbonyl group which may have a substituent, an arylene group or an azomethine group which may have a substituent, and Q 7 is a thiazolidinyl group which may have a substituent, a substituent. A thiomorpholinyl group which may have a group, a tetrahydrothiopyranyl group which may have a substituent, or a 1,3-dithianyl group which may have a substituent. ]

Figure 2021039940
Figure 2021039940

[一般式(9)中、R49及びR50は、それぞれ独立して、水素原子、置換基を有していてもよい炭化水素基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキルチオ基、シアノ基、ニトロ基またはトリメチルシリル基であり、X8は、直接結合、置換基を有していてもよいアルキレン基、置換基を有していてもよいアルキレンオキシカルボニル基、置換基を有していてもよいアリーレン基またはアゾメチン基であり、Q8は、置換基を有していてもよいチアゾリジニル基、置換基を有していてもよいチオモルフォリニル基、置換基を有していてもよいテトラヒドロチオピラニル基または置換基を有していてもよい1,3‐ジチアニル基である。] [In the general formula (9), R 49 and R 50 are independent of each other, a hydrogen atom, a hydrocarbon group which may have a substituent, an alkoxy group which may have a substituent, and a substituent. It is an amino group which may have a substituent, an alkylthio group which may have a substituent, a cyano group, a nitro group or a trimethylsilyl group, and X 8 is an alkylene which may have a direct bond and a substituent. A group, an alkyleneoxycarbonyl group which may have a substituent, an arylene group or an azomethine group which may have a substituent, and Q 8 is a thiazolidinyl group which may have a substituent, a substituent. A thiomorpholinyl group which may have a group, a tetrahydrothiopyranyl group which may have a substituent, or a 1,3-dithianyl group which may have a substituent. ]

Figure 2021039940
Figure 2021039940

[一般式(10)中、R51〜R55は、それぞれ独立して、水素原子、置換基を有していてもよい炭化水素基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキルチオ基、シアノ基、ニトロ基、トリメチルシリル基であり、X9は、直接結合、置換基を有していてもよいアルキレン基、置換基を有していてもよいアルキレンオキシカルボニル基、置換基を有していてもよいアリーレン基またはアゾメチン基であり、Q9は、置換基を有していてもよいチアゾリジニル基、置換基を有していてもよいチオモルフォリニル基、置換基を有していてもよいテトラヒドロチオピラニル基または置換基を有していてもよい1,3‐ジチアニル基である。] [In the general formula (10), R 51 to R 55 are independent of each other, a hydrogen atom, a hydrocarbon group which may have a substituent, an alkoxy group which may have a substituent, and a substituent. It is an amino group which may have a substituent, an alkylthio group which may have a substituent, a cyano group, a nitro group, and a trimethylsilyl group, and X 9 is a direct bond and an alkylene which may have a substituent. A group, an alkyleneoxycarbonyl group which may have a substituent, an arylene group or an azomethine group which may have a substituent, and Q 9 is a thiazolidinyl group which may have a substituent, a substituent. A thiomorpholinyl group which may have a group, a tetrahydrothiopyranyl group which may have a substituent, or a 1,3-dithianyl group which may have a substituent. ]

Figure 2021039940
Figure 2021039940

[一般式(11)中、R56及びR57は、それぞれ独立して、水素原子、置換基を有していてもよい炭化水素基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキルチオ基、シアノ基、ニトロ基、トリメチルシリル基であり、X10は、直接結合、置換基を有していてもよいアルキレン基、置換基を有していてもよいアルキレンオキシカルボニル基、置換基を有していてもよいアリーレン基またはアゾメチン基であり、Q10は、置換基を有していてもよいチアゾリジニル基、置換基を有していてもよいチオモルフォリニル基、置換基を有していてもよいテトラヒドロチオピラニル基または置換基を有していてもよい1,3‐ジチアニル基である。] [In the general formula (11), R 56 and R 57 are independent of each other, a hydrogen atom, a hydrocarbon group which may have a substituent, an alkoxy group which may have a substituent, and a substituent. It is an amino group which may have a substituent, an alkylthio group which may have a substituent, a cyano group, a nitro group, and a trimethylsilyl group, and X 10 is a direct bond and an alkylene which may have a substituent. group, which may have a substituent alkyleneoxy carbonyl group, optionally having a substituent is also an arylene group or azomethine group, Q 10 is an optionally substituted thiazolidinyl group, a substituted A thiomorpholinyl group which may have a group, a tetrahydrothiopyranyl group which may have a substituent, or a 1,3-dithianyl group which may have a substituent. ]

以下に、一般式(2)〜(11)における基について説明する。 The groups in the general formulas (2) to (11) will be described below.

アルキル基は、アルカンから形式的に水素原子を一つ取り除いた一価の残基であり、直鎖、分岐であってもよい。アルキル基の具体例としては、メチル基、エチル基、ヘキシル基、ドデシル基等の直鎖アルキル基、2−エチルヘキシル基等の分岐アルキル基が挙げられる。アルキル基の炭素数は1〜6が好ましい。 The alkyl group is a monovalent residue obtained by formally removing one hydrogen atom from an alkane, and may be linear or branched. Specific examples of the alkyl group include a linear alkyl group such as a methyl group, an ethyl group, a hexyl group and a dodecyl group, and a branched alkyl group such as a 2-ethylhexyl group. The alkyl group preferably has 1 to 6 carbon atoms.

アルコキシ基は、エーテル結合を介してアルキル基が結合した基であり、当該アルキル基としては、上記アルキル基が挙げられる。 The alkoxy group is a group to which an alkyl group is bonded via an ether bond, and examples of the alkyl group include the above-mentioned alkyl group.

アミノ基は、アンモニアから形式的に水素原子を一つ取り除いた一価の残基である。 An amino group is a monovalent residue in which one hydrogen atom is formally removed from ammonia.

アルキルチオ基は、スルフィド結合を介してアルキル基が結合した基であり、当該アルキル基としては、上記アルキル基が挙げられる。 The alkylthio group is a group to which an alkyl group is bonded via a sulfide bond, and examples of the alkyl group include the above-mentioned alkyl group.

1、R2、R4〜R7、R9〜R16、R18〜R21、R23〜R26、R28〜R57として、好ましくは水素原子である。R3、R8、R17、R22として、好ましくは水素原子、アルキル基またはアルコキシ基であり、より好ましくは水素原子、メチル基またはメトキシ基である。R27として、好ましくは水素原子またはアルキル基であり、より好ましくはエチル基である。 R 1 , R 2 , R 4 to R 7 , R 9 to R 16 , R 18 to R 21 , R 23 to R 26 , and R 28 to R 57 are preferably hydrogen atoms. R 3 , R 8 , R 17 , and R 22 are preferably a hydrogen atom, an alkyl group, or an alkoxy group, and more preferably a hydrogen atom, a methyl group, or a methoxy group. R 27 is preferably a hydrogen atom or an alkyl group, and more preferably an ethyl group.

アルキレン基は、アルカンから形式的に水素原子を二つ取り除いた二価の残基であり、直鎖、分岐であってもよい。アルキレン基の具体例としては、メチレン基、1,2−エチレン基、1,6−ヘキシレン基、1,12−ドデシレン基等の直鎖アルキレン基、2−エチル−1,6−ヘキシレン基等の分岐アルキレン基が挙げられる。アルキレン基の炭素数は1〜6が好ましく、さらに好ましくは1又は2である。 The alkylene group is a divalent residue obtained by formally removing two hydrogen atoms from an alkane, and may be linear or branched. Specific examples of the alkylene group include a linear alkylene group such as a methylene group, a 1,2-ethylene group, a 1,6-hexylene group and a 1,12-dodecylene group, a 2-ethyl-1,6-hexylene group and the like. Examples include branched alkylene groups. The alkylene group preferably has 1 to 6 carbon atoms, more preferably 1 or 2 carbon atoms.

アリーレン基は、芳香族炭化水素から形式的に水素原子を二つ取り除いた二価の残基であり、アリーレン基の具体例としては、1,2−フェニレン基、1,3−フェニレン基、1,4−フェニレン基、1,4−ナフチレン基、2,6−ピレニル基等が挙げられる。アリール基の炭素数は6〜10が好ましく、更に好ましくは6である。 The arylene group is a divalent residue obtained by formally removing two hydrogen atoms from an aromatic hydrocarbon. Specific examples of the arylene group include a 1,2-phenylene group, a 1,3-phenylene group and 1 , 4-Phenylene group, 1,4-naphthylene group, 2,6-pyrenyl group and the like. The aryl group preferably has 6 to 10 carbon atoms, and more preferably 6.

アゾメチン基は、−CR61=N−で表される二価の残基であり、R61は水素原子または上記アルキル基である。R61として好ましくは水素原子である。 The azomethine group is a divalent residue represented by -CR 61 = N-, and R 61 is a hydrogen atom or the above alkyl group. R 61 is preferably a hydrogen atom.

アルキレンオキシカルボニル基は、−R62O(C=O)−表される二価の残基であり、R62は上記アルキレン基である。 The alkyleneoxycarbonyl group is a divalent residue represented by -R 62 O (C = O) -, and R 62 is the above-mentioned alkylene group.

チアゾリジニル基は、チアゾリジンから形式的に水素原子を一つ取り除いた一価の残基であり、2−チアゾリジニル基、3−チアゾリジニル基、4−チアゾリジニル基、5−チアゾリジニル基が挙げられる。好ましくは2−チアゾリジニル基である。 The thiazolidinyl group is a monovalent residue obtained by formally removing one hydrogen atom from thiazolidine, and examples thereof include 2-thiazolidinyl group, 3-thiazolidinyl group, 4-thiazolidinyl group, and 5-thiazolidinyl group. It is preferably a 2-thiazolidinyl group.

チオモルフォリニル基は、チオモルフォリンから形式的に水素原子を一つ取り除いた一価の残基であり、2−チオモルフォリニル基、3−チオモルフォリニル基、4−チオモルフォリニル基、5−チオモルフォリニル基、6−チオモルフォリニル基が挙げられる。好ましくは4−チオモルフォリニル基である。 The thiomorpholinyl group is a monovalent residue obtained by formally removing one hydrogen atom from thiomorpholin, and is a 2-thiomorpholinyl group, a 3-thiomorpholinyl group, or a 4-thiomorpholi. Nyl group, 5-thiomorpholinyl group, 6-thiomorpholinyl group can be mentioned. It is preferably a 4-thiomorpholinyl group.

テトラヒドロチオピラニル基は、テトラヒドロピランから形式的に水素原子を一つ取り除いた一価の残基であり、2−テトラヒドロチオピラニル基、3−テトラヒドロチオピラニル基、4−テトラヒドロチオピラニル基、5−テトラヒドロチオピラニル基、6−テトラヒドロチオピラニル基が挙げられる。好ましくは4−テトラヒドロチオピラニル基である。 The tetrahydrothiopyranyl group is a monovalent residue obtained by formally removing one hydrogen atom from tetrahydropyran, and is a 2-tetrahydrothiopyranyl group, a 3-tetrahydrothiopyranyl group, or a 4-tetrahydrothiopyranyl group. Examples include a group, a 5-tetrahydrothiopyranyl group, and a 6-tetrahydrothiopyranyl group. It is preferably a 4-tetrahydrothiopyranyl group.

1,3−ジチアン環基は、1,3−ジチアンから形式的に水素原子を一つ取り除いた一価の残基であり、(1,3−ジチアニル)−2−イル基、(1,3−ジチアニル)−4−イル基、(1,3−ジチアニル)−5−イル基、(1,3−ジチアニル)−6−イル基が挙げられる。好ましくは(1,3−ジチアニル)−2−イル基である。 The 1,3-dithiane ring group is a monovalent residue obtained by formally removing one hydrogen atom from 1,3-dithiane, and is a (1,3-dithianyl) -2-yl group, (1,3). Examples thereof include −dithianyl) -4-yl group, (1,3-dithianyl) -5-yl group, and (1,3-dithianyl) -6-yl group. It is preferably a (1,3-dithianyl) -2-yl group.

表1〜表4に、一般式(1)で示される化合物の具体例を挙げるが、これらに限定されるものではない。 Tables 1 to 4 give specific examples of the compounds represented by the general formula (1), but are not limited thereto.

Figure 2021039940
Figure 2021039940

Figure 2021039940
Figure 2021039940

Figure 2021039940
Figure 2021039940

Figure 2021039940
Figure 2021039940

本発明の量子ドットは、一般式(1)で示される化合物に加えて、さらに別の公知リガンドで表面処理されていてもよい。また、一般式(1)で示される化合物以外の公知のリガンドで表面処理された量子ドットを併用してもよい。公知のリガンドとしては、例えば、ドデカンチオール、オレイン酸、オレイルアミン、トリオクチルホスフィン、トリオクチルホスフィンオキシド等を使用することができる。 The quantum dots of the present invention may be surface-treated with yet another known ligand in addition to the compound represented by the general formula (1). Further, quantum dots surface-treated with a known ligand other than the compound represented by the general formula (1) may be used in combination. As known ligands, for example, dodecanethiol, oleic acid, oleylamine, trioctylphosphine, trioctylphosphine oxide and the like can be used.

<インク組成物>
本発明のインク組成物は、前記本発明に係る量子ドットと溶剤とを含有し、必要に応じて更に他の成分を含有してもよいものである。本発明のインク組成物は、高い安定性を有する量子ドットを含むため、優れた経時での安定性及び蛍光量子収率を有する。
以下、インク組成物に含まれる各成分について説明する。
<Ink composition>
The ink composition of the present invention contains the quantum dots and the solvent according to the present invention, and may further contain other components if necessary. Since the ink composition of the present invention contains quantum dots having high stability, it has excellent stability over time and fluorescence quantum yield.
Hereinafter, each component contained in the ink composition will be described.

[溶剤]
本インク組成物において溶剤は、前記半導体微粒子を分散可能な溶剤の中から、インク組成物の用途等に応じて適宜選択できる。溶剤の具体例としては、例えば、1,2,3−トリクロロプロパン、1,3−ブチレングリコール、1,3−ブチレングリコールジアセテート、1,4−ジオキサン、2−ヘプタノン、2−メチル−1,3−プロパンジオール、3,5,5−トリメチル−2−シクロヘキセン−1−オン、3,3,5−トリメチルシクロヘキサノン、3−エトキシプロピオン酸エチル、3−メチル−1,3−ブタンジオール、3−メトキシ−3−メチル−1−ブ タノール、3−メトキシ−3−メチルブチルアセテート、3−メトキシブタノール、3−メトキシブチルアセテート、4−ヘプタノン、m−キシレン、m−ジエチルベンゼン、m−ジクロロベンゼン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、n−ブチルアルコール、n−ブチルベンゼン、n−プロピルアセテート、N−メチルピロリドン、トルエン、オクタン、ノナン、ヘキサン、o−キシレン、o−クロロトルエン、o−ジエチルベンゼン、o−ジクロロベンゼン、P−クロロトルエン、P−ジエチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン、γ−ブチロラクトン、水、メタノール、エタノール、イソプロピルアルコール、ターシャルターシャルブタノール、イソブチルアルコール、イソホロン、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノターシャリーブチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノプロピルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、ジイソブチルケトン、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、シクロヘキサノール、シクロヘキサノールアセテート、シクロヘキサノン、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノメチルエーテル、ダイアセトンアルコール、トリアセチン、トリプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールジアセテート、プロピレングリコールフェニルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルプロピオネート、ベンジルアルコール、メチルイソブチルケトン、メチルシクロヘキサノール、酢酸n−アミル、酢酸n−ブチル、酢酸イソアミル、酢酸イソブチル、酢酸プロピル、及び二塩基酸エステル等が挙げられる。これらの溶剤は、1種を単独で、又は必要に応じて任意の比率で2種以上混合して用いることができる。
[solvent]
In this ink composition, the solvent can be appropriately selected from the solvents capable of dispersing the semiconductor fine particles, depending on the use of the ink composition and the like. Specific examples of the solvent include, for example, 1,2,3-trichloropropane, 1,3-butylene glycol, 1,3-butylene glycol diacetate, 1,4-dioxane, 2-heptanone, 2-methyl-1, 3-Propanediol, 3,5,5-trimethyl-2-cyclohexene-1-one, 3,3,5-trimethylcyclohexanone, ethyl 3-ethoxypropionate, 3-methyl-1,3-butandiol, 3- Methoxy-3-methyl-1-butanol, 3-methoxy-3-methylbutyl acetate, 3-methoxybutanol, 3-methoxybutyl acetate, 4-heptanone, m-xylene, m-diethylbenzene, m-dichlorobenzene, N , N-dimethylacetamide, N, N-dimethylformamide, n-butyl alcohol, n-butylbenzene, n-propyl acetate, N-methylpyrrolidone, toluene, octane, nonane, hexane, o-xylene, o-chlorotoluene, o-diethylbenzene, o-dichlorobenzene, P-chlorotoluene, P-diethylbenzene, sec-butylbenzene, tert-butylbenzene, γ-butyrolactone, water, methanol, ethanol, isopropyl alcohol, tershal tarshalbutanol, isobutyl alcohol, isophorone , Ethylene glycol diethyl ether, ethylene glycol dibutyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monotersial butyl ether, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, ethylene glycol Monopropyl ether, ethylene glycol monohexyl ether, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, diisobutyl ketone, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate , Diethylene glycol monomethyl ether, cyclohexanol, cyclohexanol acetate, cyclohexanone, dipropylene glycol dimethyle -Tel, Dipropylene glycol methyl ether acetate, Dipropylene glycol monoethyl ether, Dipropylene glycol monobutyl ether, Dipropylene glycol monopropyl ether, Dipropylene glycol monomethyl ether, Diacetone alcohol, Triacetin, Tripropylene glycol monobutyl ether, Tripropylene glycol Monomethyl ether, propylene glycol diacetate, propylene glycol phenyl ether, propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol Examples thereof include monomethyl ether propionate, benzyl alcohol, methyl isobutyl ketone, methyl cyclohexanol, n-amyl acetate, n-butyl acetate, isoamyl acetate, isobutyl acetate, propyl acetate, and dibasic acid ester. These solvents may be used alone or in admixture of two or more at any ratio as required.

<インクジェットインキ>
本発明のインク組成物は、溶剤や、後述する樹脂成分あるいは重合性単量体等を用いて、粘度を調整することで、インクジェット方式で用いられるインクジェットインキとして使用することができる。インクジェットインキとして用いる場合は、25℃における粘度を3〜50mPa・sに調製することが好ましい。
<Inkjet ink>
The ink composition of the present invention can be used as an inkjet ink used in an inkjet method by adjusting the viscosity using a solvent, a resin component described later, a polymerizable monomer, or the like. When used as an inkjet ink, it is preferable to adjust the viscosity at 25 ° C. to 3 to 50 mPa · s.

インクジェットインキとする場合には、溶剤は、樹脂に対する溶解性、装置部材に対する膨潤作用、粘度、及びノズルにおけるインキの乾燥性の点から選択され、下記溶剤(A−1)、(A−2)及び(A−3)からなる群から選ばれる、760mmHgでの沸点が135℃以上の1種類以上の有機溶剤を含むことが好ましい。
溶剤(A−1): R1−(O−C24)m−O−C(=O)−CH3
[ただし、R1は炭素原子数1〜8のアルキル基であり、C24は直鎖若しくは分岐エチレン鎖であり、1≦m≦3である。]
溶剤(A−2): R2−(O−C36)p−O−C(=O)−CH3
[ただし、R2は炭素原子数1〜8のアルキル基であり、C36は直鎖若しくは分岐プロピレン鎖であり、1≦p≦3である。]
溶剤(A−3): アセテート構造を2つ以上持つ有機溶剤
In the case of an inkjet ink, the solvent is selected from the viewpoints of solubility in the resin, swelling action on the device member, viscosity, and dryness of the ink in the nozzle, and the following solvents (A-1) and (A-2) are used. And (A-3), it is preferable to contain one or more kinds of organic solvents having a boiling point of 135 ° C. or higher at 760 mmHg.
Solvent (A-1): R 1- (OC 2 H 4 ) m-OC (= O) -CH 3
[However, R 1 is an alkyl group having 1 to 8 carbon atoms, C 2 H 4 is a linear or branched ethylene chain, and 1 ≦ m ≦ 3. ]
Solvent (A-2): R 2- (OC 3 H 6 ) p-OC (= O) -CH 3
[However, R 2 is an alkyl group having 1 to 8 carbon atoms, C 3 H 6 is a linear or branched propylene chain, and 1 ≦ p ≦ 3. ]
Solvent (A-3): Organic solvent having two or more acetate structures

溶剤(A−1)〜(A−3)の具体例としては、例えば、プロピレングリコールメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールジアセテート、1,3−ブチレングリコールジアセテート、1,6−ヘキサンジオールジアセテート、トリアセチン等を挙げることができるが、これに限定されるものではない。中でも、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、1,3−ブチレングリコールジアセテートが、吐出安定性の点から好ましい。
また、前記760mmHgでの沸点が135℃以上の溶剤の含有量が、全溶剤中60質量%以上であることが、吐出安定性やノズルにおけるインキの乾燥性の点から好ましい。
Specific examples of the solvents (A-1) to (A-3) include, for example, propylene glycol methyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol methyl ether acetate, propylene glycol diacetate, 1 , 3-butylene glycol diacetate, 1,6-hexanediol diacetate, triacetin and the like, but are not limited thereto. Of these, diethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate, propylene glycol methyl ether acetate, and 1,3-butylene glycol diacetate are preferable from the viewpoint of discharge stability.
Further, it is preferable that the content of the solvent having a boiling point of 135 ° C. or higher at 760 mmHg is 60% by mass or more in the total solvent from the viewpoint of ejection stability and ink drying property at the nozzle.

<その他成分>
本発明のインク組成物は、用いられる用途に応じた要求性能に応じて、樹脂、架橋剤、重合性単量体、光感応性物質、熱感応性物質、光重合開始剤、光酸発生剤、光塩基発生剤、増感剤等を含有してもよい。当該成分は、単独で又は2種以上混合して用いることができ、その含有量は、量子ドット1質量部に対し、好ましくは0〜100質量部である。100質量部を超えると、インク組成物中の量子ドット含有率が低くなり、十分な蛍光強度が得られない場合がある。
また、本発明のインク組成物は、光感応性物質又は重合性単量体を含有することで、フォトリソグラフィー法によりパターン形成可能なポジ型レジスト又はネガ型レジストとすることができる。
<Other ingredients>
The ink composition of the present invention comprises a resin, a cross-linking agent, a polymerizable monomer, a photosensitizer, a heat-sensitive substance, a photopolymerization initiator, and a photoacid generator, depending on the required performance according to the intended use. , Photobase generator, sensitizer and the like may be contained. The component can be used alone or in combination of two or more, and the content thereof is preferably 0 to 100 parts by mass with respect to 1 part by mass of the quantum dots. If it exceeds 100 parts by mass, the quantum dot content in the ink composition becomes low, and sufficient fluorescence intensity may not be obtained.
Further, the ink composition of the present invention can be a positive resist or a negative resist that can form a pattern by a photolithography method by containing a photosensitive substance or a polymerizable monomer.

[樹脂]
樹脂としては、熱可塑性樹脂又は熱硬化性樹脂を用いることができ、例えば、石油系樹脂、マレイン酸樹脂、ニトロセルロース、セルロースアセテートブチレート、環化ゴム、塩化ゴム、アルキド樹脂、アクリル樹脂、ポリエステル樹脂、アミノ樹脂、ビニル樹脂、又はブチラール樹脂等が挙げられる。当該樹脂は、インク組成物を印刷する基材に応じて、適宜選択することができる。
[resin]
As the resin, a thermoplastic resin or a thermosetting resin can be used, for example, petroleum resin, maleic acid resin, nitrocellulose, cellulose acetate butyrate, cyclized rubber, rubber chloride, alkyd resin, acrylic resin, polyester. Examples thereof include resins, amino resins, vinyl resins, butyral resins and the like. The resin can be appropriately selected depending on the substrate on which the ink composition is printed.

[架橋剤]
架橋剤として好ましくは熱架橋性の架橋剤であり、メラミン化合物、ベンゾグアナミン化合物、アクリレート系モノマー、カルボジイミド化合物、エポキシ化合物、オキセタン化合物、フェノール化合物、ベンゾオキサジン化合物、ブロック化カルン酸化合物、ブロック化イソシアネート化合物及びシランカップリング剤からなる群から選ばれる少なくとも1種が耐熱性に優れる点から好適に用いられる。
[Crosslinking agent]
The cross-linking agent is preferably a thermally cross-linking agent, and is a melamine compound, a benzoguanamine compound, an acrylate-based monomer, a carbodiimide compound, an epoxy compound, an oxetane compound, a phenol compound, a benzoxazine compound, a blocked caric acid compound, and a blocked isocyanate compound. At least one selected from the group consisting of the silane coupling agent and the silane coupling agent is preferably used because of its excellent heat resistance.

[重合性単量体]
重合性単量体としては、紫外線や熱等により硬化して樹脂を生成するモノマー又はオリゴマーが含まれ、これらを単独で又は2種以上混合して用いることができる。
重合性単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、β−カルボキシエチル(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、1,6−ヘキサンジオールジグリシジルエーテルジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、ネオペンチルグリコールジグリシジルエーテルジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、エステルアクリレート、メチロール化メラミンの(メタ)アクリル酸エステル、エポキシ(メタ)アクリレート、ウレタンアクリレート等の各種アクリル酸エステル及びメタクリル酸エステル、(メタ)アクリル酸、スチレン、酢酸ビニル、ヒドロキシエチルビニルエーテル、エチレングリコールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、(メタ)アクリルアミド、N−ヒドロキシメチル(メタ)アクリルアミド、N−ビニルホルムアミド、アクリロニトリル等を挙げることができるが、必ずしもこれらに限定されるものではない。これらは、1種を単独で又は必要に応じて任意の比率で2種以上混合して用いることができる。
[Polymerizable monomer]
The polymerizable monomer includes a monomer or an oligomer that is cured by ultraviolet rays, heat, or the like to form a resin, and these can be used alone or in combination of two or more.
Examples of the polymerizable monomer include methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, and β-carboxyethyl. (Meta) acrylate, polyethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, Neopentyl glycol-modified trimethylolpropandi (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, 1,6-hexanediol diglycidyl ether di (meth) ) Acrylate, bisphenol A diglycidyl ether di (meth) acrylate, neopentyl glycol diglycidyl ether di (meth) acrylate, dipentaerythritol hexa (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, tricyclodecanyl Various acrylic acid esters such as (meth) acrylate, ester acrylate, (meth) acrylic acid ester of methylolated melamine, epoxy (meth) acrylate, urethane acrylate, and methacrylic acid ester, (meth) acrylic acid, styrene, vinyl acetate, hydroxy Ethyl vinyl ether, ethylene glycol divinyl ether, pentaerythritol trivinyl ether, (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, N-vinylformamide, acrylonitrile and the like can be mentioned, but are not necessarily limited thereto. .. These can be used alone or in admixture of two or more at any ratio as required.

[熱感応性物質、光感応性物質]
熱感応性物質としては熱重合開始剤が挙げられ、具体的には、有機過酸化物系開始剤、アゾ系開始剤等を用いることができる。また、光感応性物質としては、光重合開始剤、光酸発生剤又は光塩基発生剤が挙げられる。
[Heat-sensitive substances, light-sensitive substances]
Examples of the heat-sensitive substance include a thermal polymerization initiator, and specifically, an organic peroxide-based initiator, an azo-based initiator, and the like can be used. Examples of the photosensitive substance include a photopolymerization initiator, a photoacid generator, and a photobase generator.

[光重合開始剤、光酸発生剤]
光重合開始剤としては、例えば、アセトフェノン系化合物、ベンゾイン系化合物、ベンゾフェノン系化合物、チオキサントン系化合物、トリアジン系化合物、オキシムエステル系化合物、ホスフィン系化合物、キノン系化合物、ボレート系化合物、 カルバゾール系
化合物、イミダゾール系化合物、又はチタノセン系化合物等が挙げられる。
また、光酸発生剤としては、スルホニウム塩、テトラヒドロチオフェニウム塩、 N−スルホニルオキシイミド化合物等が挙げられる。
[Photopolymerization initiator, photoacid generator]
Examples of the photopolymerization initiator include acetphenone-based compounds, benzoin-based compounds, benzophenone-based compounds, thioxanthone-based compounds, triazine-based compounds, oxime ester-based compounds, phosphine-based compounds, quinone-based compounds, borate-based compounds, and carbazole-based compounds. Examples thereof include imidazole-based compounds and titanosen-based compounds.
Examples of the photoacid generator include a sulfonium salt, a tetrahydrothiophenium salt, an N-sulfonyloxyimide compound and the like.

光重合開始剤及び/又は光酸発生剤は、重合性単量体100質量部に対して、0.01〜20質量部であることが好ましい。上記範囲内であると、十分な硬化性が得られ、且つ、着色発生や他の諸物性低下が起こらないため、好ましい。 The photopolymerization initiator and / or photoacid generator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the polymerizable monomer. When it is within the above range, sufficient curability can be obtained, and coloring and other deterioration of physical properties do not occur, which is preferable.

[光塩基発生剤]
光塩基発生剤としては、例えば、複素環基含有光塩基発生剤、2−ニトロベンジルシクロヘキシルカルバメート、[[(2,6−ジニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、ビス[[(2−ニトロベンジル)オキシ]カルボニル]ヘキサン−1,6−ジアミン、トリフェニルメタノール、o−カルバモイルヒドロキシルアミド、o−カルバモイルオキシム、ヘキサアンミンコバルト(III)トリス(トリフェニルメチルボレート)等が挙げられる。
[Photobase generator]
Examples of the photobase generator include a heterocyclic group-containing photobase generator, 2-nitrobenzylcyclohexylcarbamate, [[(2,6-dinitrobenzyl) oxy] carbonyl] cyclohexylamine, and bis [[(2-nitrobenzyl). ) Oxy] carbonyl] hexane-1,6-diamine, triphenylmethanol, o-carbamoyl hydroxylamide, o-carbamoyl oxime, hexaammine cobalt (III) tris (triphenyl methyl borate) and the like.

[増感剤]
増感剤としては、例えば、カルコン誘導体、ジベンザルアセトン等に代表される不飽和ケトン類、ベンジルやカンファーキノン等に代表される1,2−ジケトン誘導体、ベンゾイン誘導体、フルオレン誘導体、ナフトキノン誘導体、アントラキノン誘導体、キサンテン誘導体、チオキサンテン誘導体、キサントン誘導体、チオキサントン誘導体、クマリン誘導体、ケトクマリン誘導体、シアニン誘導体、メロシアニン誘導体、オキソノ−ル誘導体等のポリメチン色素、アクリジン誘導体、アジン誘導体、チアジン誘導体、オキサジン誘導体、インドリン誘導体、アズレン誘導体、アズレニウム誘導体、スクアリリウム誘導体、ポルフィリン誘導体、テトラフェニルポルフィリン誘導体、トリアリールメタン誘導体、テトラベンゾポルフィリン誘導体、テトラピラジノポルフィラジン誘導体、フタロシアニン誘導体、テトラアザポルフィラジン誘導体、テトラキノキサリロポルフィラジン誘導体、ナフタロシアニン誘導体、サブフタロシアニン誘導体、ピリリウム誘導体、チオピリリウム誘導体、テトラフィリン誘導体、アヌレン誘導体、スピロピラン誘導体、スピロオキサジン誘導体、チオスピロピラン誘導体、金属アレーン錯体、有機ルテニウム錯体、又はミヒラーケトン誘導体、α−アシロキシエステル、アシルフォスフィンオキサイド、メチルフェニルグリオキシレート、ベンジル、9,10−フェナンスレンキノン、カンファーキノン、エチルアンスラキノン、4,4’−ジエチルイソフタロフェノン、3,3’,又は4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン、4,4’−ジエチルアミノベンゾフェノン等が挙げられる。
[Sensitizer]
Examples of the sensitizer include chalcone derivatives, unsaturated ketones typified by dibenzalacetone, 1,2-diketone derivatives typified by benzyl and camphorquinone, benzoin derivatives, fluorene derivatives, and naphthoquinone derivatives. Polymethine dyes such as anthraquinone derivatives, xanthene derivatives, thioxanthene derivatives, xanthone derivatives, thioxanthone derivatives, coumarin derivatives, ketocoumarin derivatives, cyanine derivatives, merocyanine derivatives, oxonoal derivatives, aclysin derivatives, azine derivatives, thiazine derivatives, oxazine derivatives, indolin Derivatives, azulene derivatives, azurenium derivatives, squarylium derivatives, porphyrin derivatives, tetraphenylporphyrin derivatives, triarylmethane derivatives, tetrabenzoporphyrin derivatives, tetrapyrazinoporphyrazine derivatives, phthalocyanine derivatives, tetraazaporphyrazine derivatives, tetraquinoxalyloporphy Razine derivative, naphthalocyanine derivative, subphthalocyanine derivative, pyrylium derivative, thiopyrilium derivative, tetraphyllin derivative, anurene derivative, spiropyrane derivative, spiroxazine derivative, thiospiropyrane derivative, metal arene complex, organic ruthenium complex, or Michler ketone derivative, α-a Syroxyester, acylphosphine oxide, methylphenylglycolate, benzyl, 9,10-phenanthrene quinone, camphorquinone, ethyl anthraquinone, 4,4'-diethylisophthalofenone, 3,3', or 4, Examples thereof include 4'-tetra (t-butylperoxycarbonyl) benzophenone and 4,4'-diethylaminobenzophenone.

本発明のインク組成物は、本発明の目的が損なわれない範囲で、上記以外の他の成分を含有してもよい。他の成分としては、例えば、消泡剤、レベリング剤、増粘剤等が挙げられる。 The ink composition of the present invention may contain components other than the above as long as the object of the present invention is not impaired. Examples of other components include antifoaming agents, leveling agents, thickeners and the like.

本発明のインク組成物を用いて量子ドット含有層を形成するための基材としては、特に限定はされず、例えば、ポリカーボネート、硬質塩ビ、軟質塩ビ、ポリスチレン、発砲スチロール、PMMA、ポリプロピレン、ポリエチレン、PET等のプラスチック基材やこれら混合又は変性品、上質紙、アート紙、コート紙、キャストコート紙等の紙基材、ガラス基材、ステンレス等の金属基材等を用いることができる。当該基材は、インク組成物の用途に応じて適宜選択することができる。また、基材上に、本発明のインク組成物を用いて量子ドット含有層を形成する方法としては、インク組成物を塗工後に溶剤を乾燥して量子ドット含有層を形成する方法や、インク組成物を塗工後に紫外線照射をして硬化膜を形成する方法等が挙げられる。 The base material for forming the quantum dot-containing layer using the ink composition of the present invention is not particularly limited, and for example, polycarbonate, hard vinyl chloride, soft vinyl chloride, polystyrene, foamed styrol, PMMA, polypropylene, polyethylene, etc. A plastic base material such as PET, a mixed or modified product thereof, a paper base material such as high-quality paper, art paper, coated paper, cast-coated paper, a glass base material, a metal base material such as stainless steel, and the like can be used. The base material can be appropriately selected depending on the use of the ink composition. Further, as a method of forming a quantum dot-containing layer on a base material using the ink composition of the present invention, a method of forming a quantum dot-containing layer by drying a solvent after applying the ink composition, or an ink Examples thereof include a method of forming a cured film by irradiating the composition with ultraviolet rays after coating.

<光波長変換層>
前記量子ドット含有層は、光波長変換層として用いることができる。光波長変換層は、励起光を長波長側の蛍光に変換して放出することが可能であり、励起光波長と放出蛍光波長の関係を維持できれば特に制限はなく、例として、青色や紫外光を励起光として用いて緑色や赤色の蛍光を得ることや、紫外光や可視光を励起光として近赤外領域の蛍光を得る事等を挙げることができる。光波長変換層の厚みは、好ましくは1〜500μmであり、より好ましくは1〜50μmであり、さらに好ましくは1〜10μmである。厚みが1μm以上であると、高い波長変換効果が得られるため、好ましい。また、厚みが500μm以下であると、光源ユニットに組み込んだ場合に、光源ユニットを薄くすることができるため、好ましい。
<Light wavelength conversion layer>
The quantum dot-containing layer can be used as an optical wavelength conversion layer. The optical wavelength conversion layer can convert the excitation light into fluorescence on the long wavelength side and emit it, and there is no particular limitation as long as the relationship between the excitation light wavelength and the emitted fluorescence wavelength can be maintained. Can be used as the excitation light to obtain green or red fluorescence, or ultraviolet light or visible light can be used as the excitation light to obtain fluorescence in the near infrared region. The thickness of the light wavelength conversion layer is preferably 1 to 500 μm, more preferably 1 to 50 μm, and even more preferably 1 to 10 μm. A thickness of 1 μm or more is preferable because a high wavelength conversion effect can be obtained. Further, when the thickness is 500 μm or less, the light source unit can be thinned when incorporated in the light source unit, which is preferable.

<光波長変換部材>
前述の光波長変換層を用いて、光波長変換部材とすることもできる。
光波長変換部材は、基材の少なくとも片面に光波長変換層が形成されたものである。基材は特に限定されないが、例えば、ポリカーボネート、硬質塩ビ、軟質塩ビ、ポリスチレン、発砲スチロール、PMMA、ポリプロピレン、ポリエチレン、PET等のプラスチック基材やこれら混合又は変性品、上質紙、アート紙、コート紙、キャストコート紙等の紙基材、ガラス、ステンレス等の金属基材等を使用することができる。当該基材は、用途により適宜選択することができる。例えば、プリペイドカードや通行カード等であれば、プラスチック基材やこれらの混合又は変性品が耐久性の観点から好ましい。情報記録媒体としての1次元バーコード、2次元バーコード、QRコード(登録商標)(マトリックス型2次元コード)であれば、プラスチック基材又は紙基材が好ましい。また、波長変換用カラーフィルタであれば、透明基板が好ましい。
<Light wavelength conversion member>
The above-mentioned light wavelength conversion layer can also be used as an optical wavelength conversion member.
The light wavelength conversion member is one in which a light wavelength conversion layer is formed on at least one surface of a base material. The base material is not particularly limited, but for example, a plastic base material such as polycarbonate, hard vinyl chloride, soft vinyl chloride, polystyrene, foamed styrol, PMMA, polypropylene, polyethylene, PET, a mixed or modified product thereof, high-quality paper, art paper, coated paper, etc. , Paper base material such as cast coated paper, metal base material such as glass and stainless steel can be used. The base material can be appropriately selected depending on the intended use. For example, in the case of prepaid cards, passable cards, etc., a plastic base material or a mixed or modified product thereof is preferable from the viewpoint of durability. If it is a one-dimensional bar code, a two-dimensional bar code, or a QR code (registered trademark) (matrix type two-dimensional code) as an information recording medium, a plastic base material or a paper base material is preferable. Further, if it is a color filter for wavelength conversion, a transparent substrate is preferable.

<電界発光素子>
本発明の電界発光素子は、基板上に、陽極と、発光層と、陰極とを備え、前記発光層が、前記本発明に係る量子ドットを発光材料として含むことを特徴とする。本発明の電界発光素子は、発光層が前記本発明に係る安定性に優れる量子ドットを含むため、信頼性に優れている。本発明の電界発光素子は、少なくとも基板と、陽極と、発光層と、陰極とを有するものであり、必要に応じて更に他の層を有していてもよい。また、発光層は、単層であっても複層であってもよく、発光層が2層以上ある場合、少なくとも1層が前記本発明に係る発光材料を含んでいればよい。
<Electroluminescent element>
The electroluminescent device of the present invention includes an anode, a light emitting layer, and a cathode on a substrate, and the light emitting layer includes the quantum dots according to the present invention as a light emitting material. The electroluminescent device of the present invention is excellent in reliability because the light emitting layer contains the quantum dots having excellent stability according to the present invention. The electroluminescent device of the present invention has at least a substrate, an anode, a light emitting layer, and a cathode, and may further have another layer if necessary. Further, the light emitting layer may be a single layer or a plurality of layers, and when there are two or more light emitting layers, at least one layer may contain the light emitting material according to the present invention.

即ち、本発明の電界発光素子としては、陽極と、発光層と、陰極とからなる一層型電界発光素子、及び、他の層を含む多層型電界発光素子が挙げられる。多層型電界発光素子を構成する他の層としては、発光層の他に、発光層への正孔や電子の注入を容易にしたり、発光層内での正孔と電子との再結合を円滑に行わせたりすることを目的とした、正孔注入層、正孔輸送層、正孔阻止層、電子注入層等が挙げられる。また、他の層として、発光層と陽極との間で発光層に隣接して存在し、発光層と陽極、又は発光層と、正孔注入層若しくは正孔輸送層とを隔離する役割をもつ層であるインターレイヤー層等が挙げられる。 That is, examples of the electroluminescent device of the present invention include a single-layer electroluminescent device including an anode, a light emitting layer, and a cathode, and a multi-layered electroluminescent device including another layer. As other layers constituting the multi-layer electroluminescent element, in addition to the light emitting layer, it is easy to inject holes and electrons into the light emitting layer, and the recombination of holes and electrons in the light emitting layer is facilitated. Examples thereof include a hole injection layer, a hole transport layer, a hole blocking layer, an electron injection layer, and the like, which are intended to be used by an electron. Further, as another layer, it exists adjacent to the light emitting layer between the light emitting layer and the anode, and has a role of separating the light emitting layer and the anode, or the light emitting layer from the hole injection layer or the hole transport layer. An interlayer layer, which is a layer, and the like can be mentioned.

多層型電界発光素子の代表的な層構成としては、(1)陽極/正孔注入層/発光層/陰極、(2)陽極/正孔注入層/正孔輸送層/発光層/陰極、(3)陽極/正孔注入層/発光層/電子注入層/陰極、(4)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極、(5)陽極/正孔注入層/発光層/正孔阻止層/電子注入層/陰極、(6)陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子注入層/陰極、(7)陽極/発光層/正孔阻止層/電子注入層/陰極、(8)陽極/発光層/電子注入層/陰極(9)陽極/正孔注入層/正孔輸送層/インターレイヤー層/発光層/陰極、(10)陽極/正孔注入層/インターレイヤー層/発光層/電子注入層/陰極、(11)陽極/正孔注入層/正孔輸送層/インターレイヤー層/発光層/電子注入層/陰極、等が挙げられる。 Typical layer configurations of the multi-layer electric field light emitting element include (1) anode / hole injection layer / light emitting layer / cathode, (2) anode / hole injection layer / hole transport layer / light emitting layer / cathode, and (1) 3) anode / hole injection layer / light emitting layer / electron injection layer / cathode, (4) anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode, (5) anode / hole injection Layer / light emitting layer / hole blocking layer / electron injection layer / cathode, (6) anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron injection layer / cathode, (7) anode / Light emitting layer / hole blocking layer / electron injection layer / cathode, (8) anode / light emitting layer / electron injection layer / cathode (9) anode / hole injection layer / hole transport layer / interlayer layer / light emitting layer / cathode , (10) Electron / hole injection layer / interlayer layer / light emitting layer / electron injection layer / cathode, (11) anode / hole injection layer / hole transport layer / interlayer layer / light emitting layer / electron injection layer / Examples include a cathode.

また、上述した各層は、それぞれ二層以上の層構成により形成されてもよく、いくつかの層が繰り返し積層されていてもよい。そのような例として、近年、光取り出し効率の向上を目的に、上述の多層型電界発光の一部の層を多層化する「マルチ・フォトン・エミッション」と呼ばれる素子構成が提案されている。これは例えば、ガラス基板/陽極/正孔輸送層/電子輸送性発光層/電子注入層/電荷発生層/発光層/陰極から構成される電界発光素子に於いて、電荷発生層/発光層のユニットが複数層積層するもの等が挙げられる。 Further, each of the above-mentioned layers may be formed by a layer structure of two or more layers, or several layers may be repeatedly laminated. As such an example, in recent years, for the purpose of improving the light extraction efficiency, an element configuration called "multi-photon emission" in which a part of the above-mentioned multi-layer electroluminescent layers is multi-layered has been proposed. This is, for example, in an electroluminescent element composed of a glass substrate / anode / hole transport layer / electron transporting light emitting layer / electron injection layer / charge generating layer / light emitting layer / cathode, of the charge generating layer / light emitting layer. Examples thereof include units in which a plurality of layers are laminated.

[正孔注入層]
正孔注入層には、発光層に対して優れた正孔注入効果を示し、かつ陽極界面との密着性と薄膜形成性に優れた正孔注入層を形成できる正孔注入材料が用いられる。また、このような材料を多層積層させ、正孔注入効果の高い材料と正孔輸送効果の高い材料とを多層積層させた場合、それぞれに用いる材料を正孔注入材料、正孔輸送材料と呼ぶことがある。これら正孔注入材料や正孔輸送材料は、正孔移動度が大きく、イオン化エネルギーが通常5.5eV以下と小さい必要がある。このような正孔注入層としては、より低い電界強度で正孔を発光層に輸送する材料が好ましく、更に正孔の移動度が、例えば104〜106V/cmの電界印加時に、少なくとも10-6cm2/V・秒であるものが好ましい。正孔注入材料及び正孔輸送材料としては、上記の好ましい性質を有するものであれば特に制限はなく、従来、光導伝材料において正孔の電荷輸送材料として慣用されているものや、有機EL素子の正孔注入層に使用されている公知のものの中から任意のものを選択して用いることができる。
[Hole injection layer]
As the hole injection layer, a hole injection material that exhibits an excellent hole injection effect on the light emitting layer and can form a hole injection layer having excellent adhesion to the anode interface and thin film formation is used. Further, when such a material is laminated in multiple layers and a material having a high hole injection effect and a material having a high hole transport effect are laminated in multiple layers, the materials used for each are referred to as a hole injection material and a hole transport material. Sometimes. These hole injection materials and hole transport materials need to have a large hole mobility and a small ionization energy of usually 5.5 eV or less. As such a hole injection layer, a material that transports holes to the light emitting layer with a lower electric field strength is preferable, and further , when an electric field with a hole mobility of, for example, 10 4 to 10 6 V / cm is applied, at least It is preferably 10 -6 cm 2 / V · sec. The hole injection material and the hole transport material are not particularly limited as long as they have the above-mentioned preferable properties, and are conventionally used as a hole charge transport material in an optical transmission material or an organic EL device. Any known material used for the hole injection layer can be selected and used.

このような正孔注入材料や正孔輸送材料としては、例えばトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ポリシラン系、アニリン系共重合体、特開平1−211399号公報に開示されている導電性高分子オリゴマー(特にチオフェンオリゴマー)等が挙げられる。 Examples of such hole injection materials and hole transport materials include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, and amino-substituted chalcone derivatives. , Oxazole derivative, styrylanthracene derivative, fluorenone derivative, hydrazone derivative, stilben derivative, silazane derivative, polysilane-based, aniline-based copolymer, conductive polymer oligomer (particularly thiophene oligomer) disclosed in JP-A 1-211399. ) Etc. can be mentioned.

また、正孔注入材料や正孔輸送材料として、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物を用いることもできる。例えば、米国特許第5,061,569号に記載されている2個の縮合芳香族環を分子内に有する4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニル等や、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4”−トリス(N−(3−メチルフェニル)−N−フェニルアミノ)トリフェニルアミン等をあげることができる。また、正孔注入材料として銅フタロシアニンや水素フタロシアニン等のフタロシアニン誘導体も挙げられる。更に、その他、芳香族ジメチリデン系化合物、p型Si、p型SiC等の無機化合物も正孔注入材料や正孔輸送材料として使用することができる。 Further, as the hole injection material and the hole transport material, a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound can also be used. For example, 4,4'-bis (N- (1-naphthyl) -N-phenylamino) biphenyl having two fused aromatic rings in the molecule described in US Pat. No. 5,061,569 and the like. , 4,4', 4 "-tris (N- (3-methylphenyl) -N-phenyl" in which three triphenylamine units described in JP-A-4-308688 are linked in a starburst type. Examples thereof include amino) triphenylamines, and phthalocyanine derivatives such as copper phthalocyanine and hydrogen phthalocyanine can also be mentioned as hole injection materials. Further, aromatic dimethyridene compounds, p-type Si, p-type SiC, etc. Inorganic compounds can also be used as hole injection materials and hole transport materials.

更に、正孔注入層に使用できる材料としては、酸化モリブデン(MnOx)、酸化バナジウム(VOx)、酸化ルテニウム(RuOx)、酸化銅(CuOx)、酸化タングステン(WOx)、酸化イリジウム(IrOx)等の無機酸化物及びそれらのドープ体も挙げられる。 Further, materials that can be used for the hole injection layer include molybdenum oxide (MnO x ), vanadium oxide (VO x ), ruthenium oxide (RuO x ), copper oxide (CuO x ), tungsten oxide (WO x ), and iridium oxide. Inorganic oxides such as (IrO x ) and their dopes are also mentioned.

芳香族第三級アミン化合物の具体例としては、例えば、N,N’−ジフェニル−N,N’−(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン、N,N,N’,N’−(4−メチルフェニル)−1,1’−フェニル−4,4’−ジアミン、N,N,N’,N’−(4−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン、N,N’−ジフェニル−N,N’−ジナフチル−1,1’−ビフェニル−4,4’−ジアミン、N,N’−(メチルフェニル)−N,N’−(4−n−ブチルフェニル)−フェナントレン−9,10−ジアミン、N,N−ビス(4−ジ−4−トリルアミノフェニル)−4−フェニル−シクロヘキサン、N,N’−ビス(4’−ジフェニルアミノ−4−ビフェニリル)−N,N’−ジフェニルベンジジン、N,N’−ビス(4’−ジフェニルアミノ−4−フェニル)−N,N’−ジフェニルベンジジン、N,N’−ビス(4’−ジフェニルアミノ−4−フェニル)−N,N’−ジ(1−ナフチル)ベンジジン、N,N’−ビス(4’−フェニル(1−ナフチル)アミノ−4−フェニル)−N,N’−ジフェニルベンジジン、N,N’−ビス(4’−フェニル(1−ナフチル)アミノ−4−フェニル)−N,N’−ジ(1−ナフチル)ベンジジン等が挙げられ、これらは正孔注入材料、正孔輸送材料いずれにも使用することができる。 Specific examples of the aromatic tertiary amine compound include, for example, N, N'-diphenyl-N, N'-(3-methylphenyl) -1,1'-biphenyl-4,4'-diamine, N, N, N', N'-(4-methylphenyl) -1,1'-phenyl-4,4'-diamine, N, N, N', N'-(4-methylphenyl) -1,1' -Biphenyl-4,4'-diamine, N, N'-diphenyl-N, N'-dinaphthyl-1,1'-biphenyl-4,4'-diamine, N, N'-(methylphenyl) -N, N'-(4-n-butylphenyl) -phenanthrene-9,10-diamine, N, N-bis (4-di-4-tolylaminophenyl) -4-phenyl-cyclohexane, N, N'-bis ( 4'-diphenylamino-4-biphenylyl) -N, N'-diphenylbenzidine, N, N'-bis (4'-diphenylamino-4-phenyl) -N, N'-diphenylbenzidine, N, N'- Bis (4'-diphenylamino-4-phenyl) -N, N'-di (1-naphthyl) benzidine, N, N'-bis (4'-phenyl (1-naphthyl) amino-4-phenyl) -N , N'-diphenylbenzidine, N, N'-bis (4'-phenyl (1-naphthyl) amino-4-phenyl) -N, N'-di (1-naphthyl) benzidine and the like. It can be used as both a hole injection material and a hole transport material.

正孔注入層を形成するには、上述の化合物を、例えば真空蒸着法、スピンコート法、キャスト法、ラングミュア−ブロジェット法(LB法)等の公知の方法により薄膜化する。正孔注入層の膜厚は、特に制限はないが、通常は5nm〜5μmである。 To form the hole injection layer, the above-mentioned compound is thinned by a known method such as a vacuum deposition method, a spin coating method, a casting method, or a Langmuir-Bloget method (LB method). The film thickness of the hole injection layer is not particularly limited, but is usually 5 nm to 5 μm.

インターレイヤー層に用いる材料として、ポリビニルカルバゾール及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリアリーレン誘導体、アリールアミン誘導体、トリフェニルジアミン誘導体等の芳香族アミンを含むポリマーが例示される。また、インターレイヤー層の成膜方法は、高分子量の材料を用いる場合には、溶液からの成膜による方法が例示される。 Examples of the material used for the interlayer layer include polyvinylcarbazole and its derivatives, polyarylene derivatives having aromatic amines in the side chain or main chain, arylamine derivatives, and polymers containing aromatic amines such as triphenyldiamine derivatives. Further, as a method of forming an interlayer layer, when a high molecular weight material is used, a method of forming a film from a solution is exemplified.

溶液からのインターレイヤー層の成膜には、公知の湿式成膜法、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法、キャピラリ−コート法、ノズルコート法等の塗布法を用いることができる。 For the film formation of the interlayer layer from the solution, known wet film forming methods such as spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, etc. A coating method such as a dip coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an inkjet printing method, a capillary coating method, or a nozzle coating method can be used.

インターレイヤー層の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよく、通常、1nm〜1μmであり、好ましくは2〜500nmであり、より好ましくは5〜200nmである。 The optimum value of the thickness of the interlayer layer differs depending on the material used, and it may be selected so that the driving voltage and the luminous efficiency are appropriate values. Usually, it is 1 nm to 1 μm, preferably 2 to 500 nm. More preferably, it is 5 to 200 nm.

[電子注入層]
電子注入層には、発光層に対して優れた電子注入効果を示し、かつ陰極界面との密着性と薄膜形成性に優れた電子注入層を形成できる電子注入材料が用いられる。そのような電子注入材料の例としては、金属錯体化合物、含窒素五員環誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、ジフェノキノン誘導体、チオピランジオキシド誘導体、ペリレンテトラカルボン酸誘導体、フレオレニリデンメタン誘導体、アントロン誘導体、シロール誘導体、トリアリールホスフィンオキシド誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、カルシウムアセチルアセトナート、酢酸ナトリウム等が挙げられる。また、セシウム等の金属をバソフェナントロリンにドープした無機/有機複合材料(高分子学会予稿集,第50巻,4号,660頁,2001年発行)や、第50回応用物理学関連連合講演会講演予稿集、No.3、1402頁、2003年発行記載のBCP、TPP、T5MPyTZ等も電子注入材料の例として挙げられるが、素子作成に必要な薄膜を形成し、陰極からの電子を注入できて、電子を輸送できる材料であれば、特にこれらに限定されるものではない。
[Electron injection layer]
As the electron injection layer, an electron injection material that exhibits an excellent electron injection effect on the light emitting layer and can form an electron injection layer having excellent adhesion to the cathode interface and thin film formation is used. Examples of such electron-injected materials include metal complex compounds, nitrogen-containing five-membered ring derivatives, fluorenone derivatives, anthracinodimethane derivatives, diphenoquinone derivatives, thiopyrandioxide derivatives, perylenetetracarboxylic acid derivatives, fleolenilidenemethane. Examples thereof include derivatives, antron derivatives, silol derivatives, triarylphosphine oxide derivatives, polyquinolin and its derivatives, polyquinoxalin and its derivatives, polyfluorene and its derivatives, calcium acetylacetonate, sodium acetate and the like. Inorganic / organic composite materials in which a metal such as cesium is doped with vasophenanthroline (Proceedings of the Society of Polymer Science, Vol. 50, No. 4, p. 660, published in 2001) and the 50th Joint Lecture on Applied Physics. Proceedings of the lecture, No. BCP, TPP, T5MPyTZ, etc. described on page 3, 1402, published in 2003 can also be mentioned as examples of electron injection materials, but can form a thin film necessary for device fabrication, inject electrons from a cathode, and transport electrons. As long as it is a material, it is not particularly limited to these.

上記電子注入材料の中で好ましいものとしては、金属錯体化合物、含窒素五員環誘導体、シロール誘導体、トリアリールホスフィンオキシド誘導体が挙げられる。好ましい金属錯体化合物としては、8−ヒドロキシキノリン又はその誘導体の金属錯体が好適である。8−ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、トリス(8−ヒドロキシキノリナート)アルミニウム、トリス(2−メチル−8−ヒドロキシキノリナート)アルミニウム、トリス(4−メチル−8−ヒドロキシキノリナート)アルミニウム、トリス(5−メチル−8−ヒドロキシキノリナート)アルミニウム、トリス(5−フェニル−8−ヒドロキシキノリナート)アルミニウム、ビス(8−ヒドロキシキノリナート)(1−ナフトラート)アルミニウム、ビス(8−ヒドロキシキノリナート)(2−ナフトラート)アルミニウム、ビス(8−ヒドロキシキノリナート)(フェノラート)アルミニウム、ビス(8−ヒドロキシキノリナート)(4−シアノ−1−ナフトラート)アルミニウム、ビス(4−メチル−8−ヒドロキシキノリナート)(1−ナフトラート)アルミニウム、ビス(5−メチル−8−ヒドロキシキノリナート)(2−ナフトラート)アルミニウム、ビス(5−フェニル−8−ヒドロキシキノリナート)(フェノラート)アルミニウム、ビス(5−シアノ−8−ヒドロキシキノリナート)(4−シアノ−1−ナフトラート)アルミニウム、ビス(8−ヒドロキシキノリナート)クロロアルミニウム、ビス(8−ヒドロキシキノリナート)(o−クレゾラート)アルミニウム等のアルミニウム錯体化合物、トリス(8−ヒドロキシキノリナート)ガリウム、トリス(2−メチル−8−ヒドロキシキノリナート)ガリウム、トリス(4−メチル−8−ヒドロキシキノリナート)ガリウム、トリス(5−メチル−8−ヒドロキシキノリナート)ガリウム、トリス(2−メチル−5−フェニル−8−ヒドロキシキノリナート)ガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)(1−ナフトラート)ガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)(2−ナフトラート)ガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)(フェノラート)ガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)(4−シアノ−1−ナフトラート)ガリウム、ビス(2、4−ジメチル−8−ヒドロキシキノリナート)(1−ナフトラート)ガリウム、ビス(2、5−ジメチル−8−ヒドロキシキノリナート)(2−ナフトラート)ガリウム、ビス(2−メチル−5−フェニル−8−ヒドロキシキノリナート)(フェノラート)ガリウム、ビス(2−メチル−5−シアノ−8−ヒドロキシキノリナート)(4−シアノ−1−ナフトラート)ガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)クロロガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)(o−クレゾラート)ガリウム等のガリウム錯体化合物の他、8−ヒドロキシキノリナートリチウム、ビス(8−ヒドロキシキノリナート)銅、ビス(8−ヒドロキシキノリナート)マンガン、ビス(10−ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(8−ヒドロキシキノリナート)亜鉛、ビス(10−ヒドロキシベンゾ[h]キノリナート)亜鉛等の金属錯体化合物が挙げられる。 Among the electron-injected materials, preferred ones include a metal complex compound, a nitrogen-containing five-membered ring derivative, a siror derivative, and a triarylphosphine oxide derivative. As a preferable metal complex compound, a metal complex of 8-hydroxyquinoline or a derivative thereof is suitable. Specific examples of the metal complex of 8-hydroxyquinolin or a derivative thereof include tris (8-hydroxyquinolinate) aluminum, tris (2-methyl-8-hydroxyquinolinate) aluminum, and tris (4-methyl-8-). Hydroxyquinolinate) Aluminum, Tris (5-methyl-8-Hydroxyquinolinate) Aluminum, Tris (5-phenyl-8-Hydroxyquinolinate) Aluminum, Bis (8-Hydroxyquinolinate) (1-naphtholate) ) Aluminum, bis (8-hydroxyquinolinate) (2-naphtholate) Aluminum, bis (8-hydroxyquinolinate) (phenolate) aluminum, bis (8-hydroxyquinolinate) (4-cyano-1-naphtholate) ) Aluminum, bis (4-methyl-8-hydroxyquinolinate) (1-naphtholate) aluminum, bis (5-methyl-8-hydroxyquinolinate) (2-naphtholate) aluminum, bis (5-phenyl-8) -Hydroxyquinolinate) (phenolate) aluminum, bis (5-cyano-8-hydroxyquinolinate) (4-cyano-1-naphtholate) aluminum, bis (8-hydroxyquinolinate) chloroaluminum, bis (8) -Aluminum complex compounds such as hydroxyquinolinate (o-cresolate) aluminum, tris (8-hydroxyquinolinate) gallium, tris (2-methyl-8-hydroxyquinolinate) gallium, tris (4-methyl- 8-Hydroxyquinolinate) gallium, tris (5-methyl-8-hydroxyquinolinate) gallium, tris (2-methyl-5-phenyl-8-hydroxyquinolinate) gallium, bis (2-methyl-8) -Hydroxyquinolinate) (1-naphtholate) gallium, bis (2-methyl-8-hydroxyquinolinate) (2-naphtholate) gallium, bis (2-methyl-8-hydroxyquinolinate) (phenolate) gallium , Bis (2-methyl-8-hydroxyquinolinate) (4-cyano-1-naphtholate) gallium, bis (2,4-dimethyl-8-hydroxyquinolinate) (1-naphtholate) gallium, bis (2) , 5-Dimethyl-8-Hydroxyquinolinate) (2-naphtholate) gallium, bis (2-methyl-5-phenyl-8-hydroxyquinolinate) (phenolate) gallium, bis (2-methyl-5-si) Anno-8-hydroxyquinolinate) (4-cyano-1-naphtholate) gallium, bis (2-methyl-8-hydroxyquinolinate) chlorogallium, bis (2-methyl-8-hydroxyquinolinate) ( In addition to gallium complex compounds such as o-cresolate) gallium, 8-hydroxyquinolinate lithium, bis (8-hydroxyquinolinate) copper, bis (8-hydroxyquinolinate) manganese, bis (10-hydroxybenzo [h] ] Kinolinate) Metal complex compounds such as berylium, bis (8-hydroxyquinolinate) zinc, and bis (10-hydroxybenzo [h] quinolinate) zinc can be mentioned.

また、好ましい含窒素五員環誘導体としては、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体があげられ、具体的には、2,5−ビス(1−フェニル)−1,3,4−オキサゾール、2,5−ビス(1−フェニル)−1,3,4−チアゾール、2,5−ビス(1−フェニル)−1,3,4−オキサジアゾール、2−(4’−tert−ブチルフェニル)−5−(4”−ビフェニル)1,3,4−オキサジアゾール、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール、1,4−ビス[2−(5 −フェニルオキサジアゾリル)]ベンゼン、1,4−ビス[2−(5−フェニルオキサジアゾリル)−4−tert−ブチルベンゼン]、2−(4’−tert− ブチルフェニル)−5−(4”−ビフェニル)−1,3,4−チアジアゾーvル、2,5−ビス(1−ナフチル)−1,3,4−チアジアゾール、1,4−ビス[2−(5−フェニルチアジアゾリル)]ベンゼン、2−(4’−tert−ブチルフェニル)−5−(4”−ビフェニル)−1,3,4−トリアゾール、2,5−ビス(1−ナフチル)−1,3,4−トリアゾール、1,4−ビス[2−(5−フェニルトリアゾリル)]ベンゼン等が挙げられる。 Further, preferred examples of the nitrogen-containing five-membered ring derivative include an oxadiazole derivative, a thiazole derivative, an oxadiazole derivative, a thiadiazole derivative, and a triazole derivative. Specifically, 2,5-bis (1-phenyl) -1, 3,4-Oxadiazole, 2,5-bis (1-phenyl) -1,3,4-thiazole, 2,5-bis (1-phenyl) -1,3,4-oxadiazole, 2- (4) '-Tert-butylphenyl) -5- (4 "-biphenyl) 1,3,4-oxadiazole, 2,5-bis (1-naphthyl) -1,3,4-oxadiazole, 1,4 -Bis [2- (5-phenyloxadiazolyl)] benzene, 1,4-bis [2- (5-phenyloxadiazolyl) -4-tert-butylbenzene], 2- (4'-tert-butyl Phenyl) -5- (4 "-biphenyl) -1,3,4-thiadiazole, 2,5-bis (1-naphthyl) -1,3,4-thiadiazole, 1,4-bis [2-( 5-Phenylthiazolyl)] Benzene, 2- (4'-tert-butylphenyl) -5- (4 "-biphenyl) -1,3,4-triazole, 2,5-bis (1-naphthyl)- Examples thereof include 1,3,4-triazole and 1,4-bis [2- (5-phenyltriazolyl)] benzene.

更に、電子注入層に使用できる材料としては、酸化亜鉛(ZnOx)、酸化チタン(TiOx)、等の無機酸化物及びそれらのドープ体も挙げられる。 Further, examples of the material that can be used for the electron injection layer include inorganic oxides such as zinc oxide (ZnO x ) and titanium oxide (TiO x ), and their dopes.

更に、正孔阻止層には、発光層を経由した正孔が電子注入層に達するのを防ぎ、薄膜形成性に優れた層を形成できる正孔阻止材料が用いられる。そのような正孔阻止材料の例としては、ビス(8−ヒドロキシキノリナート)(4−フェニルフェノラート)アルミニウム等のアルミニウム錯体化合物や、ビス(2−メチル−8−ヒドロキシキノリナート)(4−フェニルフェノラート)ガリウム等のガリウム錯体化合物、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP)等の含窒素縮合芳香族化合物が挙げられる。 Further, as the hole blocking layer, a hole blocking material that can prevent holes that have passed through the light emitting layer from reaching the electron injection layer and can form a layer having excellent thin film forming property is used. Examples of such hole blocking materials include aluminum complex compounds such as bis (8-hydroxyquinolinate) (4-phenylphenolate) aluminum and bis (2-methyl-8-hydroxyquinolinate) ( Examples thereof include gallium complex compounds such as 4-phenylphenolate) gallium and nitrogen-containing condensed aromatic compounds such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).

[発光層]
電界発光素子の発光層としては、以下の機能を併せ持つものが好適である。
注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、陰極又は電子注入層より電子を注入することができる機能
輸送機能;注入した電荷(電子と正孔)を電界の力で移動させる機能
発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能
ただし、正孔の注入されやすさと電子の注入されやすさには、違いがあってもよく、また正孔と電子の移動度で表される輸送能に大小があってもよい。
[Light emitting layer]
As the light emitting layer of the electroluminescent element, one having the following functions is preferable.
Injection function: A function that can inject holes from the anode or hole injection layer when an electric field is applied, and can inject electrons from the cathode or electron injection layer. Transport function; electric charge (electrons and holes) injected Function to move by the force of light emission function; A function to provide a field for recombination of electrons and holes and connect this to light emission However, there is a difference between the ease of hole injection and the ease of electron injection. Also, the transport capacity represented by the mobility of holes and electrons may be large or small.

本発明の電界発光素子を構成する発光層は少なくとも1層が、本発明の量子ドットからなる発光材料を含む。前記発光材料を含む発光層は、本発明のインク組成物から形成されることが好ましい。また発光層は、本発明の量子ドットのほかに公知の発光材料を含んでもよい。本発明のインク組成物に加えてもよい公知の発光材料として、ベンゾチアゾール系、ベンゾイミダゾール系、ベンゾオキサゾール系等の蛍光増白剤、金属キレート化オキシノイド化合物、スチリルベンゼン系化合物を用いることができる。これら化合物の具体例としては、例えば特開昭59−194393号公報に開示されている化合物が挙げられる。更に他の有用な化合物は、ケミストリー・オブ・シンセティック・ダイズ(1971)628〜637頁及び640頁に列挙されている。 At least one light emitting layer constituting the electroluminescent device of the present invention contains a light emitting material composed of the quantum dots of the present invention. The light emitting layer containing the light emitting material is preferably formed from the ink composition of the present invention. Further, the light emitting layer may contain a known light emitting material in addition to the quantum dots of the present invention. As known light emitting materials that may be added to the ink composition of the present invention, fluorescent whitening agents such as benzothiazole, benzimidazole, and benzoxazole, metal chelated oxinoid compounds, and styrylbenzene compounds can be used. .. Specific examples of these compounds include compounds disclosed in Japanese Patent Application Laid-Open No. 59-194393. Yet other useful compounds are listed in Chemistry of Synthetic Soybeans (1971), pp. 628-637 and 640.

前記金属キレート化オキシノイド化合物としては、例えば、トリス(8−キノリノール)アルミニウム等の8−ヒドロキシキノリン系金属錯体や、ジリチウムエピントリジオン等が好適な化合物として挙げられる。 Examples of the metal chelated oxinoid compound include 8-hydroxyquinoline-based metal complexes such as tris (8-quinolinol) aluminum and dilithium epintridione as suitable compounds.

また、前記スチリルベンゼン系化合物としては、ジスチリルピラジン誘導体又はポリフェニル系化合物も発光層の材料として用いることができる。 Further, as the styrylbenzene-based compound, a distyrylpyrazine derivative or a polyphenyl-based compound can also be used as a material for the light emitting layer.

更に、上述した蛍光増白剤、金属キレート化オキシノイド化合物及びスチリルベンゼン系化合物等以外に、例えば12−フタロペリノン、1,4−ジフェニル−1,3−ブタジエン、1,1,4,4−テトラフェニル−1,3−ブタジエン、ナフタルイミド誘導体、ペリレン誘導体、オキサジアゾール誘導体、アルダジン誘導体、ピラジリン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、スチリルアミン誘導体、クマリン系化合物、国際公開公報WO90/13148号やAppl. Phys. Lett.,vol58,18,P1982(1991)に記載されているような高分子化合物、9,9’,10,10’−テトラフェニル−2,2’−ビアントラセン、PPV(ポリパラフェニレンビニレン)誘導体、ポリフルオレン誘導体やそれら共重合体等、例えば、下記一般式(12)〜一般式(14)の構造を持つものが挙げられる。 Further, in addition to the above-mentioned fluorescent whitening agent, metal chelating oxynoid compound, styrylbenzene compound and the like, for example, 12-phthaloperinone, 1,4-diphenyl-1,3-butadiene, 1,1,4,4-tetraphenyl -1,3-butadiene, naphthalimide derivative, perylene derivative, oxadiazole derivative, aldazine derivative, pyrazirin derivative, cyclopentadiene derivative, pyrolopyrrole derivative, styrylamine derivative, coumarin compound, International Publication No. WO90 / 13148 and Appl .. Phys. Lett. , Vol 58, 18, P1982 (1991), polymer compounds, 9,9', 10,10'-tetraphenyl-2,2'-bianthracene, PPV (polyparaphenylene vinylene) derivatives, Examples thereof include polyfluorene derivatives and copolymers thereof having structures of the following general formulas (12) to (14).

Figure 2021039940
Figure 2021039940

[一般式(12)中、Rx1及びRX2は、各々独立して、1価の脂肪族炭化水素基を表し、n1は、3〜100の整数を表す。] [In the general formula (12), R x1 and R X2 each independently represent a monovalent aliphatic hydrocarbon group, and n1 represents an integer of 3 to 100. ]

Figure 2021039940
Figure 2021039940

[一般式(13)中、Rx3及びRX4は、各々独立して、1価の脂肪族炭化水素基を表し、n2及びn3は、各々独立して、3〜100の整数を表す。] [In general formula (13), R x3 and R X4 each independently represent a monovalent aliphatic hydrocarbon group, and n2 and n3 each independently represent an integer of 3 to 100. ]

Figure 2021039940
Figure 2021039940

[一般式(14)中、RX5及びRX6は、各々独立して、1価の脂肪族炭化水素基を表し、n4及びn5は、各々独立して、3〜100の整数を表す。Phはフェニル基を表す。] [In the general formula (14), R X5 and R X6 each independently represent a monovalent aliphatic hydrocarbon group, and n4 and n5 each independently represent an integer of 3 to 100. Ph represents a phenyl group. ]

また、特開平5−258862号公報等に記載されている一般式(Rs−Q)2−Al−O−L3[式中、L3はフェニル部分を含んでなる炭素原子6〜24個の炭化水素であり、O−L3はフェノラート配位子であり、Qは置換8−キノリノラート配位子を示し、Rsはアルミニウム原子に置換8−キノリノラート配位子が2個を上回り結合するのを立体的に妨害するように選ばれた8−キノリノラート環置換基を示す]で表される化合物も挙げられる。具体的には、ビス(2−メチル−8−キノリノラート)(パラ−フェニルフェノラート)アルミニウム(III)、ビス(2−メチル−8−キノリノラート)(1−ナフトラート)アルミニウム(III)等が挙げられる。 Further, the general formula (Rs-Q) 2- Al-O-L3 [in the formula, L3 is a hydrocarbon having 6 to 24 carbon atoms including a phenyl moiety, which is described in JP-A-5-258862, etc. O-L3 is a phenolate ligand, Q indicates a substituted 8-quinolinolate ligand, and Rs sterically indicates that the substituted 8-quinolinolate ligand is bonded to an aluminum atom in excess of two. Also included are compounds represented by [showing 8-quinolinolate ring substituents selected to interfere]. Specific examples thereof include bis (2-methyl-8-quinolinolate) (para-phenylphenolate) aluminum (III) and bis (2-methyl-8-quinolinolate) (1-naphtholate) aluminum (III). ..

[陽極]
電界発光素子の陽極に使用される材料は、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物又はこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、ITO、SnO2、ZnO等の導電性材料が挙げられる。この陽極を形成するには、これらの電極物質を、蒸着法やスパッタリング法等の方法で薄膜を形成させることができる。この陽極は、上記発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率が10%より大きくなるような特性を有していることが望ましい。また、陽極のシート抵抗は、数百Ω/□以下としてあるものが好ましい。更に、陽極の膜厚は、材料にもよるが通常10nm〜1μm、好ましくは10〜200nmの範囲で選択される。
[anode]
As the material used for the anode of the electroluminescent element, a material having a large work function (4 eV or more), an alloy, an electrically conductive compound, or a mixture thereof as an electrode material is preferably used. Specific examples of such an electrode material include metals such as Au and conductive materials such as CuI, ITO, SnO 2, and ZnO. In order to form this anode, these electrode materials can be formed into a thin film by a method such as a vapor deposition method or a sputtering method. When the light emitted from the light emitting layer is taken out from the anode, it is desirable that the anode has a characteristic that the transmittance of the anode with respect to the light emitted is larger than 10%. Further, the sheet resistance of the anode is preferably several hundreds of Ω / □ or less. Further, the film thickness of the anode is usually selected in the range of 10 nm to 1 μm, preferably 10 to 200 nm, although it depends on the material.

[陰極]
電界発光素子の陰極に使用される材料は、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム・銀合金、アルミニウム/酸化アルミニウム、アルミニウム・リチウム合金、インジウム、希土類金属等が挙げられる。この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。ここで、発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、更に、膜厚は通常10nm〜1μm、好ましくは50〜200nmである。
[cathode]
As the material used for the cathode of the electroluminescent element, a metal having a small work function (4 eV or less), an alloy, an electrically conductive compound, or a mixture thereof is used as an electrode material. Specific examples of such electrode materials include sodium, sodium-potassium alloys, magnesium, lithium, magnesium / silver alloys, aluminum / aluminum oxide, aluminum / lithium alloys, indium, rare earth metals and the like. This cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. Here, when the light emitted from the light emitting layer is taken out from the cathode, the transmittance of the cathode with respect to the light emitted is preferably larger than 10%. The sheet resistance of the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually 10 nm to 1 μm, preferably 50 to 200 nm.

電界発光素子を作製する方法については、上記の材料及び方法により陽極、発光層、必要に応じて正孔注入層、及び必要に応じて電子注入層を形成し、最後に陰極を形成すればよい。また、陰極から陽極へ、前記と逆の順序で電界発光素子を作製することもできる。 As for the method for producing the electroluminescent device, the anode, the light emitting layer, the hole injection layer if necessary, and the electron injection layer if necessary may be formed by the above materials and methods, and finally the cathode may be formed. .. Further, the electroluminescent device can be manufactured from the cathode to the anode in the reverse order of the above.

電界発光素子は、透光性の基材上に作製する。透光性基材は電界発光素子を支持する基板であり、その透光性については、400〜700nmの可視領域の光の透過率が50%以上、好ましくは90%以上であるものが望ましく、更に平滑な基材を用いるのが好ましい。 The electroluminescent device is made on a translucent substrate. The translucent base material is a substrate that supports an electroluminescent element, and its translucency is preferably such that the light transmittance in the visible region of 400 to 700 nm is 50% or more, preferably 90% or more. It is preferable to use a smoother base material.

これら基材は、機械的・熱的強度を有し、透明であれば特に限定されるものではなく、屈曲性を有するフィルム又はシート状の基材であってもよい。基材としては、例えば、ガラス板、合成樹脂板等が好適に用いられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等で成形された板が挙げられる。また、合成樹脂板としては、ポリカーボネート樹脂、アクリル樹脂、ポリエチレンテレフタレート樹脂、ポリエーテルサルファイド樹脂、ポリサルフォン樹脂等の板が挙げられる。 These base materials are not particularly limited as long as they have mechanical and thermal strength and are transparent, and may be a flexible film or sheet-like base material. As the base material, for example, a glass plate, a synthetic resin plate, or the like is preferably used. Examples of the glass plate include plates formed of soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like. Examples of the synthetic resin plate include plates such as polycarbonate resin, acrylic resin, polyethylene terephthalate resin, polyether sulfide resin, and polysulfon resin.

電界発光素子の各層の形成方法としては、真空蒸着、電子線ビーム照射、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法、若しくはスピンコーティング、ディッピング、フローコーティング等の湿式成膜法のいずれかの方法を適用することができる。また、LITI(Laser Induced Thermal Imaging、レーザー熱転写)法や、印刷(オフセット印刷、フレキソ印刷、グラビア印刷、スクリーン印刷)、インクジェット等の方法を適用することもできる。ただし、発光層は湿式成膜法での成膜であることが好ましい。 As a method for forming each layer of the electroluminescent element, either a dry film forming method such as vacuum deposition, electron beam irradiation, sputtering, plasma, or ion plating, or a wet film forming method such as spin coating, dipping, or flow coating. Method can be applied. Further, a method such as LITI (Laser Induced Thermal Imaging), printing (offset printing, flexographic printing, gravure printing, screen printing), inkjet or the like can also be applied. However, the light emitting layer is preferably formed by a wet film forming method.

有機層は、特に分子堆積膜であることが好ましい。分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。また、樹脂等の結着剤と材料化合物とを溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜化することによっても有機層を形成することができる。各層の膜厚は特に限定されるものではないが、膜厚が厚すぎると一定の光出力を得るために大きな印加電圧が必要となり効率が悪くなり、逆に膜厚が薄すぎるとピンホール等が発生し、電界を印加しても充分な発光輝度が得にくくなる。したがって、各層の膜厚は、1nmから1μmの範囲が適しているが、10nmから0.2μmの範囲がより好ましい。 The organic layer is particularly preferably a molecular deposition film. A molecular deposition film is a thin film deposited and formed from a material compound in a vapor phase state, or a film solidified and formed from a material compound in a solution state or a liquid phase state. It can be classified from the thin film (molecular cumulative film) formed by the LB method by the difference in aggregated structure and higher-order structure, and the functional difference caused by the difference. An organic layer can also be formed by dissolving a binder such as a resin and a material compound in a solvent to prepare a solution, and then thinning the solution by a spin coating method or the like. The film thickness of each layer is not particularly limited, but if the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in inefficiency. On the contrary, if the film thickness is too thin, pinholes, etc. Is generated, and it becomes difficult to obtain sufficient emission brightness even when an electric field is applied. Therefore, the film thickness of each layer is preferably in the range of 1 nm to 1 μm, but more preferably in the range of 10 nm to 0.2 μm.

また、電界発光素子の温度、湿度、雰囲気等に対する安定性向上のために、素子の表面に保護層を設けたり、樹脂等により素子全体を被覆や封止を施したりしてもよい。特に素子全体を被覆や封止する際には、光によって硬化する光硬化性樹脂が好適に使用される。 Further, in order to improve the stability of the electroluminescent element with respect to temperature, humidity, atmosphere and the like, a protective layer may be provided on the surface of the element, or the entire element may be coated or sealed with a resin or the like. In particular, when coating or sealing the entire device, a photocurable resin that is cured by light is preferably used.

電界発光素子に印加する電流は通常、直流であるが、パルス電流や交流を用いてもよい。電流値、電圧値は、素子破壊しない範囲内であれば特に制限はないが、素子の消費電力や寿命を考慮すると、なるべく小さい電気エネルギーで効率良く発光させることが望ましい。 The current applied to the electroluminescent element is usually direct current, but pulse current or alternating current may be used. The current value and voltage value are not particularly limited as long as they do not destroy the element, but considering the power consumption and life of the element, it is desirable to efficiently emit light with as little electric energy as possible.

電界発光素子の駆動方法は、パッシブマトリクス法のみならず、アクティブマトリックス法での駆動も可能である。また、本発明の電界発光素子から光を取り出す方法としては、陽極側から光を取り出すボトム・エミッションという方法のみならず、陰極側から光を取り出すトップ・エミッションという方法も使用可能である。 The electroluminescent element can be driven not only by the passive matrix method but also by the active matrix method. Further, as a method of extracting light from the electroluminescent element of the present invention, not only a method of bottom emission which extracts light from the anode side but also a method of top emission which extracts light from the cathode side can be used.

電界発光素子のフルカラー化方式の主な方式としては、3色塗り分け方式、色変換方式、カラーフィルタ方式が挙げられる。3色塗り分け方式では、シャドウマスクを使った蒸着法や、インクジェット法や印刷法が挙げられる。また、レーザー熱転写法も用いることができる。色変換方式では、青色発光の発光層を使って、蛍光色素を分散した色変換(CCM)層を通して、青色より長波長の緑色と赤色に変換する方法である。カラーフィルタ方式では、白色発光の有機EL素子を使って、液晶用カラーフィルタを通して3原色の光を取り出す方法であるが、これら3原色に加えて、一部白色光をそのまま取り出して発光に利用することで、素子全体の発光効率をあげることもできる。 The main methods of the full-color electroluminescent element are a three-color painting method, a color conversion method, and a color filter method. Examples of the three-color painting method include a vapor deposition method using a shadow mask, an inkjet method, and a printing method. A laser thermal transfer method can also be used. The color conversion method is a method of converting from blue to green and red having a longer wavelength than blue through a color conversion (CCM) layer in which a fluorescent dye is dispersed by using a light emitting layer that emits blue light. The color filter method is a method of extracting light of three primary colors through a color filter for liquid crystal using an organic EL element that emits white light. In addition to these three primary colors, a part of white light is extracted as it is and used for light emission. As a result, the light emission efficiency of the entire element can be increased.

更に、電界発光素子は、マイクロキャビティ構造を採用しても構わない。これは、有機EL素子は、発光層が陽極と陰極との間に挟持された構造であり、発光した光は陽極と陰極との間で多重干渉を生じるが、陽極及び陰極の反射率、透過率等の光学的な特性と、これらに挟持された有機層の膜厚とを適当に選ぶことにより、多重干渉効果を積極的に利用し、素子より取り出される発光波長を制御するという技術である。これにより、発光色度を改善することも可能となる。 Further, the electroluminescent element may adopt a microcavity structure. This is because the organic EL element has a structure in which a light emitting layer is sandwiched between an anode and a cathode, and the emitted light causes multiple interference between the anode and the cathode, but the reflectance and transmission of the anode and the cathode are transmitted. It is a technology that positively utilizes the multiple interference effect and controls the emission wavelength extracted from the element by appropriately selecting the optical characteristics such as the rate and the thickness of the organic layer sandwiched between them. .. This also makes it possible to improve the emission chromaticity.

以上述べたように、本発明の量子ドットを用いた電界発光素子は、蛍光量子収率及び信頼性に優れるものである。よって、当該電界発光素子は、壁掛けテレビ等のフラットパネルディスプレイや各種の平面発光体として用いることができる。また、複写機やプリンター等の光源、液晶ディスプレイや計器類等の光源、表示板、標識灯等に応用することができる。 As described above, the electroluminescent device using the quantum dots of the present invention is excellent in fluorescence quantum yield and reliability. Therefore, the electroluminescent element can be used as a flat panel display such as a wall-mounted television or various flat light emitting bodies. It can also be applied to light sources such as copiers and printers, light sources such as liquid crystal displays and instruments, display boards, indicator lights and the like.

<光電変換素子>
本発明の光電変換素子は、一対の電極間に上記光電変換層を有するものである。本発明の光電変換素子において、公知の光電変換素子の構成を適用することができる。また、本発明の光電変換素子は、光電変換層以外は公知の方法で製造することができる。
<Photoelectric conversion element>
The photoelectric conversion element of the present invention has the photoelectric conversion layer between a pair of electrodes. In the photoelectric conversion element of the present invention, a known configuration of the photoelectric conversion element can be applied. Further, the photoelectric conversion element of the present invention can be manufactured by a known method except for the photoelectric conversion layer.

ここで、本発明のインク組成物を用いて作成することができる光電変換素子について詳細に説明する。一般的に、半導体粒子を用いた光電変換素子は、少なくとも一対の電極と光電変換層から構成される。光電変換効率の向上などを目的に、電極と半導体粒子のエネルギー的なマッチングや半導体粒子から成る光電変換層の作製方法などによってさまざまな形の素子構造が提案されている。例えば、本発明のインク組成物を用いて以下に示す公知の構成からなる光電変換素子を作製することができる。 Here, a photoelectric conversion element that can be produced by using the ink composition of the present invention will be described in detail. Generally, a photoelectric conversion element using semiconductor particles is composed of at least a pair of electrodes and a photoelectric conversion layer. For the purpose of improving the photoelectric conversion efficiency, various types of device structures have been proposed depending on the energy matching between the electrode and the semiconductor particles and the method for producing the photoelectric conversion layer composed of the semiconductor particles. For example, the ink composition of the present invention can be used to produce a photoelectric conversion element having the following known configurations.

1.ショットキー型光電変換素子
電子供与性(p型)又は電子受容性(n型)の半導体粒子と電極との界面において形成されるショットキー障壁を利用し、光起電力を得る光電変換素子である。例えば、p型の光電変換層を用いた場合には、一対の電極の内仕事関数が小さいほうの電極との界面にショットキー障壁が形成され、その界面に電荷分離が生じ光電変換が行われる。
1. 1. Schottky type photoelectric conversion element A photoelectric conversion element that obtains photovoltaic power by using a Schottky barrier formed at the interface between an electron-donating (p-type) or electron-accepting (n-type) semiconductor particle and an electrode. .. For example, when a p-type photoelectric conversion layer is used, a Schottky barrier is formed at the interface between the pair of electrodes and the electrode having the smaller internal work function, and charge separation occurs at the interface to perform photoelectric conversion. ..

2.バイレイヤーヘテロ接合型光電変換素子
一対の電極の間に、電子供与性(p型)及び電子受容性(n型)の半導体粒子やその他の半導体材料を個々に形成し、pn接合界面に光電荷分離を生じさせ光電流を得る光電変換素子である。
2. Bilayer heterojunction photoelectric conversion element Electron donating (p-type) and electron-accepting (n-type) semiconductor particles and other semiconductor materials are individually formed between a pair of electrodes, and light charges are applied to the pn junction interface. It is a photoelectric conversion element that causes separation and obtains a photocurrent.

3.バルクヘテロ接合型光電変換素子
一対の電極の間に、電子供与性(p型)及び電子受容性(n型)の半導体粒子やその他の半導体材料を任意の比率で混合させ有機半導体層を形成する。この際、p型及びn型の材料は均一に分散していても、不均一であっても構わない。個々のp型材料、n型材料が形成する界面で光電荷分離が起こるため、バイレイヤーヘテロ接合型よりもpn接合を広く形成させることが出来る。
3. 3. Bulk heterojunction type photoelectric conversion element An organic semiconductor layer is formed by mixing electron-donating (p-type) and electron-accepting (n-type) semiconductor particles and other semiconductor materials at an arbitrary ratio between a pair of electrodes. At this time, the p-type and n-type materials may be uniformly dispersed or non-uniform. Since photocharge separation occurs at the interface formed by each p-type material and n-type material, the pn junction can be formed wider than that of the bilayer heterojunction type.

<電極>
光電変換素子を構成する一対の電極の内、少なくとも一つは光を透過することが好ましい。具体的な例としては、酸化スズ、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)等の導電性金属酸化物、あるいは金、銀、白金、クロム、ニッケル、リチウム、インジウム、アルミニウム、カルシウム、マグネシウム等の金属、さらにこれらの金属と導電性金属酸化物との混合物又は積層物などが挙げられる。
<Electrode>
It is preferable that at least one of the pair of electrodes constituting the photoelectric conversion element transmits light. Specific examples include conductive metal oxides such as tin oxide, zinc oxide, indium oxide, and indium tin oxide (ITO), or gold, silver, platinum, chromium, nickel, lithium, indium, aluminum, calcium, and magnesium. And the like, and examples thereof include a mixture or a laminate of these metals and a conductive metal oxide.

電極の形状としては、フラットな形状が一般的であるが、エネルギー変換効率を向上させるために、波型、ピラミッド型、くし型等の形状であっても良い。これら電極の形成方法としては、一般的な電極の形成方法を用いることができ、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD法、CVD法、化学反応法(ゾルゲル法など)、キャスト法、スプレーコーティング法、インクジェット法、スピンコート法などを挙げることができる。 The shape of the electrode is generally flat, but may be corrugated, pyramid, comb, or the like in order to improve energy conversion efficiency. As a method for forming these electrodes, a general electrode forming method can be used, and a PVD method such as a vacuum deposition method, a sputtering method, and an ion plating method, a CVD method, a chemical reaction method (sol-gel method, etc.), and casting can be used. Examples thereof include a method, a spray coating method, an inkjet method, and a spin coating method.

光電変換素子は、一対の電極の間に光電変換層以外の層を備えていてもよく、上記正孔注入層、正孔輸送層、電子輸送層、及び/又は、電子注入層を有していてもよい。 The photoelectric conversion element may include a layer other than the photoelectric conversion layer between the pair of electrodes, and has the hole injection layer, the hole transport layer, the electron transport layer, and / or the electron injection layer. You may.

光電変換素子は、上記の各層以外に、その他の構成部材を備えていても良い。例えば、紫外線を透過させない光学膜(フィルタ)を備えていても良い。紫外線は、エネルギーが高いため有機材料を劣化させる一因となる。この紫外線を遮断することにより、素子を長寿命化させることが出来る。 The photoelectric conversion element may include other constituent members in addition to the above-mentioned layers. For example, an optical film (filter) that does not transmit ultraviolet rays may be provided. Ultraviolet rays have high energy and contribute to deterioration of organic materials. By blocking this ultraviolet ray, the life of the element can be extended.

外部からの衝撃に対して光電変換層を保護する目的で、保護膜を備えていても良い。保護膜は、例えば、スチレン樹脂、エポキシ樹脂、アクリル樹脂、ポリウレタン、ポリイミド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリエチレンポリビニルアルコール共重合体等のポリマー膜、酸化珪素、窒化珪素、酸化アルミニウム等の無機酸化膜や窒化膜、アルミニウム等の金属板もしくは金属箔、あるいはこれらの積層膜などにより構成することができる。なお、これらの保護膜の材料は、1種のみを用いてもよく、2種以上をも良い。 A protective film may be provided for the purpose of protecting the photoelectric conversion layer from an external impact. The protective film is, for example, a polymer film such as styrene resin, epoxy resin, acrylic resin, polyurethane, polyimide, polyvinyl alcohol, polyvinylidene fluoride, polyethylene polyvinyl alcohol copolymer, or an inorganic oxide film such as silicon oxide, silicon nitride, or aluminum oxide. It can be composed of a nitride film, a metal plate or metal foil such as aluminum, or a laminated film thereof. As the material of these protective films, only one kind may be used, or two or more kinds may be used.

一般に半導体微粒子は、空気中の水分や酸素により劣化を招くといわれている。それを防ぐため、バリア膜を備えていても良い。例えば、金属又は無機酸化物が好ましく、Ti、Al、Mg、Zr、酸化珪素、酸化アルミニウム、酸化窒化珪素、酸化窒化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ、酸化イットリウム、酸化ホウ素、酸化カルシウム等を挙げることができる。これら各種機能性膜を積層させる順番は特になく、これらの機能を併せ持つ機能性膜を用いても良い。 Generally, it is said that semiconductor fine particles are deteriorated by moisture and oxygen in the air. A barrier film may be provided to prevent this. For example, metals or inorganic oxides are preferable, and Ti, Al, Mg, Zr, silicon oxide, aluminum oxide, silicon nitride, aluminum oxide, magnesium oxide, zinc oxide, indium oxide, tin oxide, yttrium oxide, boron oxide, etc. Calcium oxide and the like can be mentioned. There is no particular order in which these various functional films are laminated, and a functional film having these functions may be used.

以下に、実施例により本発明を更に具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。尚、特に断りの無い場合、実施例及び比較例における「部」及び「%」は、「質量部」及び「質量%」を表す。また、質量平均分子量(Mw)は、GPCを用いて測定し、ポリスチレン換算で求めた値である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples do not limit the scope of rights of the present invention. Unless otherwise specified, "parts" and "%" in Examples and Comparative Examples represent "parts by mass" and "% by mass". The mass average molecular weight (Mw) is a value obtained by measuring using GPC and converting into polystyrene.

<一般式(1)で示される化合物の合成>
(化合物1の合成)
ナスフラスコにメタノール80部、4−(N,N−ジフェニルアミノ)ベンズアルデヒド5.5部、2−アミノエタンチオール1.8部を加えた後、3時間加熱還流した。メタノールを減圧留去した後、得られた粗生成物をろ過で回収し、メタノールで洗浄した。得られた固体を減圧乾燥して化合物1を得た。収率は99%であった。
<Synthesis of compound represented by general formula (1)>
(Synthesis of Compound 1)
After adding 80 parts of methanol, 5.5 parts of 4- (N, N-diphenylamino) benzaldehyde and 1.8 parts of 2-aminoethanethiol to the eggplant flask, the mixture was heated under reflux for 3 hours. After distilling off methanol under reduced pressure, the obtained crude product was recovered by filtration and washed with methanol. The obtained solid was dried under reduced pressure to obtain Compound 1. The yield was 99%.

(化合物2の合成)
ナスフラスコにメタノール80部、4−(N,N−ジ−p−トリルアミノ)ベンズアルデヒド6.6.0部、2−アミノエタンチオール1.8部を加えた後、3時間加熱還流した。メタノールを減圧留去した後、得られた粗生成物をろ過で回収し、メタノールで洗浄した。得られた固体を減圧乾燥して化合物2を得た。収率は88%であった。
(Synthesis of Compound 2)
After adding 80 parts of methanol, 6.6.0 parts of 4- (N, N-di-p-tolylamino) benzaldehyde, and 1.8 parts of 2-aminoethanethiol to an eggplant flask, the mixture was heated under reflux for 3 hours. After distilling off methanol under reduced pressure, the obtained crude product was recovered by filtration and washed with methanol. The obtained solid was dried under reduced pressure to obtain Compound 2. The yield was 88%.

(化合物3の合成)
ナスフラスコにメタノール80部、4−(ビス(p−メトキシフェニル)アミノ)ベンズアルデヒド6.7部、2−アミノエタンチオール1.8部を加えた後、3時間加熱還流した。メタノールを減圧留去した後、得られた粗生成物をろ過で回収し、メタノールで洗浄した。得られた固体を減圧乾燥して化合物3を得た。収率は93%であった。
(Synthesis of compound 3)
After adding 80 parts of methanol, 6.7 parts of 4- (bis (p-methoxyphenyl) amino) benzaldehyde, and 1.8 parts of 2-aminoethanethiol to an eggplant flask, the mixture was heated under reflux for 3 hours. After distilling off methanol under reduced pressure, the obtained crude product was recovered by filtration and washed with methanol. The obtained solid was dried under reduced pressure to obtain Compound 3. The yield was 93%.

(化合物4の合成)
ナスフラスコにメタノール80部、9−エチル−3−カルバゾールカルボキシアルデヒド5.2部、2−アミノエタンチオール1.8部を加えた後、3時間加熱還流した。メタノールを減圧留去した後、得られた粗生成物をろ過で回収し、メタノールで洗浄した。得られた固体を減圧乾燥して化合物4を得た。収率は95%であった。
(Synthesis of Compound 4)
After adding 80 parts of methanol, 5.2 parts of 9-ethyl-3-carbazolecarboxyaldehyde and 1.8 parts of 2-aminoethanethiol to the eggplant flask, the mixture was heated under reflux for 3 hours. After distilling off methanol under reduced pressure, the obtained crude product was recovered by filtration and washed with methanol. The obtained solid was dried under reduced pressure to obtain Compound 4. The yield was 95%.

得られた化合物1〜4及び比較例に用いた化合物0及び化合物19を表5に示す。 Table 5 shows the obtained compounds 1 to 4 and the compounds 0 and 19 used in the comparative examples.

Figure 2021039940
Figure 2021039940

<樹脂の製造>
[樹脂溶液1の調製]
セパラブル4口フラスコに温度計、冷却管、窒素ガス導入管、撹拌装置を取り付けた反応容器にメシチレン70部を仕込み、80℃に昇温し、反応容器内を窒素置換した後、滴下管よりn−ブチルメタクリレート18部、メタクリル酸メチル12部、2,2’−アゾビスイソブチロニトリル0.4部の混合物を2時間かけて滴下した。滴下終了後、更に3時間反応を継続し、質量平均分子量(Mw)26,000のアクリル樹脂の溶液を得た。室温まで冷却した後、樹脂溶液約2gをサンプリングして180℃、20分加熱乾燥して不揮発分を測定し、先に合成した樹脂溶液に不揮発分が30質量%になるようにメシチレンを添加して、アクリル樹脂溶液1を調製した。
<Manufacturing of resin>
[Preparation of resin solution 1]
70 parts of mecitylene was placed in a reaction vessel equipped with a thermometer, a cooling tube, a nitrogen gas introduction tube, and a stirrer in a separable 4-neck flask, the temperature was raised to 80 ° C., the inside of the reaction vessel was replaced with nitrogen, and then n from the dropping tube. A mixture of 18 parts of −butyl methacrylate, 12 parts of methyl methacrylate and 0.4 parts of 2,2′-azobisisobutyronitrile was added dropwise over 2 hours. After completion of the dropping, the reaction was continued for another 3 hours to obtain a solution of an acrylic resin having a mass average molecular weight (Mw) of 26,000. After cooling to room temperature, about 2 g of the resin solution was sampled and dried by heating at 180 ° C. for 20 minutes to measure the non-volatile content, and mesitylene was added to the previously synthesized resin solution so that the non-volatile content was 30% by mass. Acrylic resin solution 1 was prepared.

[樹脂溶液2の調製]
セパラブル4口フラスコに温度計、冷却管、窒素ガス導入管、撹拌装置を取り付けた反応容器に、ジエチレングリコールモノブチルエーテルアセテート(DBCA)70部を仕込み、80℃に昇温し、反応容器内を窒素置換した後、滴下管よりn−ブチルメタクリレート14部、メタクリル酸メチル10部、スチレン6部、2,2’−アゾビスイソブチロニトリル0.4部の混合物を2時間かけて滴下した。滴下終了後、更に3時間反応を継続し、質量平均分子量(Mw)26,000のアクリル樹脂の溶液を得た。室温まで冷却した後、樹脂溶液約2gをサンプリングして180℃、20分加熱乾燥して不揮発分を測定し、先に合成した樹脂溶液に不揮発分が30質量%になるようにジエチレングリコールモノブチルエーテルアセテートを添加して、アクリル樹脂溶液2を調製した。
[Preparation of resin solution 2]
70 parts of diethylene glycol monobutyl ether acetate (DBCA) was charged into a reaction vessel equipped with a thermometer, a cooling pipe, a nitrogen gas introduction pipe, and a stirrer in a separable 4-neck flask, the temperature was raised to 80 ° C., and the inside of the reaction vessel was replaced with nitrogen. Then, a mixture of 14 parts of n-butyl methacrylate, 10 parts of methyl methacrylate, 6 parts of styrene, and 0.4 part of 2,2′-azobisisobutyronitrile was added dropwise from the dropping tube over 2 hours. After completion of the dropping, the reaction was continued for another 3 hours to obtain a solution of an acrylic resin having a mass average molecular weight (Mw) of 26,000. After cooling to room temperature, about 2 g of the resin solution is sampled and dried by heating at 180 ° C. for 20 minutes to measure the non-volatile content. Diethylene glycol monobutyl ether acetate so that the non-volatile content is 30% by mass in the previously synthesized resin solution. Was added to prepare an acrylic resin solution 2.

[樹脂溶液3の調製]
ノルボルネン200部、シクロペンテン50部、1−ヘキセン180部及びトルエン750部を、窒素置換した反応容器に仕込み、60℃に加熱した。これに、トリエチルアルミニウム(1.5モル/l)のトルエン溶液0.62部、tert−C49OH/CH3OHで変性(tert−C49OH/CH3OH/WCl6=0.35/0.3/1;モル比)したWCl6溶液(濃度0.05モル/l)3.7部を加え、80℃で3時間加熱攪拌して、開環重合反応、水素添加反応を行い、次いでトリメチルベンゼンを用いて不揮発分を30%に調製して、シクロペンタジエン樹脂溶液3を得た。
[Preparation of resin solution 3]
200 parts of norbornene, 50 parts of cyclopentene, 180 parts of 1-hexene and 750 parts of toluene were placed in a nitrogen-substituted reaction vessel and heated to 60 ° C. This was modified with 0.62 parts of a toluene solution of triethylaluminum (1.5 mol / l) and tert-C 4 H 9 OH / CH 3 OH (tert-C 4 H 9 OH / CH 3 OH / WCl 6 = Add 3.7 parts of WCl 6 solution (concentration: 0.05 mol / l) (0.35 / 0.3 / 1; molar ratio), heat and stir at 80 ° C. for 3 hours, ring-open polymerization reaction, hydrogenation. The reaction was carried out, and then the non-volatile content was adjusted to 30% using trimethylbenzene to obtain a cyclopentadiene resin solution 3.

<量子ドットPbS−0の調製>
まず、硫黄源溶液として、単体硫黄0.40部とオレイルアミン6.0部を反応容器中、窒素雰囲気下、120℃に加熱して均一な溶液をした後、25℃に冷却した。次に、鉛源溶液として、塩化鉛0.32部、オレイルアミン6.0部を別の反応容器中、窒素雰囲気下、120℃に加熱した。その後、鉛源溶液を40℃に調製した後、上記の硫黄源溶液1.8部を一気に加えた。30秒間反応させた後、容器を氷浴に漬けて急冷した後、ヘキサン13部で希釈した。遠心分離(4000rpm、5分間)を行って未反応の原料を除去した後、ブタノール:メタノール=2:1(体積比)からなる混合液を12部加えて量子ドットを沈降させ、遠心分離(4000rpm、5分間)を行い、量子ドットを回収した。その後、ヘキサン:オレイン酸=1:2(体積比)からなる混合液を24部加えて30分間攪拌し、遠心分離を行い、上澄みを回収した。量子ドット沈降、再分散、不純物沈降を更に2回繰り返し、最後に量子ドットを沈降させ、真空乾燥した後、n−オクタンを用いて固形分濃度5%に調製し、量子ドットPbS−0を得た(平均粒径3.5nm)。
<Preparation of quantum dot PbS-0>
First, as a sulfur source solution, 0.40 parts of elemental sulfur and 6.0 parts of oleylamine were heated to 120 ° C. in a nitrogen atmosphere in a reaction vessel to form a uniform solution, and then cooled to 25 ° C. Next, as a lead source solution, 0.32 parts of lead chloride and 6.0 parts of oleylamine were heated to 120 ° C. in another reaction vessel under a nitrogen atmosphere. Then, after preparing the lead source solution at 40 ° C., 1.8 parts of the above sulfur source solution was added at once. After reacting for 30 seconds, the container was immersed in an ice bath to quench it, and then diluted with 13 parts of hexane. After centrifuging (4000 rpm, 5 minutes) to remove unreacted raw materials, 12 parts of a mixed solution of butanol: methanol = 2: 1 (volume ratio) was added to precipitate the quantum dots, and then centrifuged (4000 rpm). 5 minutes) to recover the quantum dots. Then, 24 parts of a mixed solution consisting of hexane: oleic acid = 1: 2 (volume ratio) was added, and the mixture was stirred for 30 minutes, centrifuged, and the supernatant was recovered. Quantum dot sedimentation, redispersion, and impurity sedimentation are repeated twice, and finally the quantum dots are precipitated, vacuum dried, and then adjusted to a solid content concentration of 5% using n-octane to obtain quantum dots PbS-0. (Average particle size 3.5 nm).

<量子ドットPbSe−0の合成>
鉛源溶液として、酸化鉛0.22部、オレイン酸0.73部、1−オクタデセン10部を反応容器中、窒素雰囲気下、150℃に加熱した。その後、1M−トリオクチルホスフィン-セレン溶液を2.5部とジフェニルホスフィン0.028部からなる混合物を素早く加え、反応溶液を180℃に加熱した後、160℃に保温し、2分間反応させたあと、反応溶液を急冷した。10部のヘキサンで希釈した後、アセトンで沈殿させた。沈殿物をアセトンで5回洗浄し、真空乾燥させて量子ドットPbSe−0を得た(平均粒径2.7nm)。
<Synthesis of quantum dots PbSe-0>
As a lead source solution, 0.22 parts of lead oxide, 0.73 parts of oleic acid, and 10 parts of 1-octadecene were heated to 150 ° C. in a reaction vessel under a nitrogen atmosphere. Then, a mixture of 2.5 parts of 1M-trioctylphosphine-selenium solution and 0.028 parts of diphenylphosphine was quickly added, the reaction solution was heated to 180 ° C., kept at 160 ° C., and reacted for 2 minutes. After that, the reaction solution was rapidly cooled. After diluting with 10 parts of hexane, it was precipitated with acetone. The precipitate was washed 5 times with acetone and vacuum dried to obtain quantum dots PbSe-0 (average particle size 2.7 nm).

<量子ドットAg2S−0の合成>
0.04部のオレイン酸銀と、8部のオクタンチオールと、4部のドデシルアミンとを反応容器中、Ar雰囲気下、200℃で0.5時間加熱した。この溶液を室温に放冷した後、40部の無水エタノールを添加した。得られた混合物を遠心分離し、真空乾燥させて量子ドットAg2S−0を得た(平均粒径2.5nm)。
<Synthesis of quantum dot Ag 2 S-0>
0.04 parts of silver oleate, 8 parts of octanethiol, and 4 parts of dodecylamine were heated in a reaction vessel at 200 ° C. for 0.5 hours in an Ar atmosphere. After allowing this solution to cool to room temperature, 40 parts of absolute ethanol was added. The obtained mixture was centrifuged and vacuum dried to obtain quantum dots Ag 2 S-0 (average particle size 2.5 nm).

<量子ドットの製造>
[比較例0](量子ドットQD−0)
無水酢酸亜鉛0.55部、ドデカンチオール(化合物0)7.0部、オレイルアミン5.0部を加熱溶解し添加液を作成した。別途、塩化インジウム0.22部、オクチルアミン8.25部を反応容器に入れ、窒素バブリングを行いながら、165℃に加熱した。塩化インジウムが溶解した後、ジエチルアミノホスフィン0.86部を短時間で注入し、20分間165℃に制御した。その後急冷し、40℃に冷却した。上記添加液を注入し、240℃2時間加熱した後に、室温まで放冷した。放冷後、ヘキサンとエタノールを用いて再沈殿法で精製を行った。沈殿を回収し、減圧乾燥して、コアがInPでシェルがZnSのコア・シェル型半導体微粒子をドデカンチオール(化合物0)で表面処理した量子ドットQD−0を得た。
<Manufacturing of quantum dots>
[Comparative Example 0] (Quantum Dot QD-0)
An additive solution was prepared by heating and dissolving 0.55 parts of acetic anhydride, 7.0 parts of dodecanethiol (Compound 0), and 5.0 parts of oleylamine. Separately, 0.22 parts of indium chloride and 8.25 parts of octylamine were placed in a reaction vessel and heated to 165 ° C. while performing nitrogen bubbling. After the indium chloride was dissolved, 0.86 part of diethylaminophosphine was injected in a short time and controlled at 165 ° C. for 20 minutes. After that, it was rapidly cooled and cooled to 40 ° C. The above additive solution was injected, heated at 240 ° C. for 2 hours, and then allowed to cool to room temperature. After allowing to cool, purification was carried out by a reprecipitation method using hexane and ethanol. The precipitate was recovered and dried under reduced pressure to obtain quantum dot QD-0 in which core-shell type semiconductor fine particles having an InP core and a ZnS shell were surface-treated with dodecanethiol (Compound 0).

[実施例1](量子ドットQD−1)
量子ドットQD−0を、トルエンに分散させて固形分濃度1%とした。希釈した液と同量の5%化合物1のトルエン溶液を添加し、12時間撹拌した。トルエンとメタノールを用いて再沈殿法で精製を行った。沈殿を回収し、減圧乾燥して、化合物1で表面処理された量子ドットQD−1を得た。
[Example 1] (Quantum dot QD-1)
Quantum dots QD-0 were dispersed in toluene to give a solid content concentration of 1%. The same amount of a toluene solution of 5% compound 1 as the diluted solution was added, and the mixture was stirred for 12 hours. Purification was carried out by the reprecipitation method using toluene and methanol. The precipitate was recovered and dried under reduced pressure to obtain quantum dot QD-1 surface-treated with compound 1.

[実施例2〜4、比較例1](量子ドットQD−2〜5)
化合物を表6に示す化合物2〜4、19に変更した以外は、QD−1と同様にして、量子ドットQD−2〜5を調製した。
[Examples 2 to 4, Comparative Example 1] (Quantum Dot QD-2 to 5)
Quantum dots QD-2 to 5 were prepared in the same manner as QD-1 except that the compounds were changed to compounds 2 to 4 and 19 shown in Table 6.

Figure 2021039940
Figure 2021039940

<インク組成物の調製>
[実施例101](インク組成物1)
密閉できる容器に、量子ドット(QD−1)2部、n−ヘキサン38部を配合した。その後密閉して撹拌し、孔径1μmのメンブレンフィルターを用いてろ過を行い、インク組成物1を得た。
<Preparation of ink composition>
[Example 101] (Ink composition 1)
Two parts of quantum dots (QD-1) and 38 parts of n-hexane were mixed in a container that could be sealed. Then, the mixture was hermetically sealed and stirred, and filtered using a membrane filter having a pore size of 1 μm to obtain an ink composition 1.

[実施例102〜104、比較例101](インク組成物2〜4、9)
密閉できる容器に、表7に示した配合組成にて、量子ドット、溶剤の順番で計量した以外は、インク組成物1と同様にしてインク組成物2〜4、9を調製した。
[Examples 102 to 104, Comparative Example 101] (Ink Compositions 2 to 4, 9)
Ink compositions 2 to 4 and 9 were prepared in the same manner as ink composition 1 except that the quantum dots and the solvent were weighed in this order in a container that could be sealed with the compounding composition shown in Table 7.

[実施例105](インク組成物5)
密閉できる容器に、量子ドット(QD−1)2部、樹脂溶液1を60部、ジエチレングリコールモノブチルエーテルアセテート(DBCA)68部を配合した。その後密閉して撹拌し、孔径1μmのメンブレンフィルターを用いてろ過を行い、インク組成物5を得た。
[Example 105] (Ink composition 5)
In a container that can be sealed, 2 parts of quantum dots (QD-1), 60 parts of resin solution 1, and 68 parts of diethylene glycol monobutyl ether acetate (DBCA) were mixed. Then, the mixture was hermetically sealed and stirred, and filtered using a membrane filter having a pore size of 1 μm to obtain an ink composition 5.

[実施例106〜108](インク組成物6〜8)
密閉できる容器に、表7に示した配合組成にて、量子ドット、樹脂溶液、溶剤の順番で計量した以外はインク組成物5と同様にして、インク組成物6〜8を調製した。
[Examples 106 to 108] (ink compositions 6 to 8)
Ink compositions 6 to 8 were prepared in the same manner as in ink composition 5 except that the quantum dots, the resin solution, and the solvent were weighed in this order in a container that can be sealed with the compounding composition shown in Table 7.

<インク組成物の評価>
得られたインク組成物について以下の評価を実施した。結果を表7に示す。
<Evaluation of ink composition>
The following evaluation was carried out on the obtained ink composition. The results are shown in Table 7.

[経時安定性]
経時安定性は、インク組成物を40℃環境下で7日間保管した後の外観を目視観察して、以下の基準で評価を行った。
A:沈降物なし(使用可能)
C:沈降物あり(使用不可)
[Stability over time]
The stability over time was evaluated based on the following criteria by visually observing the appearance of the ink composition after storing it in an environment of 40 ° C. for 7 days.
A: No sediment (usable)
C: With sediment (cannot be used)

[蛍光量子収率(QY)維持率]
まず、経時安定性評価で用いた40℃環境下で7日間保管した後のインク組成物を用いて、透明フィルム(東レ(株)社製ポリエステルフィルム ルミラー75S10)基材上に、乾燥後の厚みが6.0μmとなるようにバーコーターにて塗工し、100℃10分間乾燥を行い印刷物を得た。次いで、同インク組成物及び上記印刷物について、下記条件で蛍光量子収率を測定した。インク組成物の蛍光量子収率を1とした場合の、印刷物の蛍光
量子収率の比率を蛍光量子収率維持率とし、下記基準で評価した。蛍光量子収率維持率は1に近い方が好ましく、0.6以上であれば実用上使用可能である。
A: 蛍光量子収率維持率が0.6以上(使用可能)
C: 蛍光量子収率維持率が0.6未満(使用不可)
≪蛍光量子収率測定条件≫
測定機: 量子効率測定システムQE−2000 大塚電子株式会社製
励起波長: 400nm積分範囲 375〜425nm
蛍光積分範囲: 430〜800nm
[Fluorescence quantum yield (QY) maintenance rate]
First, the thickness after drying was used on a transparent film (polyester film Lumirror 75S10 manufactured by Toray Industries, Inc.) using the ink composition after being stored for 7 days in the environment of 40 ° C. used for the evaluation of stability over time. The film was coated with a bar coater so as to have a thickness of 6.0 μm, and dried at 100 ° C. for 10 minutes to obtain a printed matter. Next, the fluorescence quantum yield of the ink composition and the printed matter was measured under the following conditions. When the fluorescence quantum yield of the ink composition was 1, the ratio of the fluorescence quantum yield of the printed matter was defined as the fluorescence quantum yield maintenance rate, and the evaluation was made according to the following criteria. The fluorescence quantum yield retention rate is preferably close to 1, and if it is 0.6 or more, it can be practically used.
A: Fluorescence quantum yield maintenance rate is 0.6 or more (usable)
C: Fluorescence quantum yield maintenance rate is less than 0.6 (cannot be used)
≪Fluorescence quantum yield measurement conditions≫
Measuring machine: Quantum efficiency measurement system QE-2000 manufactured by Otsuka Electronics Co., Ltd. Excitation wavelength: 400 nm Integration range 375-425 nm
Fluorescence integration range: 430-800 nm

[吐出性]
インク組成物について、インクジェットプリンター(富士フィルムDimatix社製Materials Printer「DMP‐2831」、カートリッジ:Dimatix Materials Cartriges、10pL)を用いて、吐出試験を実施した。吐出試験では、インク組成物を30秒間連続で吐出させた。なお、インクジェットプリンターの吐出ヘッド部は16個のノズルを有しており、連続吐出が可能なノズル数から下記の基準で吐出性を評価した。
A:10ノズル以上で連続吐出可能(吐出可能)
C:連続吐出可能なノズル数が9ノズル以下(吐出不良)
[Dischargeability]
An ejection test was carried out on the ink composition using an inkjet printer (Materials Printer "DMP-2831" manufactured by Fuji Film Dimatix Co., Ltd., cartridge: Dimatix Materials Cartriges, 10 pL). In the ejection test, the ink composition was ejected continuously for 30 seconds. The ejection head portion of the inkjet printer has 16 nozzles, and the ejection property was evaluated based on the following criteria from the number of nozzles capable of continuous ejection.
A: Continuous discharge is possible with 10 or more nozzles (can be discharged)
C: The number of nozzles capable of continuous discharge is 9 or less (poor discharge)

Figure 2021039940
Figure 2021039940

<電界発光素子の製造>
[実施例201]
(電界発光素子の作製)
特に断りのない限り、蒸着(真空蒸着)は10-6Torrの真空中にて、基板の加熱や冷却といった温度制御はしない条件下で行った。また、素子の発光特性は、発光素子面積2mm×2mmの電界発光素子を用いて特性を測定した。
洗浄したITO電極付きガラス板上に、PEDOT/PSS(ポリ(3,4−エチレンジオキシ)−2,5−チオフェン/ポリスチレンスルホン酸、Heraeus社製CLEVIOUS(登録商標) P VP CH8000)をスピンコート法にて塗工し、110℃にて20分間乾燥させて膜厚35nmの正孔注入層を得た。次いで、ポリ(N−ビニルカルバゾール)を、1.0質量%の濃度でモノクロロベンゼンに溶解させ、スピンコート法で塗工し、110℃にて20分間乾燥させて、35nmの膜厚の正孔輸送層を形成した。その上に、得られたインク組成物1を、35倍に希釈して用いてスピンコート法で塗工し、室温の窒素雰囲気下で5分間保持して乾燥し、20nmの発光層を形成した。その上に、Avantama社製の酸化亜鉛のイソプロパノール分散液N−10を、スピンコート法で塗工し、80℃のホットプレート上で20分間の加熱乾燥を行い、80nmの電子輸送層を形成した。最後に、アルミニウムを200nm蒸着して電極を形成し、電界発光素子を得た。得られた電界発光素子について、電流密度10(mA/cm2)で駆動させたところ、緑色に発光したことを確認した。
<Manufacturing of electroluminescent elements>
[Example 201]
(Manufacturing of electroluminescent element)
Unless otherwise specified, vapor deposition (vacuum vapor deposition) was performed in a vacuum of 10-6 Torr under conditions where temperature control such as heating and cooling of the substrate was not performed. The light emitting characteristics of the element were measured using an electroluminescent element having a light emitting element area of 2 mm × 2 mm.
PEDOT / PSS (poly (3,4-ethylenedioxy) -2,5-thiophene / polystyrene sulfonic acid, CLEVIOUS (registered trademark) PVP CH8000 manufactured by Heraeus) is spin-coated on the cleaned glass plate with ITO electrode. It was coated by the method and dried at 110 ° C. for 20 minutes to obtain a hole injection layer having a film thickness of 35 nm. Next, poly (N-vinylcarbazole) was dissolved in monochlorobenzene at a concentration of 1.0% by mass, coated by a spin coating method, dried at 110 ° C. for 20 minutes, and holes having a film thickness of 35 nm. A transport layer was formed. On it, the obtained ink composition 1 was diluted 35 times and applied by a spin coating method, held for 5 minutes in a nitrogen atmosphere at room temperature and dried to form a 20 nm light emitting layer. .. On it, an isopropanol dispersion of zinc oxide manufactured by Avantama N-10 was applied by a spin coating method, and heat-dried on a hot plate at 80 ° C. for 20 minutes to form an electron transport layer of 80 nm. .. Finally, 200 nm of aluminum was vapor-deposited to form an electrode to obtain an electroluminescent device. When the obtained electroluminescent element was driven at a current density of 10 (mA / cm 2 ), it was confirmed that it emitted green light.

<インク組成物の調製>
<実施例301>
量子ドットPbS−0を固形分濃度1%のトルエン溶液に調製した。調製した溶液1部と化合物1の5%トルエン溶液1部とを混合した後、12時間撹拌した。トルエンとエタノールを用いて再沈殿法で精製を行った。沈殿を真空乾燥し、オクタンを加えることにより、オクタンの5%溶液として、インク組成物PbS−1を調製した。
<Preparation of ink composition>
<Example 301>
Quantum dots PbS-0 were prepared in a toluene solution having a solid content concentration of 1%. After mixing 1 part of the prepared solution and 1 part of the 5% toluene solution of Compound 1, the mixture was stirred for 12 hours. Purification was carried out by the reprecipitation method using toluene and ethanol. The precipitate was vacuum dried and octane was added to prepare an ink composition PbS-1 as a 5% solution of octane.

<実施例302〜306、比較例301〜303>
化合物1を表8に示す化合物に変更した以外は、実施例301と同様にしてPbS−2〜4、PbSe−1、Ag2S−1をそれぞれ調製した。この内、PbS−2〜4、PbSe−1及びAg2S−1は、本発明のインク組成物であり、PbS−5、PbSe−2、Ag2S−2は、本発明のインク組成物ではない組成物である。
<Examples 302 to 306, Comparative Examples 301 to 303>
PbS-2 to 4, PbSe-1, and Ag 2 S-1, respectively, were prepared in the same manner as in Example 301, except that compound 1 was changed to the compound shown in Table 8. Of these, PbS-2 to 4, PbSe-1 and Ag 2 S-1 are the ink compositions of the present invention, and PbS-5, PbSe-2 and Ag 2 S-2 are the ink compositions of the present invention. Is not a composition.

Figure 2021039940
Figure 2021039940

<実施例401>
(光電変換素子の作製)
以下に光電変換素子の作製と評価について説明する。蒸着は、10-6Torrの真空中にて基板の加熱や冷却等の温度制御は行わない条件下で行った。素子の評価は、素子面積2mm×2mmの光電変換素子を用いて測定した。まず、洗浄したITO電極付きガラス板上に、PEDOT/PSS(ポリ(3,4−エチレンジオキシ)−2,5−チオフェン/ポリスチレンスルホン酸、Heraeus社製CLEVIOUS(登録商標) PVP CH8000)をスピンコート法にて塗工し、110℃にて20分間乾燥させて、厚み35nmの正孔注入層を得た。正孔注入層上に、インク組成物PbS−1をスピンコート法で塗工し、厚み150nmの光電変換層を形成した。次いで、光電変換層上に、Avantama社製ZnO分散液N−10をスピンコートで製膜して厚み50nmの電子輸送層を形成した。次いで、電子輸送層上に、厚み200nmでアルミニウム(以下、Al)を蒸着して電極を形成し、光電変換素子を得た。
<Example 401>
(Manufacturing of photoelectric conversion element)
The production and evaluation of the photoelectric conversion element will be described below. The vapor deposition was carried out in a vacuum of 10-6 Torr under the condition that the temperature was not controlled such as heating and cooling of the substrate. The evaluation of the element was measured using a photoelectric conversion element having an element area of 2 mm × 2 mm. First, spin PEDOT / PSS (poly (3,4-ethylenedioxy) -2.5-thiophene / polystyrene sulfonic acid, CLEVIOUS (registered trademark) PVP CH8000 manufactured by Heraeus) on a cleaned glass plate with an ITO electrode. It was coated by a coating method and dried at 110 ° C. for 20 minutes to obtain a hole injection layer having a thickness of 35 nm. The ink composition PbS-1 was applied onto the hole injection layer by a spin coating method to form a photoelectric conversion layer having a thickness of 150 nm. Next, a ZnO dispersion N-10 manufactured by Avantama was formed on the photoelectric conversion layer by spin coating to form an electron transport layer having a thickness of 50 nm. Next, aluminum (hereinafter referred to as Al) was vapor-deposited on the electron transport layer to a thickness of 200 nm to form an electrode to obtain a photoelectric conversion element.

(光電変換素子の評価)
得られた素子について、以下に示す方法によって耐久性を評価した。素子の保存前後のI−V曲線を測定し、これら測定値の比(保存後の測定値/保存前の測定値)を算出することにより、耐久性を算出した。セルのI−V曲線は、キセノンランプ白色光を光源(ペクセル・テクノロジーズ株式会社製、PEC―L01)とし、太陽光(AM1.5)相当の光強度(100 mW/cm2)にて、光照射面積0.0363 cm2(2 mm角)のマスク下、I−V特性計測装置(ペクセル・テクノロジーズ株式会社製、PECK2400−N)を用いて走査速度0.1V/sec(0.01Vstep)、電圧設定後待ち時間50 msec、測定積算時間50msec、開始電圧−0.1V、終了電圧1.1Vの条件で測定した。耐久性は、光電変換素子を保存前(素子作製直後)、及び遮光、25℃、湿度60%の条件下で4日間保存した後のI―V曲線を測定し、保存前(素子作製直後)の変換効率に対する保存後の変換効率の比として算出した。
(評価基準)
◎:比が95%以上 :良好
○:比が90%以上95%未満 :実用上使用可能
△:比が80%以上90%未満 :実用上使用不可
×:比が80%未満 :不良
(Evaluation of photoelectric conversion element)
The durability of the obtained device was evaluated by the method shown below. Durability was calculated by measuring the IV curves of the device before and after storage and calculating the ratio of these measured values (measured value after storage / measured value before storage). The IV curve of the cell uses xenon lamp white light as the light source (PEC-L01 manufactured by Pexel Technologies Co., Ltd.) and emits light at a light intensity (100 mW / cm 2 ) equivalent to sunlight (AM1.5). Under a mask with an irradiation area of 0.0363 cm 2 (2 mm square), a scanning speed of 0.1 V / sec (0.01 Vstep) using an IV characteristic measuring device (PECK2400-N, manufactured by Pexel Technologies Co., Ltd.). The measurement was performed under the conditions of a waiting time of 50 msec after setting the voltage, a measurement integration time of 50 msec, a start voltage of −0.1 V, and an end voltage of 1.1 V. For durability, the IV curve was measured before storage (immediately after device fabrication) and after storage of the photoelectric conversion element for 4 days under the conditions of shading, 25 ° C., and humidity 60%, and before storage (immediately after device fabrication). It was calculated as the ratio of the conversion efficiency after storage to the conversion efficiency of.
(Evaluation criteria)
⊚: Ratio 95% or more: Good ○: Ratio 90% or more and less than 95%: Practically usable Δ: Ratio 80% or more and less than 90%: Practically unusable ×: Ratio less than 80%: Defective

<実施例402〜406>
実施例401で使用したPbS−1の替わりに、PbS−2〜4、PbSe−1、Ag2S−1をそれぞれ使用した以外は、実施例401と同様にして光電変換素子をそれぞれ作製、評価した。結果を表9に示した。
<Examples 402 to 406>
Photoelectric conversion elements were produced and evaluated in the same manner as in Example 401, except that PbS-2 to 4, PbSe-1, and Ag 2 S-1 were used instead of PbS-1 used in Example 401. did. The results are shown in Table 9.

<比較例401〜403>
実施例301で使用したPbS−1の替わりに、PbS−5,PbSe−2,Ag2S−2をそれぞれ使用した以外は、実施例401と同様にして光電変換素子をそれぞれ作製、評価した。結果を表9に示した。
<Comparative Examples 401 to 403>
Photoelectric conversion elements were prepared and evaluated in the same manner as in Example 401, except that PbS-5, PbSe-2, and Ag 2 S-2 were used instead of PbS-1 used in Example 301. The results are shown in Table 9.

Figure 2021039940
Figure 2021039940

表7において、硫黄原子を含む脂肪族複素環部位と電荷輸送性部位とを有するリガンドで表面処理された量子ドットを用いた本願発明のインク組成物は、優れた経時安定性と蛍光量子収率維持率とを示し、高い信頼性を示した。表9においても、硫黄原子を含む脂肪族複素環部位と電荷輸送性部位とを有するリガンドで表面処理された量子ドットを用いた光電変換素子について、高い耐久性を示した。
上記結果について作用機構は明確ではないが、硫黄原子を含む脂肪族複素環基は、比較例のベンゼンチオールにおけるアルキルチオ基と比べて耐酸化性が優れることにより、量子ドットからリガンドが剥離するのが抑制され、上記効果を発現したと推察している。リガンド剥離は、量子ドットの分散性を低下させ、沈降安定性低下、量子ドット表面の欠陥生成及び酸化による蛍光量子収率低下の原因となるため、リガンド剥離抑制がこれらの低下を抑制したと推察される。
また、同インク組成物は、量子ドットの安定性が良好であるため、インクジェット吐出性を有しており、インクジェットインキとして使用可能である。さらに、本願発明の量子ドットは電界発光素子として使用可能である。
In Table 7, the ink composition of the present invention using quantum dots surface-treated with a ligand having an aliphatic heterocyclic moiety containing a sulfur atom and a charge transporting moiety has excellent temporal stability and fluorescence quantum yield. It showed the maintenance rate and showed high reliability. Table 9 also showed high durability of the photoelectric conversion element using quantum dots surface-treated with a ligand having an aliphatic heterocyclic moiety containing a sulfur atom and a charge transporting moiety.
Regarding the above results, the mechanism of action is not clear, but the aliphatic heterocyclic group containing a sulfur atom has better oxidation resistance than the alkylthio group in benzenethiol of the comparative example, so that the ligand is peeled from the quantum dot. It is presumed that it was suppressed and the above effect was exhibited. Ligand peeling reduces the dispersibility of quantum dots and causes a decrease in sedimentation stability, defect formation on the quantum dot surface, and a decrease in fluorescence quantum yield due to oxidation. Will be done.
Further, since the ink composition has good quantum dot stability, it has an inkjet ejection property and can be used as an inkjet ink. Further, the quantum dots of the present invention can be used as an electroluminescent device.

Claims (8)

下記一般式(1)で示される化合物を表面に有する半導体微粒子である、量子ドット。
一般式(1)
Figure 2021039940
[一般式(1)中、Qは硫黄原子を含有する脂肪族複素環基であり、Xは直接結合又は2価の連結基であり、Aは電荷輸送性基である。]
Quantum dots, which are semiconductor fine particles having a compound represented by the following general formula (1) on the surface.
General formula (1)
Figure 2021039940
[In the general formula (1), Q is an aliphatic heterocyclic group containing a sulfur atom, X is a direct bond or a divalent linking group, and A is a charge transporting group. ]
前記半導体微粒子が化合物半導体を含む、請求項1に記載の量子ドット。 The quantum dot according to claim 1, wherein the semiconductor fine particles include a compound semiconductor. 前記半導体微粒子がコア・シェル型である、請求項1又は2に記載の量子ドット。 The quantum dot according to claim 1 or 2, wherein the semiconductor fine particles are of a core-shell type. 前記電荷輸送性基が正孔輸送性基である、請求項1〜3いずれか1項に記載の量子ドット。 The quantum dot according to any one of claims 1 to 3, wherein the charge transporting group is a hole transporting group. 請求項1〜4いずれか1項に記載の量子ドットと溶剤とを含むインク組成物。 An ink composition containing the quantum dots according to any one of claims 1 to 4 and a solvent. インクジェット方式で用いられる、請求項5に記載のインク組成物。 The ink composition according to claim 5, which is used in an inkjet method. 基板上に、陽極と、発光層と、陰極と、を備え、前記発光層が、請求項1〜4いずれか1項に記載の量子ドットを含む、電界発光素子。 An electroluminescent device comprising an anode, a light emitting layer, and a cathode on a substrate, wherein the light emitting layer contains the quantum dots according to any one of claims 1 to 4. 一対の電極間に光電変換層を有してなる光電変換素子であって、前記光電変換層が、請求項1〜4いずれか1項に記載の量子ドットを含む、光電変換素子。 A photoelectric conversion element having a photoelectric conversion layer between a pair of electrodes, wherein the photoelectric conversion layer contains the quantum dots according to any one of claims 1 to 4.
JP2020134320A 2019-08-29 2020-08-07 Quantum dots, ink composition, electroluminescent element, and photoelectric conversion element Active JP7567267B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019156520 2019-08-29
JP2019156520 2019-08-29

Publications (2)

Publication Number Publication Date
JP2021039940A true JP2021039940A (en) 2021-03-11
JP7567267B2 JP7567267B2 (en) 2024-10-16

Family

ID=74848719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020134320A Active JP7567267B2 (en) 2019-08-29 2020-08-07 Quantum dots, ink composition, electroluminescent element, and photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP7567267B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114456800A (en) * 2022-02-10 2022-05-10 齐鲁工业大学 Preparation method and application of perovskite quantum dot-molecularly imprinted fluorescent coding microsphere for detecting Sudan red I
CN115433486A (en) * 2021-06-02 2022-12-06 广东聚华印刷显示技术有限公司 Printing ink, light emitting device and display device
CN116119761A (en) * 2022-12-28 2023-05-16 河南科技大学 Iron diselenide/carbon black photo-thermal material, preparation method thereof and seawater evaporation device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214363A (en) 2007-02-28 2008-09-18 Canon Inc Nanoparticle luminescent material, electroluminescent element using the same, ink composition and display apparatus
JP2010067542A (en) 2008-09-12 2010-03-25 Konica Minolta Business Technologies Inc Photoelectric conversion element, manufacturing method thereof, and solar cell
JP5572968B2 (en) 2009-03-06 2014-08-20 大日本印刷株式会社 Quantum dot light emitting material and light emitting device
JP5705160B2 (en) 2011-05-30 2015-04-22 富士フイルム株式会社 Method of synthesizing InP nanoparticles and nanoparticles
WO2015092397A1 (en) 2013-12-17 2015-06-25 Isis Innovation Limited Photovoltaic device comprising a metal halide perovskite and a passivating agent
JP6706329B2 (en) 2016-08-31 2020-06-03 富士フイルム株式会社 Photoelectric conversion element, solar cell, method for manufacturing photoelectric conversion element, and surface treatment agent for perovskite type crystal film
JP6878915B2 (en) 2017-01-26 2021-06-02 東洋インキScホールディングス株式会社 Quantum dots and quantum dot-containing compositions
JP7172541B2 (en) 2017-12-18 2022-11-16 東洋インキScホールディングス株式会社 Quantum Dots, Quantum Dot-Containing Compositions, and Inkjet Inks
JP7030276B2 (en) 2017-12-26 2022-03-07 東洋インキScホールディングス株式会社 Semiconductor fine particle compositions and quantum dots, coating liquids and ink compositions containing them, inkjet inks, and coatings and printed materials using them, wavelength conversion films, color filters, light emitting elements

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433486A (en) * 2021-06-02 2022-12-06 广东聚华印刷显示技术有限公司 Printing ink, light emitting device and display device
CN115433486B (en) * 2021-06-02 2023-12-05 广东聚华印刷显示技术有限公司 Printing ink, light emitting device and display device
CN114456800A (en) * 2022-02-10 2022-05-10 齐鲁工业大学 Preparation method and application of perovskite quantum dot-molecularly imprinted fluorescent coding microsphere for detecting Sudan red I
CN114456800B (en) * 2022-02-10 2023-07-21 齐鲁工业大学 Preparation method and application of perovskite quantum dot-molecular imprinting fluorescent coding microsphere for detecting sudan red I
CN116119761A (en) * 2022-12-28 2023-05-16 河南科技大学 Iron diselenide/carbon black photo-thermal material, preparation method thereof and seawater evaporation device
CN116119761B (en) * 2022-12-28 2024-05-28 河南科技大学 Iron diselenide/carbon black photo-thermal material, preparation method thereof and seawater evaporation device

Also Published As

Publication number Publication date
JP7567267B2 (en) 2024-10-16

Similar Documents

Publication Publication Date Title
JP6878376B2 (en) Light emitting device including light emitting body, light emitting film, light emitting diode and light emitting body
JP7567267B2 (en) Quantum dots, ink composition, electroluminescent element, and photoelectric conversion element
JP4598282B2 (en) Amine compound and organic electroluminescent device containing the compound
JP3939579B2 (en) White electroluminescent polymer compound and organic electroluminescent device using the same
JP3856546B2 (en) Organic electroluminescence device
JP5825773B2 (en) Organic EL display device and manufacturing method thereof
US20120187386A1 (en) Organic electro luminescence display device and method for manufacturing same
JP2008133225A (en) Indole derivative and application thereof
JP2006066395A (en) White luminescence organic/inorganic hybrid electroluminescent element containing semiconductor nanocrystal
JP2005112765A (en) Heterocyclic compound and organic electroluminescent device containing the compound
JP7003621B2 (en) Semiconductor nanoparticles, dispersions containing the particles, semiconductor layers, methods for manufacturing laminates, and electroluminescent devices.
US8603646B2 (en) Pyrrole compound and organic photoelectric device including the same
JP2020066733A (en) Luminescence material, and electroluminescence element, ink composition and printed matter using the same
JP7238636B2 (en) Quantum dots, quantum dot-containing compositions, inkjet inks and printed matter
JP2020041080A (en) Composition for forming luminescent film, luminescent film and electroluminescence element
JP2020095936A (en) Electroluminescence element
JP7469891B2 (en) Quantum dot light emitting device and display device
JP2023155300A (en) Ink composition, luminescent layer, and electroluminescent element
JP7147408B2 (en) Semiconductor Fine Particle Composition, Coating Liquid Using the Composition, Ink Composition, Inkjet Ink, Coated Matter, Printed Matter, Wavelength Conversion Film, Color Filter, Light Emitting Device
JP2019081868A (en) Inkjet ink, and printed matter and electroluminescence device prepared using the same
JP2021005479A (en) Electroluminescent element
JP2019116525A (en) Ink composition containing quantum dot, inkjet ink using the same, and application of these
EP3474329A1 (en) Luminous body, light emitting film, light emitting diode and light emitting device having luminous body
JP4263872B2 (en) Amine compound and organic electroluminescent device containing the compound
JP7030276B2 (en) Semiconductor fine particle compositions and quantum dots, coating liquids and ink compositions containing them, inkjet inks, and coatings and printed materials using them, wavelength conversion films, color filters, light emitting elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240916