JP2021027621A - 振動型モータの制御装置及びそれを用いた撮像装置 - Google Patents

振動型モータの制御装置及びそれを用いた撮像装置 Download PDF

Info

Publication number
JP2021027621A
JP2021027621A JP2019141636A JP2019141636A JP2021027621A JP 2021027621 A JP2021027621 A JP 2021027621A JP 2019141636 A JP2019141636 A JP 2019141636A JP 2019141636 A JP2019141636 A JP 2019141636A JP 2021027621 A JP2021027621 A JP 2021027621A
Authority
JP
Japan
Prior art keywords
vibration
amplitude ratio
oscillator
speed
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019141636A
Other languages
English (en)
Inventor
住岡 潤
Jun Sumioka
潤 住岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019141636A priority Critical patent/JP2021027621A/ja
Publication of JP2021027621A publication Critical patent/JP2021027621A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

【課題】 応答性を向上させた振動型モータの制御装置を提供することを目的とする。【解決手段】 振動子と接触体が加圧接触する加圧方向への突上げ振動と、加圧方向に垂直な方向への送り振動と、を含む振動により、振動子と加圧接触する接触体とを相対的に移動させる振動型モータの制御装置であって、送り振動の突上げ振動に対する振幅比を制御することにより、振動子と接触体との相対的な速度を制御する制御部を有し、制御部は、振幅比を下げることにより、速度を加速することを特徴とする。【選択図】 図4

Description

本発明は、振動型モータの制御装置及びそれを用いた撮像装置に関するものである。
振動型モータの一例として振動型モータについて説明する。
振動型モータは、弾性体に結合された、圧電素子等の電気−機械エネルギー変換素子に交流電圧を印加することで、該電気−機械エネルギー変換素子に高周波振動を発生させ、その振動エネルギーを連続的な機械運動として取り出すように構成された、非電磁駆動式のモータである。
振動型モータによって駆動対象である被駆動部材(以下、「接触体」ともいう)を微小な距離だけ移動させる場合、高負荷や低電圧駆動の条件で動き出しが遅く、目標位置に到達するまでに時間を要してしまうことがある。
図11は、2μmのステップ信号を指令値として位置フィードバック制御を行った場合の駆動プロフィールの例を模擬的に示したものである。微小距離のステップ信号(指令値)に追従するように振動型モータを位置フィードバック制御した場合、図に示す実位置のように動き出しまで時間(動き出し時間)を要してしまう。このときの制御部の操作量は、指令値の立ち上がり時から位置偏差の積分によって増加していく。しかしながら、駆動振動を規定する操作量が小さい場合は応答性が低下してしまい、ある程度の操作量に達しないと動き出さない問題が生じてしまう。このような微小動作の起動性を向上する事ができる振動型モータの制御方法が望まれる。
起動性に影響する保持力を回復させる技術として、例えば以下のような制御方法が提案されている。特許文献1は、振動型モータが長時間にわたって停止状態で放置された場合や高湿度環境下で使用された場合の保持力を回復させる制御技術である。楕円振動の駆動方向成分が大きい状態で位置が動かないようにサーボする事で、摩擦摺動面に介在する水分を効果的に除去する事ができる。
また、微小動作の安定性を向上させる技術として以下のような提案がある。特許文献2は、駆動モードを標準型、粗動型(高速駆動)、微動型(高荷重型)のように楕円振動の振幅比を3つの駆動周波数で切替えて、各モードに適した加圧力に変更するものである。微動型は摩擦摺動面に垂直な方向の振動成分を大きくしたもので、摩擦摺動面の凹凸による速度変動を生じ難くして低速駆動の安定化を図るものである。
特開2016−144262号公報 特開平9−285149号公報
しかしながら、従来は、たとえば、停止状態から微小な距離を動かすまでの加速領域の楕円振動形状に着目した起動性向上技術は無かった。すなわち、ミクロンオーダーの極めて小さい距離を短時間で起動して動かすための楕円振動の過渡的な形状変化までは考慮されていない。また、単に制御ゲインや電圧を大きくするだけでは、制御的な発振や駆動音といった別の問題が生じる可能性がある。
そこで本発明は、応答性を向上させた振動型モータの制御装置を提供することを目的とする。
本発明の一様態は、振動子と接触体が加圧接触する加圧方向への突上げ振動と、前記加圧方向に垂直な方向への送り振動と、を含む振動により、前記振動子と加圧接触する接触体とを相対的に移動させる振動型モータの制御装置であって、前記送り振動の前記突上げ振動に対する振幅比を制御することにより、前記振動子と前記接触体との相対的な速度を制御する制御部を有し、前記制御部は、前記振幅比を下げることにより、前記速度を加速することを特徴とするものである。
本発明によれば、振動型モータの制御装置において、振幅比を下げることにより、振動子と接触体との相対的な速度を加速し、それにより、振動型モータの応答性を向上させることができる。
本発明の第1の実施の形態における、振動型モータ及びその制御装置を示す図である。 リニア駆動の振動型モータの駆動原理を説明する図である。 レンズ鏡筒のレンズの駆動機構部を説明する図である。 位相差の制御量に対する、送り振動の突上げ振動に対する振幅比の変化と、本発明の振幅比の操作範囲を示すものである。 振動型モータを起動停止までの楕円振動形状の変化について、本発明と従来方法との違いを説明する模式図である。 2相の交流信号の位相差を操作パラメータとして、本発明の振動型モータの到達速度と平均電力を測定した結果を示すものである。 本発明と従来方法において、2相の交流信号の位相差を掃引して駆動したときの起動性を比較した結果である。 本発明の交流信号発生手段の構成を示す図である。 本発明の位相差−周波数判定部の出力を説明する図である。 本発明の制御装置におけるステップ信号に対する制御結果を従来方法と比較したものである。 従来方法における、2μmのステップ信号を指令値として位置フィードバック制御を行った場合の駆動プロフィールの例を模擬的に示したものである。 本発明の制御装置の適用例である撮像装置の外観を示す平面図及び内部構造の概略図である。 本発明の制御装置の適用例である顕微鏡の外観を示す図である。 振動型モータにおける圧電素子の分極領域の別の一例を示す模式図である。 2相の交流信号の周波数と位相差に基づくモータ特性の一例を示す模式図である。 縦振動と屈曲振動を利用して駆動する振動型モータの構成例を示す図である。
(第1の実施の形態)
本発明に適用できる振動型モータの一例について、図面を参照しながら説明する。本実施の形態の振動型モータは、振動子、及び被駆動部材を有する。
図2は、振動型モータの例として、リニア駆動型の振動型モータの駆動原理を説明する図である。図2(a)に示す振動型モータは、弾性体203、及び弾性体203に接着(接合)された電気―機械エネルギー変換素子である圧電素子204を有する振動子131と、振動子131によって駆動される被駆動部材132を有する。圧電素子204に交流電圧を印加することにより、図2(c)、(d)に示すような2つの振動モード(第1の振動モード、第2の振動モード)を発生させ、突起部202に加圧接触する被駆動部材132(接触体)を矢印方向に移動させる。
図2(b)は圧電素子204の電極パターンを示す図であり、例えば振動子131の圧電素子204には、長手方向で2等分された電極領域が形成されている。また、各電極領域における分極方向は、同一方向(+)となっている。圧電素子204の2つの電極領域のうち図2(b)の右側に位置する電極領域には交流電圧(VB)が印加され、左側に位置する電極領域には交流電圧(VA)が印加される。
VBおよびVAを第1の振動モードの共振周波数付近の周波数で、かつ同位相の交流電圧とすると、圧電素子204の全体(2つの電極領域)がある瞬間には伸び、また別の瞬間には縮むことになる。この結果、振動子131には図2(c)に示す第1の振動モードの振動(以下、「突上げ振動」という)が発生することになる。これにより、突起部202には、突上げ方向(Z方向)の変位が生じる。なお、突上げ振動は、突起部202(振動子)と被駆動部材132(接触体)が加圧接触する加圧方向への振動である。
また、VBおよびVAを第2の振動モードの共振周波数付近の周波数で、かつ位相が180°ずれた交流電圧とすると、ある瞬間には、圧電素子204の右側の電極領域が縮むとともに、左側の電極領域が伸びる。また、別の瞬間には逆の関係となる。この結果、振動子131には図2(d)に示す第2の振動モードの振動(以下、「送り振動」という)が発生することになる。これにより、突起部202には、駆動方向(送り方向、X方向)の変位が生じる。
したがって、第1及び第2の振動モードの共振周波数付近の周波数を有する交流電圧を圧電素子204の電極に印加することで、第1及び第2の振動モードが合成された振動を励起することができる。
このように、2つの振動モードを合成することにより、突起部202は、図2(d)におけるY方向(X方向及びZ方向と垂直な方向)に垂直な断面において、楕円運動を行う。該楕円運動によって、被駆動部材132が図2(a)の矢印方向に駆動される。この被駆動部材132と振動子131が相対移動する方向、すなわち振動子131によって被駆動部材132が駆動される方向(ここではX方向)を、駆動方向と示す。
また、第2の振動モードの第1の振動モードに対する振幅比R(送り振動振幅/突上げ振動振幅)は、2等分された電極へ入力する2相の交流電圧の位相差を変えることにより変更可能である。この振動型モータでは、振動の振幅比を変えることにより被駆動部材の速度を変更させることが可能となる。
なお、上記説明では、振動子131が静止し、被駆動部材132が移動する場合を例として説明したが、本発明はこの形態に限定されない。被駆動部材132と振動子131は、互いの接触部の位置が相対的に変わっていればよく、例えば、被駆動部材132が固定されて振動子131が移動しても良い。すなわち、本発明において、「駆動する」とは、被駆動部材と振動子の相対的な位置を変化させることを意味し、被駆動部材の位置(たとえば、被駆動部材と振動子とを内包する筐体の位置を基準とした場合の被駆動部材の位置)が変化することを要しない。
振動型モータは、例えばカメラのオートフォーカス駆動などに用いられている。オートフォーカス駆動には高精度な位置決め制御が必要であり、例えば位置センサを用いた位置フィードバック制御が行われる。圧電素子に印加する交流電圧信号の周波数、2相の信号の位相差、パルス幅などを調整することによって、振動型モータの速度をコントロールすることができる。例えば、駆動周波数を圧電素子の共振周波数に近づけるほど振動振幅が大きくなり、駆動対象物であるレンズを高速に駆動することができる。
オートフォーカス駆動における位置決め制御について説明する。振動型モータによって駆動されるフォーカスレンズは、制御装置によって開始位置から所定の速度まで加速され、一定速度で駆動された後に、目標位置に近づくにつれて減速しながら停止するように制御される。一般に、フォーカス速度は速さが望まれるので、フォーカスレンズを目標位置まで短時間、且つ高速に移動するよう、振動型モータを制御することとなる。
一方で、カメラ側からの命令で光学調整機、CZ(コンピューターズーム)調整機によって微小な距離を素早く動作するよう制御される。また、焦点検出用にフォーカスレンズを微小な距離で往復駆動するウォブリング動作の制御も行われる。これらの動作では、動き出しの遅れによる整定時間の長時間化や追従性の悪化が課題となる。この課題は、重いレンズや敏感度の高いレンズでより顕著となる。
本実施の形態の振動型駆モータの制御装置を用いることで、特に、微小な距離の駆動における応答性を向上することができる。
なお、本発明における効果(応答性の向上)は長距離の駆動でも得られる。しかし、長距離の駆動には長時間を要するので、駆動に要する時間全体に対する、当該効果による時間短縮の割合が、微小な距離の駆動よりも小さくなるという意味で、効果(応答性の向上)は得られ難くなる。効果(応答性の向上)の大きさは、駆動距離の他に、被駆動部材の形状や大きさ、重さ等からも影響を受けるが、0μmより大きく200μm以下の距離の駆動では、実用上意味のある効果(応答性の向上)が得られる。また、0μmより大きく10μm以下の距離の駆動では、効果(応答性の向上)の大幅な改善が得られる。
図3は、本実施の形態のレンズ鏡筒のレンズの駆動機構を説明する図である。振動型モータによるレンズホルダの駆動機構は、振動子と、レンズホルダと、このレンズホルダを摺動自在に保持する、平行に配された第1ガイドバー及び第2ガイドバーとを備えている。本実施の形態において、第2ガイドバーが被駆動部材であり、第2ガイドバーは固定され、振動子とレンズホルダが一体となって移動する場合について説明する。
振動子は、電気−機械エネルギー変換素子に対する駆動電圧の印加によって生成された振動子の突起部の楕円運動によって、振動子と弾性体の突起部と接触する第2ガイドバーとの間に相対移動力を発生させる。これによって、振動子と一体に固定されたレンズホルダを第1及び第2ガイドバーに沿って移動可能に構成されている。
具体的には、被駆動部材の駆動機構300は、主にレンズ保持部材であるレンズホルダ302、レンズ306、フレキシブルプリント基板が結合された振動子131、加圧磁石305、2つのガイドバー303、304及び不図示の基体を有する。ここでは、振動子として振動子131を例に説明する。
第1のガイドバー303、第2のガイドバー304は、互いに平行に配置されるようにそれらの各ガイドバーの両端が、不図示の基体により保持固定されている。レンズホルダ302は、円筒状のホルダ部302a、振動子131及び加圧磁石305(磁石)を保持固定する保持部302b、第1のガイドバー303と嵌合してガイドの作用をなす第1のガイド部302cを有する。
加圧手段を構成するための加圧磁石305は、永久磁石及び永久磁石の両端に配置される2つのヨークを有する。加圧磁石305と第2のガイドバー304との間に磁気回路が形成され、これら部材間に吸引力が発生する。加圧磁石305は第2のガイドバー304とは間隔を設けて配置されており、第2のガイドバー304は振動子131と接するように配置されている。
前記の吸引力により第2のガイドバー304と振動子131との間に加圧力が与えられる。弾性体の2箇所の突起部202、202が第2のガイドバー304と加圧接触して第2のガイド部を形成する。第2のガイド部は磁気による吸引力を利用してガイド機構を形成しており、外力を受ける等により振動子131と第2のガイドバー304が引き離される状態が生じるが、これに対しては、つぎのように対処されている。
すなわち、レンズホルダ302に備えられる脱落防止部302dが第2のガイドバー304に当たることで、レンズホルダ302が所望の位置に戻るように対応が施されている。振動子131に所望の交流電圧信号を与えることで振動子131と第2のガイドバー304との間に駆動力が発生し、この駆動力によりレンズホルダの駆動が行われる。
図1は、本実施の形態の振動型モータの制御装置、及び駆動装置を示す図である。駆動装置15は、振動子131及び被駆動部材132を有する振動型モータ13、振動型モータを制御する制御装置12、振動子131と被駆動部材132の相対位置を検出する位置検出手段14を有する。制御装置12は、制御部10及び駆動部11を有する。
制御部は、前記振動子の駆動を制御するための情報を有する信号を生成できるよう構成されている。すなわち、振動子と被駆動部材との相対位置又は速度と、前記相対位置又は速度に関する指令値との差である偏差と、制御量演算部と、位相差―周波数制御部と、電圧調整手段とを用いて構成されている。前記位相差―周波数制御部は、送り振動の突上げ振動に対する振幅比が、操作パラメータとして、制御量に基づいて変更される。尚、後述の第2の実施形態の如く、電圧調整手段の中に振幅比を変更する手段を備えてもよい。
例えば、制御部10は、指令値生成手段101(指令値生成部)、制御量演算部102、位相差−周波数制御部109、及び電圧調整手段107を有し、駆動部11は、交流信号生成手段111(交流信号生成部)及び昇圧回路112を有する。
指令値生成手段101によって振動子131と被駆動部材132との相対位置の時間毎の指令値が生成され、減算器108で、位置検出手段14(位置検出部)で検出された振動子131と被駆動部材132との相対位置(140)と指令値との差分が偏差(141)として演算される。
偏差(141)を用いて、制御量演算部102で制御量(142)が演算、出力される。
制御量演算部102では、後述のようにPID補償器などを用いて制御量(142)が演算される。PID補償器とは比例(P)・積分(I)・微分(D)の各機能を有する補償器の出力を加算したものであり、制御対象の位相遅れやゲインを補償して、安定且つ高精度な制御系を構築するために一般的に用いられる。
ここで、振動子と被駆動部材の相対位置に関する指令値とは、時間毎に指令値生成手段から出力される相対位置に関する値であり、例えば、制御サンプリング毎に1つの指令値が指令値生成手段から出力される。制御サンプリングとは、例えば図1において、偏差の取得から、振動子への交流信号の入力、振動子と被駆動部材の相対速度や相対位置の検出を経て、偏差の取得が始まる直前までの1サイクルを示す。前記サイクルで、振動型モータの位置又は速度がフィードバック制御される。
なお、相対位置に関する指令値とは、位置検出手段による相対位置に基づいて求めるだけでなく、相対速度を検出し、検出した相対速度から求めてもよい。
制御量(142)は、送り振動の突上げ振動に対する振幅比を操作する位相差−周波数制御部109に入力され、位相差−周波数制御部109の出力が交流信号生成手段111に入力される。位相差−周波数制御部109は、例えば、位相差変換部103、周波数変換部104、及び位相差−周波数判定部106を有する構成とすることができる。制御量(142)は、位相差変換部103と周波数変換部104とによって、振動型モータを駆動する交流電圧信号の操作パラメータである、位相差と周波数に各々変換される。
位相差変換部103から出力された位相差Θ(143)に基づいて、前記2相の交流電圧信号の位相差が操作される。
位相差−周波数判定部106では、周波数と位相差の制御量によって、振動型モータの駆動速度、駆動方向が制御される。交流信号生成手段111では、位相差、周波数、及び電圧調整手段107からのパルス幅情報に基づいて、2相の交流信号が生成される。昇圧回路112は、例えばコイルやトランスなどを有し、昇圧回路112によって所望の駆動電圧に昇圧された交流信号は、振動子131の圧電素子に印加され、被駆動部材132を駆動する。
被駆動部材132または振動子131に取り付けられた不図示の位置センサによって、振動子131と被駆動部材132の相対位置が検出される。相対位置は、制御量演算部102にフィードバックされることで、時間毎の指令値に追従するように振動型モータはフィードバック制御される。尚、本実施形態は、電気−機械エネルギー変換素子である圧電素子を2相に分けて駆動する2相駆動の制御装置を例にとり説明するが、本発明は2相駆動に限定されるものではなく、2相以上の振動型モータにも適用できる。
制御部10は、例えばCPU、PLD(ASICを含む)などのデジタルデバイスや、A/D変換器などの素子から構成される。また、駆動部11の交流信号生成手段111は、例えばCPUや関数発生器とスイッチング回路を有し、昇圧回路は、例えばコイルや、トランス、コンデンサから構成される。なお、制御部及び駆動部は、1つの素子や回路から構成されるだけではなく、複数の素子や回路から構成されていてもよい。また、各処理をいずれの素子や回路が実行してもよい。
以上が本発明の制御装置、及び駆動装置の構成であるが、より詳細に、本発明の特徴となる位相差変換部103について説明する。位相差変換部103は、フィードバックされた制御量(142)に基づいて2相の交流信号の位相差Θ(143)を操作パラメータとして出力する。後述のように、位相差を変えることで振動型モータに発生する楕円振動の送り振動の突上げ振動に対する振幅比を操作することができる。
図4は、2相の交流信号の位相差を変えた場合の、送り振動の突上げ振動に対する振幅比の変化と、本発明の振幅比Rの操作範囲を示すものである。図4(a)の横軸は位相差、縦軸は突上げ振動と送り振動の振幅の変化を示す。図のように、位相差を−180°から180°の範囲で変えることで、駆動部の楕円運動の楕円比が変化し、符号が反転することで楕円運動の方向が変化する。中心値の位相差0°では突上げ振動振幅は最大、送り振動振幅は最小となる。逆に、位相差−180°及び180°では突上げ振動振幅が最小で、送り振動振幅は最大の関係となる。図において、突上げ振動振幅と送り振動振幅がクロスする位相があるが、本例では120°とする。尚、説明の便宜上、上記の関係としたが、実際は中心値がオフセットを有する場合もあり、両者の振動振幅がクロスする位相差も120°とは限らない。これは、送り振動と突上げ振動の共振周波数差、共振点での振動の大きさ、駆動周波数などによっても変化するからである。図4(b)は、送り振動の突上げ振動に対する振幅比をRとして、Rの変化の基づくモータ速度を模式的に示したものである。位相差0°は振幅比R1、位相差120°は振幅比Rmax、位相差180°は振幅比R2に各々相当する。尚、位相差の符号が負の場合も対応関係は同様である(位相差−180°はR2’に相当)。ここで、振幅比の関係は、R1<Rmax<R2、の関係を有する。
まず、振幅比R1に着目すると、送り振動がゼロなので振動型モータの速度もゼロとなる。突上げ振動は最大となるので、振動子と被駆動体と摩擦接触部は最も離れた状態となる。次に振幅比R2に着目すると、突上げ振動がゼロなので振動型モータの速度は同様にゼロとなるが、被駆動体との摩擦接触部は密着した状態であり、振幅比R1の場合とは大幅に異なる。最後に振幅比Rmaxは振動型モータがピーク速度を示す(ピーク速度に到達する)条件であり、送り振動が大きく、且つ、送り振動を阻害しない程度に摩擦接触部が離れた状態の条件である。言い換えると、振幅比Rmaxは最も駆動効率が良い条件である。
従来の振動型モータの制御方法では、振幅比R1を停止状態として、R1からRmaxに向かって振幅比を上げることによりモータ速度を加速していくのが一般的である。対して本発明では、振幅比R2を停止状態として、R2からRmaxに向かって振幅比を下げることによりモータ速度を加速するのが大きな特徴である。
図4(c)は、振幅比Rの変化に基づいて振動子が発生する楕円振動の形状を模式的に示したものである。振幅比R1は縦長形状、振幅比R2は横長形状、Rmaxは真円形状である。本発明は横長形状の楕円振動で起動し、振幅比を下げることにより真円に近づけて加速するものである。
図5は、振動型モータを起動停止までの楕円振動形状の変化について、本発明と従来方法との違いを説明する模式図である。図5(a)は、従来方法で制御した場合の振動子に発生する楕円振動形状の時間的な変化を示したものである。各区間でのモータ速度は図5(c)に示すプロフィールとなる。起動後にピーク速度に向かって加速していき、ピーク速度に到達したら所定時間維持する。その後、目標位置に向かって減速していき、停止する。従来方法は、起動時は突上げ振動を主とする縦長形状であり、加速域で振幅比を上げることにより真円形状に近づけていく。すなわち、送り振動の振幅を上げていき、突上げ振動の振幅は下げていく。最高速域では真円形状を保ち、減速域で振幅比を下げていく。最終的に、停止時は縦長形状となる。対して図5(b)は、本発明の方法で制御した場合の振動子に発生する楕円振動形状の時間的な変化を示したものである。起動時は送り振動を主とする横長形状であり、加速域で振幅比を下げることにより真円形状に近づけていく。すなわち、送り振動の振幅は下げていき、突上げ振動の振幅は上げていくので、従来方法とは逆である。このように、加速域での楕円振動形状の変化の形態が本発明の特徴となる。
図6は、2相の交流信号の位相差を操作パラメータとして、本発明の振動型モータの到達速度と平均電力を測定した結果を示すものである。横軸は位相差、縦軸はモータ速度である。位相差0°〜180°の範囲において、10°間隔でオープン駆動を行い、起動してから10ms後までの平均速度と平均電力を算出した。尚、駆動周波数は93kHzに固定している。図より、位相差0°と160°でモータ速度はゼロとなり、位相差120°においてピーク速度を示す。すなわち、R1は位相差0°、R2は位相差160°、Rmaxは位相差120°となる。ここで、位相差180°の条件は僅かに逆方向に動いている事を示しており、R2の条件にオフセットが生じている。尚、平均電力は位相差160°の条件が速度ゼロにもかかわらず最も大きい。これは、送り振動の摺動損が増加する為だと考えられる。対策としては、起動時以外の停止状態では駆動電圧を下げる等の工夫で電力を低減することができる。
図7は、本発明と従来方法において、2相の交流信号の位相差を掃引(スイープ)して駆動したときの起動性を比較した結果である。横軸は時間、縦軸はモータ速度を示す。図6の結果に基づき、本発明は位相差160°を初期値として最終値120°までオープン駆動で掃引した。尚、位相差の変化量は掃引時間(位相スイープ期間)に線形で変化するように設定した。また、駆動周波数は93kHzに固定しており、50ms後も最終値120°を保持するように設定した。一方で、従来例は位相差0°を初期値として最終値120°までオープン駆動で掃引した。図より、本発明の速度プロフィールはピーク速度に到達するまでの時間が非常に早いことが分かる。つまり、本発明の楕円振動の変化は起動後の応答性に優れ、振動型モータを高速に起動することができる。
次に、実際にフィードバック制御を行う場合の位相差制御及び周波数制御の手法を詳細に説明する。
図9は、本発明の位相差−周波数判定部の出力を説明する図である。図9(a)は制御量に基づいて出力される位相差と周波数を示し、横軸は制御量(142)、縦軸は周波数と位相差である。このように、制御パラメータ生成部の位相差−周波数判定部は、制御量の絶対値が小さい領域は位相差が変化(位相差制御領域)するように位相差及び周波数を制御する。また、位相差−周波数判定部は、制御量の絶対値が大きい領域は周波数が変化(周波数制御領域)するように周波数及び位相差を制御する。つまり、位相差−周波数判定部は、制御量に応じて位相差による駆動と周波数による制御とを切り換えるよう構成されている。
具体的には、位相差制御領域では、周波数は周波数上限値に固定され、正方向は位相差+180°〜+120°、逆方向は−180°〜−120°の範囲で変化することで、速度と駆動方向とが制御される。尚、制御量ゼロは+180°と−180°の境界点であるが、実際に出力される2相のSIN駆動電圧の位相差は1周期分の差であり、同位相として連続的に変化する為問題は発生しない。また、速度ゼロとなる位相差180°、及びピーク速度を示す位相差120°は、それぞれ振動型モータの特性に応じて10〜20°程度のオフセットを持たせてもよい。
周波数制御領域では、位相差は位相差下限値又は上限値に固定され、周波数が周波数上限値から下限値(例えば93〜88kHz)で変化することで高速領域での速度が制御される。図15は、2相の交流信号の周波数と位相差に基づくモータ特性の一例を示す模式図である。横軸は駆動周波数、縦軸はモータ速度であり、位相差を変えた場合の特性変化の様子を示している。低速領域では所定の周波数(93kHz)に固定して位相差を操作(位相差制御)し、高速領域ではピーク速度が得られる位相差で周波数を操作(周波数制御)する。図15(a)は従来方法を示しており、位相差0〜120°の範囲で操作する。図15(b)は本発明の方法を示しており、位相差180〜120°の範囲で操作する。
図9(b)は制御量に基づく振動型モータの速度を示し、横軸は制御量(142)、縦軸は速度である。前述のように、−75〜+75mm/sの低速領域では位相差制御によって制御され、それ以外の高速領域では周波数制御によって制御される。位相差制御では、図のように、位相差が制御されることで、駆動部の楕円運動の楕円比が変化し、位相差の符号が反転することで楕円運動の方向が変化する。また、楕円比が最大となる横長形状において速度はゼロとなる。
一方で、周波数制御では、周波数が制御されることで、楕円運動の楕円比は一定のまま、楕円振幅が変化する。これらの制御によって、位相差−周波数制御部109において、制御量に対して速度がなるべく線形になるように位相差と周波数は各々設定される。
図8は、本発明の交流信号生成手段の構成を示す図である。図8(a)は、交流信号生成手段から出力される2相の交流パルス信号を示す。なお、以下(図面を含む)においては、パルス信号を単にパルスともいう。交流信号生成手段111は、例えば、パルス信号生成手段804(パルス信号生成部)、スイッチング回路805を有する。図8(b)は、交流信号生成手段111と、圧電素子に交流電圧信号を印加する昇圧回路112を示すものである。
具体例として、交流信号生成手段の、A相の圧電素子に印加される交流電圧を生成する部分について説明する。B相の圧電素子に印加する交流電圧を生成する部分についても、同様の構成を用いることができる。パルス信号生成手段804は、位相差−周波数判定部から出力された位相差と周波数情報に応じた、位相差及び周波数情報を各々有する、第1のA相パルス信号及び第1のA相反転パルス信号を生成する。入力パルス信号である、第1のA相パルス信号及び第1のA相反転パルス信号は、スイッチング回路805に入力される。スイッチング回路805は、電源801から供給された直流電圧を入力パルス信号のタイミングでスイッチング動作させ、矩形波の交流電圧信号を生成する。
昇圧回路112は、例えばコイル802とトランス803で構成され、矩形波の交流電圧信号が入力され、所定の駆動電圧に昇圧されたSIN波の交流電圧信号をA相の圧電素子に印加する。また、同様にして、所定の駆動電圧に昇圧されたSIN波の交流電圧信号がB相の圧電素子に印加される。
図10は、本発明の制御装置におけるステップ信号に対する制御結果を従来方法と比較したものである。微小な振幅2μmのステップ信号(指令値)に追従するように振動型モータの位置フィードバック制御を行った。横軸は時間、縦軸は位置を示す。図10(a)は従来方法の結果、図10(b)は本発明の結果を示す。尚、従来例とは、図5(a)の方法を用いた制御装置によるものである。従来例では、実位置が指令値に達するまでに約50msの時間を要している。これに対して本発明は瞬時に動き出し、5ms以下の短時間で指令値に達している。本結果より、本発明は従来と比較して、微小駆動に対する応答時間が大幅に改善されることがわかる。
なお、振動型モータの制御装置において、振幅比をR2からRmaxへ向けて下げることにより、速度を加速する第1のモードと、振幅比をR1からRmaxへ向けて上げることにより、速度を加速する第2のモードと、を変更可能に構成しても良い。
(第2の実施の形態)
次に、図2に示した振動型モータの圧電素子の分極領域の別の一例を用いた場合の他の実施の形態について説明する。
図14(a)は、図2の振動型モータにおける圧電素子の分極領域の別の一例を示す模式図である。本例の圧電素子5は、分極処理されて電極A1、A2を備え、さらに電極A1は、「+(プラス)」に分極処理された圧電領域と、「−(マイナス)」に分極処理された圧電領域を備えている。圧電領域に配置された電極A2に交流電圧V2を印加すると、1次の屈曲振動を励振する。これが図2(c)に示す第1の振動モード(突上げ振動)となる。また、圧電領域に配置された電極A1に交流電圧V1を印加すると、2次の屈曲振動を励振する。これが図2(b)に示す第2の振動モード(送り振動)となる。
ここで、交流電圧V1とV2を位相の90度ずれた同一周波数とすることにより、突起部に楕円運動が発生する。よって、突起部に被駆動部材を加圧接触させることにより、被駆動部材を直線的に駆動することができるようになっている。
そして、電極A2に印加する交流電圧V2の電圧振幅を調整することにより、図2(c)に示すZ軸振幅の大小を調整することができ、電極A1に印加する交流電圧V1の振幅を調整することにより、図2(d)に示すX軸振幅の大小を調整することができる。尚、デジタル回路またはロジック回路を用いて、電極A1、A2に印加する交流電圧V1とV2のパルス幅を調整することにより、X軸振幅、Z軸振幅の大小を調整することも可能である。従って、電圧V1とV2の電圧比を可変にすることにより、第1の振動モード(突上げ振動)と第2の振動モード(送り振動)の振幅比を変えることができ、速度制御を行うことができる。
図14(b)は、圧電素子に印加する交流電圧V1、V2の波形図である。電極A1にパルス幅を可変とする交流電圧V1、電極A2にパルス幅を可変とする交流電圧V2を入力することにより、2つの振動の振幅比を調整することができる。例えば、電圧V1及びV2のパルス幅を各々0〜50%の範囲で可変とすることで、V1とV2の電圧比を変えながら速度制御を行う。V1がゼロの場合に送り振動が最も小さくなり、V2がゼロの場合に突上げ振動が最も小さくなるので、その2つの条件で振動型モータの相対速度は最小となる(停止状態)。そして、V1とV2の電圧比が中間の領域に、相対速度が最大となる条件が存在する。本実施形態では、突上げ振動が最も小さくなる電圧比の条件から起動して、送り振動の突上げ振動に対する振幅比が小さく変化するように電圧比を変えて加速する。尚、駆動方向決定値は+90度、又は−90度に設定され、駆動方向を変えることができる。
このように、本例のように分極処理された圧電素子を備えた振動型モータは、圧電素子に印加する2つの交流電圧V1、V2の電圧比を変化させることによって速度制御を行うことが可能である。
本実施の形態の振動型モータにおいても、本発明の制御方法を適用すれば微小駆動に対する応答時間を大幅に改善できる。すなわち、送り振動の突上げ振動に対する振幅比が最大となる状態から起動して、振幅比を下げることにより加速するものである。本実施形態の制御装置は、送り振動の突上げ振動に対する振幅比は電圧比を操作パラメータとして変更する。
(第3の実施の形態)
第1の実施の形態では、振動型モータの制御装置は、撮像装置のオートフォーカス用のレンズ駆動に用いる例を説明したが、本発明の適用例はこれに限定されない。例えば、図12に示すように、手ぶれ補正時のレンズや撮像素子の駆動に用いることもできる。図12(a)は、撮像装置60の外観を示す平面図(上面図)である。また、図12(b)は、撮像装置60の内部構造の概略図である。
撮像装置60は、大略的に、本体61と、本体61に対して着脱自在なレンズ鏡筒62とで構成されている。本体61は、レンズ鏡筒62を通過した光が結像した光学像を画像信号に変換するCCDセンサやCMOSセンサ等の撮像素子63と、撮像装置60の全体的な動作を制御するカメラ制御マイコン64を備える。レンズ鏡筒62には、フォーカスレンズやズームレンズ等の複数のレンズLが所定位置に配置されている。また、レンズ鏡筒62には、像ぶれ補正装置50が内蔵されており、像ぶれ補正装置50は、円板部材56、円板部材56に設けられた振動子131を有し、円板部材56の中央に形成されている穴部に、像ぶれ補正レンズ65が配置されている。像ぶれ補正装置50は、レンズ鏡筒62の光軸と直交する面内で像ぶれ補正レンズ65を移動させることができるように配置される。この場合、本発明の制御装置12を用いて振動子131を駆動することで、鏡筒に固定されている被駆動部材132に対し、振動子131や円板部材56が相対移動し、補正レンズが駆動される。
また、本願発明の制御装置は、ズーム用レンズの移動のためのレンズホルダの駆動に用いることもできる。したがって、本願発明の制御装置は、レンズ駆動用に、撮像装置に加えて、交換用レンズにも搭載することができる。
また、第1の実施の形態に示した、振動型モータの制御装置は、自動ステージの駆動にも用いることができる。例えば、図13に示すように、顕微鏡の自動ステージの駆動に用いることができる。
図13の顕微鏡は、撮像素子と光学系を内蔵する撮像部70と、基台上に設けられ、振動型モータにより移動されるステージ72を有する自動ステージ71と、を有する。被観察物をステージ72上に置いて、拡大画像を撮像部70で撮影する。観察範囲が広範囲に有る場合には、第1または第2の実施の形態の制御装置12を用いて振動型駆モータを駆動することで、ステージ72を移動させる。これによって、被観察物を図中のX方向やY方向に移動させて、多数の撮影画像を取得する。不図示のコンピュータにて、撮影画像を結合し、観察範囲が広範囲で、かつ、高精細な1枚の画像を取得できる。
(第4の実施の形態)
本発明は、第1の実施の形態とは異なる振動モードを利用した振動型モータにも適用できる。例えば、図16に示すように、縦振動と屈曲振動に位相差を持たせて振動子を励振し、楕円振動を形成する振動型モータの駆動に用いることもできる。
図16は、縦振動と屈曲振動を利用して駆動する振動型モータの構成例を示す図である。
振動型モータ81は、振動子82と被駆動体83とを有する。振動子82は、圧電積層体84と、被駆動体83に対向する面に設けられた2個の摩擦接触子85と、外部から駆動信号を印加する外部電極86とを備えている。圧電積層体84は、不図示の矩形板状の圧電セラミックスシートの片側面にシート状の内部電極を設けたものを複数枚積層してなる直方体状の圧電積層体である。各外部電極86には、同種の圧電セラミックスシートの同一位置に配される全ての内部電極(不図示)が接続されている。これにより、同種の圧電セラミックスシートの同一位置に配される内部電極(不図示)は、同一の電位とされるようになっている。
次に、圧電積層体84の動作について説明する。まず、圧電積層体84の長手方向における一端面に形成された外部電極86は、駆動用のA相であるA+,A−に対応する内部電極(不図示)に接続された電極である。また、他端面に形成された外部電極86は、駆動用のB相であるB−,B+に対応する内部電極(不図示)に接続された電極である。
ここで、A相及びB相に同位相で共振周波数又はその近傍の周波数に対応する周波数の交流信号を加えると、図16(b)に示すような1次の縦振動が励起される。また、A相とB相とに逆位相で共振周波数に対応する交流信号を加えると、図16(c)に示されるような2次の屈曲振動が励起される。ここで、圧電積層体84に1次の縦振動が発生したときには、摩擦接触子85が圧電積層体84の長さ方向(図16(b)に示されるX方向)に変位させられる。圧電積層体84に2次の屈曲振動が生じたときには、摩擦接触子85が、圧電積層体84の幅方向(図16(c)に示されるZ方向)に変位させられる。
従って、A相とB相に対応する外部電極86に、互いに位相が90°ずれた共振周波数又はその近傍の周波数に対応する周波数の交流信号を印加する。これによって圧電積層体84には1次の縦振動と2次の屈曲振動とが同時に発生して、摩擦接触子85の位置で時計回りまたは反時計回りの楕円振動が生じる。
このようにして被駆動体を相対的に移動することができ、2相の交流信号の位相差をパラメータとして振動型モータの速度を制御することができる。
本実施の形態の振動型モータにおいても、本発明の制御方法を適用すれば微小駆動に対する応答時間を大幅に改善できる。すなわち、縦振動は摩擦面水平方向に寄与する振動で、屈曲振動は摩擦面垂直方向に寄与する振動なので、縦振動の屈曲振動に対する振幅比が最大となる状態から起動して、振幅比を下げることにより加速すれば良い。その結果、本発明の形態である横長楕円形状から起動することができる。尚、本実施形態の制御装置において、縦振動の屈曲振動に対する振幅比は交流信号の位相差を操作パラメータとして変更する。
(その他の実施の形態)
以上、本発明をその好適な実施の形態に基づいて詳述してきたが、本発明はこれら特定
の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の様々な形態も
本発明に含まれる。さらに、上述した各実施の形態は本発明の一実施の形態を示すものに
すぎず、各実施の形態を適宜組み合わせることも可能である。
10 制御部
12 (振動型モータの)制御装置
13 振動型モータ
15 駆動装置
131 振動子
132 被駆動部材(接触体)

Claims (15)

  1. 振動子と接触体が加圧接触する加圧方向への突上げ振動と、前記加圧方向に垂直な方向への送り振動と、を含む振動により、前記振動子と加圧接触する接触体とを相対的に移動させる振動型モータの制御装置であって、
    前記送り振動の前記突上げ振動に対する振幅比を制御することにより、前記振動子と前記接触体との相対的な速度を制御する制御部を有し、
    前記制御部は、前記振幅比を下げることにより、前記速度を加速する振動型モータの制御装置。
  2. 前記制御部は、フィードバック制御により前記速度を制御し、
    前記速度が最大となるときの前記振幅比をRmax、前記Rmaxよりも低速となるときの前記振幅比であって、前記Rmaxよりも大きい振幅比をR2とした場合に、
    前記制御部は、前記振幅比を前記R2から前記Rmaxへ向けて下げることにより、前記速度を加速する請求項1に記載の振動型モータの制御装置。
  3. 前記制御部は、フィードバック制御により前記速度を制御し、
    前記速度が最大となるときの前記振幅比をRmax、前記Rmaxよりも低速となるときの前記振幅比であって、前記Rmaxよりも小さい振幅比をR1、前記Rmaxよりも低速となるときの前記振幅比であって、前記Rmaxよりも大きい振幅比をR2とした場合に、
    前記制御部は、
    前記振幅比を前記R2から前記Rmaxへ向けて下げることにより、前記速度を加速する第1のモードと、
    前記振幅比を前記R1から前記Rmaxへ向けて上げることにより、前記速度を加速する第2のモードと、を変更可能である請求項1又は2に記載の振動型モータの制御装置。
  4. 前記振幅比を連続的に変える請求項1乃至3のいずれか1項に記載の振動型モータの制御装置。
  5. 前記加速は、停止状態からの加速である請求項1乃至4のいずれか1項に記載の振動型モータの制御装置及び制御方法。
  6. 前記振動子は、前記電気−機械エネルギー変換素子と接合される第1の電極及び第2の電極を備え、
    前記第1の電極に印加される第1の交流信号と前記第2の電極に印加される第2の交流信号とが同位相の場合には、突上げ振動が発生し、
    前記第1の交流信号と前記第2の交流信号とが逆位相の場合には、送り振動が発生し、
    前記制御部は、前記第1の交流信号と前記第2の交流信号の位相差を変えることにより、前記振幅比を制御する請求項1乃至5のいずれか1項に記載の振動型モータの制御装置。
  7. 前記振動子は、前記電気−機械エネルギー変換素子と接合される第1の電極及び第2の電極を備え、
    前記第1の電極に印加される第1の交流信号により送り振動が発生し、
    前記第2の電極に印加される第2の交流信号により突上げ振動が発生し、
    前記制御部は、前記第1の交流信号の電圧と前記第2の交流信号の電圧を変えることにより、前記振幅比を制御する請求項1乃至5のいずれか1項に記載の振動型モータの制御装置。
  8. 前記振動子は、前記電気−機械エネルギー変換素子と接合される第1の電極及び第2の電極を備え、
    前記第1の電極に印加される第1の交流信号と第2の電極に印加される第2の交流信号とが同位相の場合には、縦振動を発生し、
    前記第1の交流信号と前記第2の交流信号とが逆位相の場合には、屈曲振動を発生し、
    前記制御部は、前記第1の交流信号の位相差と前記第2の交流信号の位相差を変えることにより、前記振幅比を制御する請求項1乃至5のいずれか1項に記載の振動型モータの制御装置。
  9. 前記振動子と前記接触体との相対的な位置を検出する位置検出手段を有する請求項1乃至8のいずれか1項に記載の振動型モータの制御装置。
  10. 電気−機械エネルギー変換素子と弾性体とが接合されてなる振動子と、
    前記弾性体と加圧接触する接触体と、
    前記振動子と前記接触体との相対的な移動により駆動されるレンズと、
    前記振動子と前記接触体とを相対的に移動させる請求項1乃至9のいずれか1項に記載の振動型モータの制御装置と、を備えた交換用レンズ。
  11. 電気−機械エネルギー変換素子と弾性体とが接合されてなる振動子と、
    前記弾性体と加圧接触する接触体と、
    前記振動子と前記接触体とを相対的に移動させることにより駆動されるレンズと、
    前記振動子と前記接触体とを相対的に移動させる請求項1乃至9のいずれか1項に記載の振動型モータの制御装置と、を備えた撮像装置。
  12. 電気−機械エネルギー変換素子と弾性体とが接合されてなる振動子と、
    前記弾性体と加圧接触する接触体と、
    前記振動子と前記接触体とを相対的に移動させることにより駆動される撮像素子と、
    前記振動子と前記接触体とを相対的に移動させる請求項1乃至9のいずれか1項に記載の振動型モータの制御装置と、を備えた撮像装置。
  13. 電気−機械エネルギー変換素子と弾性体とが接合されてなる振動子と、
    前記弾性体と加圧接触する接触体と、
    前記振動子と前記接触体とを相対的に移動させることにより駆動されるステージと、
    前記振動子と前記接触体とを相対的に移動させる請求項1乃至9のいずれか1項に記載の振動型モータの制御装置と、を備えた自動ステージ。
  14. 振動子と接触体が加圧接触する加圧方向への突上げ振動と、前記加圧方向に垂直な方向への送り振動と、を含む振動により、前記振動子と加圧接触する接触体とを相対的に移動させる振動型モータの制御方法であって、
    前記送り振動の前記突上げ振動に対する振幅比を制御することにより、前記振動子と前記接触体との相対的な速度を制御する制御ステップを有し、
    前記制御ステップは、前記振幅比を下げることにより、前記速度を加速する振動型モータの制御方法。
  15. 電気−機械エネルギー変換素子と弾性体とが接合されてなる振動子と、
    前記振動子と加圧接触する接触体と、を有し、
    前記振動子と前記接触体が加圧接触する加圧方向への突上げ振動と、前記加圧方向に垂直な方向への送り振動と、を含む振動により、前記振動子と加圧接触する接触体とを相対的に移動させる振動型モータであって、
    前記送り振動の前記突上げ振動に対する振幅比を制御することにより、前記振動子と前記接触体との相対的な速度を制御する制御部を有し、
    前記制御部は、前記振幅比を下げることにより、前記速度を加速する駆動装置。
JP2019141636A 2019-07-31 2019-07-31 振動型モータの制御装置及びそれを用いた撮像装置 Pending JP2021027621A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019141636A JP2021027621A (ja) 2019-07-31 2019-07-31 振動型モータの制御装置及びそれを用いた撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019141636A JP2021027621A (ja) 2019-07-31 2019-07-31 振動型モータの制御装置及びそれを用いた撮像装置

Publications (1)

Publication Number Publication Date
JP2021027621A true JP2021027621A (ja) 2021-02-22

Family

ID=74663273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019141636A Pending JP2021027621A (ja) 2019-07-31 2019-07-31 振動型モータの制御装置及びそれを用いた撮像装置

Country Status (1)

Country Link
JP (1) JP2021027621A (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166736A (ja) * 2009-01-16 2010-07-29 Olympus Corp 超音波モータ
JP2016144262A (ja) * 2015-01-30 2016-08-08 キヤノン株式会社 振動体の駆動制御回路、振動体の駆動方法、振動型駆動装置及び撮像装置
JP2017070098A (ja) * 2015-09-30 2017-04-06 キヤノン株式会社 振動型アクチュエータの制御装置と制御方法、駆動装置、撮像装置及び自動ステージ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166736A (ja) * 2009-01-16 2010-07-29 Olympus Corp 超音波モータ
JP2016144262A (ja) * 2015-01-30 2016-08-08 キヤノン株式会社 振動体の駆動制御回路、振動体の駆動方法、振動型駆動装置及び撮像装置
JP2017070098A (ja) * 2015-09-30 2017-04-06 キヤノン株式会社 振動型アクチュエータの制御装置と制御方法、駆動装置、撮像装置及び自動ステージ

Similar Documents

Publication Publication Date Title
JP6667220B2 (ja) 振動型アクチュエータの制御装置とその制御方法、駆動装置、撮像装置、及び自動ステージ
EP3118985B1 (en) Control apparatus of vibration actuator, method for controlling vibration actuator, driving apparatus, and imaging apparatus
US11336209B2 (en) Control apparatus, control method, and driving apparatus for vibration-type actuator, and electronic apparatus equipped with vibration-type actuator
JP6579778B2 (ja) 振動型駆動装置、振動型駆動装置を備える交換用レンズ、撮像装置、及び振動型駆動装置の製造方法
JP6632235B2 (ja) 振動体の駆動装置、およびそれを用いた振動型アクチュエータ、撮像装置
JP4261964B2 (ja) 振動型駆動装置および制御システム
JP6961663B2 (ja) 振動型アクチュエータの駆動装置、フォーカスレンズ駆動装置、及び撮像装置
JP2004056878A (ja) 駆動装置、位置制御装置およびカメラ
JP2017022941A5 (ja)
CN103840702B (zh) 振动型致动器的驱动装置、振动型致动器的驱动控制方法和图像拾取装置
JP2017143602A (ja) 振動型アクチュエータの制御方法、振動型駆動装置及び電子機器
JP5645489B2 (ja) 複数の振動子を用いた振動型アクチュエータの制御装置並びに調整方法、振動型アクチュエータ、及びそれを用いたレンズユニット並びに光学機器
JP2015136282A (ja) 振動子の駆動装置とその駆動方法、レンズ駆動装置、振動装置、及び撮像装置
JP6671883B2 (ja) 振動型アクチュエータの制御装置とその制御方法、振動装置、交換用レンズ、撮像装置、及び自動ステージ
JP2018189930A (ja) 振動型アクチュエータの制御装置、駆動装置、撮像装置及び振動型アクチュエータの制御方法
JP2021027621A (ja) 振動型モータの制御装置及びそれを用いた撮像装置
US11967914B2 (en) Vibration actuator control apparatus
JP7016906B2 (ja) 振動型アクチュエータの制御装置、駆動装置、交換用レンズ、撮像装置、自動ステージ、および振動型アクチュエータの制御方法
US11611294B2 (en) Vibration driving device, apparatus equipped with vibration driving device, control device and control method for vibration actuator
JP2010226895A (ja) アクチュエータ、駆動装置、レンズユニット及び撮像装置
JP2013247800A (ja) 振動波モータの駆動装置、レンズ鏡筒及びカメラ
JP2018141871A (ja) 駆動装置、これを用いる撮像装置及び駆動方法
WO2010109834A1 (ja) アクチュエータ、駆動装置、レンズユニット、撮像装置、及びアクチュエータの動作方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230919