JP2021035019A - 画像処理装置、画像処理方法及び画像処理プログラム - Google Patents

画像処理装置、画像処理方法及び画像処理プログラム Download PDF

Info

Publication number
JP2021035019A
JP2021035019A JP2019157166A JP2019157166A JP2021035019A JP 2021035019 A JP2021035019 A JP 2021035019A JP 2019157166 A JP2019157166 A JP 2019157166A JP 2019157166 A JP2019157166 A JP 2019157166A JP 2021035019 A JP2021035019 A JP 2021035019A
Authority
JP
Japan
Prior art keywords
image
handwritten
threshold value
classification
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019157166A
Other languages
English (en)
Other versions
JP7282314B2 (ja
Inventor
篤志 西田
Atsushi Nishida
篤志 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Document Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Document Solutions Inc filed Critical Kyocera Document Solutions Inc
Priority to JP2019157166A priority Critical patent/JP7282314B2/ja
Priority to EP20193093.0A priority patent/EP3786843A1/en
Priority to CN202010875450.0A priority patent/CN112449075A/zh
Priority to US17/006,348 priority patent/US11252302B2/en
Publication of JP2021035019A publication Critical patent/JP2021035019A/ja
Application granted granted Critical
Publication of JP7282314B2 publication Critical patent/JP7282314B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00092Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for relating to the original or to the reproducing medium, e.g. imperfections or dirt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/24Character recognition characterised by the processing or recognition method
    • G06V30/242Division of the character sequences into groups prior to recognition; Selection of dictionaries
    • G06V30/244Division of the character sequences into groups prior to recognition; Selection of dictionaries using graphical properties, e.g. alphabet type or font
    • G06V30/2455Discrimination between machine-print, hand-print and cursive writing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/55Clustering; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/001Texturing; Colouring; Generation of texture or colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00005Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for relating to image data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00071Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for characterised by the action taken
    • H04N1/00082Adjusting or controlling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6027Correction or control of colour gradation or colour contrast
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Evolutionary Computation (AREA)
  • Biomedical Technology (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Image Processing (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Image Analysis (AREA)

Abstract

【課題】手書き画像の除去処理においては印刷画像の欠落を効果的に抑制する一方、強調処理においては手書き画像の非検出を抑制する。【解決手段】画像処理装置は、畳み込みニューラルネットワークを使用して入力画像データの各画素が手書き画像を表しているか否かを分類し、手書き画像を表している確率である分類確率を画素毎に算出する画像分類部と、手書き画像を除去する画像処理である除去処理を行う場合には、第1の閾値を設定し、手書き画像を強調する画像処理である強調処理を行う場合には、第1の閾値よりも小さな第2の閾値を設定する閾値設定部と、除去処理を行う場合には、第1の閾値以上の分類確率を有する画素の階調値を調整して手書き画像を除去し、強調処理を行う場合には、第2の閾値以上の分類確率を有する画素の階調値を調整して手書き画像を強調処理する画像処理部とを備える。【選択図】図2

Description

本発明は、画像処理装置、画像処理方法及び画像処理プログラムに関し、特に、手書きの文字が描かれている印刷物の複写や画像の読み取りに関する。
印刷物は、たとえば学会やセミナーで配布されたときには、その印刷物に対して講演内容の一部を手書きで補填する場合がある。このような場合に、後に手書きの記載が除去された印刷物が望まれる場合もある。このような手書きの記載は、必ずしも印刷物のトナー色と相違する色相の色で記載されるとは限られず、黒のボールペンや鉛筆といった見た目に色が近い色材で記載されることも多い。このような問題に対して、特許文献1は、手書き文字を含む原画像に対する膨張処理により全体をぼやかし、膨張処理で得られた画像に対する暗部抽出処理により手書き文字の薄い部分を消去し、暗部抽出処理で得られた画像に対する小領域除去処理により手書き部分の小さな残りを消去し、小領域除去処理で得られた画像と原画像に対して和算出処理を施すことにより、印刷文字部分をきれいに取り出す技術を提案している。
特開2005−276188号公報
しかし、印刷物が、たとえば学会やセミナーで配布されたときには、出張報告書には、手書きの記載を読んで報告内容として記載し、添付資料として手書きの記載が除去された印刷物が望まれる場合もある。
本発明は、このような状況に鑑みてなされたものであり、手書き画像の除去処理においては印刷画像の欠落を効果的に抑制する一方、強調処理においては手書き画像の非検出を抑制する技術を提供することを目的とする。
本発明の画像処理装置は、畳み込みニューラルネットワークを使用して入力画像データの各画素が手書き画像を表しているか否かを分類し、前記手書き画像を表している確率である分類確率を画素毎に算出する画像分類部と、前記手書き画像を除去する画像処理である除去処理を行う場合には、第1の閾値を設定し、前記手書き画像を強調する画像処理である強調処理を行う場合には、前記第1の閾値よりも小さな第2の閾値を設定する閾値設定部と、前記除去処理を行う場合には、前記第1の閾値以上の前記分類確率を有する画素の階調値を調整して前記手書き画像を除去し、前記強調処理を行う場合には、前記第2の閾値以上の前記分類確率を有する画素の階調値を調整して前記手書き画像を強調処理する画像処理部とを備える。
本発明の画像処理方法は、畳み込みニューラルネットワークを使用して入力画像データの各画素が手書き画像を表しているか否かを分類し、前記手書き画像を表している確率である分類確率を画素毎に算出する画像分類工程と、前記手書き画像を除去する画像処理である除去処理を行う場合には、第1の閾値を設定し、前記手書き画像を強調する画像処理である強調処理を行う場合には、前記第1の閾値よりも小さな第2の閾値を設定する閾値設定工程と、前記除去処理を行う場合には、前記第1の閾値以上の前記分類確率を有する画素の階調値を調整して前記手書き画像を除去し、前記強調処理を行う場合には、前記第2の閾値以上の前記分類確率を有する画素の階調値を調整して前記手書き画像を強調処理する画像処理工程とを備える。
本発明は、画像処理装置を制御するための画像処理プログラムを提供する。前記画像処理プログラムは、畳み込みニューラルネットワークを使用して入力画像データの各画素が手書き画像を表しているか否かを分類し、前記手書き画像を表している確率である分類確率を画素毎に算出する画像分類部、前記手書き画像を除去する画像処理である除去処理を行う場合には、第1の閾値を設定し、前記手書き画像を強調する画像処理である強調処理を行う場合には、前記第1の閾値よりも小さな第2の閾値を設定する閾値設定部、及び前記除去処理を行う場合には、前記第1の閾値以上の前記分類確率を有する画素の階調値を調整して前記手書き画像を除去し、前記強調処理を行う場合には、前記第2の閾値以上の前記分類確率を有する画素の階調値を調整して前記手書き画像を強調処理する画像処理部として前記画像処理装置を機能させる。
本発明によれば、手書き画像の除去処理においては印刷画像の欠落を効果的に抑制する一方、強調処理においては手書き画像の非検出を抑制する技術を提供することができる。
本発明の一実施形態に係る画像形成装置10の全体構成を示す概略構成図である。 一実施形態に係る画像形成装置10の機能的構成を示すブロックダイアグラムである。 一実施形態に係る印刷処理の内容を示すフローチャートである。 一実施形態に係る手書き画像調整処理の内容を示すフローチャートである。 一実施形態に係るエンコード処理の一例の一例を示す説明図である。 一実施形態に係る畳み込み演算の一例を示す説明図である。 一実施形態に係るプーリング処理の一例を示す説明図である。 一実施形態に係る全結合層及び出力層の一例を示す説明図である。 一実施形態に係るデコード処理の一例の一例を示す説明図である。 一実施形態に係る除去処理及び強調処理の一例を示す説明図である。 比較例及び一実施形態に係る処理の一例を示す説明図である。 変形例に係る学習処理の内容を示す説明図である。
以下、本発明を実施するための形態(以下、「実施形態」という)を、図面を参照して説明する。
図1は、本発明の一実施形態に係る画像形成装置10の全体構成を示す概略構成図である。図2は、一実施形態に係る画像形成装置10の機能的構成を示すブロックダイアグラムである。画像形成装置10は、制御部210と、画像形成部220と、操作表示部230と、記憶部240と、画像読取部100とを備えている。画像読取部100は、自動原稿送り装置(ADF)160と原稿台(コンタクトガラス)150とを有し、原稿から画像(原画像)を読み取ってデジタルデータである画像データIDを生成する。
画像形成部220は、画像データIDに基づいて印刷媒体(図示せず)に画像を形成して排出する。操作表示部230は、タッチパネルとして機能するディスプレイ(図示せず)や各種ボタンやスイッチ(図示せず)からユーザーの操作入力(単にユーザー入力とも呼ばれる。)を受け付ける。
制御部210は、RAMやROM等の主記憶手段、及びMPU(Micro Processing Unit)やCPU(Central Processing Unit)等の制御手段を備えている。また、制御部210は、画像分類部211と、閾値設定部212と、画像処理部213とを有し、各種I/O、USB(ユニバーサル・シリアル・バス)、バス、その他ハードウェア等のインターフェイスに関連するコントローラ機能を備え、画像形成装置10全体を制御する。
記憶部240は、記録媒体であるハードディスクドライブやフラッシュメモリー等からなる記憶装置で、制御部210が実行する処理の制御プログラム(たとえば画像処理プログラム)やデータを記憶する。記憶部240には、学習データ241が記憶されている。
画像読取部100は、図2に示されるように、光源ドライバ111と、光源112とを備えている。光源112は、原稿Dに光を照射する複数のLED(図示せず)を有する。光源ドライバ111は、主走査方向に配列されている複数のLEDを駆動するLEDドライバであり、光源112のオンオフ駆動制御を行う。これにより、光源112は、可変の駆動デューティのパルス幅変調(PWM)で原稿Dの原稿面を照射光L1で照射することができる。
照射光L1は、原稿Dの面に垂直な方向に対して45度(傾斜した方向)の角度で照射される。原稿Dは、拡散反射光L2と、正反射光とを含む反射光を反射する。受光素子122は、拡散反射光L2を受光する。拡散反射光L2は、色材の吸光特性に応じたスペクトルの光となる。具体的には、印刷画像の拡散反射光L2は、印刷で使用された色材の吸光特性に応じたスペクトルの光となり、手書き画像の拡散反射光L2は、筆記具で使用されるインクや黒鉛等の色材の吸光特性に応じたスペクトルの光となる。
画像読取部100は、さらに、図1に示されるように、原稿Dとイメージセンサ121との間に、第1反射鏡113と、第1キャリッジ114と、第2反射鏡115と、第3反射鏡116と、第2キャリッジ117と、集光レンズ118とを備えている。第1反射鏡113は、原稿Dからの拡散反射光L2を第2反射鏡115の方向に反射する。第2反射鏡115は、拡散反射光L2を第3反射鏡116の方向に反射する。第3反射鏡116は、拡散反射光L2を集光レンズ118の方向に反射する。集光レンズ118は、拡散反射光L2をイメージセンサ121が有する複数の受光素子122の各受光面(図示せず)に結像する。
イメージセンサ121は、R,G,Bの各色成分のカラーフィルタ(図示略)を使用してR,G,Bの3つの色をそれぞれ検知する3本のCCDラインセンサ(図示せず)である。イメージセンサ121は、主走査方向に延びている3本のCCDラインセンサで原稿を走査(副走査)して原稿上の画像をR,G,Bに対応する電圧値の組合せとして取得する。このように、イメージセンサ121は、光電変換処理を行って、主走査方向の画素毎のR,G,Bのアナログ電気信号を出力することができる。
第1キャリッジ114は、光源112と第1反射鏡113とを搭載し、副走査方向に往復動する。第2キャリッジ117は、第2反射鏡115と第3反射鏡116とを搭載し、副走査方向に往復動する。第1キャリッジ114及び第2キャリッジ117は、走査制御部として機能する制御部210によって制御される。これにより、光源112は原稿を副走査方向に走査することができるので、イメージセンサ121は、原稿上の2次元画像に応じてアナログ電気信号を出力することができる。
なお、自動原稿送り装置(ADF)160が使用される場合には、第1キャリッジ114及び第2キャリッジ117は、予め設定されている副走査位置に固定され、原稿Dの自動送りによって副走査方向の走査が行われる。なお、ADF160には、片面だけでなく両面を同時にあるいは逐次に読み取るものもある。
ADF160は、紙送りローラー161と、原稿読取スリット162とを備えている。紙送りローラー161は、原稿の自動送りを行い、原稿の読み取りが原稿読取スリット162を介して行われる。この場合には、第1キャリッジ114が予め設定されている副走査位置に固定されるので、第1キャリッジ114に搭載されている光源112も所定位置に固定されることになる。
画像読取部100は、図2に示されるように、さらに、信号処理部123と、シェーディング補正部124と、シェーディング補正テーブル124aと、ガンマ変換部125と、ガンマ変換テーブル125aと、AGC処理部130と、白基準板132(図1参照)とを備えている。
信号処理部123は、A/D変換機能を有する可変利得増幅器である。信号処理部123は、AGC処理部130で設定され、記憶部240に格納されている利得でアナログ電気信号を増幅し、増幅されたアナログ電気信号をA/D変換してデジタルデータとする。ガンマ変換部125及びガンマ変換テーブル125aについての説明は後述する。
AGC処理部130は、本実施形態では、黒基準信号と白基準信号とを使用して複数の受光素子122のそれぞれに対して最適な利得とオフセット値とを設定する利得調整部である。黒基準信号は、光源112がオフの状態における受光素子122のアナログ電気信号である。白基準信号は、原稿Dの代わりに白基準板132を照射したときの受光素子122のアナログ電気信号である。
AGC処理部130は、黒基準信号が信号処理部123によってA/D変換されたときの画像データIDのRGBの各階調値が最小値「0」となるようにオフセット値を設定する。AGC処理部130は、このオフセット値を使用して白基準信号が信号処理部123によってA/D変換されたときの画像データIDのRGBの各階調値が最大値「255」となるように利得を設定する。これにより、最小値「0」から最大値「255」までのダイナミックレンジを有効に利用することができる。
シェーディング補正部124は、デジタルデータに対してシェーディング補正を実行して画像データIDを生成する。シェーディング補正は、光源112の長さ方向の光量不均一性やレンズのコサイン4乗則による周辺減光、主走査方向に配列されている複数の受光素子122の感度ムラに起因して発生するシェーディングを抑制するための補正である。シェーディング補正には、シェーディング補正値が使用される。シェーディング補正値は、白基準板132を使用して生成され、シェーディング補正テーブル124aに格納される。
このように、画像読取部100は、原稿D上の画像を読み取って画像データIDを生成する。画像データIDは、原稿D上の画像をRGBの各階調値(0〜255)で表すRGB画像データである。
RGB画像データは、印刷画像については印刷で使用された色材の吸光特性に応じたスペクトルの光に基づくデータとなり、手書き画像については筆記具で使用されるインクや黒鉛等の色材の吸光特性に応じたスペクトルの光となる。さらに、手書き画像は、人間の手の動きに起因する特徴を有する形状や濃度分布を有し、RGB画像データにおいても人間の手の動きに起因する特徴が再現されることがある。
図3は、一実施形態に係る印刷処理の内容を示すフローチャートである。ステップS100では、ユーザーは、画像読取操作を実行する。画像読取操作では、画像読取部100は、光源112から可変の駆動デューティのパルス幅変調(PWM)で適切な光量の照射光L1で原稿Dを照射し、原稿Dで反射されて原稿Dに表される画像に応じた色成分を有する拡散反射光L2をイメージセンサ121で受光する。
ステップS200では、イメージセンサ121は、光電変換処理を行って主走査方向の画素毎のR,G,Bのアナログ電気信号を出力することができる。
ステップS300では、信号処理部123は、AGC処理部130で設定された利得とオフセット値と使用し、RGBの各階調値が最小値「0」(光源112がオフの状態)から最大値「255」(白基準板132の読み取り時)までの範囲の階調値を出力することができる。ステップS400では、シェーディング補正部124は、デジタルデータに対してシェーディング補正を実行して画像データIDを生成する。
ステップS500では、ガンマ変換部125(図2参照)は、画像読取部100の特性に基づいてガンマ変換を行う。ガンマ変換には、ガンマ変換テーブル125aから読み出された値が使用される。ガンマ変換テーブル125aは、原稿上のグレーパッチの測色値から算出した所望の色空間(たとえばsRGBなど)でのRGB値(γ変換後)を用いて、ガンマ値を再帰的に設定して算出することができる。このようにして、画像データIDが生成される。
図4は、一実施形態に係る手書き画像調整処理(ステップS600)の内容を示すフローチャートである。手書き画像調整処理には、手書き画像除去処理と手書き画像強調処理がある。手書き画像除去処理は、手書き画像を自動的に選別して除去する処理である。手書き画像強調処理は、手書き画像を自動的に選別して強調して見やすくする処理である。この例では、ユーザーは、予め手書き画像除去処理と手書き画像強調処理のいずれかを選択し、手書き画像調整処理を実行するものとする。手書き画像除去処理は、単に除去処理とも呼ばれる。手書き画像強調処理は、単に強調処理とも呼ばれる。
ステップS610では、画像分類部211は、エンコード処理を実行する。エンコード処理では、画像分類部211は、手書き画像と印刷画像のクラス分類(画像セグメンテーション)を行うために畳み込みニューラルネットワーク(Convolutional Neural Network:CNN)を使用してクラス確率を算出する。
図5は、一実施形態に係るエンコード処理の一例を示す説明図である。畳み込みニューラルネットワークは、畳み込み層(Convolution Layer)とプーリング層(Pooling Layer)と、全結合層とを有するニューラルネットワークである。畳み込み層は、畳み込み演算が実行される層である。プーリング層は、プーリング処理が実行される層である。
図6は、一実施形態に係る畳み込み演算の一例を示す説明図である。畳み込み演算では、画像分類部211は、複数のフィルタ、たとえば微分フィルタF1〜F3を画像データIDのRGBの各データの全ての位置について畳み込んでエッジを抽出する。これにより、画像分類部211は、エッジ情報を含む特徴マップを表す畳み込みデータCDを生成することができる。
微分フィルタの重みは、学習によって調整又は決定することができる。学習は、手書き画像と印刷画像とを教師(訓練)データとして使用することによって、たとえば誤差逆伝播法で教師あり機械学習として実現することができる。学習は、学習データ241として記憶部240に格納され、予め様々な筆記具による手書き画像を使用して一般的な人間の筆跡情報や色材の吸光特性の差を使用して分類精度を高めることもできる。
図7は、一実施形態に係るプーリング処理の一例を示す説明図である。プーリング処理では、画像分類部211は、特徴マップのサイズを縮小し、すなわち位置的な情報を破棄して大局的な処理を可能とする。ただし、画像分類部211は、デコード処理(後述する)で使用するために位置的な情報である位置情報を別途保存する。
このように、画像分類部211は、畳み込み層及びプーリング層で、局所的で低次な情報を合成して、より大局的で高次な情報を抽出することができる。すなわち、画像分類部211は、ピクセル情報からエッジ情報へ、エッジ情報から筆跡情報へ画像データIDを順に変換していくことができる。
図8は、一実施形態に係る全結合層及び出力層の一例を示す説明図である。図8(a)は、全結合層を示している。全結合層は、全てのノードが次の層のノード全てに結合されている層である。全結合層は、プーリング層からの出力をまとめて画像を分類するために使用される特徴量である手書き特徴量と印刷特徴量とを生成する。
なお、全結合層は、必須の構成ではなく、畳み込みニューラルネットワークは、全結合層の代わりに特定の構成を有する畳み込み層を使用して全層畳み込みネットワーク(Fully Convolution Network:FCN)を使用して構成してもよい。
ステップS620では、画像分類部211は、デコード処理を実行する。デコード処理では、画像分類部211は、畳み込みニューラルネットワーク(Convolutional Neural Network:CNN)を使用して手書き画像と印刷画像のクラス分類(画像セグメンテーション)を画素毎に反映させる。これにより、画像分類部211は、画素レベルで画像領域を分類することができる。
図9は、一実施形態に係るデコード処理の一例の一例を示す説明図である。デコード処理では、画像分類部211は、アンプーリング層と逆畳み込み層とを使用して、手書き特徴量及び印刷特徴量のアップサンプリングを実行し、画像データIDの各画素について手書き確率P(h)と印刷確率P(p)とを特定する処理である。
アンプーリング層では、画像分類部211は、プーリング処理で保存した位置情報を使用して正確な分類マップを再現する。分類マップは、手書き特徴量と印刷特徴量とを格納するマップである。逆畳み込み層では、画像分類部211は、手書き特徴量と印刷特徴量とを有するピクセル情報に変換して画像データIDの各画素について手書き特徴量と印刷特徴量とを特定することができる。
出力層(図8(b)参照)では、画像分類部211は、手書き特徴量と印刷特徴量とを画素毎にソフトマックス関数で正規化し、手書き画像の分類確率である手書き確率P(h)と、印刷画像の分類確率である印刷確率P(p)とを出力する。手書き確率P(h)及び印刷確率P(p)は、0乃至1.0の値を取り、その和は1.0となる。
これにより、画像分類部211は、セマンテック画像セグメンテーション処理を実現し、画像領域分類データを生成することができる。画像領域分類データは、画像データIDの各画素について手書き確率P(h)と印刷確率P(p)とでラベル付けしたデータとも言える。
セマンテック画像セグメンテーション処理を実現可能なCNNとしては、たとえばオープンソースのSegNetが利用可能である。SegNetは、ケンブリッジ大学が提案しているディープラーニングを用いる画像分類手法であり、たとえば交通シーンにおいて画素単位で画像を分割することが可能である。
ステップS630では、画像分類部211は、除去処理と強調処理のいずれかを選択する。この例では、ユーザーは、予め手書き画像除去処理と手書き画像強調処理のいずれかを選択し、フラグが立てられているものとする。画像分類部211は、フラグに基づいて除去処理と強調処理のいずれかを選択する。この例では、先ず、手書き除去処理が選択されたものとする。
図10は、一実施形態に係る除去処理及び強調処理の一例を示す説明図である。図10(a)は、一実施形態に係る除去処理を示している。除去処理の対象である入力画像データID1は、「手書き画像」のテキストを表している手書き画像である手書き画像HW1と、「印刷画像」のテキストを表している印刷画像である印刷画像P1とを含んでいる。この例では、手書き画像HW1を表す各画素の手書き確率P(h)は、0.93乃至0.95の範囲で分布している。手書き画像HW1を表す各画素の印刷確率P(p)は、0.05乃至0.07の範囲で分布している。
ステップS641では、閾値設定部212は、除去用閾値設定処理を実行する。除去用閾値設定処理では、閾値設定部212は、除去処理を前提として手書き画像であるか否かを判断するための除去用閾値を設定する。除去用閾値は、第1の閾値とも呼ばれ、たとえばユーザー設定に基づいて統計的に調整又は決定することができる。この例では、閾値設定部212は、除去用閾値として0.9(90%)を設定したものとする。
ステップS651では、画像分類部211は、画像分類処理を実行する。画像分類処理では、画像分類部211は、画像データIDの各画素の手書き確率P(h)に基づいて画素毎に画像を分類する。具体的には、画像分類部211は、各画素の手書き確率P(h)が除去用閾値である0.9以上の場合には、手書き画像に分類し、他の画素を印刷画像又は印刷媒体の地肌色と判断する。この例では、画像分類部211は、手書き画像HW1を表す各画素は、全て手書き画像を表していると判断することになる。
ステップS661では、画像処理部213は、手書き除去処理を実行する。手書き除去処理では、画像処理部213は、手書き画像に分類された全ての画素の色を地肌色(たとえば白)となるように手書き画像HW1を表す各画素の階調値を調整する。これにより、画像処理部213は、手書き画像HW1が除去され、印刷画像P1のみを表す出力画像データID1aを生成することができる。次に、強調処理が選択されたものとする。
図10(b)は、一実施形態に係る強調処理を示している。強調処理の対象である入力画像データID1は、除去処理の対象である入力画像データID1と同一の画像データである。
ステップS642では、閾値設定部212は、強調用閾値設定処理を実行する。強調用閾値設定処理では、閾値設定部212は、強調処理を前提として手書き画像であるか否かを判断するための強調用閾値を設定する。強調用閾値は、第2の閾値とも呼ばれ、たとえばユーザー設定に基づいて統計的に調整又は決定することができる。この例では、閾値設定部212は、強調用閾値として0.7(70%)を設定したものとする。
ステップS652では、画像分類部211は、画像分類処理を実行する。画像分類部211は、各画素の手書き確率P(h)が強調用閾値である0.7以上の場合には、手書き画像に分類し、他の画素を印刷画像又は印刷媒体の地肌色と判断する。この例では、画像分類部211は、手書き画像HW1を表す各画素は、全て手書き画像を表し、他の画素は全て他の種類の画像(印刷画像や地肌)を表していると判断することになる。
ステップS662では、画像処理部213は、手書き強調処理を実行する。手書き強調処理では、手書き強調処理では、画像処理部213は、手書き画像に分類された全ての画素の色が濃くなって明瞭となるように手書き画像HW1を表す各画素の階調値を調整する。これにより、画像処理部213は、強調された手書き画像HW1aと印刷画像P1とを含む出力画像データID1bを生成することができる。
図11は、比較例及び一実施形態に係る処理の一例を示す説明図である。図11(a)は、比較例に係る除去処理を示している。比較例に係る除去処理は、0.8の共通閾値を使用している点で一実施形態に係る除去処理と相違している。除去処理の対象である入力画像データID2は、「印刷画像」のテキストを表している印刷画像である印刷画像P2と、「印刷画像」のテキストに重ねて手書きされた丸印を表している手書き画像である手書き画像HW2とを含んでいる。
この例では、手書き画像HW2を表す各画素の手書き確率P(h)は、0.83乃至0.95の範囲で分布している。手書き画像HW2を表す各画素の印刷確率P(p)は、0.05乃至0.17の範囲で分布している。この例では、手書き画像HW2を形成する色材の色が印刷画像の色材の色に近く、印刷画像P2と手書き画像HW2とが重なって手書き画像HW2を透過して印刷画像P2が見えている領域が存在しているものとする。
この例では、手書き画像HW2を形成する色材の色が印刷画像の色材の色に近いので、手書き確率P(h)は、図10の例と比較して全体的に低下している。さらに、印刷画像P2と手書き画像HW2とが重なっている領域が存在し、手書き画像HW2を透過して印刷画像P2が見えているので、手書き確率P(h)は、最小値が0.83まで低下している。
この例では、比較例に係る除去処理は、手書き画像HW1を表す各画素は、印刷画像P2を表している画素と重なっている画素を含めて全て手書き画像を表し、印刷画像P2を表す各画素は、手書き画像HW1と重なっている画素を除いて他の種類の画像(印刷画像や地肌)を表していると判断することになる。これにより、比較例に係る除去処理は、印刷画像P2の一部(重複部分の画像HW2c)に欠落を生じさせた印刷画像P2cを含む画像データID2cを生成してしまうことになる。
本願発明者は、この問題が手書き画像の誤検出と非検出のトレードオフに起因して発生する点に着目した。すなわち、このトレードオフは、閾値が大きければ手書き画像でない画像を手書き画像であると認識する誤検出が低下する一方、手書き画像の検出に漏れが発生するという非検出の問題である。本願発明者は、このような点に着目し、手書き画像の検出の目的に応じて閾値を切り替える新規な方法を創作した。
図11(b)は、一実施形態に係る除去処理を示している。除去処理の対象である入力画像データID2は、比較例に係る除去処理の対象である入力画像データID2と同一の画像データである。一実施形態に係る除去処理では、閾値設定部212は、除去処理を前提として手書き画像であるか否かを判断するための除去用閾値(0.9(90%))を設定する(ステップS651)。
これにより、画像分類部211は、印刷画像P2と手書き画像HW2とが重なっている領域を手書き画像HW2ではなく、他の種類の画像(重複領域、印刷画像及び地肌)を表していると判断することになる。画像処理部213は、印刷画像P2の一部(重複部分の画像HW2c)に欠落を生じさせることなく、手書き画像HW1を表している複数の画素のうち印刷画像P2を表している画素と重なっていない画素の色を地肌色となるように階調値を調整する。
これにより、画像処理部213は、印刷画像P2を損なうことなく、手書き画像HW1が除去された出力画像データID2aを生成することができる。ただし、除去用閾値は、印刷画像の欠落を重視して比較的に大きな値に設定されているので、手書き画像の検出感度が低下し、手書き画像の非検出をある程度許容する閾値である。
図11(c)は、一実施形態に係る強調処理を示している。強調処理の対象である入力画像データID2は、比較例に係る除去処理の対象である入力画像データID2と同一の画像データである。一実施形態に係る除去処理では、閾値設定部212は、強調処理を前提として手書き画像であるか否かを判断するための比較的に小さな値の強調用閾値(0.7(70%))を設定し、手書き画像の検出感度を高める(ステップS651)。
これにより、画像分類部211は、印刷画像P2と手書き画像HW2とが重なっている領域を印刷画像P2ではなく、手書き画像HW2aを表していると判断することになる。画像処理部213は、印刷画像P2の一部(重複部分の画像HW2c)を含めて、手書き画像HW1を表している画素の色が濃くなるように階調値を調整する。
印刷画像P2は、重複部分において色が濃くなるが欠落するわけではないので、一般に印刷画像P2への影響は限定的である。これにより、画像処理部213は、印刷画像P2を顕著に損なうことなく、手書き画像HW2の非検出を小さくするとともに、手書き画像HW2が強調された手書き画像HW2aと印刷画像P2aとを含む出力画像データID2bを生成することができる。
除去用閾値及び強調用閾値は、ユーザー設定に基づいて調整される。具体的には、操作表示部230は、ユーザーに対してトレードオフの説明を行うとともに、推奨される手書き画像の検出率のユーザー入力を受け付ける。この例では、推奨される手書き画像の検出率は、手書き画像の除去処理用の閾値として90%を表示し、手書き画像の強調処理用の閾値として70%を表示するものとする。
ステップS670では、画像処理部213は、出力画像データID1a,ID1b,ID2a及びID2bを出力する。ステップS700では、画像形成部220は、色変換処理部(図示略)でRGBデータである画像データID1a,ID1b,ID2a及びID2bを画像形成部220で使用される色材の色(CMYK)で再現するためのCMYK画像データに色変換する。CMYK画像データは、CMYKの各階調値(0〜255)から構成されているデータである。
ステップS800では、画像形成部220は、ハーフトーン処理を実行し、CMYK画像データのハーフトーンデータを生成する。ステップS900では、画像形成部220は、ハーフトーンデータに基づいて印刷媒体に画像を形成して出力する。印刷媒体は、画像形成媒体とも呼ばれる。
このように、一実施形態に係る画像形成装置10は、畳み込みニューラルネットワークを使用するセマンティック・セグメンテーションで入力画像から手書き画像を抽出して分類して手書き画像の分類確率を算出し、除去処理用の比較的に大きな閾値で手書き画像を判定して手書き画像を除去する画像処理を実行し、強調処理用の比較的に小さな閾値で手書き画像を判定して手書き画像を強調する画像処理を実行する。これにより、画像形成装置10は、除去処理における印刷画像の欠落を効果的に抑制しつつ強調処理における手書き画像の非検出を抑制することができる。
D.変形例:
本発明は、上記実施形態だけでなく、以下のような変形例でも実施することができる。
変形例1:上記実施形態では、閾値は、予め設定されて固定であるが、操作表示部230を使用して画像分類処理が完了した後に調整してもよい。操作表示部230は、ユーザーインターフェース画面231(図12(a)参照)とスタートボタン232とを有している。ユーザーインターフェース画面231は、対話型処理モードを有し、閾値減少アイコン237dと、閾値増加アイコン237uと、OKアイコン235とが表示されている。
手書き画像除去処理及び手書き画像強調処理の各処理モードにおいて、閾値減少アイコン237dは、ユーザータッチに応じて閾値を小さくし、閾値増加アイコン237uは、ユーザータッチに応じて閾値を大きくすることができる。上記実施形態では、画像分類処理が完了した後には、分類確率と閾値とを比較するだけで手書き画像を判別することができ、少ない処理で判別が可能なので、ユーザーは、実時間での画像の変化を確認しつつ閾値を調整することができる。
変形例2:上記実施形態では、手書き画像と印刷画像とを教師(訓練)データとして使用することによって予め学習済みであるが、新たに学習可能となるように学習モードを有する画像形成装置として構成してもよい。具体的には、操作表示部230は、学習用のユーザーインターフェース画面231aを表示し、学習用のユーザー入力を受け付けることができる。
具体的には、ユーザーは、ユーザーインターフェース画面231aに表示されている入力画像ID2上でスライドして手書き画像と印刷画像の重複部分を含む画像領域である第1領域R1を指定し、重複アイコン233をタッチする。これにより、画像分類部211は、手書き画像と、印刷画像と、手書き画像と印刷画像の重複部分の画像である重複画像とを含む画像領域として特定された状態で第1領域R1の画像(第1の教師画像とも呼ばれる。)を教師あり学習データとして入力することができる。
次に、ユーザーは、ユーザーインターフェース画面231aに表示されている入力画像ID2上でスライドして手書き画像のみを含む画像領域である第2領域R2を指定し、手書きアイコン234をタッチする。これにより、画像分類部211は、手書き画像のみを含む画像領域として特定された状態で第2領域R2の画像(第2の教師画像とも呼ばれる。)を教師あり学習データとして入力することができる。
さらに、ユーザーは、ユーザーインターフェース画面231aに表示されている入力画像ID2上でスライドして印刷画像のみを含む画像領域である第3領域R3を指定し、印刷アイコン236をタッチする。これにより、画像分類部211は、印刷画像のみを含む画像領域として特定された状態で第3領域R3の画像(第3の教師画像とも呼ばれる。)を教師あり学習データとして入力することができる。
最後に、ユーザーは、学習アイコン237をタッチして学習を開始することができる。学習結果は、学習データ241として記憶部240に格納され、畳み込みニューラルネットワークで利用可能となる。画像形成装置は、たとえば画像形成装置にログインした状態においてのみ学習モードを許容するように構成してもよい。こうすれば、各ユーザーの筆跡(画像の濃度分布や形状の特徴)を使用して検出精度を高めることができる。
変形例3:上記実施形態では、閾値の設定に手書き画像の形成に使用される筆記具の色材の色が考慮されていないが、たとえば印刷画像の色材の色相と筆記具の色材の色相とが顕著に相違している場合、たとえば色相角の差が大きい場合には、除去用閾値と強調用閾値の差が小さくなるよう設定されるようにしてもよい。色相角の差が大きい場合には、重複領域の印刷画像の劣化が目立つとともに、手書き画像の分類確率が高くなるからである。
変形例4:上記実施形態では、RGB色空間でクラス分類(画像セグメンテーション)が実行されているが、たとえば画像形成装置10の色材(たとえばCMYK)の色空間でクラス分類を実行してもよい。こうすれば、画像形成装置10は、既知の色特性の色材で形成された印刷画像と既知のスペクトルを有する光源112とを基準として、筆記具の色材の色特性の相違に基づく手書き画像の特徴が顕著となるからである。
変形例5:上記実施形態では、本発明は、画像形成装置に適用されているが、たとえば画像読み取り装置にも適用可能である。本発明は、画像処理装置として機能する画像形成装置や画像読み取り装置や携帯端末に適用可能である。
10 画像形成装置
210 制御部
211 画像分類部
212 閾値設定部
213 画像処理部
220 画像形成部
230 操作表示部
240 記憶部
100 画像読取部
111 光源ドライバ
112 光源
121 イメージセンサ
122 受光素子
123 信号処理部
124 シェーディング補正部
130 AGC処理部
150 原稿台
160 自動原稿送り装置
162 原稿読取スリット

Claims (5)

  1. 畳み込みニューラルネットワークを使用して入力画像データの各画素が手書き画像を表しているか否かを分類し、前記手書き画像を表している確率である分類確率を画素毎に算出する画像分類部と、
    前記手書き画像を除去する画像処理である除去処理を行う場合には、第1の閾値を設定し、前記手書き画像を強調する画像処理である強調処理を行う場合には、前記第1の閾値よりも小さな第2の閾値を設定する閾値設定部と、
    前記除去処理を行う場合には、前記第1の閾値以上の前記分類確率を有する画素の階調値を調整して前記手書き画像を除去し、前記強調処理を行う場合には、前記第2の閾値以上の前記分類確率を有する画素の階調値を調整して前記手書き画像を強調処理する画像処理部と、
    を備える画像処理装置。
  2. 請求項1記載の画像処理装置であって、さらに、
    前記画像分類部は、手書き画像と、印刷画像と、手書き画像と印刷画像の重複部分の画像である重複画像とを含む第1の教師画像と、手書き画像のみを含む第2の教師画像と、印刷画像のみを含む第3の教師画像とを使用して、前記重複部分の画像から前記手書き画像をクラス分けするように学習する学習モードを有する画像処理装置。
  3. 請求項1記載の画像処理装置と、
    画像形成媒体上に所定の色材を使用して画像を形成する画像形成部と、
    入力画像データの色空間を前記所定の色材を使用して再現される色空間に変換する色変換処理部と、
    を備え、
    前記画像分類部は、前記所定の色材を使用して再現される色空間に変換された画像データを使用して、前記分類と前記分類確率の算出とを実行する画像形成装置。
  4. 畳み込みニューラルネットワークを使用して入力画像データの各画素が手書き画像を表しているか否かを分類し、前記手書き画像を表している確率である分類確率を画素毎に算出する画像分類工程と、
    前記手書き画像を除去する画像処理である除去処理を行う場合には、第1の閾値を設定し、前記手書き画像を強調する画像処理である強調処理を行う場合には、前記第1の閾値よりも小さな第2の閾値を設定する閾値設定工程と、
    前記除去処理を行う場合には、前記第1の閾値以上の前記分類確率を有する画素の階調値を調整して前記手書き画像を除去し、前記強調処理を行う場合には、前記第2の閾値以上の前記分類確率を有する画素の階調値を調整して前記手書き画像を強調処理する画像処理工程と、
    を備える画像処理方法。
  5. 画像処理装置を制御するための画像処理プログラムであって、
    畳み込みニューラルネットワークを使用して入力画像データの各画素が手書き画像を表しているか否かを分類し、前記手書き画像を表している確率である分類確率を画素毎に算出する画像分類部、
    前記手書き画像を除去する画像処理である除去処理を行う場合には、第1の閾値を設定し、前記手書き画像を強調する画像処理である強調処理を行う場合には、前記第1の閾値よりも小さな第2の閾値を設定する閾値設定部、及び
    前記除去処理を行う場合には、前記第1の閾値以上の前記分類確率を有する画素の階調値を調整して前記手書き画像を除去し、前記強調処理を行う場合には、前記第2の閾値以上の前記分類確率を有する画素の階調値を調整して前記手書き画像を強調処理する画像処理部として前記画像処理装置を機能させる画像処理プログラム。

JP2019157166A 2019-08-29 2019-08-29 画像処理装置、画像処理方法及び画像処理プログラム Active JP7282314B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019157166A JP7282314B2 (ja) 2019-08-29 2019-08-29 画像処理装置、画像処理方法及び画像処理プログラム
EP20193093.0A EP3786843A1 (en) 2019-08-29 2020-08-27 Image processing device, image forming apparatus, image processing method, and non-transitory computer-readable storage medium
CN202010875450.0A CN112449075A (zh) 2019-08-29 2020-08-27 图像处理装置、图像形成装置、图像处理方法和存储介质
US17/006,348 US11252302B2 (en) 2019-08-29 2020-08-28 Image processing device, image forming apparatus, image processing method, and non-transitory computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019157166A JP7282314B2 (ja) 2019-08-29 2019-08-29 画像処理装置、画像処理方法及び画像処理プログラム

Publications (2)

Publication Number Publication Date
JP2021035019A true JP2021035019A (ja) 2021-03-01
JP7282314B2 JP7282314B2 (ja) 2023-05-29

Family

ID=72266217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019157166A Active JP7282314B2 (ja) 2019-08-29 2019-08-29 画像処理装置、画像処理方法及び画像処理プログラム

Country Status (4)

Country Link
US (1) US11252302B2 (ja)
EP (1) EP3786843A1 (ja)
JP (1) JP7282314B2 (ja)
CN (1) CN112449075A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113989816A (zh) * 2021-09-10 2022-01-28 浙江星算科技有限公司 一种基于人工智能的手写字体去除方法
WO2024048881A1 (ko) * 2022-08-31 2024-03-07 주식회사 애드아이랩 학습 시스템 및 학습 애플리케이션 동작방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060511A (ja) * 2004-08-19 2006-03-02 Kyocera Mita Corp 画像形成装置
JP2007087196A (ja) * 2005-09-22 2007-04-05 Sharp Corp 画像判定方法、画像処理装置、及び画像出力装置
US20180137349A1 (en) * 2016-11-14 2018-05-17 Kodak Alaris Inc. System and method of character recognition using fully convolutional neural networks
JP2018185552A (ja) * 2017-04-24 2018-11-22 公益財団法人鉄道総合技術研究所 画像解析装置および画像解析方法、ならびにプログラム
CN109740605A (zh) * 2018-12-07 2019-05-10 天津大学 一种基于cnn的手写中文文本识别方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181255A (en) * 1990-12-13 1993-01-19 Xerox Corporation Segmentation of handwriting and machine printed text
US6940617B2 (en) * 2001-02-09 2005-09-06 Matsushita Electric Industrial Co., Ltd. Printing control interface system and method with handwriting discrimination capability
JP2005276188A (ja) 2004-02-26 2005-10-06 Yokohama Tlo Co Ltd 手書き文字除去画像処理装置、及び手書き文字除去画像処理方法
JP5274305B2 (ja) * 2009-02-27 2013-08-28 キヤノン株式会社 画像処理装置、画像処理方法、コンピュータプログラム
EP2515257A4 (en) * 2009-12-15 2016-12-07 Fujitsu Frontech Ltd METHOD, DEVICE AND PROGRAM FOR CHARACTER RECOGNITION
US9465985B2 (en) * 2013-06-09 2016-10-11 Apple Inc. Managing real-time handwriting recognition
US10949660B2 (en) * 2017-04-10 2021-03-16 Pearson Education, Inc. Electronic handwriting processor with convolutional neural networks
US10002301B1 (en) * 2017-09-19 2018-06-19 King Fahd University Of Petroleum And Minerals System, apparatus, and method for arabic handwriting recognition
JP6822359B2 (ja) * 2017-09-20 2021-01-27 京セラドキュメントソリューションズ株式会社 画像形成装置
US11176321B2 (en) * 2019-05-02 2021-11-16 International Business Machines Corporation Automated feedback in online language exercises
JP7417192B2 (ja) * 2020-02-13 2024-01-18 京セラドキュメントソリューションズ株式会社 画像処理システムおよび画像処理プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060511A (ja) * 2004-08-19 2006-03-02 Kyocera Mita Corp 画像形成装置
JP2007087196A (ja) * 2005-09-22 2007-04-05 Sharp Corp 画像判定方法、画像処理装置、及び画像出力装置
US20180137349A1 (en) * 2016-11-14 2018-05-17 Kodak Alaris Inc. System and method of character recognition using fully convolutional neural networks
JP2018185552A (ja) * 2017-04-24 2018-11-22 公益財団法人鉄道総合技術研究所 画像解析装置および画像解析方法、ならびにプログラム
CN109740605A (zh) * 2018-12-07 2019-05-10 天津大学 一种基于cnn的手写中文文本识别方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113989816A (zh) * 2021-09-10 2022-01-28 浙江星算科技有限公司 一种基于人工智能的手写字体去除方法
WO2024048881A1 (ko) * 2022-08-31 2024-03-07 주식회사 애드아이랩 학습 시스템 및 학습 애플리케이션 동작방법

Also Published As

Publication number Publication date
JP7282314B2 (ja) 2023-05-29
EP3786843A1 (en) 2021-03-03
US20210067661A1 (en) 2021-03-04
CN112449075A (zh) 2021-03-05
US11252302B2 (en) 2022-02-15

Similar Documents

Publication Publication Date Title
US6606420B1 (en) Method and apparatus for digital image darkness control in saturated image structures
US20060215231A1 (en) Systems and methods of processing scanned data
US20150332607A1 (en) System for Producing Tactile Images
JP2005094740A (ja) 画像処理装置、画像形成装置及び画像処理方法
US10630905B2 (en) Real time shadow and glare analysis for document capture
CN110557515A (zh) 图像处理装置、图像处理方法和存储介质
US11252302B2 (en) Image processing device, image forming apparatus, image processing method, and non-transitory computer-readable storage medium
JP3335830B2 (ja) 画像処理装置
JP2016009941A (ja) 画像処理装置および画像処理方法
US9578207B1 (en) Systems and methods for selectively screening image data
EP0719032B1 (en) Apparatus for reading image and method therefor
US9338310B2 (en) Image processing apparatus and computer-readable medium for determining pixel value of a target area and converting the pixel value to a specified value of a target image data
JP6855022B2 (ja) 画像形成装置、画像形成方法及び画像形成プログラム
US6661921B2 (en) Image process apparatus, image process method and storage medium
JP4502001B2 (ja) 画像処理装置および画像処理方法
JP2001312721A (ja) 画像処理方法、相対濃度の検出方法、および画像処理装置
US8330997B2 (en) Image processing apparatus, image forming apparatus and image processing method
EP2642739A1 (en) Method for scanning hard copy originals
JP2019176336A (ja) 画像処理装置、画像送信装置、画像処理方法及び画像処理プログラム
US20240244154A1 (en) Information processing system, method, and non-transitory computer-executable medium
JP2004048130A (ja) 画像処理方法、画像処理装置、および画像処理プログラム
JP2019146050A (ja) 画像読取装置、画像読取方法及び画像読取プログラム
JP6694165B2 (ja) 画像処理装置、画像形成装置、画像処理方法及び画像処理プログラム
JPH04313774A (ja) 画像処理装置
JP3511838B2 (ja) 画像読取装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230430

R150 Certificate of patent or registration of utility model

Ref document number: 7282314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150