JP2021032853A - Method and device for evaluating thermal history of heat resistant member - Google Patents

Method and device for evaluating thermal history of heat resistant member Download PDF

Info

Publication number
JP2021032853A
JP2021032853A JP2019157151A JP2019157151A JP2021032853A JP 2021032853 A JP2021032853 A JP 2021032853A JP 2019157151 A JP2019157151 A JP 2019157151A JP 2019157151 A JP2019157151 A JP 2019157151A JP 2021032853 A JP2021032853 A JP 2021032853A
Authority
JP
Japan
Prior art keywords
heat
temperature
temperature detecting
resistant member
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019157151A
Other languages
Japanese (ja)
Other versions
JP2021032853A5 (en
JP7075379B2 (en
Inventor
吉田 茂
Shigeru Yoshida
茂 吉田
智啓 樋口
Tomohiro Higuchi
智啓 樋口
坂田 文稔
Fumitoshi Sakata
文稔 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2019157151A priority Critical patent/JP7075379B2/en
Priority to PCT/JP2020/032822 priority patent/WO2021040041A1/en
Publication of JP2021032853A publication Critical patent/JP2021032853A/en
Publication of JP2021032853A5 publication Critical patent/JP2021032853A5/ja
Application granted granted Critical
Publication of JP7075379B2 publication Critical patent/JP7075379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/38Determining or indicating operating conditions in steam boilers, e.g. monitoring direction or rate of water flow through water tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/06Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using melting, freezing, or softening
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Abstract

To allow for simply and accurately evaluating a thermal history of a heat resistant member regardless of a configuration of an evaluation target.SOLUTION: A thermal history evaluation method provided herein comprises installing a plurality of first temperature detection members capable of detecting temperature based on property change due to thermal aging on an inspection target part specified as a heat-resistant member. A thermal history of the heat resistant member is derived based on property change of the plurality of first temperature detection members.SELECTED DRAWING: Figure 2

Description

本開示は、耐熱部材の熱履歴評価方法、及び、熱履歴評価装置に関する。 The present disclosure relates to a heat history evaluation method for heat-resistant members and a heat history evaluation device.

ボイラ、石炭ガス化炉又はごみ焼却炉のようなプラント設備において、伝熱管や水壁管のような部材は数百度もの高温にさらされることから耐熱部材として構成される。このような耐熱部材では、高温による酸化や腐食、更には硫化腐食等によって減肉が生じたり、クリープ損傷による膨出が生じることがある。これらの事象は、耐熱部材の損傷を招き、冷却水漏洩や噴破などの不具合を引き起こす要因となる。 In plant equipment such as boilers, coal gasifiers or waste incinerators, members such as heat transfer pipes and water wall pipes are configured as heat resistant members because they are exposed to high temperatures of several hundred degrees Celsius. In such a heat-resistant member, wall thinning may occur due to oxidation and corrosion due to high temperature, and further, sulfurization corrosion and the like, and swelling due to creep damage may occur. These events cause damage to the heat-resistant member and cause problems such as leakage of cooling water and blasting.

このような不具合を防止するため、耐熱部材に対して熱電対などの温度センサを設置し、その温度を連続的に監視することで、プラント設備の点検計画や更新工事の検討が行われている。しかしながら、温度センサの測定点数には限界があり、また長期間(例えば数年間)の定期点検周期にわたって火炉内で連続的に測定を行うことは、温度センサ自身の信頼性も考慮すると現実的ではなかった。このような課題に対して、例えば特許文献1では、耐熱部材の検査対象部位に対して析出硬化型の材料を肉盛り溶接し、その硬さを測定することにより熱履歴を推定することで、耐熱部材の温度を簡易的に評価することが提案されている。 In order to prevent such problems, temperature sensors such as thermocouples are installed on the heat-resistant members, and the temperature is continuously monitored to study plant equipment inspection plans and renewal work. .. However, there is a limit to the number of measurement points of the temperature sensor, and continuous measurement in the fireplace over a long-term (for example, several years) periodic inspection cycle is not realistic considering the reliability of the temperature sensor itself. There wasn't. To solve such a problem, for example, in Patent Document 1, a precipitation hardening type material is built-up welded to a portion to be inspected of a heat-resistant member, and the heat history is estimated by measuring the hardness thereof. It has been proposed to simply evaluate the temperature of heat-resistant members.

特開2006−208214号公報Japanese Unexamined Patent Publication No. 2006-208214

上記特許文献1は、検査対象部位に対して硬さを評価するための析出硬化型の材料を肉盛り溶接する必要がある。しかしながら、検査対象となる耐熱部材が複雑な構造を有する場合には、検査対象部位に対して析出硬化型の材料を施工することは容易ではない。例えば、この種のプラント設備が有するボイラは、伝熱管を管寄せに溶接する管台と称される部位を有するが、管台は多数の伝熱管が接続された複雑な構造を有する。 In Patent Document 1, it is necessary to overlay weld a precipitation hardening type material for evaluating the hardness of the inspection target portion. However, when the heat-resistant member to be inspected has a complicated structure, it is not easy to apply a precipitation hardening type material to the inspection target portion. For example, the boiler of this type of plant equipment has a part called a tube base in which heat transfer tubes are welded to the pipes, but the pipe base has a complicated structure in which a large number of heat transfer tubes are connected.

本開示の少なくとも一態様は上述の事情に鑑みなされたものであり、評価対象の構成に関わらず耐熱部材の熱履歴を簡易的且つ良好な精度で評価可能な耐熱部材の熱履歴評価方法、及び、熱履歴評価装置を提供することを課題とする。 At least one aspect of the present disclosure has been made in view of the above circumstances, and is a method for evaluating the heat history of a heat-resistant member, which can evaluate the heat history of the heat-resistant member easily and with good accuracy regardless of the configuration of the evaluation target. , It is an object to provide a heat history evaluation device.

本開示の一態様に係る耐熱部材の熱履歴評価方法は、上記課題を解決するために、
プラント設備を構成する耐熱部材の表面上に検査対象部位を特定する工程と、
熱時効による性状変化に基づいて温度を検知可能な複数の第1温度検知部材を、前記検査対象部位に設置する工程と、
前記複数の第1温度検知部材の性状変化に基づいて、前記耐熱部材の熱履歴を求める工程と、
を備える。
The method for evaluating the thermal history of the heat-resistant member according to one aspect of the present disclosure is to solve the above problems.
The process of identifying the part to be inspected on the surface of the heat-resistant members that make up the plant equipment,
A process of installing a plurality of first temperature detecting members capable of detecting a temperature based on a change in properties due to thermal aging at the inspection target site, and a process of installing the plurality of first temperature detecting members.
A step of obtaining the thermal history of the heat-resistant member based on the property change of the plurality of first temperature detecting members, and a step of obtaining the thermal history of the heat-resistant member.
To be equipped.

本開示の一態様に係る耐熱部材の熱履歴評価方法は、上記課題を解決するために、
熱時効による性状変化に基づいて温度を検知可能な第1温度検知部材と、
前記第1温度検知部材を保持しながら、プラント設備の耐熱部材に対して固定可能に構成された固定部材と、
を備える。
The method for evaluating the thermal history of the heat-resistant member according to one aspect of the present disclosure is to solve the above problems.
A first temperature detection member that can detect temperature based on changes in properties due to thermal aging,
A fixing member configured to be able to be fixed to the heat-resistant member of the plant equipment while holding the first temperature detecting member.
To be equipped.

本開示の少なくとも一態様によれば、評価対象の構成に関わらず耐熱部材の熱履歴を簡易的且つ良好な精度で評価可能な耐熱部材の熱履歴評価方法、及び、熱履歴評価装置を提供できる。 According to at least one aspect of the present disclosure, it is possible to provide a heat history evaluation method for a heat-resistant member and a heat history evaluation device capable of evaluating the heat history of the heat-resistant member easily and with good accuracy regardless of the configuration of the evaluation target. ..

耐熱部材の一例である管台の模式図である。It is a schematic diagram of a tube base which is an example of a heat-resistant member. 本開示の一態様に係る耐熱部材の温度履歴評価方法を工程毎に示すフローチャートである。It is a flowchart which shows the temperature history evaluation method of the heat-resistant member which concerns on one aspect of this disclosure for each process. 検査対象部位上に設置された複数の第1温度検知部材を示す斜視図である。It is a perspective view which shows the plurality of first temperature detection members installed on the part to be inspected. 検査対象部位に設置される各示温クレヨンの温度検知範囲の選定例の一つである。This is one of the selection examples of the temperature detection range of each temperature indicator crayon installed at the inspection target site. 図2のステップS101における第1温度検知部材を含む熱履歴評価装置の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the heat history evaluation apparatus including the 1st temperature detection member in step S101 of FIG. 図5の耐熱部材の軸方向に沿った縦断面図である。It is a vertical cross-sectional view along the axial direction of the heat-resistant member of FIG. 図6のA−A線断面図である。FIG. 6 is a cross-sectional view taken along the line AA of FIG. 図7の領域Dの拡大図である。It is an enlarged view of the area D of FIG. 図8の変形例である。It is a modification of FIG. 熱履歴の詳細検査方法の一例を工程毎に示すフローチャートである。It is a flowchart which shows an example of the detailed inspection method of a thermal history for each process.

以下、図面を参照して本発明のいくつかの実施形態について説明する。ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。 Hereinafter, some embodiments of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to the following embodiments. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the following embodiments are not intended to limit the scope of the present invention only to them, but are merely explanatory examples.

まず本開示の幾つかの態様に係る熱履歴評価方法の評価対象物である耐熱部材1について説明する。耐熱部材1は運転時に高温にさらされる構造体であり、例えば、火力発電プラントのようなプラント設備においてボイラと蒸気タービンとの間を接続する蒸気配管等である。より具体的には、耐熱部材1は図1に示す管寄せ管台であってもよい。管寄せ管台は、管寄せ2に対して複数の分岐管4が接続されて構成され、比較的複雑な構造を有する。 First, the heat-resistant member 1 which is an evaluation target of the thermal history evaluation method according to some aspects of the present disclosure will be described. The heat-resistant member 1 is a structure that is exposed to a high temperature during operation, and is, for example, a steam pipe that connects a boiler and a steam turbine in plant equipment such as a thermal power plant. More specifically, the heat-resistant member 1 may be the pipe pedestal shown in FIG. The pipe sill has a relatively complicated structure, in which a plurality of branch pipes 4 are connected to the pipe sill 2.

図2は本開示の一態様に係る耐熱部材1の温度履歴評価方法を工程毎に示すフローチャートである。 FIG. 2 is a flowchart showing the temperature history evaluation method of the heat-resistant member 1 according to one aspect of the present disclosure for each process.

本態様の熱履歴評価方法ではまず、評価対象となるプラント設備の耐熱部材1に対して検査対象部位6を特定する(ステップS100)。検査対象部位6は、後述の図3に示すように、耐熱部材1の表面の所定領域に対して特定される。このような検査対象部位6は、検査目的に応じて適宜特定可能である。例えば不具合の要因となる減肉箇所や膨出箇所を発見することを検査目的とする場合には、減肉や膨出の傾向又は存在を直接的又は間接的に示す応力や温度などの種々の物理パラメータの分布が特定の傾向を有する領域が特定される。この場合、物理パラメータの分布は過去実績や設計仕様に基づいた予測やシミュレーション結果から求められてもよいし、評価対象となる耐熱部材に温度センサなどを設置して得られる実測結果から求められてもよい。 In the thermal history evaluation method of this embodiment, first, the inspection target portion 6 is specified for the heat-resistant member 1 of the plant equipment to be evaluated (step S100). The inspection target portion 6 is specified with respect to a predetermined region on the surface of the heat-resistant member 1 as shown in FIG. 3 described later. Such an inspection target site 6 can be appropriately specified according to the inspection purpose. For example, when the purpose of inspection is to find a thinned part or a bulged part that causes a defect, various stresses and temperatures that directly or indirectly indicate the tendency or existence of the thinned or bulged part. Regions where the distribution of physical parameters has a particular tendency are identified. In this case, the distribution of physical parameters may be obtained from predictions and simulation results based on past results and design specifications, or from actual measurement results obtained by installing a temperature sensor or the like on the heat-resistant member to be evaluated. May be good.

ステップS100で特定される検査対象部位6には、続くステップS101において複数の第1温度検知部材8が配置されることから、複数の第1温度検知部材8を設置するためのスペースが確保可能な程度の領域が含まれるように検査対象部位6の特定が行われるとよい。この場合、検査対象部位6の範囲は、検査対象部位6内における温度分布がある程度の範囲に収まるように考慮されるとよい。 Since a plurality of first temperature detecting members 8 are arranged in the inspection target portion 6 specified in step S100 in the subsequent step S101, it is possible to secure a space for installing the plurality of first temperature detecting members 8. It is preferable that the inspection target site 6 is specified so as to include a certain area. In this case, the range of the inspection target site 6 may be considered so that the temperature distribution in the inspection target site 6 falls within a certain range.

続いてステップS100で特定された検査対象部位6に対して、複数の第1温度検知部材8を設置する(ステップS101)。第1温度検知部材8は、熱時効による性状変化に基づいて温度を検知可能なデバイスである。第1温度検知部材8が温度検知のために利用する性状変化は特定されないが、例えば第1温度検知部材8の抵抗率、透過率若しくは反射率色調の変化、又は、相変化を利用することができる。 Subsequently, a plurality of first temperature detecting members 8 are installed on the inspection target portion 6 specified in step S100 (step S101). The first temperature detecting member 8 is a device capable of detecting a temperature based on a change in properties due to thermal aging. The property change used by the first temperature detecting member 8 for temperature detection is not specified, but for example, a change in resistivity, transmittance or reflectance color tone of the first temperature detecting member 8 or a phase change can be used. it can.

図3は検査対象部位6上に設置された複数の第1温度検知部材8を示す斜視図である。図3に示すようにステップS101では、検査対象部位6には複数の第1温度検知部材8が設置される。すなわちステップS100で耐熱部材1に対して複数の検査対象部位6が特定されている場合には、各検査対象部位6に対してそれぞれ複数の第1温度検知部材8が設置される。図3では、検査対象部位6における複数の第1温度検知部材8の配置レイアウトの一例として、検査対象部位6の表面上に複数の第1温度検知部材8が均等に配置される場合が示されている。 FIG. 3 is a perspective view showing a plurality of first temperature detecting members 8 installed on the inspection target portion 6. As shown in FIG. 3, in step S101, a plurality of first temperature detecting members 8 are installed in the inspection target portion 6. That is, when a plurality of inspection target parts 6 are specified for the heat-resistant member 1 in step S100, a plurality of first temperature detection members 8 are installed for each inspection target part 6. FIG. 3 shows a case where a plurality of first temperature detecting members 8 are evenly arranged on the surface of the inspection target portion 6 as an example of the arrangement layout of the plurality of first temperature detecting members 8 in the inspection target portion 6. ing.

各検査対象部位6に配置される複数の第1温度検知部材8は、互いに同じ測定原理に基づく(言い換えると性状変化として同じ物理パラメータの変化を利用する)温度検知デバイスであってもよい。この場合、各検査対象部位6に同等の第1温度検知部材8を配置することにより、各第1温度検知部材8の検知結果から第1温度検知部材8が有する個体差(例えば製造ロットの違いによるバラツキ)を補償した、精度のよい熱履歴評価をすることが可能となる。 The plurality of first temperature detection members 8 arranged in each inspection target portion 6 may be temperature detection devices based on the same measurement principle (in other words, using changes in the same physical parameters as property changes). In this case, by arranging the equivalent first temperature detecting member 8 in each inspection target part 6, the individual difference (for example, the difference in the manufacturing lot) of the first temperature detecting member 8 from the detection result of each first temperature detecting member 8 is obtained. It is possible to perform accurate thermal history evaluation by compensating for the variation due to the above.

また各検査対象部位6に配置される複数の第1温度検知部材8は、異なる測定原理に基づく(言い換えると性状変化として異なる物理パラメータの変化を利用する)温度検知デバイスであってもよい。この場合、各検査対象部位6に異なる仕様の第1温度検知部材8を配置することにより、複数の観点から熱履歴評価をより詳細に行うことが可能となる。 Further, the plurality of first temperature detection members 8 arranged in each inspection target portion 6 may be temperature detection devices based on different measurement principles (in other words, using changes in different physical parameters as property changes). In this case, by arranging the first temperature detecting member 8 having different specifications in each inspection target portion 6, it is possible to perform the thermal history evaluation in more detail from a plurality of viewpoints.

このように複数の第1温度検知部材8の設置が完了すると、プラント設備の運転を実施する(ステップS102)。そして所定の運転期間が経過した後、複数の第1温度検知部材8の状態を確認することで、複数の第1温度検知部材8の性状変化を取得し(ステップS103)当該性状変化に基づいて、耐熱部材1の熱履歴を求める(ステップS104)。 When the installation of the plurality of first temperature detecting members 8 is completed in this way, the plant equipment is operated (step S102). Then, after the predetermined operation period has elapsed, by confirming the state of the plurality of first temperature detecting members 8, the property change of the plurality of first temperature detecting members 8 is acquired (step S103), and based on the property change. , Obtain the thermal history of the heat-resistant member 1 (step S104).

ここで上述の熱履歴評価方法で第1温度検知部材8として、熱履歴に応じた形状変化を行う示温クレヨンを採用した場合を例に具体的に説明する。示温クレヨンは所定温度範囲に達すると溶解するクレヨンからなる温度検知部材の一つである。耐熱部材1の表面に示温クレヨンが設置された場合、過去の運転履歴において当該表面の温度が所定の温度範囲に達した経緯があると、示温クレヨンが溶解して形状が変化する。このような示温クレヨンの形状変化は不可逆的であることから、検査時に常温環境下で示温クレヨンを視認した際に形状変化を確認することで、耐熱部材の表面が所定の温度範囲に達したか否かを判定し、熱履歴として評価することが可能である。 Here, a case where a temperature indicating crayon that changes the shape according to the heat history is adopted as the first temperature detecting member 8 in the above-mentioned heat history evaluation method will be specifically described as an example. The temperature indicating crayon is one of the temperature detecting members made of a crayon that melts when it reaches a predetermined temperature range. When the temperature indicating crayon is installed on the surface of the heat-resistant member 1, the temperature indicating crayon melts and changes its shape if the temperature of the surface has reached a predetermined temperature range in the past operation history. Since such a shape change of the temperature indicating crayon is irreversible, did the surface of the heat-resistant member reach a predetermined temperature range by confirming the shape change when the temperature indicating crayon was visually observed in a normal temperature environment at the time of inspection? It is possible to determine whether or not it is present and evaluate it as a thermal history.

ステップS101では、図3に示すように各検査対象部位6には複数の第1温度検知部材8が設置されるが、これらの複数の第1温度検知部材8は、互いに検知温度範囲が異なる第1温度検知部材8が含まれるように選定されてもよい。すなわち第1温度検知部材として示温クレヨンを採用する場合には、一か所の検査対象部位6に対して互いに異なる検知温度範囲を有する複数の示温クレヨンが設置されてもよい。この場合、各示温クレヨンの検知温度範囲は、評価対象となる熱履歴の温度範囲に応じて選定されるとよい。示温クレヨン選定は、例えば(i)各示温クレヨンの温度検知範囲、測定誤差又は個体差、(ii)要求する温度分解能、(iii)測定結果に対する誤差許容値を考慮することができる。 In step S101, as shown in FIG. 3, a plurality of first temperature detecting members 8 are installed in each inspection target portion 6, but the plurality of first temperature detecting members 8 have different detection temperature ranges from each other. 1 The temperature detection member 8 may be selected to be included. That is, when a temperature indicating crayon is adopted as the first temperature detecting member, a plurality of temperature indicating crayon having different detection temperature ranges may be installed for one inspection target portion 6. In this case, the detection temperature range of each temperature indicating crayon may be selected according to the temperature range of the heat history to be evaluated. The temperature indicating crayon selection can take into account, for example, (i) the temperature detection range of each temperature indicated crayon, measurement error or individual difference, (ii) required temperature resolution, and (iii) error tolerance for the measurement result.

図4は検査対象部位6に設置される各示温クレヨンの温度検知範囲の選定例の一つである。この例では、所定の温度範囲における熱履歴を評価するために、6つの示温クレヨン8A〜8Fが選定されている。この選定例では、各温度において2つの示温クレヨンの温度検知範囲がオーバーラップするように設定されている。具体的には示温クレヨン8Aは上限温度T1及び下限温度(不図示)で規定される温度検知範囲を有し、示温クレヨン8Bは上限温度T2(>T1)及び下限温度(不図示)で規定される温度検知範囲を有し、示温クレヨン8Cは上限温度T4(>T3)及び下限温度T1で規定される温度検知範囲を有し、示温クレヨン8Dは上限温度T3(>T2)及び下限温度T2で規定される温度 検知範囲を有し、示温クレヨン8Eは上限温度T6(>T5)及び下限温度T4で規定される温度検知範囲を有し、示温クレヨン8Fは上限温度T5(>T4)及び下限温度T3で規定される温度検知範囲を有する。 FIG. 4 is one of the selection examples of the temperature detection range of each temperature indicating crayon installed in the inspection target part 6. In this example, six temperature indicating crayons 8A-8F are selected to evaluate the thermal history in a given temperature range. In this selection example, the temperature detection ranges of the two temperature indicating crayon are set to overlap at each temperature. Specifically, the temperature indicating crayon 8A has a temperature detection range defined by the upper limit temperature T1 and the lower limit temperature (not shown), and the temperature indicating crayon 8B is defined by the upper limit temperature T2 (> T1) and the lower limit temperature (not shown). The temperature indicating crayon 8C has the temperature detection range defined by the upper limit temperature T4 (> T3) and the lower limit temperature T1, and the temperature indicating crayon 8D has the upper limit temperature T3 (> T2) and the lower limit temperature T2. It has a specified temperature detection range, the temperature indicator 8E has a temperature detection range defined by the upper limit temperature T6 (> T5) and the lower limit temperature T4, and the temperature indicator 8F has the upper limit temperature T5 (> T4) and the lower limit temperature. It has a temperature detection range defined by T3.

このような温度検知範囲を有する複数の示温クレヨンを用いることにより、検査時に溶解状態にある示温クレヨンの組み合わせから、過去の運転においてどの程度の最高温度に達したのかを熱履歴として評価できる。例えば示温クレヨン8A、8Bのみが溶解状態にある場合には、次に溶解する温度検知範囲が低い示温クレヨン8C、8Dが溶解状態になっていないため、過去の運転における最高温度は示温クレヨン8Dの温度検知範囲の上限温度T3以下であることが特定される。また示温クレヨン8A、8B、8C、8Dが溶解状態にあった場合、次に溶解する温度検知範囲が低い示温クレヨン8Fが溶解していないため、過去の運転における最高温度は、示温クレヨン8Fの上限温度T5以下であり、且つ、溶解状態にある示温クレヨン8Dの下限温度T2以上であることが特定される。 By using a plurality of temperature indicating crayon having such a temperature detection range, it is possible to evaluate as a heat history how much the maximum temperature has been reached in the past operation from the combination of the temperature indicating crayon that is in a molten state at the time of inspection. For example, when only the temperature indicating crayon 8A and 8B are in the melted state, the temperature indicating crayon 8C and 8D having a low temperature detection range to be melted next are not in the melted state, so that the maximum temperature in the past operation is the temperature indicating crayon 8D. It is specified that the temperature is equal to or less than the upper limit temperature T3 of the temperature detection range. When the temperature indicating crayon 8A, 8B, 8C, 8D are in a melted state, the temperature indicating crayon 8F, which has a low temperature detection range to be melted next, is not melted. It is specified that the temperature is T5 or less and the lower limit temperature T2 or more of the temperature indicating crayon 8D in the molten state.

また示温クレヨン8C及び8Dの温度検知範囲のように、一方の温度検知範囲が他方の温度検知範囲より狭くなるように、示温クレヨンを選定してもよい。すなわち、2つの示温クレヨンの温度検知範囲が包含関係になるように選定されてもよい。この場合、狭い温度検知範囲の示温クレヨンが溶解することにより、広い温度検知範囲の示温クレヨンだけの場合に比べて、熱履歴における最高温度をより精度よく絞り込んで特定することが可能となる。 Further, the temperature indicating crayon may be selected so that one temperature detection range is narrower than the other temperature detection range, such as the temperature detection range of the temperature indicator crayons 8C and 8D. That is, the temperature detection ranges of the two temperature indicating crayon may be selected so as to have an inclusive relationship. In this case, since the temperature indicating crayon having a narrow temperature detection range is melted, the maximum temperature in the thermal history can be narrowed down and specified more accurately than the case where only the temperature indicating crayon having a wide temperature detection range is used.

またステップS101における第1温度検知部材8の耐熱部材への設置は、以下に説明する熱履歴評価装置10を用いて行ってもよい。図5は図2のステップS101における第1温度検知部材8を含む熱履歴評価装置10の全体構成を示す斜視図であり、図6は図5の耐熱部材1の軸方向に沿った縦断面図であり、図7は図6のA−A線断面図である。 Further, the installation of the first temperature detection member 8 on the heat-resistant member in step S101 may be performed by using the heat history evaluation device 10 described below. 5 is a perspective view showing the overall configuration of the heat history evaluation device 10 including the first temperature detecting member 8 in step S101 of FIG. 2, and FIG. 6 is a vertical sectional view of the heat resistant member 1 of FIG. 5 along the axial direction. FIG. 7 is a cross-sectional view taken along the line AA of FIG.

熱履歴評価装置10は、前述の第1温度検知部材8を保持しながら耐熱部材1に対して固定可能に構成された固定部材12を備える。固定部材12は、耐熱部材1の外周側から耐熱部材1に対して取り付け可能に構成される。固定部材12は、例えば、周方向に沿って耐熱部材1を少なくとも部分的に囲むように形成される。本態様では、固定部材12は周方向に沿って耐熱部材1を全周にわたって囲むようにバンド状に形成される。これにより、表面形状が曲面形状を有する耐熱部材1に対して第1温度検知部材8を良好な接触状態で固定することができる。 The thermal history evaluation device 10 includes a fixing member 12 configured to be fixed to the heat-resistant member 1 while holding the above-mentioned first temperature detecting member 8. The fixing member 12 is configured to be attachable to the heat-resistant member 1 from the outer peripheral side of the heat-resistant member 1. The fixing member 12 is formed so as to surround the heat-resistant member 1 at least partially along the circumferential direction, for example. In this embodiment, the fixing member 12 is formed in a band shape so as to surround the heat-resistant member 1 over the entire circumference along the circumferential direction. As a result, the first temperature detecting member 8 can be fixed to the heat-resistant member 1 having a curved surface shape in a good contact state.

固定部材12は例えば伸縮可能な材料から形成されることで、耐熱部材1に対する固定部材12の取り付け位置が安定的に維持できるように構成されてもよい。また固定部材12は金属箔のような熱伝導性に優れた材料から形成されることで、固定部材12によって保持される第1温度検知部材8と評価対象である耐熱部材1との間の熱伝達を向上させてもよい。 The fixing member 12 may be formed of, for example, a stretchable material so that the attachment position of the fixing member 12 with respect to the heat-resistant member 1 can be stably maintained. Further, since the fixing member 12 is formed of a material having excellent thermal conductivity such as metal foil, the heat between the first temperature detecting member 8 held by the fixing member 12 and the heat-resistant member 1 to be evaluated is generated. Transmission may be improved.

固定部材12は複数の第1温度検知部材8を保持する。本態様では固定部材12は、耐熱部材1の周方向に沿って複数の検査対象部位6が特定されており、各検査対象部位6に対して第1温度検知部材8が設置されるように固定されている。各検査対象部位6は、図7に示すように、紙面上方を基準とすると、耐熱部材1の中心軸Cを中心に0度、90度、180度、270度の位置にそれぞれ特定されている。 The fixing member 12 holds a plurality of first temperature detecting members 8. In this embodiment, the fixing member 12 is fixed so that a plurality of inspection target parts 6 are specified along the circumferential direction of the heat-resistant member 1, and the first temperature detection member 8 is installed for each inspection target part 6. Has been done. As shown in FIG. 7, each inspection target portion 6 is specified at a position of 0 degrees, 90 degrees, 180 degrees, and 270 degrees with respect to the central axis C of the heat-resistant member 1 with reference to the upper part of the paper surface. ..

尚、図5〜図7では各検査対象部位6にそれぞれ一つの第1温度検知部材8が固定される場合を示しているが、前述のように各検査対象部位6に複数の第1温度検知部材8が固定されてもよい。 Although FIGS. 5 to 7 show a case where one first temperature detecting member 8 is fixed to each inspection target portion 6, a plurality of first temperature detection members 8 are fixed to each inspection target portion 6 as described above. The member 8 may be fixed.

図8は図7の領域Dの拡大図である。固定部材12は、その外側又は内側の少なくとも一方の第1温度検知部材8を保持する。本態様では図6及び図7に示すように、固定部材12は、その外側に第1温度検知部材8を保持している。この場合、第1温度検知部材8は固定部材12に対して保持部材14を介して保持されてもよい。保持部材14は、固定部材12の内側において耐熱部材1の表面と接触する固定座16を含み、固定座16は固定部材12を貫通するように外側にまで延在し、その先端が第1温度検知部材8の内側に設けられた窪み8aに嵌合又はネジ固定可能に構成されている。保持部材14もまた良好な熱伝導性材料から構成されることで、第1温度検知部材8によって耐熱部材1の温度を良好に感知することができる。 FIG. 8 is an enlarged view of the region D of FIG. The fixing member 12 holds at least one of the first temperature detecting members 8 outside or inside the fixing member 12. In this aspect, as shown in FIGS. 6 and 7, the fixing member 12 holds the first temperature detecting member 8 on the outside thereof. In this case, the first temperature detecting member 8 may be held by the fixing member 12 via the holding member 14. The holding member 14 includes a fixing seat 16 that comes into contact with the surface of the heat-resistant member 1 inside the fixing member 12, and the fixing seat 16 extends outward so as to penetrate the fixing member 12, and the tip thereof has a first temperature. It is configured so that it can be fitted or screwed into the recess 8a provided inside the detection member 8. Since the holding member 14 is also made of a good heat conductive material, the temperature of the heat resistant member 1 can be satisfactorily sensed by the first temperature detecting member 8.

また熱履歴評価装置10は、固定部材12によって固定された第1温度検知部材8を、耐熱部材1とともに外側から囲むように構成された保温材18を更に備える。これにより第1温度検知部材8の周囲を、評価対象である耐熱部材1の温度と略同等に保持することができるため、第1温度検知部材8による検知精度を良好に確保することができる。また保温材18によって第1温度検知部材8を外側から覆うことで、外部から第1温度検知部材8を保護することができるので、信頼性も向上できる。 Further, the heat history evaluation device 10 further includes a heat insulating material 18 configured to surround the first temperature detecting member 8 fixed by the fixing member 12 together with the heat resistant member 1 from the outside. As a result, the circumference of the first temperature detecting member 8 can be maintained substantially equal to the temperature of the heat-resistant member 1 to be evaluated, so that the detection accuracy of the first temperature detecting member 8 can be satisfactorily ensured. Further, by covering the first temperature detecting member 8 from the outside with the heat insulating material 18, the first temperature detecting member 8 can be protected from the outside, so that the reliability can be improved.

図9は図8の変形例である。この変形例では、固定部材12に対して第1温度検知部材8を保持する保持部材14は、固定部材12の内側に位置する固定座16から固定部材12の外側において第1温度検知部材8の内部を貫通し、第1温度検知部材8の外側において広がる形状を有する。これにより、第1温度検知部材8を固定部材12に対してより安定的に保持可能に構成されている。また保持部材14を良好な熱伝導性材料から形成することで、第1温度検知部材8に対して内側からも熱伝達が可能となるため、第1温度検知部材8の検知精度を向上させることができる。 FIG. 9 is a modification of FIG. In this modification, the holding member 14 that holds the first temperature detecting member 8 with respect to the fixing member 12 is the first temperature detecting member 8 outside the fixing member 12 from the fixing seat 16 located inside the fixing member 12. It has a shape that penetrates the inside and spreads outside the first temperature detecting member 8. As a result, the first temperature detecting member 8 can be held more stably with respect to the fixing member 12. Further, by forming the holding member 14 from a material having good thermal conductivity, heat can be transferred to the first temperature detecting member 8 from the inside, so that the detection accuracy of the first temperature detecting member 8 can be improved. Can be done.

上述の熱履歴評価方法による熱履歴評価結果は、より発展的な熱履歴評価を実施する詳細検査に利用されてもよい。図10は熱履歴の詳細検査方法の一例を工程毎に示すフローチャートである。 The heat history evaluation result by the above-mentioned heat history evaluation method may be used for a detailed inspection for carrying out a more advanced heat history evaluation. FIG. 10 is a flowchart showing an example of a detailed heat history inspection method for each process.

図10の例では、図2のステップS100と同様に検査対象部位6を複数特定し(ステップS200)、これら複数の検査対象部位6に対して前述の熱履歴評価方法(図2を参照)を実施する(ステップS201)。そして、各検査対象部位6に関する評価結果に基づいて重点検査位置を特定する(ステップS202)。重点検査位置は、詳細検査を実施すべき検査位置であり、例えば、各検査対象部位6の熱履歴を比較して、不具合が生じる可能性が高いなど、詳細検査を実施する価値が高い位置が選定される。 In the example of FIG. 10, a plurality of inspection target sites 6 are specified in the same manner as in step S100 of FIG. 2 (step S200), and the above-mentioned heat history evaluation method (see FIG. 2) is applied to these plurality of inspection target sites 6. It is carried out (step S201). Then, the priority inspection position is specified based on the evaluation result for each inspection target site 6 (step S202). The priority inspection position is an inspection position where a detailed inspection should be carried out. For example, a position where it is highly valuable to carry out a detailed inspection, such as comparing the heat history of each inspection target part 6 and having a high possibility of causing a defect. Be selected.

続いてステップS202で特定された重点検査位置に対して、第2温度検知部材を設置する(ステップS203)。第2温度検知部材は、温度を連続的に測定可能な温度検知デバイスである。すなわち前述の第1温度検知部材8は性状変化によって熱履歴を比較的大まかに検知するのに対して、第2温度検知部材は温度を連続的に測定することで第1温度検知部材より詳細な温度検査を実施することができる。第2温度検知部材は、例えば、熱電対、放射温度計又は光ファイバ温度計などが採用可能であるが、この限りではない。 Subsequently, the second temperature detection member is installed at the priority inspection position specified in step S202 (step S203). The second temperature detecting member is a temperature detecting device capable of continuously measuring the temperature. That is, while the above-mentioned first temperature detecting member 8 detects the heat history relatively roughly by changing the properties, the second temperature detecting member is more detailed than the first temperature detecting member by continuously measuring the temperature. Temperature inspection can be carried out. As the second temperature detecting member, for example, a thermocouple, a radiation thermometer, an optical fiber thermometer, or the like can be adopted, but the present invention is not limited to this.

続いて重点検査位置に対して第2温度検知部材が設置された状態でプラント設備を運転し(ステップS204)、第2温度検知部材による検知結果を取得・解析する(ステップS205)。第2温度検知部材による検知結果はリアルタイムに取得され、例えば有線又は無線の通信手段によって検知結果をリアルタイムに外部に出力してもよいし、ハードディスクなどの記憶装置に蓄積し、所定のタイミングでバッチ的に外部に出力するようにしてもよい。このように詳細検査では、重点検査位置において第2温度検知部材を設置することで、より詳細な温度監視を行う。これにより、例えば第1温度検知部材8によって大まかに評価した熱履歴に基づいて見いだされた不具合が生じる可能性が高い重点検査位置 において詳細な熱履歴監視を行うことで、プラント設備の点検計画や更新工事の検討を、より詳しく実施することができる。 Subsequently, the plant equipment is operated with the second temperature detecting member installed at the priority inspection position (step S204), and the detection result by the second temperature detecting member is acquired and analyzed (step S205). The detection result by the second temperature detection member is acquired in real time, and the detection result may be output to the outside in real time by, for example, a wired or wireless communication means, or stored in a storage device such as a hard disk and batched at a predetermined timing. It may be output to the outside. As described above, in the detailed inspection, more detailed temperature monitoring is performed by installing the second temperature detecting member at the priority inspection position. As a result, for example, by performing detailed heat history monitoring at the priority inspection position where there is a high possibility that a defect found based on the heat history roughly evaluated by the first temperature detection member 8 will occur, the inspection plan of the plant equipment and the inspection plan of the plant equipment can be performed. The examination of renewal work can be carried out in more detail.

このように取得された第2温度検知部材による検知結果は、種々の解析装置によって解析し、利用することができる。例えば、第2温度検知部材による検知結果に基づいて、第1温度検知部材8による熱履歴評価結果を補正又は校正してもよい。この場合、連続的に温度検知可能な第2温度検知部材による検知結果と、第1温度検知部材8による検知結果とを比較し、両者の誤差に基づいて補正又は校正処理を実施することで、検査精度の向上を図ることができる。 The detection result obtained by the second temperature detecting member can be analyzed and used by various analysis devices. For example, the heat history evaluation result by the first temperature detecting member 8 may be corrected or calibrated based on the detection result by the second temperature detecting member. In this case, the detection result by the second temperature detection member capable of continuously detecting the temperature is compared with the detection result by the first temperature detection member 8, and correction or calibration processing is performed based on the error between the two. The inspection accuracy can be improved.

その他、本開示の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態を適宜組み合わせてもよい。 In addition, it is possible to replace the components in the above-described embodiments with well-known components as appropriate without departing from the spirit of the present disclosure, and the above-described embodiments may be combined as appropriate.

上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments are grasped as follows, for example.

(1)本開示の一態様に係る耐熱部材の熱履歴評価方法は、
プラント設備を構成する耐熱部材(例えば上記実施形態の耐熱部材1)の表面上に検査対象部位(例えば上記実施形態の検査対象部位6)を特定する工程(例えば上記実施形態のステップS100)と、
熱時効による性状変化に基づいて温度を検知可能な複数の第1温度検知部材(例えば上記実施形態の第1温度検知部材8)を、前記検査対象部位に設置する工程(例えば上記実施形態のS101)と、
前記複数の第1温度検知部材の性状変化に基づいて、前記耐熱部材の熱履歴を求める工程(例えば上記実施形態のステップS103〜S104)と、
を備える。
(1) The method for evaluating the thermal history of the heat-resistant member according to one aspect of the present disclosure is as follows.
A step (for example, step S100 of the above embodiment) of identifying an inspection target part (for example, the inspection target part 6 of the above embodiment) on the surface of a heat-resistant member (for example, the heat-resistant member 1 of the above embodiment) constituting the plant equipment.
A step of installing a plurality of first temperature detecting members (for example, the first temperature detecting member 8 of the above embodiment) capable of detecting a temperature based on a change in properties due to thermal aging at the inspection target portion (for example, S101 of the above embodiment). )When,
A step of obtaining the thermal history of the heat-resistant member based on the property change of the plurality of first temperature detecting members (for example, steps S103 to S104 of the above embodiment).
To be equipped.

上記(1)の態様によれば、検査対象部位に対して複数の第1温度検知部材が設置される。第1温度検知部材は熱時効による性状変化に基づいて温度を検知可能であることから、第1温度検知部材の性状変化を観察することで、連続的な温度検知を行うことなく、検査対象部位における熱履歴を簡易的に評価することができる。特に、複数の第1温度検知部材の性状変化に基づいて熱履歴を求めることで、信頼性の高い評価が可能となる。 According to the aspect (1) above, a plurality of first temperature detecting members are installed on the inspection target portion. Since the first temperature detecting member can detect the temperature based on the property change due to thermal aging, by observing the property change of the first temperature detecting member, the inspection target part without continuous temperature detection. It is possible to easily evaluate the heat history in. In particular, by obtaining the thermal history based on the property change of the plurality of first temperature detecting members, highly reliable evaluation becomes possible.

(2)他の態様では上記(1)の態様において、
前記複数の第1温度検知部材は、互いに検知温度範囲の異なる第1温度検知部材を含む(例えば上記実施形態の図4に示すように各示温クレヨン8A〜8Fの検知温度範囲が異なる)。
(2) In another aspect, in the above aspect (1),
The plurality of first temperature detecting members include first temperature detecting members having different detection temperature ranges from each other (for example, the detection temperature ranges of the temperature indicating crayon 8A to 8F are different as shown in FIG. 4 of the above embodiment).

上記(2)の態様によれば、複数の第1温度検知部材は互いに異なる検知温度範囲を有する第1温度検知部材を含む。これにより、各第1温度検知部材の性状変化を観察することで、過去の運転における熱履歴をより好適に評価することができる。 According to the aspect (2) above, the plurality of first temperature detecting members include first temperature detecting members having different detection temperature ranges from each other. Thereby, by observing the property change of each first temperature detecting member, the thermal history in the past operation can be evaluated more preferably.

(3)他の態様では上記(1)又は(2)の態様において、
前記第1温度検知部材は、前記性状変化として、前記第1温度検知部材の形状、抵抗率、透過率若しくは反射率色調の変化、又は、相変化を利用する。
(3) In another aspect, in the above aspect (1) or (2),
The first temperature detecting member utilizes a change in the shape, resistivity, transmittance or reflectance color tone of the first temperature detecting member, or a phase change as the property change.

上記(3)の態様によれば、これらの性状変化を利用する第1温度検知部材を用いることで、熱履歴を好適に評価することができる。 According to the aspect (3) above, the thermal history can be suitably evaluated by using the first temperature detecting member that utilizes these changes in properties.

(4)他の態様では上記(1)から(3)のいずれか一態様において、
前記第1温度検知部材による前記耐熱部材の熱履歴の評価結果に基づいて、前記耐熱部材の重点検査位置を特定する工程と(例えば上記実施形態のステップS202)、
温度を連続的に測定可能な第2温度検知部材を前記重点検査位置に設置する工程(例えば上記実施形態のステップS203)と、
前記第2温度検知部材の検知結果に基づいて、前記耐熱部材の熱履歴を求める工程(例えば上記実施形態のステップS205)と、
を更に備える。
(4) In another aspect, in any one of the above (1) to (3),
A step of specifying the priority inspection position of the heat-resistant member based on the evaluation result of the heat history of the heat-resistant member by the first temperature detecting member (for example, step S202 of the above embodiment).
A step of installing a second temperature detecting member capable of continuously measuring the temperature at the priority inspection position (for example, step S203 of the above embodiment) and
A step of obtaining the thermal history of the heat-resistant member based on the detection result of the second temperature detecting member (for example, step S205 of the above embodiment).
Further prepare.

上記(4)の態様によれば、第1温度検知部材による熱履歴の評価結果に基づいて特定された重点検査位置に対して、第2温度検知部材による熱履歴評価が行われる。第2温度検知部材は温度を連続的に測定可能であるため、第1温度検知部材に比べてより詳細な評価が可能である。このような第2温度検知部材による熱履歴評価は重点検査位置に対してのみ実施されるため、評価対象である耐熱部材の構造が複雑な場合などのように多数の第2温度検知部材の設置が困難な場合や、長期にわたる熱履歴評価が必要な場合においても少ない監視負担で信頼性の高い評価が可能となる。 According to the aspect (4) above, the heat history evaluation by the second temperature detecting member is performed for the priority inspection position specified based on the evaluation result of the heat history by the first temperature detecting member. Since the second temperature detecting member can continuously measure the temperature, more detailed evaluation is possible as compared with the first temperature detecting member. Since the heat history evaluation by the second temperature detecting member is performed only for the priority inspection position, a large number of second temperature detecting members are installed, such as when the structure of the heat-resistant member to be evaluated is complicated. Even when it is difficult to perform or when long-term thermal history evaluation is required, highly reliable evaluation is possible with a small monitoring burden.

(5)他の態様では上記(4)の態様において、
前記第2温度検知部材の検知結果に基づいて、前記第1温度検知部材による前記耐熱部材の熱履歴の評価結果を補正又は校正する。
(5) In another aspect, in the above aspect (4),
Based on the detection result of the second temperature detection member, the evaluation result of the thermal history of the heat-resistant member by the first temperature detection member is corrected or calibrated.

上記(5)の態様によれば、連続的に温度検知可能な第2温度検知部材による検知結果と、性状変化に基づく第1温度検知部材による検知結果とを比較し、両者の比較結果に基づいて補正又は校正処理を実施することで、評価精度を向上できる。 According to the aspect (5) above, the detection result by the second temperature detecting member capable of continuously detecting the temperature and the detection result by the first temperature detecting member based on the property change are compared, and based on the comparison result of both. The evaluation accuracy can be improved by performing the correction or calibration process.

(6)他の態様では上記(4)又は(5)の態様において、
前記第2温度検知部材は熱電対、放射温度計又は光ファイバ温度計である。
(6) In another aspect, in the above aspect (4) or (5),
The second temperature detecting member is a thermocouple, a radiation thermometer or an optical fiber thermometer.

上記(6)の態様によれば、連続的に温度検知可能な第2温度検知部材として熱電対、放射温度計又は光ファイバ温度計を用いることで、重点検査位置における熱履歴を好適に評価できる。 According to the aspect (6) above, by using a thermocouple, a radiation thermometer or an optical fiber thermometer as the second temperature detecting member capable of continuously detecting the temperature, the thermal history at the priority inspection position can be suitably evaluated. ..

(7)他の態様では上記(1)から(6)のいずれか一態様において、
前記第1温度検知部材は示温クレヨン(例えば上記実施形態の示温クレヨン8A〜8F)である。
(7) In another aspect, in any one of the above (1) to (6),
The first temperature detecting member is a temperature indicating crayon (for example, the temperature indicating crayon 8A to 8F of the above embodiment).

上記(7)の態様によれば、第1温度検知部材として示温クレヨンを用いることで、検査対象位置における熱履歴を好適に評価できる。 According to the aspect (7) above, by using the temperature indicating crayon as the first temperature detecting member, the heat history at the inspection target position can be suitably evaluated.

(8)他の態様では上記(1)から(7)のいずれか一態様において、
前記耐熱部材は前記プラント設備のボイラと蒸気タービンとの間を接続する蒸気配管に複数の分岐管が接続された管台(例えば上記実施形態の図1に示す管台)である。
(8) In another aspect, in any one of the above (1) to (7),
The heat-resistant member is a pipe base (for example, a pipe base shown in FIG. 1 of the above embodiment) in which a plurality of branch pipes are connected to a steam pipe connecting between a boiler of the plant equipment and a steam turbine.

上記(8)の態様によれば、管台のような複雑な構造を有する耐熱部材においても簡易的に精度のよい熱履歴評価が可能である。 According to the aspect (8) above, it is possible to easily and accurately evaluate the heat history even in a heat-resistant member having a complicated structure such as a tube base.

(9)本開示の一態様に係る熱履歴評価装置は、
熱時効による性状変化に基づいて温度を検知可能な第1温度検知部材(例えば上記実施形態の第1温度検知部材8)と、
前記第1温度検知部材を保持しながら、プラント設備の耐熱部材(例えば上記実施形態の耐熱部材1)に対して固定可能に構成された固定部材(例えば上記実施形態の固定部材12)と、
を備える。
(9) The heat history evaluation device according to one aspect of the present disclosure is
A first temperature detecting member (for example, the first temperature detecting member 8 of the above embodiment) capable of detecting a temperature based on a change in properties due to thermal aging.
A fixing member (for example, the fixing member 12 of the above-described embodiment) configured to be fixed to the heat-resistant member of the plant equipment (for example, the heat-resistant member 1 of the above-described embodiment) while holding the first temperature detecting member.
To be equipped.

上記(9)の態様によれば、評価対象である耐熱部材に対して第1温度検知部材を安定的且つ簡易的に固定することができる。 According to the aspect (9) above, the first temperature detecting member can be stably and easily fixed to the heat-resistant member to be evaluated.

(10)他の態様は上記(9)の態様において、
前記固定部材は、前記耐熱部材を少なくとも部分的に囲むことで前記耐熱部材に対して固定可能に構成される(例えば上記実施形態の図7に示すように固定部材12は耐熱部材1を全周にわたって囲む)。
(10) Another aspect is in the above-mentioned aspect (9).
The fixing member is configured to be fixed to the heat-resistant member by at least partially surrounding the heat-resistant member (for example, as shown in FIG. 7 of the above-described embodiment, the fixing member 12 surrounds the heat-resistant member 1 all around. Surrounding).

上記(10)の態様によれば、固定部材は耐熱部材を少なくとも部分的に囲むことで、固定部材に保持される第1温度検知部材を耐熱部材に対して安定的に固定できる。 According to the aspect (10) above, the fixing member can stably fix the first temperature detecting member held by the fixing member to the heat-resistant member by surrounding the heat-resistant member at least partially.

(11)他の態様は上記(10)の態様において、
複数の前記第1温度検知部材が前記固定部材に対して保持可能に構成される(例えば上記実施形態の図7に示すように複数の第1温度検知部材8が固定部材12に保持される)。
(11) Another aspect is in the above aspect (10).
A plurality of the first temperature detecting members are configured to be holdable with respect to the fixing member (for example, a plurality of first temperature detecting members 8 are held by the fixing member 12 as shown in FIG. 7 of the above embodiment). ..

上記(11)の態様によれば、複数の第1温度検知部材を本体部に対して安定的に固定することで、単一の第1温度検知部材を用いた場合に比べて精度のよい熱履歴評価が可能となる。 According to the aspect (11) above, by stably fixing the plurality of first temperature detecting members to the main body portion, heat with higher accuracy than when a single first temperature detecting member is used. History evaluation is possible.

(12)他の態様では上記(9)から(11)のいずれか一態様において、
前記第1温度検知部材を前記耐熱部材とともに外側から囲むように構成された保温材(例えば上記実施形態の保温材18)を更に備える。
(12) In another aspect, in any one of the above (9) to (11),
Further provided is a heat insulating material (for example, the heat insulating material 18 of the above embodiment) configured to surround the first temperature detecting member together with the heat resistant member from the outside.

上記(12)の態様によれば、第1温度検知部材を耐熱部材とともに囲むように保温材を配置することで、第1温度検知部材によって検査対象部位における温度をより的確に検知することができ、評価精度を向上できる。 According to the aspect (12) above, by arranging the heat insulating material so as to surround the first temperature detecting member together with the heat resistant member, the temperature at the inspection target portion can be detected more accurately by the first temperature detecting member. , Evaluation accuracy can be improved.

1 耐熱部材
2 管寄せ
4 分岐管
6 検査対象部位
8 第1温度検知部材
10 熱履歴評価装置
12 固定部材
14 保持部材
16 固定座
18 保温材
1 Heat-resistant member 2 Pipe gathering 4 Branch pipe 6 Inspection target part 8 First temperature detection member 10 Thermal history evaluation device 12 Fixing member 14 Holding member 16 Fixed seat 18 Heat insulating material

Claims (12)

プラント設備を構成する耐熱部材の表面上に検査対象部位を特定する工程と、
熱時効による性状変化に基づいて温度を検知可能な複数の第1温度検知部材を、前記検査対象部位に設置する工程と、
前記複数の第1温度検知部材の性状変化に基づいて、前記耐熱部材の熱履歴を求める工程と、
を備える、耐熱部材の熱履歴評価方法。
The process of identifying the part to be inspected on the surface of the heat-resistant members that make up the plant equipment,
A process of installing a plurality of first temperature detecting members capable of detecting a temperature based on a change in properties due to thermal aging at the inspection target site, and a process of installing the plurality of first temperature detecting members.
A step of obtaining the thermal history of the heat-resistant member based on the property change of the plurality of first temperature detecting members, and a step of obtaining the thermal history of the heat-resistant member.
A method for evaluating the thermal history of heat-resistant members.
前記複数の第1温度検知部材は、互いに検知温度範囲の異なる第1温度検知部材を含む、請求項1に記載の耐熱部材の熱履歴評価方法。 The thermal history evaluation method for a heat-resistant member according to claim 1, wherein the plurality of first temperature detecting members include first temperature detecting members having different detection temperature ranges from each other. 前記第1温度検知部材は、前記性状変化として、前記第1温度検知部材の形状、抵抗率、透過率若しくは反射率色調の変化、又は、相変化を利用する、請求項1又は2に記載の耐熱部材の熱履歴評価方法。 The first temperature detecting member according to claim 1 or 2, wherein the first temperature detecting member utilizes a change in the shape, resistivity, transmittance or reflectance color tone of the first temperature detecting member, or a phase change as the property change. Thermal history evaluation method for heat-resistant members. 前記第1温度検知部材による前記耐熱部材の熱履歴の評価結果に基づいて、前記耐熱部材の重点検査位置を特定する工程と、
温度を連続的に測定可能な第2温度検知部材を前記重点検査位置に設置する工程と、
前記第2温度検知部材の検知結果に基づいて、前記耐熱部材の熱履歴を求める工程と、
を更に備える、請求項1から3のいずれか一項に記載の耐熱部材の熱履歴評価方法。
A step of specifying the priority inspection position of the heat-resistant member based on the evaluation result of the heat history of the heat-resistant member by the first temperature detection member, and
A process of installing a second temperature detection member capable of continuously measuring the temperature at the priority inspection position, and
A process of obtaining the thermal history of the heat-resistant member based on the detection result of the second temperature detecting member, and
The method for evaluating the thermal history of a heat-resistant member according to any one of claims 1 to 3, further comprising.
前記第2温度検知部材の検知結果に基づいて、前記第1温度検知部材による前記耐熱部材の熱履歴の評価結果を補正又は校正する、請求項4に記載の耐熱部材の熱履歴評価方法。 The method for evaluating the heat history of a heat-resistant member according to claim 4, wherein the evaluation result of the heat history of the heat-resistant member by the first temperature detection member is corrected or calibrated based on the detection result of the second temperature detection member. 前記第2温度検知部材は熱電対、放射温度計又は光ファイバ温度計である、請求項4又は5に記載の耐熱部材の熱履歴評価方法。 The method for evaluating the thermal history of a heat-resistant member according to claim 4 or 5, wherein the second temperature detecting member is a thermocouple, a radiation thermometer, or an optical fiber thermometer. 前記第1温度検知部材は示温クレヨンである、請求項1から6のいずれか一項に記載の耐熱部材の熱履歴評価方法。 The method for evaluating the thermal history of a heat-resistant member according to any one of claims 1 to 6, wherein the first temperature detecting member is a temperature indicating crayon. 前記耐熱部材は前記プラント設備のボイラと蒸気タービンとの間を接続する蒸気配管に複数の分岐管が接続された管台である、請求項1から7のいずれか一項に記載の耐熱部材の熱履歴評価方法。 The heat-resistant member according to any one of claims 1 to 7, wherein the heat-resistant member is a conduit in which a plurality of branch pipes are connected to a steam pipe connecting between a boiler of the plant equipment and a steam turbine. Thermal history evaluation method. 熱時効による性状変化に基づいて温度を検知可能な第1温度検知部材と、
前記第1温度検知部材を保持しながら、プラント設備の耐熱部材に対して固定可能に構成された固定部材と、
を備える、耐熱部材の熱履歴評価装置。
A first temperature detection member that can detect temperature based on changes in properties due to thermal aging,
A fixing member configured to be able to be fixed to the heat-resistant member of the plant equipment while holding the first temperature detecting member.
A thermal history evaluation device for heat-resistant members.
前記固定部材は、前記耐熱部材を少なくとも部分的に囲むことで前記耐熱部材に対して固定可能に構成される、請求項9に記載の耐熱部材の熱履歴評価装置。 The thermal history evaluation device for a heat-resistant member according to claim 9, wherein the fixing member is configured to be fixed to the heat-resistant member by at least partially surrounding the heat-resistant member. 複数の前記第1温度検知部材が前記固定部材に対して保持可能に構成された、請求項10に記載の耐熱部材の熱履歴評価装置。 The thermal history evaluation device for a heat-resistant member according to claim 10, wherein a plurality of the first temperature detecting members are configured to be able to hold the fixed member. 前記第1温度検知部材を前記耐熱部材とともに外側から囲むように構成された保温材を更に備える、請求項9から11のいずれか一項に記載の耐熱部材の熱履歴評価装置。 The thermal history evaluation device for a heat-resistant member according to any one of claims 9 to 11, further comprising a heat insulating material configured to surround the first temperature detecting member together with the heat-resistant member from the outside.
JP2019157151A 2019-08-29 2019-08-29 Heat history evaluation method for heat-resistant members and heat history evaluation device Active JP7075379B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019157151A JP7075379B2 (en) 2019-08-29 2019-08-29 Heat history evaluation method for heat-resistant members and heat history evaluation device
PCT/JP2020/032822 WO2021040041A1 (en) 2019-08-29 2020-08-31 Thermal history evaluation method and thermal history evaluation device for heat-resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019157151A JP7075379B2 (en) 2019-08-29 2019-08-29 Heat history evaluation method for heat-resistant members and heat history evaluation device

Publications (3)

Publication Number Publication Date
JP2021032853A true JP2021032853A (en) 2021-03-01
JP2021032853A5 JP2021032853A5 (en) 2021-04-22
JP7075379B2 JP7075379B2 (en) 2022-05-25

Family

ID=74677335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019157151A Active JP7075379B2 (en) 2019-08-29 2019-08-29 Heat history evaluation method for heat-resistant members and heat history evaluation device

Country Status (2)

Country Link
JP (1) JP7075379B2 (en)
WO (1) WO2021040041A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928074U (en) * 1972-06-10 1974-03-11
JPH0514868U (en) * 1991-08-13 1993-02-26 三菱重工業株式会社 High temperature corrosion test piece temperature measuring device
JP2004163061A (en) * 2002-11-15 2004-06-10 Mitsubishi Heavy Ind Ltd Heat load measuring method of boiler furnace wall and boiler
JP2014228196A (en) * 2013-05-22 2014-12-08 バブコック日立株式会社 Method for estimating service temperature of heat transfer pipe and method for maintaining heat transfer pipe
JP2017161332A (en) * 2016-03-09 2017-09-14 Semitec株式会社 Temperature sensor device and liquid circulation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4928074B2 (en) 2004-12-01 2012-05-09 シンコー リミテッド Air diffuser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928074U (en) * 1972-06-10 1974-03-11
JPH0514868U (en) * 1991-08-13 1993-02-26 三菱重工業株式会社 High temperature corrosion test piece temperature measuring device
JP2004163061A (en) * 2002-11-15 2004-06-10 Mitsubishi Heavy Ind Ltd Heat load measuring method of boiler furnace wall and boiler
JP2014228196A (en) * 2013-05-22 2014-12-08 バブコック日立株式会社 Method for estimating service temperature of heat transfer pipe and method for maintaining heat transfer pipe
JP2017161332A (en) * 2016-03-09 2017-09-14 Semitec株式会社 Temperature sensor device and liquid circulation device

Also Published As

Publication number Publication date
WO2021040041A1 (en) 2021-03-04
JP7075379B2 (en) 2022-05-25

Similar Documents

Publication Publication Date Title
US10145754B2 (en) Method and apparatus for detecting gas leakage from radioactive material sealed container
KR101859309B1 (en) Heat transfer tube life estimating system
CN102334023A (en) Sensor, and method for continuously measuring the fouling level
US20170074744A1 (en) Method and Apparatus for Detecting Gas Leakage From Radioactive Material Sealed Container
TWI641782B (en) Boiler
JPH0933358A (en) Device that measures temperature of high-temperature wall
JP2009281789A (en) Temperature measuring instrument and method for fitting the same
WO2021040041A1 (en) Thermal history evaluation method and thermal history evaluation device for heat-resistant member
JP2021071304A (en) Corrosion detection system
CN105445175B (en) A kind of equipment corrosion monitoring process and monitoring system
JP5931715B2 (en) Heat flux sensor and method for manufacturing heat flux sensor
Neal et al. The measurement of radiant heat flux in large boiler furnaces—II. Development of flux measuring instruments
KR101296230B1 (en) A calibration test device for ultrasonic wave nondestrutive inspection of remote status arrangment take account of hot environments to lead weld zone of dry storge canister for spent fuel
JP2016166781A (en) Monitoring system and method of scale in pipeline
CN201220947Y (en) On-line detecting method for temperature of blast furnace chamber
JP3177887U (en) Sheath type temperature measuring device
JP2011117823A (en) Device for measuring pipe wall thickness
JP5571631B2 (en) Apparatus and method for measuring temperature of bottom refractory of blast furnace
CN104101441A (en) Real wall temperature testing system for high-temperature heating surface tube of thermal power unit and manufacturing process
JP6220257B2 (en) Pipe life evaluation method
JP4594887B2 (en) Lined damage detection method and corrosive fluid container
JP2008107327A (en) Device and method for measuring pipe wall thickness
JP2006242574A (en) Pad type thermocouple
JP2005127741A (en) Method and apparatus for detecting leakage of gaseous substance
JP2021032853A5 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210309

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220513

R150 Certificate of patent or registration of utility model

Ref document number: 7075379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150