JP2021038424A - Film deposition material recovery system, method of recovering film deposition material and film deposition apparatus - Google Patents

Film deposition material recovery system, method of recovering film deposition material and film deposition apparatus Download PDF

Info

Publication number
JP2021038424A
JP2021038424A JP2019159734A JP2019159734A JP2021038424A JP 2021038424 A JP2021038424 A JP 2021038424A JP 2019159734 A JP2019159734 A JP 2019159734A JP 2019159734 A JP2019159734 A JP 2019159734A JP 2021038424 A JP2021038424 A JP 2021038424A
Authority
JP
Japan
Prior art keywords
film
chamber
pressure
forming material
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019159734A
Other languages
Japanese (ja)
Other versions
JP7384596B2 (en
Inventor
僚也 北沢
Ryoya KITAZAWA
僚也 北沢
晃平 山本
Kohei Yamamoto
晃平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2019159734A priority Critical patent/JP7384596B2/en
Publication of JP2021038424A publication Critical patent/JP2021038424A/en
Application granted granted Critical
Publication of JP7384596B2 publication Critical patent/JP7384596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

To provide a film deposition material recovery system capable of effectively recovering a film deposition material attached on a part.SOLUTION: A film deposition material recovery system Rm for recovering a film deposition material Om attached on a surface of a part Sd present in a film deposition chamber by a film deposition treatment in the film deposition chamber for depositing a predetermined thin film for an object to be deposited includes a sealed vessel 1 capable of accommodating the part with the film deposition material attached and a gas introducing means 2 for introducing a predetermined gas into the sealed vessel. The gas introducing means introduces a gas in the supercritical state or a gas to a critical pressure or more to the sealed vessel with the part accommodated therein to melt the film deposition material on the surface of the part to be a supercritical liquid Sf. The film deposition material recovery system Rm further includes an adjustable means 4, P1 capable of changing at least either a temperature or a pressure of a liquid in a supercritical state of this molten film deposition material.SELECTED DRAWING: Figure 1

Description

本発明は、成膜材料回収装置及び成膜材料回収方法並びに成膜装置に関し、より詳しくは、被成膜物に対して所定の薄膜を成膜する成膜室内での成膜処理によってその内部に存する部品表面に付着した成膜材料を効率よく回収でき、または、そのまま被成膜物への成膜に利用できるようにしたものに関する。 The present invention relates to a film-forming material recovery device, a film-forming material recovery method, and a film-forming device. The present invention relates to a material capable of efficiently recovering a film-forming material adhering to the surface of a component existing in the above, or being used as it is for film-forming on a film to be formed.

例えば、有機エレクトロルミネッセンス素子の製造工程においては、ガラスや樹脂といったシート状または板状の基板(被成膜物)の一方の面(成膜面)に、発光層としての有機膜や有機多層膜をパターニング形成する工程がある。このような有機膜や有機多層膜をパターニング形成する方法の一つとして、マスクプレート(所謂シャドーマスク)を用いた真空蒸着法が従来から知られている(例えば、特許文献1参照)。このものは、真空チャンバを備え、その内部には、加熱により有機材料(成膜材料)を昇華または気化させる蒸着源と、蒸着源に対して基板を真空チャンバ内の一方向に相対移動させる移動手段とが設けられる。 For example, in the manufacturing process of an organic electroluminescence device, an organic film or an organic multilayer film as a light emitting layer is formed on one surface (deposition surface) of a sheet-like or plate-like substrate (film to be filmed) such as glass or resin. There is a step of patterning and forming. As one of the methods for patterning and forming such an organic film or an organic multilayer film, a vacuum vapor deposition method using a mask plate (so-called shadow mask) has been conventionally known (see, for example, Patent Document 1). This has a vacuum chamber, and inside it, a vapor deposition source that sublimates or vaporizes an organic material (deposition material) by heating, and a movement that moves the substrate relative to the vapor deposition source in one direction in the vacuum chamber. Means and means are provided.

蒸着源と基板との間には、昇華または気化した有機材料の基板の一方の面(成膜面)に対する付着範囲を制限するマスクプレートが設けられている。マスクプレートとしては、基板に成膜しようとするパターンに応じて、板厚方向に貫通する複数の透孔が開設された箔状のものが利用される。そして、蒸着源にて昇華または気化した有機材料をマスクプレート越しに基板の成膜面に付着(堆積)させることで、有機膜や有機多層膜が所定のパターンで成膜される。 A mask plate is provided between the vapor deposition source and the substrate to limit the adhesion range of the sublimated or vaporized organic material to one surface (deposition surface) of the substrate. As the mask plate, a foil-like mask plate having a plurality of through holes penetrating in the plate thickness direction is used according to the pattern to be formed on the substrate. Then, by adhering (depositing) the organic material sublimated or vaporized by the vapor deposition source on the film-forming surface of the substrate through the mask plate, an organic film or an organic multilayer film is formed in a predetermined pattern.

上記のようにして成膜する場合、有機材料の使用効率(蒸着源から飛散したものが基板表面に付着する割合)が非常に低い(10%程度)ことが一般に知られている。このような有機材料は比較的高価なものが多いことから、製造の低コスト化を図る上で有機材料を如何に有効利用するかが重要な課題となっている。ここで、成膜時、蒸着源から飛散した有機材料は、マスクプレートや防着板といった真空チャンバ内に存する部品(基板以外のもの)表面にも付着することから、これら部品に付着した有機材料を効率よく回収して再利用、または、そのまま基板への成膜に利用できれば、有機材料の使用効率を実質的に向上できる。 When the film is formed as described above, it is generally known that the utilization efficiency of the organic material (the rate at which the material scattered from the vapor deposition source adheres to the substrate surface) is very low (about 10%). Since many of these organic materials are relatively expensive, how to effectively use the organic materials has become an important issue in order to reduce the manufacturing cost. Here, since the organic material scattered from the vapor deposition source at the time of film formation also adheres to the surface of parts (other than the substrate) existing in the vacuum chamber such as the mask plate and the adhesive plate, the organic material adhered to these parts. If it can be efficiently recovered and reused, or can be used as it is for film formation on a substrate, the efficiency of using organic materials can be substantially improved.

国際公開第2018/025637号公報International Publication No. 2018/025637

本発明は、以上の点に鑑み、部品に付着した成膜材料を効率よく回収できる成膜材料回収装置及び成膜材料回収方法、並びに、部品に付着した成膜材料をそのまま被成膜物への成膜に利用できるようにした成膜装置を提供することをその課題とする。 In view of the above points, the present invention provides a film-forming material recovery device and a film-forming material recovery method capable of efficiently recovering the film-forming material adhering to the component, and the film-forming material adhering to the component to the film-deposited object as it is. It is an object of the present invention to provide a film forming apparatus that can be used for film forming.

上記課題を解決するために、被成膜物に対して所定の薄膜を成膜する成膜室内での成膜処理によってその内部に存する部品表面に付着した成膜材料を回収する本発明の成膜材料回収装置は、成膜材料が付着した部品を収容できる密閉容器と、密閉容器内に所定のガスを導入するガス導入手段とを備え、ガス導入手段が、部品を収容した密閉容器に、超臨界状態となったガスまたは臨界圧力以上の圧力までガスを導入して、超臨界流体に部品表面の成膜材料を溶解させ、この成膜材料が溶解した超臨界流体の温度及び圧力の少なくとも一方を可変とする可変手段を更に備えることを特徴とする。 In order to solve the above problems, the present invention recovers the film-forming material adhering to the surface of the component existing inside the film by the film-forming process in the film-forming chamber where a predetermined thin film is formed on the film to be formed. The film material recovery device includes a closed container capable of accommodating parts to which a film-forming material is attached, and a gas introducing means for introducing a predetermined gas into the closed container. A gas in a supercritical state or a gas above the critical pressure is introduced to dissolve the film-forming material on the surface of the component in the supercritical fluid, and at least the temperature and pressure of the supercritical fluid in which the film-forming material is dissolved. It is characterized by further providing a variable means for making one variable.

また、上記課題を解決するために、被成膜物に対して所定の薄膜を成膜する成膜室内での成膜処理によってその内部に存する部品表面に付着した成膜材料を回収する本発明の成膜材料回収方法は、密閉容器に、表面に成膜材料が付着した部品を収容する工程と、密閉容器に、超臨界状態となったガスまたは臨界圧力以上の圧力までガスを導入して、超臨界流体に部品表面の成膜材料を溶解させる工程と、成膜材料が溶解した超臨界流体の温度及び圧力の少なくとも一方を変化させて超臨界流体を気化させて成膜材料を析出させる工程と、を含むことを特徴とする。 Further, in order to solve the above problems, the present invention recovers the film-forming material adhering to the surface of the component existing inside the film-forming material by the film-forming process in the film-forming chamber where a predetermined thin film is formed on the film to be filmed. The method for recovering the film-forming material is as follows: a step of accommodating a part having the film-forming material adhered to the surface in a closed container, and introducing a gas in a supercritical state or a gas up to a pressure higher than the critical pressure in the closed container. , The step of dissolving the film-forming material on the surface of the component in the supercritical fluid and at least one of the temperature and pressure of the supercritical fluid in which the film-forming material is dissolved are changed to vaporize the supercritical fluid and deposit the film-forming material. It is characterized by including a process.

以上によれば、部品表面に付着した成膜材料が超臨界流体に溶解することで、部品表面から付着した成膜材料が除去される。次に、例えば密閉容器内にて、成膜材料が溶解した超臨界流体の温度及び圧力の少なくとも一方を調節して、超臨界流体を気体に状態変化させると、超臨界流体に溶解した成膜材料が析出して分離される。そして、密閉容器内の気体を排出すれば、密閉容器内に残る成膜材料を回収することができる。なお、超臨界流体は、比較的低温(例えば二酸化炭素の超臨界流体の場合は約40℃〜50℃)にて成膜材料を溶解できるため、熱的安定性の低い成膜材料を回収する場合でも、熱分解によって成膜材料が劣化するのを抑制することができる。 According to the above, the film-forming material adhering to the component surface is dissolved in the supercritical fluid, so that the film-forming material adhering to the component surface is removed. Next, for example, in a closed container, when at least one of the temperature and pressure of the supercritical fluid in which the film forming material is dissolved is adjusted to change the state of the supercritical fluid into a gas, the film is dissolved in the supercritical fluid. The material precipitates and separates. Then, if the gas in the closed container is discharged, the film-forming material remaining in the closed container can be recovered. Since the supercritical fluid can dissolve the film-forming material at a relatively low temperature (for example, about 40 ° C. to 50 ° C. in the case of a carbon dioxide supercritical fluid), the film-forming material having low thermal stability is recovered. Even in this case, deterioration of the film-forming material due to thermal decomposition can be suppressed.

また、上記課題を解決するために、被成膜物に対して所定の薄膜を成膜する本発明の成膜装置は、成膜材料を溶解させた超臨界流体を格納する密閉可能な第1チャンバと、被成膜物が設置される第2チャンバと、第1チャンバと第2チャンバとを連通する連通手段とを備えて、第1チャンバと第2チャンバとの圧力差によって、第2チャンバ内の被成膜物に向けて、成膜材料を溶解させた超臨界流体を供給することで所定の薄膜が成膜され、第1チャンバは、所定の薄膜の成膜に伴って表面に成膜材料が付着した部品を収容できると共に、第1チャンバに、超臨界状態となったガスまたは臨界圧力以上の圧力までガスを導入するガス導入手段が設けられることを特徴とする。これによれば、部品表面に付着した成膜材料を超臨界流体に溶解させた後、超臨界流体から成膜材料を析出させて分離することなく、成膜材料をそのまま被成膜物への成膜に利用することができる。 Further, in order to solve the above problems, the film forming apparatus of the present invention for forming a predetermined thin film on the film to be filmed is a sealable first type that stores a supercritical fluid in which the film forming material is dissolved. A chamber, a second chamber in which a film to be filmed is installed, and a means for communicating the first chamber and the second chamber are provided, and the pressure difference between the first chamber and the second chamber causes the second chamber. A predetermined thin film is formed by supplying a supercritical fluid in which the film forming material is dissolved toward the film to be formed inside, and the first chamber is formed on the surface as the predetermined thin film is formed. It is characterized in that a component to which a membrane material is attached can be accommodated, and a gas introduction means for introducing a gas in a supercritical state or a gas up to a pressure equal to or higher than the critical pressure is provided in the first chamber. According to this, after the film-forming material adhering to the surface of the component is dissolved in the supercritical fluid, the film-forming material is directly transferred to the film-deposited object without being separated by precipitating the film-forming material from the supercritical fluid. It can be used for film formation.

また、本発明において、前記連通手段に、前記部品表面に付着した成膜材料と同等のものを収容する密閉可能な第3チャンバが設けられることが好ましい。これによれば、部品表面に付着した成膜材料(即ち、部品表面から除去されて、超臨界流体に溶解した成膜材料)が、被成膜物への成膜に必要な量より不足する場合でも、成膜材料を補うことで、被成膜物に対して成膜することができる。 Further, in the present invention, it is preferable that the communication means is provided with a sealable third chamber for accommodating a film-forming material equivalent to the film-forming material adhering to the surface of the component. According to this, the amount of the film-forming material adhering to the component surface (that is, the film-forming material removed from the component surface and dissolved in the supercritical fluid) is insufficient than the amount required for film formation on the object to be filmed. Even in this case, by supplementing the film-forming material, a film can be formed on the object to be filmed.

本実施形態の成膜材料回収装置の構成を説明する模式断面図。The schematic cross-sectional view explaining the structure of the film-forming material recovery apparatus of this embodiment. 本実施形態の成膜装置の構成を説明する模式断面図。The schematic cross-sectional view explaining the structure of the film forming apparatus of this embodiment.

以下、図1を参照して、成膜室内での内部に存する部品をその隔壁内面への成膜材料の付着を防止する防着板Sd、成膜材料を有機材料Omとし、被成膜物に対して所定の薄膜を成膜する成膜室内での成膜処理によってその内部に存する防着板Sd表面に付着した有機材料Omを回収する場合を例に本発明の成膜材料回収装置及び成膜材料回収方法の実施形態を説明する。以下においては、ステージから防着板Sdに向かう方向を上とし、「上」、「下」といった方向を示す用語は図1を基準として説明する。 Hereinafter, with reference to FIG. 1, the parts existing inside the film forming chamber are the adhesive plate Sd for preventing the film forming material from adhering to the inner surface of the partition wall, and the film forming material is the organic material Om. On the other hand, the film forming material recovery apparatus of the present invention and the film forming material recovery apparatus of the present invention are taken as an example in the case of recovering the organic material Om adhering to the surface of the adhesive plate Sd existing inside the film forming chamber for forming a predetermined thin film. An embodiment of the film-forming material recovery method will be described. In the following, the direction from the stage toward the protective plate Sd will be upward, and the terms indicating the directions such as “up” and “down” will be described with reference to FIG.

図1を参照して、Rmは、本実施形態の成膜材料回収装置であり、成膜材料回収装置Rmは、密閉容器としての圧力チャンバ1を備える。圧力チャンバ1の下部空間には、ステージStが設けられ、図示省略の開閉扉を開けて、有機材料Omが付着した防着板Sdを有機材料Omが付着した面を上方に向けた姿勢で設置できるようになっている。 With reference to FIG. 1, Rm is the film-forming material recovery device of the present embodiment, and the film-forming material recovery device Rm includes a pressure chamber 1 as a closed container. A stage St is provided in the lower space of the pressure chamber 1, and an opening / closing door (not shown) is opened, and the protective plate Sd to which the organic material Om is attached is installed with the surface to which the organic material Om is attached facing upward. You can do it.

圧力チャンバ1には、圧力チャンバ1内に炭酸ガスを導入するガス導入手段2が設けられている。ガス導入手段2は、圧力チャンバ1内のガス導入部21に接続されるガス管22を有し、ガス管22にはマスフローコントローラ23が介設され、圧力チャンバ1内の圧力が所定の圧力(臨界圧力以上、例えば7MPa)になるまで炭酸ガスを導入できるようになっている。なお、本実施形態では、ガス導入手段2により、圧力チャンバ1内の圧力が二酸化炭素の臨界圧力以上となるまで、炭酸ガスを導入するものを例に説明するが、圧力チャンバ1内に予め超臨界状態となった二酸化炭素(超臨界流体Sf)を導入するようにガス導入手段2を構成することもできる。 The pressure chamber 1 is provided with a gas introducing means 2 for introducing carbon dioxide gas into the pressure chamber 1. The gas introducing means 2 has a gas pipe 22 connected to a gas introducing portion 21 in the pressure chamber 1, a mass flow controller 23 is interposed in the gas pipe 22, and the pressure in the pressure chamber 1 is a predetermined pressure ( Carbon dioxide gas can be introduced until the pressure reaches the critical pressure or higher, for example, 7 MPa). In this embodiment, carbon dioxide gas is introduced into the pressure chamber 1 by the gas introducing means 2 until the pressure in the pressure chamber 1 becomes equal to or higher than the critical pressure of carbon dioxide. The gas introduction means 2 can also be configured to introduce carbon dioxide (supercritical fluid Sf) in a critical state.

圧力チャンバ1内の側壁には加熱手段3が設けられ、圧力チャンバ1内に導入された炭酸ガスを所定の温度(臨界温度以上、例えば40℃以上)に加熱できるようになっている。加熱手段3としては、シースヒータやランプヒータ等の公知のものが利用できる。 A heating means 3 is provided on the side wall of the pressure chamber 1 so that the carbon dioxide gas introduced into the pressure chamber 1 can be heated to a predetermined temperature (critical temperature or higher, for example, 40 ° C. or higher). As the heating means 3, known means such as a sheath heater and a lamp heater can be used.

圧力チャンバ1は、後述のように、有機材料Omが溶解した超臨界流体Sfを排出する排出管11が接続されている。排出管11の他端は、開閉弁V1を介して分離チャンバ4に接続されている。分離チャンバ4には、真空ポンプP1からの排気管P11が接続され、大気圧より低い所定圧力までその内部を真空排気できるようにしている。また、分離チャンバ4内は、後述のように、超臨界流体Sfを気体に状態変化させて炭酸ガスを放出するリリーフバルブRvが設けられ、その内部には、上面を開放した回収容器41が設けられている。この場合、排出管11の他端は、分離チャンバ4内まで突出させ、この突出した先端部11aが回収容器41に向けて有機材料Omが溶解した超臨界流体Sfを噴射できるようになっている。なお、本実施形態では、可変手段として真空ポンプP1が接続された分離チャンバ4を備えるものを例に説明するが、圧力を臨界圧力以下まで減圧できる減圧装置や温度を臨界温度以下まで冷却できる冷却装置を圧力チャンバ1自体に設けて、可変手段を構成することもできる。この場合、分離チャンバ4は省略することができる。以下に、上記成膜材料回収装置Rmを用いた有機材料Omの回収方法を具体的に説明する。 As will be described later, the pressure chamber 1 is connected to a discharge pipe 11 for discharging the supercritical fluid Sf in which the organic material Om is dissolved. The other end of the discharge pipe 11 is connected to the separation chamber 4 via an on-off valve V1. An exhaust pipe P11 from the vacuum pump P1 is connected to the separation chamber 4 so that the inside thereof can be evacuated to a predetermined pressure lower than the atmospheric pressure. Further, in the separation chamber 4, as described later, a relief valve Rv that changes the state of the supercritical fluid Sf into a gas and releases carbon dioxide gas is provided, and a recovery container 41 having an open upper surface is provided inside the relief valve Rv. Has been done. In this case, the other end of the discharge pipe 11 is projected into the separation chamber 4, and the protruding tip portion 11a can inject the supercritical fluid Sf in which the organic material Om is dissolved toward the recovery container 41. .. In this embodiment, an example will be described in which a separation chamber 4 to which the vacuum pump P1 is connected is provided as the variable means, but a decompression device capable of reducing the pressure to the critical pressure or less and cooling capable of cooling the temperature to the critical temperature or lower The device can also be provided in the pressure chamber 1 itself to form variable means. In this case, the separation chamber 4 can be omitted. Hereinafter, a method for recovering the organic material Om using the film-forming material recovery device Rm will be specifically described.

圧力チャンバ1内のステージSt上に、有機材料Omが付着した防着板Sdを有機材料Omが付着した面を上方に向けた姿勢で設置し、開閉弁V1を閉じて圧力チャンバ1を密閉する。そして、ガス導入手段2により圧力チャンバ1の圧力が7Mpa以上になるまで炭酸ガスを導入し、導入された炭酸ガスを加熱手段3により40℃〜50℃の温度になるまで加熱する。すると、圧力チャンバ1内で二酸化炭素が超臨界状態となり、防着板Sd表面の有機材料Omが超臨界流体Sfに溶解する。このとき、分離チャンバ4は、真空ポンプP1により真空排気されて、大気圧より低い所定圧力とする。 On the stage St in the pressure chamber 1, the protective plate Sd to which the organic material Om is attached is installed in a posture in which the surface to which the organic material Om is attached faces upward, and the on-off valve V1 is closed to seal the pressure chamber 1. .. Then, the gas introducing means 2 introduces carbon dioxide gas until the pressure in the pressure chamber 1 becomes 7 Mpa or more, and the introduced carbon dioxide gas is heated by the heating means 3 until the temperature reaches 40 ° C. to 50 ° C. Then, carbon dioxide becomes a supercritical state in the pressure chamber 1, and the organic material Om on the surface of the adhesive plate Sd dissolves in the supercritical fluid Sf. At this time, the separation chamber 4 is evacuated by the vacuum pump P1 to a predetermined pressure lower than the atmospheric pressure.

次に、開閉弁V1を開けると、圧力チャンバ1と分離チャンバ4との圧力差によって、有機材料Omが溶解した超臨界流体Sfは、排出管11を介して分離チャンバ4に移送され、排出管11の先端部11aから回収容器に向けて噴射される。このとき、回収容器41に向けて噴射された超臨界流体Sfの圧力が急激に低下し、超臨界流体Sfが気化する一方で、超臨界流体Sfに溶解していた有機材料Omが回収容器41内にて析出し、この析出した有機材料Omが回収される。そして、リリーフバルブRvを開けて、その内部の気化した二酸化炭素を放出した後、分離チャンバ4に設けた図示省略の開閉扉を開けて有機材料Omが取り出される。 Next, when the on-off valve V1 is opened, the supercritical fluid Sf in which the organic material Om is dissolved is transferred to the separation chamber 4 via the discharge pipe 11 due to the pressure difference between the pressure chamber 1 and the separation chamber 4, and is transferred to the discharge pipe 4. It is ejected from the tip end portion 11a of 11 toward the collection container. At this time, the pressure of the supercritical fluid Sf injected toward the recovery container 41 drops sharply, and the supercritical fluid Sf evaporates, while the organic material Om dissolved in the supercritical fluid Sf is removed from the recovery container 41. It precipitates inside, and the precipitated organic material Om is recovered. Then, after opening the relief valve Rv and releasing the vaporized carbon dioxide inside the relief valve Rv, the opening / closing door (not shown) provided in the separation chamber 4 is opened to take out the organic material Om.

上記実施形態では、真空排気した分離チャンバ4と圧力チャンバ1とを連通し、超臨界流体Sfの圧力を臨界圧力以下まで急激に低下(減圧)させて気化させるものを例に説明するが、分離チャンバ4内の圧力を大気圧と同等の圧力として、分離チャンバ4と圧力チャンバ1とを連通させて、超臨界流体Sfの圧力を臨界圧力以下まで減圧して気化させることもできる。また、冷却装置を圧力チャンバ1自体に設けて、圧力チャンバ1内で超臨界流体Sfの温度を臨界温度以下まで冷却して気化させることもできる。 In the above embodiment, the vacuum-exhausted separation chamber 4 and the pressure chamber 1 are communicated with each other, and the pressure of the supercritical fluid Sf is rapidly lowered (decompressed) to a pressure below the critical pressure to vaporize it. The pressure in the chamber 4 can be set to a pressure equivalent to that of atmospheric pressure, and the separation chamber 4 and the pressure chamber 1 can be communicated with each other to reduce the pressure of the supercritical fluid Sf to a pressure equal to or lower than the critical pressure for vaporization. Further, a cooling device may be provided in the pressure chamber 1 itself, and the temperature of the supercritical fluid Sf may be cooled to a temperature equal to or lower than the critical temperature in the pressure chamber 1 to be vaporized.

以上の実施形態によれば、防着板Sd表面の有機材料Omが超臨界流体Sfに溶解することで、防着板Sdから有機材料Omが除去される。そして、有機材料Omが溶解した超臨界流体Sfの圧力を臨界圧力以下まで減圧(または温度を超臨界温度以下まで冷却、または減圧及び冷却)することで、超臨界流体Sfが気化して、超臨界流体Sfに溶解していた有機材料Omが析出して分離される。このため、気化した二酸化炭素を排出すれば、有機材料Omを効率よく回収することができる。ここで、二酸化炭素の臨界温度は約40℃〜50℃であるため、熱安定性の低い有機材料(例えばオリゴマー材料やポリマー材料等)を回収する場合でも、材料の劣化を抑制できる。 According to the above embodiment, the organic material Om on the surface of the adhesive plate Sd is dissolved in the supercritical fluid Sf, so that the organic material Om is removed from the adhesive plate Sd. Then, by reducing the pressure of the supercritical fluid Sf in which the organic material Om is dissolved to below the critical pressure (or cooling the temperature to below the supercritical temperature, or reducing the pressure and cooling), the supercritical fluid Sf is vaporized and super-supercritical. The organic material Om dissolved in the critical fluid Sf is precipitated and separated. Therefore, if the vaporized carbon dioxide is discharged, the organic material Om can be efficiently recovered. Here, since the critical temperature of carbon dioxide is about 40 ° C. to 50 ° C., deterioration of the material can be suppressed even when an organic material having low thermal stability (for example, an oligomer material or a polymer material) is recovered.

次に、図2を参照して、被成膜物を矩形の輪郭を持つ所定厚さのガラス基板(以下、「基板Sw」という)、所定の薄膜の成膜に伴って表面に成膜材料が付着した部品を防着板Sd、成膜材料を有機材料Omとし、基板Swの片面に有機材料Omからなる所定の薄膜を成膜する場合を例に本発明の成膜装置の実施形態を説明する。以下においては、ステージから防着板Sdに向かう方向を上とし、「上」、「下」、「右」、「左」といった方向を示す用語は図2を基準として説明する。 Next, with reference to FIG. 2, a film-forming material is formed on the surface of a glass substrate having a rectangular outline and a predetermined thickness (hereinafter referred to as “substrate Sw”) and a predetermined thin film. An embodiment of the film forming apparatus of the present invention is set as an example in which a part to which is attached is an adhesive plate Sd, a film forming material is an organic material Om, and a predetermined thin film made of an organic material Om is formed on one side of a substrate Sw. explain. In the following, the direction from the stage to the protective plate Sd is set upward, and the terms indicating the directions such as “up”, “bottom”, “right”, and “left” will be described with reference to FIG.

図2を参照して、Cmは、本実施形態の成膜装置である。成膜装置Cmは、第1チャンバである第1圧力チャンバ1、第2チャンバである真空チャンバ5を備え、第1圧力チャンバ1と真空チャンバ5は、連通手段としての供給管6で接続されている。供給管6の一方の先端は、真空チャンバ5の上壁5aを貫通して真空チャンバ5内部に突設され、真空チャンバ5内に突設する供給管6の先端には、後述の超臨界流体Sfを所定の噴射角で噴射する噴射ノズルInが設けられている。また、供給管6はその中間部で、配管61,62を介して第2圧力チャンバ7に接続され、供給管6と配管61との接続部に介設された三方弁V2及び配管62に介設された開閉弁V3の開閉により、第1圧力チャンバ1、真空チャンバ5及び第2圧力チャンバ7を選択的に連通できるようにしている。 With reference to FIG. 2, Cm is the film forming apparatus of the present embodiment. The film forming apparatus Cm includes a first pressure chamber 1 which is a first chamber and a vacuum chamber 5 which is a second chamber, and the first pressure chamber 1 and the vacuum chamber 5 are connected by a supply pipe 6 as a communication means. There is. One tip of the supply pipe 6 penetrates the upper wall 5a of the vacuum chamber 5 and projects into the vacuum chamber 5, and the tip of the supply pipe 6 projecting into the vacuum chamber 5 is a supercritical fluid described later. An injection nozzle In that injects Sf at a predetermined injection angle is provided. Further, the supply pipe 6 is connected to the second pressure chamber 7 via the pipes 61 and 62 at the intermediate portion thereof, and is interposed through the three-way valve V2 and the pipe 62 provided at the connection portion between the supply pipe 6 and the pipe 61. By opening and closing the provided on-off valve V3, the first pressure chamber 1, the vacuum chamber 5, and the second pressure chamber 7 can be selectively communicated with each other.

第1圧力チャンバ1の下部空間には、ステージStが設けられ、図示省略の開閉扉を開けて、有機材料Omが付着した防着板Sdを有機材料Omが付着した面を上方に向けた姿勢で設置できるようになっている。第1圧力チャンバ1には、第1圧力チャンバ1内に炭酸ガスを導入する第1ガス導入手段2が設けられている。第1ガス導入手段2は、第1圧力チャンバ1内のガス導入部21に接続されるガス管22を有し、ガス管22にはマスフローコントローラ23が介設され、第1圧力チャンバ1内の圧力が所定の圧力(臨界圧力以上、例えば7MPa)になるまで炭酸ガスを導入できるようになっている。なお、本実施形態では、第1ガス導入手段2により、第1圧力チャンバ1内の圧力が二酸化炭素の臨界圧力以上となるまで、炭酸ガスを導入するものを例に説明するが、第1圧力チャンバ1内に予め超臨界状態となった二酸化炭素を導入するように第1ガス導入手段2を構成することもできる。 A stage St is provided in the lower space of the first pressure chamber 1, and an opening / closing door (not shown) is opened, and the protective plate Sd to which the organic material Om is attached faces upward with the surface to which the organic material Om is attached facing upward. It can be installed at. The first pressure chamber 1 is provided with a first gas introducing means 2 for introducing carbon dioxide gas into the first pressure chamber 1. The first gas introducing means 2 has a gas pipe 22 connected to a gas introducing portion 21 in the first pressure chamber 1, and a mass flow controller 23 is interposed in the gas pipe 22 to be provided in the first pressure chamber 1. Carbon dioxide gas can be introduced until the pressure reaches a predetermined pressure (above the critical pressure, for example, 7 MPa). In the present embodiment, carbon dioxide gas is introduced by the first gas introducing means 2 until the pressure in the first pressure chamber 1 becomes equal to or higher than the critical pressure of carbon dioxide. The first gas introducing means 2 can also be configured to introduce carbon dioxide that has been in a supercritical state in advance into the chamber 1.

第1圧力チャンバ1内の側壁には加熱手段3が設けられ、第1圧力チャンバ1内に導入された炭酸ガスを所定の温度(臨界温度以上、例えば40℃以上)に加熱できるようになっている。加熱手段3としては、シースヒータやランプヒータ等の公知のものが利用できる。 A heating means 3 is provided on the side wall of the first pressure chamber 1 so that the carbon dioxide gas introduced into the first pressure chamber 1 can be heated to a predetermined temperature (critical temperature or higher, for example, 40 ° C. or higher). There is. As the heating means 3, known means such as a sheath heater and a lamp heater can be used.

真空チャンバ5には、真空排気手段としてのロータリーポンプ、ターボ分子ポンプ等の真空ポンプP2からの排気管P21が接続されて、排気管P21には、圧力調整手段としてのコンダクタンスバルブCvが介設されている。また、真空チャンバ5には、真空チャンバ5内に所定のガスを導入する圧力調整手段としての第2ガス導入手段8が設けられ、真空チャンバ5を所定圧力(真空度)に適宜制御できるようにしている。第2ガス導入手段8としては、真空チャンバ5内のガス導入部81に接続されるガス管82を有し、ガス管82にはマスフローコントローラ83が介設されたものが利用できる。一方、導入するガスとしては、不活性ガスや、第1ガス導入手段2と同じ炭酸ガスを利用でき、炭酸ガスを利用する場合には、成膜後にこれを回収して再利用することもできる。本実施形態では、真空排気手段を備えることで、真空チャンバ5内の圧力を大気圧より低い所定圧力にすることができ、真空チャンバ5内の圧力が大気圧と同等(または大気圧以上)の圧力である場合に比べて、速い成膜レートで成膜することができる。また、圧力調整手段を備え、真空チャンバ5内の圧力を調整することで、成膜レートを容易に制御することができる。なお、本実施形態では、真空排気手段としての真空ポンプP2、圧力調節手段としてのマスフローコントローラ83及び第2ガス導入手段8を備えるものを例に説明するが、真空排気手段や圧力調節手段は省略することもできる。 An exhaust pipe P21 from a vacuum pump P2 such as a rotary pump or a turbo molecular pump such as a rotary pump or a turbo molecular pump is connected to the vacuum chamber 5, and a conduction valve Cv as a pressure adjusting means is interposed in the exhaust pipe P21. ing. Further, the vacuum chamber 5 is provided with a second gas introducing means 8 as a pressure adjusting means for introducing a predetermined gas into the vacuum chamber 5, so that the vacuum chamber 5 can be appropriately controlled to a predetermined pressure (vacuum degree). ing. As the second gas introducing means 8, a gas pipe 82 connected to the gas introducing portion 81 in the vacuum chamber 5 and a mass flow controller 83 interposed in the gas pipe 82 can be used. On the other hand, as the gas to be introduced, an inert gas or the same carbon dioxide gas as in the first gas introducing means 2 can be used, and when carbon dioxide gas is used, it can be recovered and reused after the film formation. .. In the present embodiment, by providing the vacuum exhaust means, the pressure in the vacuum chamber 5 can be set to a predetermined pressure lower than the atmospheric pressure, and the pressure in the vacuum chamber 5 is equal to (or higher than the atmospheric pressure) the atmospheric pressure. It is possible to form a film at a faster film forming rate than in the case of pressure. Further, the film forming rate can be easily controlled by providing the pressure adjusting means and adjusting the pressure in the vacuum chamber 5. In this embodiment, a vacuum pump P2 as a vacuum exhaust means, a mass flow controller 83 as a pressure adjusting means, and a second gas introducing means 8 will be described as an example, but the vacuum exhaust means and the pressure adjusting means will be omitted. You can also do it.

真空チャンバ5内の下部空間には移動手段9が設けられ、移動手段9は、成膜面としての上面を開放した状態で基板Swを保持するホルダ91と、駆動手段92とを備える。ホルダ91には、駆動手段92の駆動軸92aが連結され、ホルダ91ひいては基板Swを噴射ノズルInに対して左右方向(X軸方向)に相対移動できるようにしている。移動手段9としては公知のものが利用できる。なお、本実施形態では、移動手段9が基板Swを噴射ノズルInに対して相対移動させることで、基板Swの全面に亘って有機材料Omを膜厚の均一性よく成膜することができる。 A moving means 9 is provided in the lower space in the vacuum chamber 5, and the moving means 9 includes a holder 91 for holding the substrate Sw in a state where the upper surface as a film forming surface is open, and a driving means 92. The drive shaft 92a of the drive means 92 is connected to the holder 91 so that the holder 91 and thus the substrate Sw can move relative to the injection nozzle In in the left-right direction (X-axis direction). A known means of transportation 9 can be used. In the present embodiment, the moving means 9 moves the substrate Sw relative to the injection nozzle In, so that the organic material Om can be formed over the entire surface of the substrate Sw with good film thickness uniformity.

ホルダ9に保持された基板Swと噴射ノズルInとの間には、板状のマスクプレートMpが設けられている。本実施形態では、マスクプレートMpは、基板Swと一体に取り付けられて基板Swと共に移動手段9によって相対移動できるようになっている。マスクプレートMpには、板厚方向に貫通する複数の開口Moが形成され、これら開口Moがない位置にて有機材料Omの基板Swに対する付着範囲が制限されることで、所定のパターンで基板Swに成膜される。マスクプレートMpとしては公知のものが利用できる。 A plate-shaped mask plate Mp is provided between the substrate Sw held by the holder 9 and the injection nozzle In. In the present embodiment, the mask plate Mp is integrally attached to the substrate Sw and can be relatively moved together with the substrate Sw by the moving means 9. A plurality of openings Mo penetrating in the plate thickness direction are formed in the mask plate Mp, and the adhesion range of the organic material Om to the substrate Sw is limited at a position where these openings Mo do not exist, so that the substrate Sw has a predetermined pattern. The film is formed on. A known mask plate Mp can be used.

第2圧力チャンバ7の下部には、有機材料Omを収容する坩堝71が設けられている。また、第2圧力チャンバ7内の側壁には、加熱手段3が設けられ、第1圧力チャンバ1内から供給管6、配管61を通って、第2圧力チャンバ7内に導入された炭酸ガス(又は超臨界流体Sf)を所定の温度(臨界温度以上、例えば40℃以上)に加熱できるようになっている。加熱手段3としては、シースヒータやランプヒータ等の公知のものが利用できる。以下に、上記成膜装置Cmを用いた成膜方法を具体的に説明する。 A crucible 71 for accommodating the organic material Om is provided in the lower part of the second pressure chamber 7. Further, a heating means 3 is provided on the side wall in the second pressure chamber 7, and carbon dioxide gas introduced into the second pressure chamber 7 from the first pressure chamber 1 through the supply pipe 6 and the pipe 61 (in addition, Alternatively, the supercritical fluid Sf) can be heated to a predetermined temperature (critical temperature or higher, for example, 40 ° C. or higher). As the heating means 3, known means such as a sheath heater and a lamp heater can be used. Hereinafter, a film forming method using the film forming apparatus Cm will be specifically described.

基板Sw及びマスクプレートMpをホルダ91にセットした後、三方弁V2、開閉弁V3を閉じて、真空ポンプP2を稼働させて真空チャンバ5内を所定圧力(例えば、10−5Pa)まで減圧する。第1圧力チャンバ1内のステージStに、有機材料Omが付着した防着板Sdを有機材料Omが付着した面を上方に向けた姿勢で設置すると共に、第2圧力チャンバ7内の坩堝71内に有機材料Omを収容した後、三方弁V2を選択的に開放し、第1圧力チャンバ1及び第2圧力チャンバ7を連通させる。そして、第1ガス導入手段2により第1圧力チャンバ1及び第1圧力チャンバ1に連通する第2圧力チャンバ7の圧力が7Mpa以上になるまで炭酸ガスを導入し、導入された炭酸ガスを加熱手段3により40℃〜50℃の温度になるまで加熱する。すると、第1圧力チャンバ1及び第2圧力チャンバ7内で二酸化炭素が超臨界状態(超臨界流体Sf)となり、防着板Sd表面の有機材料Om、坩堝71内の有機材料Omが超臨界流体Sfに溶解する。このとき、真空チャンバ5は、真空ポンプP2により真空排気されて、大気圧より低い所定圧力とする。 After setting the substrate Sw and the mask plate Mp in the holder 91, the three-way valve V2 and the on-off valve V3 are closed, and the vacuum pump P2 is operated to reduce the pressure in the vacuum chamber 5 to a predetermined pressure (for example, 10-5 Pa). .. On the stage St in the first pressure chamber 1, the adhesive plate Sd to which the organic material Om is attached is installed in a posture in which the surface to which the organic material Om is attached faces upward, and in the pit 71 in the second pressure chamber 7. After accommodating the organic material Om, the three-way valve V2 is selectively opened so that the first pressure chamber 1 and the second pressure chamber 7 communicate with each other. Then, carbon dioxide gas is introduced by the first gas introducing means 2 until the pressure of the second pressure chamber 7 communicating with the first pressure chamber 1 and the first pressure chamber 1 becomes 7 Mpa or more, and the introduced carbon dioxide gas is heated by the heating means. Heat to a temperature of 40 ° C. to 50 ° C. according to 3. Then, carbon dioxide becomes a supercritical state (supercritical fluid Sf) in the first pressure chamber 1 and the second pressure chamber 7, and the organic material Om on the surface of the adhesive plate Sd and the organic material Om in the pit 71 are supercritical fluids. Dissolves in Sf. At this time, the vacuum chamber 5 is evacuated by the vacuum pump P2 to a predetermined pressure lower than the atmospheric pressure.

次に、第2圧力チャンバ7と真空チャンバ5とが連通するように開閉弁V3を開放すると、第2圧力チャンバ7と真空チャンバ5との圧力差によって、有機材料Omが溶解した超臨界流体Sfは、配管62及び供給管6を介して真空チャンバ5へと導入され、噴射ノズルInから真空チャンバ5内の基板Swに向けて、有機材料Omが溶解した超臨界流体Sfが供給される。なお、本実施形態では、第1圧力チャンバ1と第2圧力チャンバ7とを連通させて、第1圧力チャンバ1内から第2圧力チャンバ7内に炭酸ガスを導入するものを例に説明するが、第1圧力チャンバ1と第2圧力チャンバ7とを連通させずに、第1圧力チャンバ1のみに炭酸ガスを導入して超臨界状態にした後、開閉弁V3を開放して第1圧力チャンバ1と真空チャンバ5とを連通させることもできる。また、真空ポンプP2により真空チャンバ5内の真空排気を行わず、例えば真空チャンバ5内の圧力を大気圧と同等(又は大気圧以上)の圧力とし、第1圧力チャンバ1内の圧力(即ち、超臨界圧以上の圧力)と真空チャンバ5内の圧力(例えば大気圧)との圧力差によって、真空チャンバ5内へ超臨界流体Sfを供給することもできる。 Next, when the on-off valve V3 is opened so that the second pressure chamber 7 and the vacuum chamber 5 communicate with each other, the supercritical fluid Sf in which the organic material Om is dissolved due to the pressure difference between the second pressure chamber 7 and the vacuum chamber 5 Is introduced into the vacuum chamber 5 via the pipe 62 and the supply pipe 6, and the supercritical fluid Sf in which the organic material Om is dissolved is supplied from the injection nozzle In toward the substrate Sw in the vacuum chamber 5. In this embodiment, the case where the first pressure chamber 1 and the second pressure chamber 7 are communicated with each other and carbon dioxide gas is introduced from the inside of the first pressure chamber 1 into the second pressure chamber 7 will be described as an example. , The first pressure chamber 1 and the second pressure chamber 7 are not communicated with each other, and carbon dioxide gas is introduced only into the first pressure chamber 1 to bring it into a supercritical state, and then the on-off valve V3 is opened to bring the first pressure chamber 1 into a supercritical state. 1 and the vacuum chamber 5 can also be communicated with each other. Further, the vacuum pump P2 does not exhaust the vacuum in the vacuum chamber 5, for example, the pressure in the vacuum chamber 5 is set to be equal to (or higher than) the atmospheric pressure, and the pressure in the first pressure chamber 1 (that is, that is, is equal to or higher than the atmospheric pressure). The supercritical fluid Sf can also be supplied into the vacuum chamber 5 by the pressure difference between the pressure above the supercritical pressure) and the pressure in the vacuum chamber 5 (for example, atmospheric pressure).

以上の実施形態によれば、第1圧力チャンバ1(または第1圧力チャンバ1に連通する第2圧力チャンバ7)と真空チャンバ5とを連通させることで、有機材料Omが溶解した超臨界流体Sfが噴射ノズルInから基板Swに向けて供給(噴射)される。この時、真空チャンバ5内に導入された超臨界流体Sfの圧力が急激に低下し、超臨界流体が気化する一方で、超臨界流体Sfに溶解している有機材料Omが析出(または結晶化)し、この析出した有機材料Omが基板Swの表面に付着、堆積することで成膜される。これによれば、超臨界流体に溶解した有機材料Om(即ち、防着板Sdに付着していた有機材料Om)を析出させて分離することなく、有機材料Omをそのまま基板Swへの成膜に利用することができる。ここで、二酸化炭素は約40℃〜50℃の臨界温度であるため、熱安定性の低い有機材料(例えばオリゴマー材料やポリマー材料等)を成膜する場合でも、材料の劣化を抑制できる。 According to the above embodiment, the supercritical fluid Sf in which the organic material Om is dissolved by communicating the first pressure chamber 1 (or the second pressure chamber 7 communicating with the first pressure chamber 1) and the vacuum chamber 5 Is supplied (injected) from the injection nozzle In toward the substrate Sw. At this time, the pressure of the supercritical fluid Sf introduced into the vacuum chamber 5 drops sharply, and the supercritical fluid vaporizes, while the organic material Om dissolved in the supercritical fluid Sf precipitates (or crystallizes). ), And the precipitated organic material Om adheres to and deposits on the surface of the substrate Sw to form a film. According to this, the organic material Om dissolved in the supercritical fluid (that is, the organic material Om adhering to the adhesive plate Sd) is not precipitated and separated, and the organic material Om is directly formed on the substrate Sw. Can be used for. Here, since carbon dioxide has a critical temperature of about 40 ° C. to 50 ° C., deterioration of the material can be suppressed even when an organic material having low thermal stability (for example, an oligomer material or a polymer material) is formed.

また、本実施形態では、連通手段である供給管6に配管61,62を介して接続され、その内部に有機材料Omが収容される第2圧力チャンバ7を設けて、第1圧力チャンバ1と第2圧力チャンバ7とを連通させることで、第2圧力チャンバ7内に供給された超臨界流体Sfに坩堝71内の有機材料Omが溶解した後、真空チャンバ5内の基板Swに向けて、有機材料Omが溶解した超臨界流体Sfが供給される。これによれば、防着板Sdに付着した有機材料Omが、基板Swに対する成膜に必要な量より不足する場合でも、有機材料Omを補うことで、基板Swに対して成膜することができる。 Further, in the present embodiment, a second pressure chamber 7 is provided which is connected to the supply pipe 6 which is a communication means via pipes 61 and 62 and in which the organic material Om is housed, and is connected to the first pressure chamber 1. By communicating with the second pressure chamber 7, after the organic material Om in the pit 71 is dissolved in the supercritical fluid Sf supplied in the second pressure chamber 7, the organic material Om in the pit 71 is directed toward the substrate Sw in the vacuum chamber 5. The supercritical fluid Sf in which the organic material Om is dissolved is supplied. According to this, even if the amount of the organic material Om adhering to the adhesive plate Sd is less than the amount required for the film formation on the substrate Sw, the film can be formed on the substrate Sw by supplementing the organic material Om. it can.

以上、本発明の実施形態について説明したが、本発明の技術思想の範囲を逸脱しない限り、種々の変形が可能である。上記実施形態では、成膜室内での内部に存する部品として、防着板Sdを用いるものを例に説明したが、これに限定されるものではない。所定の薄膜の成膜に伴って表面に有機材料Omが付着した部品であればよく、例えば蒸着処理によりその表面に有機材料Omが付着したマスクプレート等を用いることもできる。また、上記実施形態では、所定のガスとして炭酸ガスを用いるものを例に説明したが、エタンガスやエチレンガス等のガスを用いることもできる。 Although the embodiments of the present invention have been described above, various modifications can be made without departing from the scope of the technical idea of the present invention. In the above embodiment, the part using the adhesive plate Sd as an example of the component existing inside the film forming chamber has been described as an example, but the present invention is not limited to this. Any component may be used as long as it is a component in which the organic material Om is adhered to the surface as a result of the formation of a predetermined thin film, and for example, a mask plate or the like in which the organic material Om is adhered to the surface by a vapor deposition treatment can be used. Further, in the above embodiment, a gas using carbon dioxide gas as a predetermined gas has been described as an example, but a gas such as ethane gas or ethylene gas can also be used.

Rm…成膜材料回収装置、Sd…防着板(部品)、Sw…基板(被成膜物)、Om…有機材料(成膜材料)、1…圧力チャンバ(密閉容器),第1圧力チャンバ(第1チャンバ)、Sf…超臨界状態の二酸化炭素(超臨界流体)、2…ガス導入手段、P1…真空ポンプ(可変手段)、4…分離チャンバ(可変手段)、5…真空チャンバ(第2チャンバ)、6…供給管(連通手段)、7…第2圧力チャンバ(第3チャンバ)。 Rm ... Film-forming material recovery device, Sd ... Adhesive plate (parts), Sw ... Substrate (film-deposited object), Om ... Organic material (deposition material), 1 ... Pressure chamber (sealed container), 1st pressure chamber (1st chamber), Sf ... Supercritical carbon dioxide (supercritical fluid), 2 ... Gas introduction means, P1 ... Vacuum pump (variable means), 4 ... Separation chamber (variable means), 5 ... Vacuum chamber (1st chamber) 2 chambers), 6 ... Supply pipe (communication means), 7 ... 2nd pressure chamber (3rd chamber).

Claims (4)

被成膜物に対して所定の薄膜を成膜する成膜室内での成膜処理によってその内部に存する部品表面に付着した成膜材料を回収する成膜材料回収装置であって、
成膜材料が付着した部品を収容できる密閉容器と、密閉容器内に所定のガスを導入するガス導入手段とを備え、
ガス導入手段が、部品を収容した密閉容器に、超臨界状態となったガスまたは臨界圧力以上の圧力までガスを導入して、超臨界流体に部品表面の成膜材料を溶解させ、この成膜材料が溶解した超臨界流体の温度及び圧力の少なくとも一方を可変とする可変手段を更に備えることを特徴とする成膜材料回収装置。
It is a film forming material recovery device that recovers the film forming material adhering to the surface of the component existing inside the film forming chamber for forming a predetermined thin film on the film to be filmed.
A closed container capable of accommodating parts to which a film-forming material is attached and a gas introduction means for introducing a predetermined gas into the closed container are provided.
The gas introducing means introduces a gas in a supercritical state or a gas up to a pressure equal to or higher than the critical pressure into a closed container containing the component, dissolves the film-forming material on the surface of the component in the supercritical fluid, and forms the film. A film-forming material recovery device further comprising variable means for changing at least one of the temperature and pressure of the supercritical fluid in which the material is melted.
被成膜物に対して所定の薄膜を成膜する成膜室内での成膜処理によってその内部に存する部品表面に付着した成膜材料を回収する成膜材料回収方法であって、
密閉容器に、表面に成膜材料が付着した部品を収容する工程と、
密閉容器に、超臨界状態となったガスまたは臨界圧力以上の圧力までガスを導入して、超臨界流体に部品表面の成膜材料を溶解させる工程と、
成膜材料が溶解した超臨界流体の温度及び圧力の少なくとも一方を変化させて超臨界流体を気化させて成膜材料を析出させる工程と、を含むことを特徴とする成膜材料回収方法。
This is a film forming material recovery method for recovering the film forming material adhering to the surface of the component existing inside the film forming chamber for forming a predetermined thin film on the film to be filmed.
The process of accommodating parts with a film-forming material on the surface in a closed container,
A process of introducing a gas in a supercritical state or a gas up to a pressure higher than the critical pressure into a closed container to dissolve the film-forming material on the surface of the component in the supercritical fluid.
A method for recovering a film-forming material, which comprises a step of changing at least one of the temperature and pressure of the supercritical fluid in which the film-forming material is dissolved to vaporize the supercritical fluid and precipitating the film-forming material.
被成膜物に対して所定の薄膜を成膜する成膜装置であって、
成膜材料を溶解させた超臨界流体を格納する密閉可能な第1チャンバと、被成膜物が設置される第2チャンバと、第1チャンバと第2チャンバとを連通する連通手段とを備えて、第1チャンバと第2チャンバとの圧力差によって、第2チャンバ内の被成膜物に向けて、成膜材料を溶解させた超臨界流体を供給することで所定の薄膜が成膜され、
第1チャンバは、所定の薄膜の成膜に伴って表面に成膜材料が付着した部品を収容できると共に、第1チャンバに、超臨界状態となったガスまたは臨界圧力以上の圧力までガスを導入するガス導入手段が設けられることを特徴とする成膜装置。
A film forming apparatus for forming a predetermined thin film on a film to be formed.
A sealable first chamber for storing a supercritical fluid in which a film-forming material is dissolved, a second chamber in which a film-deposited object is installed, and a means for communicating the first chamber and the second chamber are provided. Then, due to the pressure difference between the first chamber and the second chamber, a predetermined thin film is formed by supplying a supercritical fluid in which the film forming material is dissolved toward the film to be formed in the second chamber. ,
The first chamber can accommodate a component having a film forming material adhered to the surface as a predetermined thin film is formed, and a gas in a supercritical state or a gas having a pressure equal to or higher than the critical pressure is introduced into the first chamber. A film forming apparatus characterized in that a gas introducing means is provided.
前記連通手段に、前記部品表面に付着した成膜材料と同等のものを収容する密閉可能な第3チャンバが設けられることを特徴とする請求項3記載の成膜装置。 The film forming apparatus according to claim 3, wherein the communicating means is provided with a sealable third chamber for accommodating a film forming material equivalent to the film forming material adhering to the surface of the component.
JP2019159734A 2019-09-02 2019-09-02 Film forming equipment Active JP7384596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019159734A JP7384596B2 (en) 2019-09-02 2019-09-02 Film forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019159734A JP7384596B2 (en) 2019-09-02 2019-09-02 Film forming equipment

Publications (2)

Publication Number Publication Date
JP2021038424A true JP2021038424A (en) 2021-03-11
JP7384596B2 JP7384596B2 (en) 2023-11-21

Family

ID=74848328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019159734A Active JP7384596B2 (en) 2019-09-02 2019-09-02 Film forming equipment

Country Status (1)

Country Link
JP (1) JP7384596B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247631A (en) * 1992-03-04 1993-09-24 Matsushita Electric Ind Co Ltd Method and device for forming synthetic-resin coating film
JP2004190131A (en) * 2002-12-06 2004-07-08 Eastman Kodak Co System for forming pattern vapor deposition from compression fluid
JP2004192850A (en) * 2002-12-09 2004-07-08 Toray Eng Co Ltd Washing method and device for metal mask
JP2005319378A (en) * 2004-05-07 2005-11-17 Canon Inc Method and apparatus for washing and organic material recovery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247631A (en) * 1992-03-04 1993-09-24 Matsushita Electric Ind Co Ltd Method and device for forming synthetic-resin coating film
JP2004190131A (en) * 2002-12-06 2004-07-08 Eastman Kodak Co System for forming pattern vapor deposition from compression fluid
JP2004192850A (en) * 2002-12-09 2004-07-08 Toray Eng Co Ltd Washing method and device for metal mask
JP2005319378A (en) * 2004-05-07 2005-11-17 Canon Inc Method and apparatus for washing and organic material recovery

Also Published As

Publication number Publication date
JP7384596B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
KR101084234B1 (en) Deposition source, Deposition apparatus using the same and method for forming thin film
US20050287299A1 (en) Method and apparatus using large-area organic vapor deposition for formation of organic thin films or organic devices
JP2007314881A (en) Vapor deposition device for thin film formation
JP5036516B2 (en) Vapor deposition method and vapor deposition apparatus for organic and inorganic composite thin film comprising organic substance and / or inorganic substance in multiple components
KR101075130B1 (en) Evaporating apparatus
JP2006348369A (en) Vapor deposition apparatus and vapor deposition method
US10066287B2 (en) Direct liquid deposition
JP5265583B2 (en) Vapor deposition equipment
JP2021038424A (en) Film deposition material recovery system, method of recovering film deposition material and film deposition apparatus
US20080145534A1 (en) Deposition apparatus with cavities for a substrate and an evaporation source, and deposition method using the same
JP4172982B2 (en) Method and apparatus for gasifying solid material and method and apparatus for forming thin film
KR100624767B1 (en) OLED evaporation system using shutter rotation for continuous deposition process
JP2009001885A (en) Film thickness detection device and vapor deposition method
KR20070109408A (en) Apparatus of thin film evaporation and method for thin film evaporation using the same
JP2020199451A (en) Film forming device and film forming method
JP7384617B2 (en) Organic film etching method
KR101349423B1 (en) METHOD FOR FORMING Cu FILM
CN113853449B (en) Method and system for forming film on substrate
KR20180081952A (en) Equipment and method for producing oled using phase-changed material
KR100495837B1 (en) Refillable source for thermal evaporation process
KR100521698B1 (en) Apparatus and method for forming polymer thin film with cyclic deposition
KR20090024081A (en) Vapor deposition system and vapor deposition method
JP2006161074A (en) Vapor deposition apparatus and vapor deposition method
JP2016079420A (en) Organic thin film formation apparatus
JP2012087328A (en) Film deposition device and film deposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231109

R150 Certificate of patent or registration of utility model

Ref document number: 7384596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150