JP2021031612A - Polyphenylene ether resin composition and mixture - Google Patents
Polyphenylene ether resin composition and mixture Download PDFInfo
- Publication number
- JP2021031612A JP2021031612A JP2019154333A JP2019154333A JP2021031612A JP 2021031612 A JP2021031612 A JP 2021031612A JP 2019154333 A JP2019154333 A JP 2019154333A JP 2019154333 A JP2019154333 A JP 2019154333A JP 2021031612 A JP2021031612 A JP 2021031612A
- Authority
- JP
- Japan
- Prior art keywords
- polyphenylene ether
- organosilicon compound
- ether resin
- compound represented
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/544—Silicon-containing compounds containing nitrogen
- C08K5/5477—Silicon-containing compounds containing nitrogen containing nitrogen in a heterocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
- C08L71/126—Polyphenylene oxides modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5415—Silicon-containing compounds containing oxygen containing at least one Si—O bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2371/00—Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
- C08J2371/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08J2371/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08J2371/12—Polyphenylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2433/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2433/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/544—Silicon-containing compounds containing nitrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、ポリフェニレンエーテル樹脂組成物および混合物に関し、さらに詳述すると、炭素−炭素不飽和二重結合を有する反応性基、イソシアヌレート骨格および加水分解性シリル基を有する特定の有機ケイ素化合物を含むポリフェニレンエーテル樹脂組成物および当該有機ケイ素化合物の混合物に関する。 The present invention relates to polyphenylene ether resin compositions and mixtures, and more particularly, includes specific organosilicon compounds having a reactive group having a carbon-carbon unsaturated double bond, an isocyanurate skeleton and a hydrolyzable silyl group. The present invention relates to a polyphenylene ether resin composition and a mixture of the organosilicon compound.
近年、接合技術や実装技術の向上と共に、電子機器に搭載される半導体デバイスの高集積化およびパッケージの精緻化、プリント配線板の高密度配線化等に伴い、電子機器は継続して進展している。
特に、移動体通信のような高周波数帯を利用する電子機器の進展は著しく、この種の電子機器を構成するプリント配線板では、多層化と微細配線化が同時進行している。情報処理の高速化において、要求される信号伝達速度の高速化のためには、用いる材料の誘電率低減が有効であることが知られており、また、伝送時の損失低減のためには、誘電正接(誘電損失)が極力小さい材料を使用することが効果的である。
In recent years, along with the improvement of joining technology and mounting technology, electronic devices have continued to progress due to the high integration of semiconductor devices mounted on electronic devices, the refinement of packages, and the high-density wiring of printed wiring boards. There is.
In particular, the progress of electronic devices using high frequency bands such as mobile communication is remarkable, and in the printed wiring boards constituting this kind of electronic devices, multi-layering and fine wiring are progressing at the same time. It is known that reducing the dielectric constant of the material used is effective for increasing the required signal transmission speed in speeding up information processing, and reducing the loss during transmission is required. It is effective to use a material having a dielectric loss tangent (dielectric loss) as small as possible.
この点、ポリフェニレンエーテル(PPE)系樹脂は、誘電率や誘電正接等の誘電特性が特に優れるため、同分野において高周波対応が可能な基板材料として検討されている。また、変性させたポリフェニレンエーテルを用いた樹脂組成物も提案されている(特許文献1,2参照)。
しかし、ポリフェニレンエーテルを用いた樹脂組成物の硬化によって成形された基板は、誘電特性には優れるものの、一方で銅箔との密着性が不足するという課題があった。
In this respect, polyphenylene ether (PPE) -based resins are particularly excellent in dielectric properties such as dielectric constant and dielectric loss tangent, and are therefore being studied as substrate materials capable of supporting high frequencies in the same field. Further, a resin composition using modified polyphenylene ether has also been proposed (see Patent Documents 1 and 2).
However, although the substrate formed by curing the resin composition using polyphenylene ether has excellent dielectric properties, there is a problem that the adhesion to the copper foil is insufficient.
ポリフェニレンエーテル系硬化物と銅箔との密着性を改良するために、アルコキシシリル基を有するポリフェニレンエーテル化合物を用いた樹脂組成物が提案されている(特許文献3,4)。
しかし、アルコキシシリル基を有するポリフェニレンエーテル化合物を用いた銅箔との密着性改良効果は、樹脂組成物全体に占めるポリフェニレンエーテル樹脂の含有率が低い場合は有効であるものの、近年要求されるレベルの低誘電率および低誘電正接を志向した、ポリフェニレンエーテル樹脂の含有率が高い組成では、不十分である。
In order to improve the adhesion between the polyphenylene ether-based cured product and the copper foil, resin compositions using a polyphenylene ether compound having an alkoxysilyl group have been proposed (Patent Documents 3 and 4).
However, although the effect of improving the adhesion to the copper foil using the polyphenylene ether compound having an alkoxysilyl group is effective when the content of the polyphenylene ether resin in the entire resin composition is low, it is at a level required in recent years. A composition with a high content of polyphenylene ether resin, which is oriented toward low dielectric constant and low dielectric loss tangent, is insufficient.
本発明は、上記事情に鑑みなされたもので、誘電特性に優れ、銅箔との密着性が良好な硬化物を与えるポリフェニレンエーテル樹脂組成物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a polyphenylene ether resin composition that gives a cured product having excellent dielectric properties and good adhesion to copper foil.
本発明者らは、上記課題を解決すべく鋭意検討した結果、炭素−炭素不飽和二重結合を有する反応性基、イソシアヌレート骨格および加水分解性シリル基を有する特定の有機ケイ素化合物が、ポリフェニレンエーテル樹脂組成物の硬化物の銅箔との密着性を向上させることを見出し、本発明を完成した。 As a result of diligent studies to solve the above problems, the present inventors have found that a specific organosilicon compound having a reactive group having a carbon-carbon unsaturated double bond, an isocyanurate skeleton and a hydrolyzable silyl group is polyphenylene. The present invention has been completed by finding that the adhesion of the cured product of the ether resin composition to the copper foil is improved.
すなわち、本発明は、
1. ポリフェニレンエーテル樹脂と、下記構造式(1)および(2)で表される有機ケイ素化合物の少なくとも一方とを含むことを特徴とするポリフェニレンエーテル樹脂組成物、
2. 少なくとも前記構造式(1)で表される有機ケイ素化合物を含む1のポリフェニレンエーテル樹脂組成物、
3. ガスクロマトグラフィーの面積百分率法により求められる比率が、
下記構造式(1)で表される有機ケイ素化合物:35〜75%、
下記構造式(2)で表される有機ケイ素化合物:10〜50%、
下記構造式(3)で表される有機ケイ素化合物:15%未満、
下記構造式(4)で表される有機化合物:15〜50%、かつ、
下記構造式(1)〜(4)で表される化合物の合計:96%以上である混合物
を提供する。
That is, the present invention
1. 1. A polyphenylene ether resin composition comprising a polyphenylene ether resin and at least one of an organosilicon compound represented by the following structural formulas (1) and (2).
2. 1. The polyphenylene ether resin composition of 1 containing at least the organosilicon compound represented by the structural formula (1).
3. 3. The ratio determined by the area percentage method of gas chromatography is
Organosilicon compound represented by the following structural formula (1): 35-75%,
Organosilicon compound represented by the following structural formula (2): 10 to 50%,
Organosilicon compound represented by the following structural formula (3): less than 15%,
Organic compound represented by the following structural formula (4): 15 to 50% and
Total of compounds represented by the following structural formulas (1) to (4): Mixture of 96% or more
I will provide a.
本発明のポリフェニレンエーテル樹脂組成物は、炭素−炭素不飽和二重結合を有する反応性基、イソシアヌレート骨格および加水分解性シリル基を有する特定の有機ケイ素化合物を含有しているため、ポリフェニレンエーテル樹脂組成物の硬化物の銅箔との密着性を向上させることができる。 The polyphenylene ether resin composition of the present invention contains a specific organosilicon compound having a reactive group having a carbon-carbon unsaturated double bond, an isocyanurate skeleton and a hydrolyzable silyl group, and thus the polyphenylene ether resin. The adhesion of the cured product of the composition to the copper foil can be improved.
以下、本発明について具体的に説明する。
本発明に係るポリフェニレンエーテル樹脂組成物は、ポリフェニレンエーテル樹脂と、下記構造式(1)および(2)で表される有機ケイ素化合物の少なくとも一方とを含むことを特徴とする。
Hereinafter, the present invention will be specifically described.
The polyphenylene ether resin composition according to the present invention is characterized by containing a polyphenylene ether resin and at least one of the organosilicon compounds represented by the following structural formulas (1) and (2).
[ポリフェニレンエーテル樹脂]
本発明の組成物に用いられるポリフェニレンエーテル樹脂は、特に限定されるものではないが、変性されているものが好ましく、炭素−炭素不飽和二重結合を有する置換基により末端変性されたポリフェニレンエーテル樹脂が好ましい。
このようなポリフェニレンエーテル樹脂としては市販品を用いることができ、その具体例としてはNoryl SA9000(SABICイノベーティブプラスチックス社製)等がある。
また、市販品でなくとも、末端がフェノール性水酸基で変性されたポリフェニレンエーテルを用いて、ビニル基、アリル基、スチリル基、メタクリル基、アクリル基等の重合反応性の炭素−炭素不飽和二重結合基を導入した変性ポリフェニレンエーテル樹脂を用いることもできる。末端がフェノール性水酸基で変性されたポリフェニレンエーテルは市販品を用いることができ、その具体例としては、Noryl SA90、Noryl SA120(SABICイノベーティブプラスチックス社製)等が挙げられる。
[Polyphenylene ether resin]
The polyphenylene ether resin used in the composition of the present invention is not particularly limited, but is preferably modified, and the polyphenylene ether resin terminally modified by a substituent having a carbon-carbon unsaturated double bond. Is preferable.
As such a polyphenylene ether resin, a commercially available product can be used, and specific examples thereof include Noyl SA9000 (manufactured by SABIC Innovative Plastics Co., Ltd.) and the like.
In addition, even if it is not a commercially available product, a polymerization-reactive carbon-carbon unsaturated double such as a vinyl group, an allyl group, a styryl group, a methacryl group, or an acrylic group is used by using a polyphenylene ether whose terminal is modified with a phenolic hydroxyl group. A modified polyphenylene ether resin having a binding group introduced can also be used. Commercially available products can be used as the polyphenylene ether having the terminal modified with a phenolic hydroxyl group, and specific examples thereof include Noyl SA90 and Noyl SA120 (manufactured by SABIC Innovative Plastics).
[有機ケイ素化合物]
本発明のポリフェニレンエーテル樹脂組成物に含まれる有機ケイ素化合物は、上述のとおり、式(1)および/または式(2)で表される。
上記各式において、R1は、それぞれ独立して、炭素原子数1〜10のアルキル基または炭素原子数6〜10のアリール基を表し、R2は、それぞれ独立して、炭素原子数1〜10のアルキル基または炭素原子数6〜10のアリール基を表し、mは、それぞれ独立して、1〜3の整数を表す。
[Organosilicon compound]
The organosilicon compound contained in the polyphenylene ether resin composition of the present invention is represented by the formulas (1) and / or the formula (2) as described above.
In each of the above formulas, R 1 independently represents an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms, and R 2 independently represents 1 to 1 carbon atoms. It represents an alkyl group of 10 or an aryl group having 6 to 10 carbon atoms, and m independently represents an integer of 1 to 3.
R1およびR2の炭素原子数1〜10のアルキル基としては、直鎖状、環状、分枝状のいずれでもよく、その具体例としては、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、s−ブチル、t−ブチル、n−ペンチル、n−ヘキシル、n−ヘプチル、n−オクチル、n−ノニル、n−デシル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基等が挙げられる。
炭素原子数6〜10のアリール基の具体例としては、フェニル、α−ナフチル、β−ナフチル基等が挙げられる。
The alkyl group having 1 to 10 carbon atoms of R 1 and R 2 may be linear, cyclic or branched, and specific examples thereof include methyl, ethyl, n-propyl and i-propyl. n-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl Group etc. can be mentioned.
Specific examples of the aryl group having 6 to 10 carbon atoms include phenyl, α-naphthyl, β-naphthyl group and the like.
これらの中でも、R1としては、直鎖のアルキル基が好ましく、メチル基、エチル基がより好ましい。
また、R2としては、直鎖のアルキル基が好ましく、メチル基、エチル基がより好ましい。
Among these, as R 1 , a linear alkyl group is preferable, and a methyl group and an ethyl group are more preferable.
Further, as R 2 , a linear alkyl group is preferable, and a methyl group and an ethyl group are more preferable.
上記式(1)および式(2)で表される有機ケイ素化合物は、下記スキームに示されるように、式(4)で表される化合物と、式(5)で表される有機ケイ素化合物とを白金化合物含有触媒の存在下、好ましくは白金化合物含有触媒および助触媒の存在下でヒドロシリル化することで得ることができる。 The organosilicon compounds represented by the above formulas (1) and (2) include a compound represented by the formula (4) and an organosilicon compound represented by the formula (5), as shown in the following scheme. Can be obtained by hydrosilylation in the presence of a platinum compound-containing catalyst, preferably in the presence of a platinum compound-containing catalyst and a co-catalyst.
式(4)で表される化合物は、トリアリルイソシアヌレートであるが、市販品として入手することもでき、例えば、TAIC(三菱ケミカル(株)製)等が上市されている。 The compound represented by the formula (4) is triallyl isocyanurate, but it can also be obtained as a commercially available product. For example, TAIC (manufactured by Mitsubishi Chemical Holdings, Inc.) is on the market.
一方、式(5)で表される有機ケイ素化合物としては、トリメトキシシラン、メチルジメトキシシラン、ジメチルメトキシシラン、トリエトキシシラン、メチルジエトキシシラン、ジメチルエトキシシラン等が挙げられる。 On the other hand, examples of the organosilicon compound represented by the formula (5) include trimethoxysilane, methyldimethoxysilane, dimethylmethoxysilane, triethoxysilane, methyldiethoxysilane, and dimethylethoxysilane.
式(4)で表される化合物と式(5)で表される有機ケイ素化合物との反応割合は、本発明のポリフェニレンエーテル樹脂組成物の硬化物と銅箔との密着性の観点から、式(4)で表される化合物1モルに対して、式(5)で表される有機ケイ素化合物0.01モル以上3.0モル未満が好ましく、より好ましくは0.1モル以上1.5モル未満であり、より一層好ましくは0.6モル以上1.2モル未満である。 The reaction ratio between the compound represented by the formula (4) and the organosilicon compound represented by the formula (5) is determined from the viewpoint of the adhesion between the cured product of the polyphenylene ether resin composition of the present invention and the copper foil. With respect to 1 mol of the compound represented by (4), 0.01 mol or more and less than 3.0 mol of the organosilicon compound represented by the formula (5) is preferable, and more preferably 0.1 mol or more and 1.5 mol. It is less than, more preferably 0.6 mol or more and less than 1.2 mol.
上記ヒドロシリル化反応に用いられる白金化合物含有触媒としては、特に限定されるものではなく、その具体例としては、塩化白金酸、塩化白金酸のアルコール溶液、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエンまたはキシレン溶液、テトラキストリフェニルホスフィン白金、ジクロロビストリフェニルホスフィン白金、ジクロロビスアセトニトリル白金、ジクロロビスベンゾニトリル白金、ジクロロシクロオクタジエン白金等や、白金−炭素、白金−アルミナ、白金−シリカ等の担持触媒などが挙げられる。
特に、ヒドロシリル化の際の選択性の面から、0価の白金錯体が好ましく、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエンまたはキシレン溶液がより好ましい。
白金化合物含有触媒の使用量は特に限定されるものではないが、反応性や、生産性等の点から、式(5)で表される有機ケイ素化合物1モルに対し、含有される白金原子が1×10-7〜1×10-2モルとなる量が好ましく、1×10-7〜1×10-3モルとなる量がより好ましい。
The platinum compound-containing catalyst used in the hydrosilylation reaction is not particularly limited, and specific examples thereof include platinum chloride, an alcohol solution of platinum chloride, and platinum-1,3-divinyl-1,1. , 3,3-Tetramethyldisiloxane complex in toluene or xylene solution, tetraxtriphenylphosphine platinum, dichlorobistriphenylphosphine platinum, dichlorobis acetonitrile platinum, dichlorobisbenzonitrile platinum, dichlorocyclooctadiene platinum, etc., platinum-carbon , Platinum-alumina, platinum-silica and other supported catalysts.
In particular, from the viewpoint of selectivity during hydrosilylation, a zero-valent platinum complex is preferable, and a toluene or xylene solution of a platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex is more preferable. ..
The amount of the platinum compound-containing catalyst used is not particularly limited, but from the viewpoints of reactivity, productivity, etc., the platinum atom contained in 1 mol of the organosilicon compound represented by the formula (5) is contained. An amount of 1 × 10 -7 to 1 × 10 −2 mol is preferable, and an amount of 1 × 10 -7 to 1 × 10 -3 mol is more preferable.
上記反応における助触媒としては、無機酸のアンモニウム塩、酸アミド化合物およびカルボン酸から選ばれる1種以上を用いることが好ましい。
無機酸のアンモニウム塩の具体例としては、塩化アンモニウム、硫酸アンモニウム、アミド硫酸アンモニウム、硝酸アンモニウム、リン酸二水素一アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ジ亜リン酸アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、硫化アンモニウム、ホウ酸アンモニウム、ホウフッ化アンモニウム等が挙げられるが、中でも、pKaが2以上の無機酸のアンモニウム塩が好ましく、炭酸アンモニウム、炭酸水素アンモニウムがより好ましい。
As the co-catalyst in the above reaction, it is preferable to use one or more selected from ammonium salts of inorganic acids, acid amide compounds and carboxylic acids.
Specific examples of ammonium salts of inorganic acids include ammonium chloride, ammonium sulfate, ammonium amide sulfate, ammonium nitrate, monoammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium diaphosphate, ammonium carbonate, and hydrogen carbonate. Examples thereof include ammonium, ammonium sulfide, ammonium borate, and ammonium borofluoride. Among them, ammonium salts of inorganic acids having a pKa of 2 or more are preferable, and ammonium carbonate and ammonium hydrogencarbonate are more preferable.
酸アミド化合物の具体例としては、ホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、アクリルアミド、マロンアミド、スクシンアミド、マレアミド、フマルアミド、ベンズアミド、フタルアミド、パルミチン酸アミド、ステアリン酸アミド等が挙げられ、これらの中でも、ホルムアミドがより好ましい。 Specific examples of the acid amide compound include formamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, acrylamide, malonamide, succinamide, maleamide, fumalamide, benzamide, phthalamide, palmitate amide, stearate amide and the like. Among these, formamide is more preferable.
カルボン酸の具体例としては、ギ酸、酢酸、プロピオン酸、酪酸、メトキシ酢酸、ペンタン酸、カプロン酸、ヘプタン酸、オクタン酸、乳酸、グリコール酸等が挙げられ、これらの中でも、ギ酸、酢酸、乳酸が好ましく、酢酸がより好ましい。 Specific examples of the carboxylic acid include formic acid, acetic acid, propionic acid, butyric acid, methoxyacetic acid, pentanoic acid, caproic acid, heptanic acid, octanoic acid, lactic acid, glycolic acid and the like. Among these, formic acid, acetic acid and lactic acid Is preferable, and acetic acid is more preferable.
助触媒の使用量は特に限定されるものではないが、反応性、選択性、コスト等の観点から式(5)で表される有機ケイ素化合物1モルに対して1×10-5〜5×10-1モルが好ましく、1×10-4〜1×10-1モルがより好ましい。 The amount of the co-catalyst used is not particularly limited, but 1 × 10 -5 to 5 × per 1 mol of the organosilicon compound represented by the formula (5) from the viewpoint of reactivity, selectivity, cost and the like. 10 -1 mol is preferable, and 1 × 10 -4 to 1 × 10 -1 mol is more preferable.
なお、上記反応は無溶媒でも進行するが、溶媒を用いることもできる。
使用可能な溶媒の具体例としては、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、イソオクタン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;N,N−ジメチルホルムアミド等の非プロトン性極性溶媒;ジクロロメタン、クロロホルム等の塩素化炭化水素系溶媒などが挙げられ、これらの溶媒は、1種を単独で用いても、2種以上を混合して用いてもよい。
Although the above reaction proceeds without a solvent, a solvent can also be used.
Specific examples of usable solvents include hydrocarbon solvents such as pentane, hexane, cyclohexane, heptane, isooctane, benzene, toluene and xylene; ether solvents such as diethyl ether, tetrahydrofuran and dioxane; ethyl acetate, butyl acetate and the like. Ester-based solvents; aprotonic polar solvents such as N, N-dimethylformamide; chlorinated hydrocarbon-based solvents such as dichloromethane and chloroform, and the like, even if one of these solvents is used alone, 2 A mixture of seeds or more may be used.
上記ヒドロシリル化反応における反応温度は特に限定されるものではなく、0℃から加熱下で行うことができるが、0〜200℃が好ましい。
適度な反応速度を得るためには加熱下で反応させることが好ましく、このような観点から、反応温度は40〜110℃がより好ましく、40〜90℃がより一層好ましい。
また、反応時間も特に限定されるものではなく、通常、1〜60時間程度であるが、1〜30時間が好ましく、1〜20時間がより好ましい。
The reaction temperature in the hydrosilylation reaction is not particularly limited and can be carried out from 0 ° C. under heating, but 0 to 200 ° C. is preferable.
In order to obtain an appropriate reaction rate, the reaction is preferably carried out under heating, and from such a viewpoint, the reaction temperature is more preferably 40 to 110 ° C., and even more preferably 40 to 90 ° C.
The reaction time is also not particularly limited, and is usually about 1 to 60 hours, preferably 1 to 30 hours, more preferably 1 to 20 hours.
本発明のポリフェニレンエーテル樹脂組成物における式(1)および/または式(2)で表される有機ケイ素化合物の配合量は、銅箔に対する接着性の観点から、組成物中の樹脂成分(ポリフェニレンエーテル樹脂)100質量部に対して0.001〜100質量部が好ましく、0.01〜20質量部がより好ましく、0.1〜5質量部がより一層好ましい。 The blending amount of the organosilicon compound represented by the formula (1) and / or the formula (2) in the polyphenylene ether resin composition of the present invention is the resin component (polyphenylene ether) in the composition from the viewpoint of adhesiveness to the copper foil. Resin) 0.001 to 100 parts by mass is preferable, 0.01 to 20 parts by mass is more preferable, and 0.1 to 5 parts by mass is even more preferable with respect to 100 parts by mass.
なお、上記製法で式(1)および/または式(2)で表される有機ケイ素化合物を製造した場合、少なくとも上記式(1)、(2)および(4)で表される化合物の混合物として目的物が得られ、この混合物をそのまま本発明のポリフェニレンエーテル樹脂組成物の一成分として用いることができる。
この場合、この混合物におけるガスクロマトグラフィーの面積百分率法により求められる式(1)〜(4)で表される化合物の比率は、式(1)および式(2)で表される有機ケイ素化合物の総量が50%以上であれば特に限定されるものではないが、当該混合物を添加したポリフェニレンエーテル樹脂組成物の硬化物の銅箔との密着性を高めることを考慮すると、式(1)で表される有機ケイ素化合物:35〜75%、式(2)で表される有機ケイ素化合物:10〜50%、式(3)で表される有機ケイ素化合物:15%未満、式(4)で表される有機化合物:15〜50%、かつ、式(1)〜(4)で表される化合物の合計:96%以上、特に98%以上、さらには100%であることが好ましい。
When the organosilicon compound represented by the formula (1) and / or the formula (2) is produced by the above production method, at least as a mixture of the compounds represented by the above formulas (1), (2) and (4). The desired product is obtained, and this mixture can be used as it is as a component of the polyphenylene ether resin composition of the present invention.
In this case, the ratio of the compounds represented by the formulas (1) to (4) obtained by the area percentage method of gas chromatography in this mixture is the ratio of the organic silicon compounds represented by the formulas (1) and (2). The total amount is not particularly limited as long as it is 50% or more, but it is represented by the formula (1) in consideration of enhancing the adhesion of the cured product of the polyphenylene ether resin composition to which the mixture is added to the copper foil. Organic silicon compound: 35 to 75%, organic silicon compound represented by the formula (2): 10 to 50%, organic silicon compound represented by the formula (3): less than 15%, represented by the formula (4). 15 to 50% of the organic compounds, and the total of the compounds represented by the formulas (1) to (4): 96% or more, particularly 98% or more, more preferably 100%.
[その他の成分]
本発明のポリフェニレンエーテル樹脂組成物は、上記各成分以外のその他の成分をさらに含んでもいてもよい。その他の成分としては、例えば、高分子量体、無機充填剤、難燃剤、添加剤、硬化剤、反応開始剤等が挙げられる。
[Other ingredients]
The polyphenylene ether resin composition of the present invention may further contain other components other than the above-mentioned components. Examples of other components include high molecular weight substances, inorganic fillers, flame retardants, additives, curing agents, reaction initiators and the like.
高分子量体の具体例としては、ポリブタジエン、ブタジエン−スチレン共重合体、(メタ)アクリル共重合体等が挙げられる。
無機充填剤の具体例としては、球状シリカ、硫酸バリウム、酸化ケイ素粉、破砕シリカ、焼成タルク、チタン酸バリウム、酸化チタン、クレー、アルミナ、マイカ、ベーマイト等が挙げられる。
硬化剤の具体例としては、トリアリルイソシアヌレート(TAIC)、トリメタリルイソシアヌレート(TMAIC)等のトリアルケニルイソシアヌレート化合物;分子中にメタクリル基を2個以上有する多官能メタクリレート化合物;分子中にアクリル基を2個以上有する多官能アクリレート化合物;分子中にビニルベンジル基を有するスチレン、ジビニルベンゼン等のビニルベンジル化合物などが挙げられる。
Specific examples of the high molecular weight polymer include polybutadiene, butadiene-styrene copolymer, (meth) acrylic copolymer and the like.
Specific examples of the inorganic filler include spherical silica, barium sulfate, silicon oxide powder, crushed silica, calcined talc, barium titanate, titanium oxide, clay, alumina, mica, boehmite and the like.
Specific examples of the curing agent include trialkenyl isocyanurate compounds such as triallyl isocyanurate (TAIC) and trimetalyl isocyanurate (TMAIC); polyfunctional methacrylate compounds having two or more methacryl groups in the molecule; acrylic in the molecule. Polyfunctional acrylate compounds having two or more groups; vinylbenzyl compounds such as styrene and divinylbenzene having a vinylbenzyl group in the molecule can be mentioned.
[組成物の製造方法]
本発明のポリフェニレンエーテル樹脂組成物は、常法に従い、ポリフェニレンエーテル樹脂を溶媒に溶解させた後、式(1)および/または式(2)で表される有機ケイ素化合物、並びにその他の成分を混合して製造することができる。
溶媒としては、トルエン、キシレン等の芳香族系溶媒;メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;テトラヒドロフラン等のエーテル系溶媒が好ましく、これらの中でも、芳香族系溶媒がより好ましく、トルエン、キシレンがより一層好ましい。
[Method for producing composition]
The polyphenylene ether resin composition of the present invention is prepared by dissolving the polyphenylene ether resin in a solvent according to a conventional method, and then mixing the organosilicon compounds represented by the formulas (1) and / or the formula (2), and other components. Can be manufactured.
As the solvent, aromatic solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ether solvents such as tetrahydrofuran are preferable, and among these, aromatic solvents are more preferable, and toluene and xylene are more preferable. Even more preferable.
以下、合成例、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、粘度は、オストワルド粘度計による25℃における測定値であり、ガスクロマトグラフィーにおける面積百分率は、下記の条件で測定を行い、得られた各成分のピーク面積に基づいて算出した。
(ガスクロマトグラフィー測定条件)
ガスクロマトグラフィー装置:6890N(アジレント・テクノロジー(株)製)
カラム:HP−5(5%−フェニル−95%−メチルポリシロキサン、アジレント・テクノロジー(株)製)
カラムサイズ:長さ30m、内径0.53mm、膜厚1.5μm
キャリアガス:ヘリウム
キャリアガス流量:1ml/分
オーブン温度:50℃〜300℃
昇温条件:10℃/分
スプリット比:100:1
検出方式、温度:水素炎イオン化検出器(FID)、300℃
サンプル注入量:1μl
Hereinafter, the present invention will be described in more detail with reference to Synthesis Examples, Examples and Comparative Examples, but the present invention is not limited to these Examples.
The viscosity is a value measured by an Ostwald viscometer at 25 ° C., and the area percentage in gas chromatography was measured under the following conditions and calculated based on the peak area of each component obtained.
(Gas chromatography measurement conditions)
Gas chromatograph: 6890N (manufactured by Agilent Technologies, Inc.)
Column: HP-5 (5% -Phenyl-95% -Methylpolysiloxane, manufactured by Agilent Technologies, Inc.)
Column size: length 30 m, inner diameter 0.53 mm, film thickness 1.5 μm
Carrier gas: Helium Carrier gas Flow rate: 1 ml / min Oven temperature: 50 ° C to 300 ° C
Heating conditions: 10 ° C / min Split ratio: 100: 1
Detection method, temperature: hydrogen flame ionization detector (FID), 300 ° C
Sample injection volume: 1 μl
[1]有機ケイ素化合物(の混合物)の製造
[実施例1−1]
撹拌機、還流冷却器、滴下ロートおよび温度計を備えた3Lセパラブルフラスコに、トリアリルイソシアヌレート250g(1.0モル)、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエン溶液(白金原子として5.0×10-5モル)、およびホルムアミド0.2g(5.0×10-3モル)を納めた。この中に、トリメトキシシラン122g(1.0モル)を内温80〜90℃で1時間かけて滴下した後、80℃で3時間撹拌した。
撹拌終了後、減圧濃縮および濾過し、粘度175mm2/sの淡黄色透明液体を得た。生成物のガスクロマトグラフィーにおける面積百分率は、上記式(1)で表される有機ケイ素化合物が46%、上記式(2)で表される有機ケイ素化合物が24%、上記式(3)で表される有機ケイ素化合物が4%、上記式(4)で表される有機化合物が26%であった。これを混合物Aとする。
[1] Production of (mixture of) an organosilicon compound [Example 1-1]
250 g (1.0 mol) of triallyl isocyanurate, platinum-1,3-divinyl-1,1,3,3-tetra in a 3 L separable flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer. A toluene solution of the methyldisiloxane complex (5.0 × 10 -5 mol as platinum atom) and 0.2 g of formamide (5.0 × 10 -3 mol) were charged. To this, 122 g (1.0 mol) of trimethoxysilane was added dropwise at an internal temperature of 80 to 90 ° C. over 1 hour, and then the mixture was stirred at 80 ° C. for 3 hours.
After completion of stirring, the mixture was concentrated under reduced pressure and filtered to obtain a pale yellow transparent liquid having a viscosity of 175 mm 2 / s. The area percentage of the product in gas chromatography is 46% for the organosilicon compound represented by the above formula (1), 24% for the organosilicon compound represented by the above formula (2), and is represented by the above formula (3). The content of the organosilicon compound was 4%, and the proportion of the organosilicon compound represented by the above formula (4) was 26%. This is referred to as mixture A.
[実施例1−2]
撹拌機、還流冷却器、滴下ロートおよび温度計を備えた3Lセパラブルフラスコに、トリアリルイソシアヌレート250g(1.0モル)、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエン溶液(白金原子として5.0×10-5モル)、およびホルムアミド0.2g(5.0×10-3モル)を納めた。この中に、トリメトキシシラン61g(0.5モル)を内温80〜90℃で0.5時間かけて滴下した後、80℃で3時間撹拌した。
撹拌終了後、減圧濃縮および濾過し、粘度135mm2/sの淡黄色透明液体を得た。生成物のガスクロマトグラフィーにおける面積百分率は、上記式(1)で表される有機ケイ素化合物が43%、上記式(2)で表される有機ケイ素化合物が10%、上記式(3)で表される有機ケイ素化合物が0%、上記式(4)で表される有機化合物が47%であった。これを混合物Bとする。
[Example 1-2]
250 g (1.0 mol) of triallyl isocyanurate, platinum-1,3-divinyl-1,1,3,3-tetra in a 3 L separable flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer. A toluene solution of the methyldisiloxane complex (5.0 × 10 -5 mol as platinum atom) and 0.2 g of formamide (5.0 × 10 -3 mol) were charged. 61 g (0.5 mol) of trimethoxysilane was added dropwise thereto at an internal temperature of 80 to 90 ° C. over 0.5 hours, and then the mixture was stirred at 80 ° C. for 3 hours.
After completion of stirring, the mixture was concentrated under reduced pressure and filtered to obtain a pale yellow transparent liquid having a viscosity of 135 mm 2 / s. The area percentage of the product in gas chromatography is 43% for the organosilicon compound represented by the above formula (1), 10% for the organosilicon compound represented by the above formula (2), and is represented by the above formula (3). The proportion of the organosilicon compound to be produced was 0%, and the proportion of the organosilicon compound represented by the above formula (4) was 47%. This is referred to as mixture B.
[実施例1−3]
撹拌機、還流冷却器、滴下ロートおよび温度計を備えた3Lセパラブルフラスコに、トリアリルイソシアヌレート250g(1.0モル)、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエン溶液(白金原子として5.0×10-5モル)、およびホルムアミド0.2g(5.0×10-3モル)を納めた。この中に、トリメトキシシラン183g(1.5モル)を内温80〜90℃で1.5時間かけて滴下した後、80℃で3時間撹拌した。
撹拌終了後、減圧濃縮および濾過し、粘度285mm2/sの淡黄色透明液体を得た。生成物のガスクロマトグラフィーにおける面積百分率は、上記式(1)で表される有機ケイ素化合物が38%、上記式(2)で表される有機ケイ素化合物が34%、上記式(3)で表される有機ケイ素化合物が12%、上記式(4)で表される有機化合物が16%であった。これを混合物Cとする。
[Example 1-3]
250 g (1.0 mol) of triallyl isocyanurate, platinum-1,3-divinyl-1,1,3,3-tetra in a 3 L separable flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer. A toluene solution of the methyldisiloxane complex (5.0 × 10 -5 mol as platinum atom) and 0.2 g of formamide (5.0 × 10 -3 mol) were charged. To this, 183 g (1.5 mol) of trimethoxysilane was added dropwise at an internal temperature of 80 to 90 ° C. over 1.5 hours, and then the mixture was stirred at 80 ° C. for 3 hours.
After completion of stirring, the mixture was concentrated under reduced pressure and filtered to obtain a pale yellow transparent liquid having a viscosity of 285 mm 2 / s. The area percentage of the product in gas chromatography is 38% for the organosilicon compound represented by the above formula (1), 34% for the organosilicon compound represented by the above formula (2), and the above formula (3). The content of the organosilicon compound was 12%, and the proportion of the organosilicon compound represented by the above formula (4) was 16%. This is referred to as mixture C.
[合成例1−1]
撹拌機、還流冷却器、滴下ロートおよび温度計を備えた3Lセパラブルフラスコに、トリアリルイソシアヌレート250g(1.0モル)、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエン溶液(白金原子として5.0×10-5モル)、およびホルムアミド0.2g(5.0×10-3モル)を納めた。この中に、トリメトキシシラン244g(2.0モル)を内温80〜90℃で2時間かけて滴下した後、80℃で3時間撹拌した。
撹拌終了後、減圧濃縮および濾過し、粘度391mm2/sの淡黄色透明液体を得た。生成物のガスクロマトグラフィーにおける面積百分率は、上記式(1)で表される有機ケイ素化合物が28%、上記式(2)で表される有機ケイ素化合物が41%、上記式(3)で表される有機ケイ素化合物が19%、上記式(4)で表される有機化合物が6%であった。これを混合物Dとする。
[Synthesis Example 1-1]
250 g (1.0 mol) of triallyl isocyanurate, platinum-1,3-divinyl-1,1,3,3-tetra in a 3 L separable flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer. A toluene solution of the methyldisiloxane complex (5.0 × 10 -5 mol as platinum atom) and 0.2 g of formamide (5.0 × 10 -3 mol) were charged. To this, 244 g (2.0 mol) of trimethoxysilane was added dropwise at an internal temperature of 80 to 90 ° C. over 2 hours, and then the mixture was stirred at 80 ° C. for 3 hours.
After completion of stirring, the mixture was concentrated under reduced pressure and filtered to obtain a pale yellow transparent liquid having a viscosity of 391 mm 2 / s. The area percentage of the product in gas chromatography is 28% for the organosilicon compound represented by the above formula (1), 41% for the organosilicon compound represented by the above formula (2), and is represented by the above formula (3). The content of the organosilicon compound was 19%, and the proportion of the organosilicon compound represented by the above formula (4) was 6%. This is referred to as the mixture D.
[比較例1−1]
撹拌機、還流冷却器、滴下ロートおよび温度計を備えた3Lセパラブルフラスコに、トリアリルイソシアヌレート250g(1.0モル)、白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体のトルエン溶液(白金原子として5.0×10-5モル)、およびホルムアミド0.2g(5.0×10-3モル)を納めた。この中に、トリメトキシシラン366g(3.0モル)を内温80〜90℃で3時間かけて滴下した後、80℃で3時間撹拌した。
撹拌終了後、減圧濃縮および濾過し、粘度305mm2/sの淡黄色透明液体を得た。生成物のガスクロマトグラフィーにおける面積百分率は、上記式(1)で表される有機ケイ素化合物が0%、上記式(2)で表される有機ケイ素化合物が0%、上記式(3)で表される有機ケイ素化合物が100%、上記式(4)で表される有機化合物が0%であった。これを有機ケイ素化合物Eとする。
[Comparative Example 1-1]
250 g (1.0 mol) of triallyl isocyanurate, platinum-1,3-divinyl-1,1,3,3-tetra in a 3 L separable flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer. A toluene solution of the methyldisiloxane complex (5.0 × 10 -5 mol as platinum atom) and 0.2 g of formamide (5.0 × 10 -3 mol) were charged. To this, 366 g (3.0 mol) of trimethoxysilane was added dropwise at an internal temperature of 80 to 90 ° C. over 3 hours, and then the mixture was stirred at 80 ° C. for 3 hours.
After completion of stirring, the mixture was concentrated under reduced pressure and filtered to obtain a pale yellow transparent liquid having a viscosity of 305 mm 2 / s. The area percentage of the product in gas chromatography is 0% for the organosilicon compound represented by the above formula (1), 0% for the organosilicon compound represented by the above formula (2), and is represented by the above formula (3). The amount of the organosilicon compound to be used was 100%, and the amount of the organosilicon compound represented by the above formula (4) was 0%. This is referred to as organosilicon compound E.
[実施例2−1〜2−4、比較例2−1〜2−6]
[2]ポリフェニレンエーテル樹脂組成物およびその硬化物の製造
(ポリフェニレンエーテル)
末端をメタクリル基で変性した変性ポリフェニレンエーテル(Noryl SA9000:SABICイノベーティブプラスチックス社製)
(高分子量体)
メタクリル骨格を有する高分子量体(ARUFON UP−1080;重量平均分子量6,000:東亜合成(株)製)
(架橋型硬化剤)
トリアリルイソシアヌレート(TAIC:三菱ケミカル(株)製)
(無機充填剤)
ビニルシランで表面処理されたシリカ(SC2300−SVJ:(株)アドマテックス製)
(反応開始剤)
1,3−ビス(t−ブチルパーオキシジイソプロピル)ベンゼン(パーブチルP:日油(株)製)
[Examples 2-1 to 2-4, Comparative Examples 2-1 to 2-6]
[2] Production of polyphenylene ether resin composition and cured product thereof (polyphenylene ether)
Modified polyphenylene ether whose terminal is modified with a methacrylic group (Noryl SA9000: manufactured by SABIC Innovative Plastics Co., Ltd.)
(High molecular weight body)
High molecular weight body having a methacrylic skeleton (ARUFON UP-1080; weight average molecular weight 6,000: manufactured by Toagosei Co., Ltd.)
(Crosslink type curing agent)
Triallyl Isocyanurate (TAIC: manufactured by Mitsubishi Chemical Corporation)
(Inorganic filler)
Silica surface-treated with vinylsilane (SC2300-SVJ: manufactured by Admatex Co., Ltd.)
(Reaction initiator)
1,3-Bis (t-butylperoxydiisopropyl) benzene (Perbutyl P: manufactured by NOF CORPORATION)
[樹脂組成物の調製]
変性ポリフェニレンエーテル(Noryl SA9000)とトルエンとを混合して、その混合液を80℃になるまで加熱して溶解させ、50質量%トルエン溶液を得た。その後、得られたトルエン溶液に、表1,表2に記載の割合(質量部)になるように、高分子量体(ARUFON UP−1080)、架橋剤(TAIC)、混合物A〜Dおよび有機ケイ素化合物E〜Iのいずれか1種を添加した後(比較例2−1は有機ケイ素化合物の添加なし)、30分間撹拌して完全に溶解させた。さらに、無機充填剤(SC2300−SVJ)、反応開始剤(パーブチルP)を添加して、ビーズミルで分散させてワニス状の樹脂組成物を得た。
[Preparation of resin composition]
Modified polyphenylene ether (Noryl SA9000) and toluene were mixed, and the mixed solution was heated to 80 ° C. and dissolved to obtain a 50 mass% toluene solution. Then, in the obtained toluene solution, the high molecular weight compound (ARUFON UP-1080), the cross-linking agent (TAIC), the mixtures AD and the organosilicon were added so as to have the ratios (parts by mass) shown in Tables 1 and 2. After adding any one of the compounds E to I (Comparative Example 2-1 did not add the organosilicon compound), the mixture was stirred for 30 minutes to completely dissolve the compound. Further, an inorganic filler (SC2300-SVJ) and a reaction initiator (perbutyl P) were added and dispersed by a bead mill to obtain a varnish-like resin composition.
[プリプレグの作製]
上記ワニスをそれぞれ用いてプリプレグを作製し、後の評価に用いた。
プリプレグの作製には、織布基材として、日東紡績(株)製の♯1078タイプ、WEA1078のガラスクロスを用いた。
上記で得られた各樹脂組成物を織布基材に硬化後の厚みが60μmとなるように含浸させるとともに、これを半硬化状態となるまで120℃で3分間加熱乾燥してプリプレグを得た。
[Making prepreg]
A prepreg was prepared using each of the above varnishes and used for later evaluation.
To prepare the prepreg, a glass cloth of # 1078 type, WEA1078 manufactured by Nitto Boseki Co., Ltd. was used as the woven fabric base material.
Each of the resin compositions obtained above was impregnated into a woven fabric base material so that the thickness after curing was 60 μm, and this was heated and dried at 120 ° C. for 3 minutes until it became a semi-cured state to obtain a prepreg. ..
[積層板の作製]
上記で作製したプリプレグ1枚を、その両面に厚さ12μmの銅箔(古河電気工業(株)製GT−MP)を配置して被圧体とし、真空条件下、温度220℃、圧力40kgf/cm2の条件で90分加熱・加圧して両面に銅箔が接着された、厚み84μmの評価積層板1を得た。
また、上記のプリプレグ12枚を重ね、最上面と最下面に銅箔を配置して上記と同様の方法で加熱成形し、銅張積層板を得た後、銅箔を剥がして除去し、厚み720μmの評価積層板2を得た。
[Manufacturing of laminated board]
A 12 μm-thick copper foil (GT-MP manufactured by Furukawa Electric Co., Ltd.) was placed on both sides of one prepreg produced above to form a pressure-bearing body, and under vacuum conditions, the temperature was 220 ° C. and the pressure was 40 kgf /. An evaluation laminated plate 1 having a thickness of 84 μm was obtained in which copper foils were adhered to both sides by heating and pressurizing for 90 minutes under the condition of cm 2.
Further, the above 12 prepregs are stacked, copper foils are arranged on the uppermost surface and the lowermost surface, and heat molding is performed in the same manner as described above to obtain a copper-clad laminate, and then the copper foil is peeled off to remove the thickness. An evaluation laminated plate 2 having a thickness of 720 μm was obtained.
以上のようにして作製した評価積層板1,2を用い、以下の方法により銅箔接着力および誘電特性の評価を行った。結果を併せて表1,2に示す。
(1)銅箔接着力
評価積層板1において、絶縁層からの銅箔の引き剥がし強さをJIS C 6481:1996に準拠して測定した。幅10mm、長さ100mmのパターンを形成し、引張試験機により50mm/分の速度で引き剥がし、そのときの引き剥がし強さ(ピール強度)を測定し、得られたピール強度を銅箔接着力(密着力)とした。測定単位はkN/mである。
Using the evaluation laminated plates 1 and 2 produced as described above, the copper foil adhesive strength and the dielectric properties were evaluated by the following methods. The results are also shown in Tables 1 and 2.
(1) Evaluation of Copper Foil Adhesive Strength In the laminated board 1, the peeling strength of the copper foil from the insulating layer was measured according to JIS C 6488: 1996. A pattern with a width of 10 mm and a length of 100 mm is formed, peeled off at a speed of 50 mm / min with a tensile tester, the peeling strength (peel strength) at that time is measured, and the obtained peel strength is determined by the copper foil adhesive strength. (Adhesion strength). The unit of measurement is kN / m.
(2)誘電特性(比誘電率および誘電正接)
10GHzにおける評価基板の比誘電率および誘電正接を、空洞共振器摂動法で測定した。評価基板には、上記の評価積層板2を用いた。
具体的には、ネットワーク・アナライザ(N5230A:アジレント・テクノロジー(株)製)を用い、10GHzにおける評価基板の比誘電率(DK)および誘電正接(Df)を測定した。
(2) Dielectric properties (relative permittivity and dielectric loss tangent)
The relative permittivity and dielectric loss tangent of the evaluation substrate at 10 GHz were measured by the cavity resonator perturbation method. The evaluation laminate 2 described above was used as the evaluation substrate.
Specifically, a network analyzer (N5230A: manufactured by Agilent Technologies, Inc.) was used to measure the relative permittivity (DK) and the dielectric loss tangent (Df) of the evaluation substrate at 10 GHz.
*2 有機ケイ素化合物G:3−メタクリルプロピルトリメトキシシラン(信越化学工業(株)製、KBM−503)
*3 有機ケイ素化合物H:特開2018−16709号公報、実施例1−1の有機ケイ素化合物1
*4 有機ケイ素化合物I:特開2019−77761号公報、実施例1−1の有機ケイ素化合物1
* 2 Organosilicon compound G: 3-methacrylpropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-503)
* 3 Organosilicon compound H: Organosilicon compound 1 of JP-A-2018-16709, Example 1-1
* 4 Organosilicon compound I: Organosilicon compound 1 of JP-A-2019-77761, Example 1-1
表1に示されるように、本発明の有機ケイ素化合物を含有するポリフェニレンエーテル樹脂組成物からなる硬化物は、優れた誘電特性および銅箔との密着性を示した。一方、表2に示されるように、本発明の有機ケイ素化合物を含有しないポリフェニレンエーテル樹脂組成物では、銅箔との密着性に劣る結果となった。 As shown in Table 1, the cured product made of the polyphenylene ether resin composition containing the organosilicon compound of the present invention exhibited excellent dielectric properties and adhesion to copper foil. On the other hand, as shown in Table 2, the polyphenylene ether resin composition containing no organosilicon compound of the present invention resulted in inferior adhesion to the copper foil.
Claims (3)
下記構造式(1)で表される有機ケイ素化合物:35〜75%、
下記構造式(2)で表される有機ケイ素化合物:10〜50%、
下記構造式(3)で表される有機ケイ素化合物:15%未満、
下記構造式(4)で表される有機化合物:15〜50%、かつ、
下記構造式(1)〜(4)で表される化合物の合計:96%以上である混合物。
Organosilicon compound represented by the following structural formula (1): 35-75%,
Organosilicon compound represented by the following structural formula (2): 10 to 50%,
Organosilicon compound represented by the following structural formula (3): less than 15%,
Organic compound represented by the following structural formula (4): 15 to 50% and
The total of the compounds represented by the following structural formulas (1) to (4): 96% or more of the mixture.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019154333A JP2021031612A (en) | 2019-08-27 | 2019-08-27 | Polyphenylene ether resin composition and mixture |
KR1020200106030A KR20210025492A (en) | 2019-08-27 | 2020-08-24 | Polyphenylene ether resin composition and mixture |
TW109128902A TWI837414B (en) | 2019-08-27 | 2020-08-25 | Polyphenylene ether resin compositions and mixtures |
CN202010871018.4A CN112442267A (en) | 2019-08-27 | 2020-08-26 | Polyphenylene ether resin composition and mixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019154333A JP2021031612A (en) | 2019-08-27 | 2019-08-27 | Polyphenylene ether resin composition and mixture |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021031612A true JP2021031612A (en) | 2021-03-01 |
Family
ID=74678507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019154333A Pending JP2021031612A (en) | 2019-08-27 | 2019-08-27 | Polyphenylene ether resin composition and mixture |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2021031612A (en) |
KR (1) | KR20210025492A (en) |
CN (1) | CN112442267A (en) |
TW (1) | TWI837414B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003138127A (en) * | 2001-10-30 | 2003-05-14 | Asahi Kasei Corp | Filler for thermosetting polyphenylene ether resin and resin composition using the same |
JP2009019139A (en) * | 2007-07-12 | 2009-01-29 | Kaneka Corp | Curable composition |
JP2012518610A (en) * | 2009-02-24 | 2012-08-16 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Printed circuit board containing silane coupling agent |
JP2019014779A (en) * | 2017-07-04 | 2019-01-31 | 信越化学工業株式会社 | Silicone gel composition, cured article thereof, and power module |
US20190048032A1 (en) * | 2017-03-08 | 2019-02-14 | Evonik Degussa Gmbh | Process for preparing tris[3-(alkoxysilyl)propyl] isocyanurates |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004259899A (en) * | 2003-02-25 | 2004-09-16 | Matsushita Electric Works Ltd | Printed circuit board, resin composition therefor, and multilayer printed circuit board |
JP2004339328A (en) | 2003-05-14 | 2004-12-02 | Matsushita Electric Works Ltd | Modified polyphenylene ether compound and method for producing the same |
JP5587148B2 (en) * | 2010-03-09 | 2014-09-10 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Self-adhesive polyorganosiloxane composition |
WO2014034103A1 (en) | 2012-08-29 | 2014-03-06 | パナソニック株式会社 | Modified polyphenylene ether, method for manufacturing same, polyphenylene ether resin composition, resin varnish, prepreg, metal-clad laminate and printed circuit board |
WO2015005247A1 (en) * | 2013-07-08 | 2015-01-15 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Adhesiveness-imparting agent, adhesive polyorganosiloxane composition, and optical semiconductor device |
JP6642325B2 (en) | 2016-07-27 | 2020-02-05 | 信越化学工業株式会社 | Resin modifier for high frequency substrate materials composed of organosilicon compounds |
JP6907877B2 (en) | 2017-10-24 | 2021-07-21 | 信越化学工業株式会社 | Organosilicon compound, its production method and curable composition |
-
2019
- 2019-08-27 JP JP2019154333A patent/JP2021031612A/en active Pending
-
2020
- 2020-08-24 KR KR1020200106030A patent/KR20210025492A/en unknown
- 2020-08-25 TW TW109128902A patent/TWI837414B/en active
- 2020-08-26 CN CN202010871018.4A patent/CN112442267A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003138127A (en) * | 2001-10-30 | 2003-05-14 | Asahi Kasei Corp | Filler for thermosetting polyphenylene ether resin and resin composition using the same |
JP2009019139A (en) * | 2007-07-12 | 2009-01-29 | Kaneka Corp | Curable composition |
JP2012518610A (en) * | 2009-02-24 | 2012-08-16 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Printed circuit board containing silane coupling agent |
US20190048032A1 (en) * | 2017-03-08 | 2019-02-14 | Evonik Degussa Gmbh | Process for preparing tris[3-(alkoxysilyl)propyl] isocyanurates |
JP2019014779A (en) * | 2017-07-04 | 2019-01-31 | 信越化学工業株式会社 | Silicone gel composition, cured article thereof, and power module |
Also Published As
Publication number | Publication date |
---|---|
CN112442267A (en) | 2021-03-05 |
TW202124579A (en) | 2021-07-01 |
KR20210025492A (en) | 2021-03-09 |
TWI837414B (en) | 2024-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9872382B2 (en) | Low dielectric composite material and laminate and printed circuit board thereof | |
TWI830741B (en) | Resin compositions and their applications | |
TWI551622B (en) | A polyphenylene ether resin, a polyphenylene ether resin, a polyphenylene ether prepolymer, and a resin composition | |
TWI589686B (en) | Low-dielectric phosphorus-containing flame retardant resin composition and its preparation method and application | |
EP1275696B1 (en) | Resin composition with excellent dielectric characteristics, process for producing resin composition, varnish prepared from the same, process for producing the same, prepreg made with these, and metal-clad laminate | |
JP4958106B2 (en) | Dispersant, epoxy resin composition containing dispersant, and method for producing the same | |
WO2007052523A1 (en) | Rubber-modified polyamide resin, epoxy resin composition, and cured object obtained therefrom | |
KR20090047743A (en) | Anisotropic conductive film composition and anisotropic conductive film using the same | |
JP2017124551A (en) | Metal-clad laminate and metal foil with resin | |
WO2019130735A1 (en) | Polyphenylene ether resin composition, prepreg using same, film with resin, metal foil with resin, metal-clad laminate and wiring board | |
JP6988786B2 (en) | Polyphenylene ether resin composition and silane-modified copolymer | |
JP2021031612A (en) | Polyphenylene ether resin composition and mixture | |
CN112074553B (en) | Thermosetting resin composition, film comprising the same, and multilayer wiring board using the same | |
CN109971152B (en) | Polyphenylene ether resin composition, prepreg, laminate, and printed wiring board | |
KR100689481B1 (en) | Copper foil with insulating adhesive | |
JP2003128921A (en) | Thermosetting resin composition, thermosetting resin film and metal foil laminate using the same | |
TWI822811B (en) | Resin compositions and prepregs using the same, resin-coated films, resin-coated metal foils, metal-clad laminates and wiring boards | |
TWI724229B (en) | Maleimide resin molded body, method for producing maleimide resin molded body, maleimide resin composition and cured product thereof | |
JP4271793B2 (en) | Adhesive composition and method for producing the same | |
KR101494578B1 (en) | A novel epoxy resin curing agent and epoxy resin composition comprising thereof | |
JP2007180262A (en) | Adhesive composition for printed wiring board, flexible copper-plated laminate, adhesive film, cover lay, and printed wiring board | |
TW202402776A (en) | Phosphorus-containing (meth)acryloyl compound, method for producing the same, and flame-retardant resin composition comprising phosphorus-containing (meth)acryloyl compound, cured product, and laminate for electronic circuit board | |
WO2023188506A1 (en) | Adhesive composition | |
JP2023105332A (en) | Novel crosslinker, curable composition, prepreg, laminate, metal-clad laminate and circuit board | |
JP2023164351A (en) | Composite materials for dielectric applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210726 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220517 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20221115 |