JP2021027180A - Supporting device - Google Patents

Supporting device Download PDF

Info

Publication number
JP2021027180A
JP2021027180A JP2019144135A JP2019144135A JP2021027180A JP 2021027180 A JP2021027180 A JP 2021027180A JP 2019144135 A JP2019144135 A JP 2019144135A JP 2019144135 A JP2019144135 A JP 2019144135A JP 2021027180 A JP2021027180 A JP 2021027180A
Authority
JP
Japan
Prior art keywords
electrode
side end
terminal member
end surface
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019144135A
Other languages
Japanese (ja)
Inventor
若園 誠
Makoto Wakazono
誠 若園
晃弘 山口
Akihiro Yamaguchi
晃弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2019144135A priority Critical patent/JP2021027180A/en
Publication of JP2021027180A publication Critical patent/JP2021027180A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To inhibit a crack from occurring at a first brazed portion joining a terminal member to a buffer member disposed between an electrode and the terminal member.SOLUTION: A supporting device comprises a supporter having a first surface and a second surface, an electrode, and a terminal member, and supports an object on the first surface of the supporter. The electrode is disposed so that at least part of the electrode is exposed on the second surface of the supporter. The supporting device further comprises a buffer member disposed between the electrode and the terminal member, a first brazed portion joining the terminal member to the buffer member, and a second brazed portion joining the electrode to the buffer member. A thermal expansion coefficient of the buffer member is smaller than a thermal expansion coefficient of the terminal member. In at least one specific cross section approximately perpendicular to the first surface and in a second direction, a terminal member side end face of the buffer member is positioned within a range of an electrode side end face of the buffer member and the terminal member side end face of the buffer member is positioned inside a range of a buffer member side end face of the terminal member.SELECTED DRAWING: Figure 3

Description

本明細書に開示される技術は、対象物を保持する保持装置に関する。 The techniques disclosed herein relate to holding devices that hold objects.

対象物(例えば、半導体ウェハ)を保持しつつ所定の温度(例えば、400〜800℃程度)に加熱する加熱装置(「サセプタ」とも呼ばれる)が知られている。加熱装置は、例えば、成膜装置(CVD成膜装置やスパッタリング成膜装置等)やエッチング装置(プラズマエッチング装置等)といった半導体製造装置の一部として使用される。
一般に、加熱装置は、所定の方向に略直交する表面(以下、「保持面」という。)と、保持面とは反対側の表面(以下、「裏面」という。)とを有する保持体を備える。保持体の内部には、ヒータ電極が配置されている。ヒータ電極には、ビア導体等を介して電極(「電極パッド」とも呼ばれる。)が電気的に接続されている。電極は、少なくとも一部が保持体の裏面に露出するように配置されている。電極には、例えばロウ付け(以下、「ロウ付け部」ともいう)により端子部材が接合されている。端子部材および電極を介してヒータ電極に電圧が印加されると、ヒータ電極が発熱し、保持体の保持面上に保持された対象物が加熱される。
A heating device (also referred to as a "susceptor") that heats an object (for example, a semiconductor wafer) to a predetermined temperature (for example, about 400 to 800 ° C.) while holding it is known. The heating device is used as a part of a semiconductor manufacturing device such as a film forming apparatus (CVD film forming apparatus, sputtering film forming apparatus, etc.) or an etching apparatus (plasma etching apparatus, etc.).
In general, a heating device includes a holding body having a surface substantially orthogonal to a predetermined direction (hereinafter referred to as "holding surface") and a surface opposite to the holding surface (hereinafter referred to as "back surface"). .. A heater electrode is arranged inside the holding body. An electrode (also referred to as an “electrode pad”) is electrically connected to the heater electrode via a via conductor or the like. The electrodes are arranged so that at least a part of them is exposed on the back surface of the holder. A terminal member is joined to the electrode by, for example, brazing (hereinafter, also referred to as “brazing portion”). When a voltage is applied to the heater electrode via the terminal member and the electrode, the heater electrode generates heat and the object held on the holding surface of the holding body is heated.

電極と端子部材との形成材料が互いに異なると、両者の熱膨張差に起因して生ずる応力により、両者の接合部付近において保持体にクラックが発生するおそれがある。従来、このようなクラックの発生を抑制するために、電極と端子部材との間に、緩衝部材を配置する技術が知られている(例えば、特許文献1参照)。緩衝部材を、電極の形成材料の熱膨張係数と端子部材の形成材料の熱膨張係数との間の熱膨張係数を有する材料または電極の形成材料の熱膨張係数と同じ熱膨張係数を有する材料により形成することにより、緩衝部材に、電極と端子部材との間の熱膨張差を緩和する機能を担わせることができる。 If the forming materials of the electrode and the terminal member are different from each other, a crack may occur in the holding body in the vicinity of the joint portion between the two due to the stress generated due to the difference in thermal expansion between the two. Conventionally, in order to suppress the occurrence of such cracks, a technique of arranging a cushioning member between an electrode and a terminal member has been known (see, for example, Patent Document 1). The buffer member is made of a material having a coefficient of thermal expansion between the coefficient of thermal expansion of the material for forming the electrode and the coefficient of thermal expansion of the material for forming the terminal member, or a material having the same coefficient of thermal expansion as the coefficient of thermal expansion of the material for forming the electrode. By forming the buffer member, it is possible to have a function of reducing the difference in thermal expansion between the electrode and the terminal member.

ここで、ロウ付けの一般的な工程は、次の通りである。まず、端子部材と緩衝部材との間にロウ材を配置し、その後、ロウ材を加熱する。加熱することにより溶融したロウ材を端子部材の緩衝部材に対向する表面と、緩衝部材の端子部材に対向する表面とに浸透させ、その後、例えば室温に戻すことによって、ロウ材を凝固させる。これにより、端子部材と緩衝部材とをロウ付け部によりロウ付け接合することができる。 Here, the general process of brazing is as follows. First, the brazing material is placed between the terminal member and the cushioning member, and then the brazing material is heated. The brazing material melted by heating is permeated into the surface of the terminal member facing the buffer member and the surface of the cushioning member facing the terminal member, and then the brazing material is solidified by returning to room temperature, for example. As a result, the terminal member and the cushioning member can be brazed and joined by the brazing portion.

特開2007−123601号公報JP-A-2007-123601

上記従来の技術のように、単に緩衝部材を配置するだけでは、緩衝部材と端子部材との間の熱膨張差に起因する応力によって、緩衝部材と端子部材とを接合するロウ付け部にクラックが発生するおそれがある。 If the cushioning member is simply arranged as in the above-mentioned conventional technique, a crack is generated in the brazed portion that joins the cushioning member and the terminal member due to the stress caused by the difference in thermal expansion between the cushioning member and the terminal member. It may occur.

なお、このような課題は、上記加熱装置に限らず、保持体と、保持体の裏面に少なくとも一部が露出するように配置された電極(例えば、ヒータ電極、RF電極、RF電極に電気的に接続された電極(電極パッド))と、端子部材と、電極と端子部材との間に配置された緩衝部材と、電極と緩衝部材との間および緩衝部材と端子部材との間を接合するロウ付け部とを備え、保持体の表面上に対象物を保持する保持装置一般に共通の課題である。 It should be noted that such a problem is not limited to the above heating device, but is electrically applied to the holding body and electrodes (for example, a heater electrode, an RF electrode, and an RF electrode) arranged so that at least a part is exposed on the back surface of the holding body. The electrode (electrode pad) connected to the electrode, the terminal member, the cushioning member arranged between the electrode and the terminal member, and the space between the electrode and the cushioning member and between the cushioning member and the terminal member. This is a common problem for holding devices that have a brazed portion and hold an object on the surface of the holding body.

本明細書では、上述した課題を解決することが可能な技術を開示する。 This specification discloses a technique capable of solving the above-mentioned problems.

本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。 The technique disclosed in the present specification can be realized, for example, in the following forms.

(1)本明細書に開示される保持装置は、第1の方向に略直交する第1の表面と、前記第1の表面とは反対側の第2の表面と、を有する保持体と、前記保持体の前記第2の表面に少なくとも一部が露出するように配置された電極と、端子部材と、前記第1の方向において前記電極と前記端子部材との間に配置された緩衝部材と、前記緩衝部材と前記端子部材とを接合する第1のロウ付け部と、前記電極と前記緩衝部材とを接合する第2のロウ付け部と、を備え、前記保持体の前記第1の表面上に対象物を保持する保持装置において、前記緩衝部材の熱膨張係数は、前記端子部材の熱膨張係数より小さく、前記第1の表面に略直交する少なくとも1つの特定断面において、前記第1の方向に略直交する第2の方向において、前記緩衝部材の前記第1の方向における端面のうち、前記端子部材に対向する端子部材側端面は、前記緩衝部材における前記電極に対向する電極側端面の範囲以内に位置しており、前記第2の方向において、前記緩衝部材の前記端子部材側端面は、前記端子部材の前記第1の方向における端面のうち、前記端子部材側端面に対向する緩衝部材側端面の範囲より内側に位置している。 (1) The holding device disclosed in the present specification includes a holding body having a first surface substantially orthogonal to the first direction and a second surface opposite to the first surface. An electrode arranged so that at least a part is exposed on the second surface of the holding body, a terminal member, and a cushioning member arranged between the electrode and the terminal member in the first direction. A first brazing portion for joining the cushioning member and the terminal member, and a second brazing portion for joining the electrode and the cushioning member are provided, and the first surface of the holding body is provided. In a holding device that holds an object on top, the coefficient of thermal expansion of the cushioning member is smaller than the coefficient of thermal expansion of the terminal member, and in at least one specific cross section substantially orthogonal to the first surface, the first In the second direction substantially orthogonal to the direction, among the end faces of the cushioning member in the first direction, the terminal member-side end face facing the terminal member is the electrode-side end face of the cushioning member facing the electrode. It is located within the range, and in the second direction, the terminal member side end face of the shock absorber is a cushioning member facing the terminal member side end face of the terminal face of the terminal member in the first direction. It is located inside the range of the side end faces.

本保持装置では、上記特定断面における第2の方向において、緩衝部材の端子部材側端面は、端子部材の緩衝部材側端面の範囲より内側に位置している。このため、ロウ付け接合の際に、第1のロウ付け部を形成するロウ材は、端子部材の外周面よりも、緩衝部材の外周面に這い上がりやすい。換言すれば、第1のロウ付け部は端子部材の外周面に配置されにくい。 In the present holding device, in the second direction in the specific cross section, the terminal member side end surface of the cushioning member is located inside the range of the cushioning member side end surface of the terminal member. Therefore, at the time of brazing joining, the brazing material forming the first brazing portion tends to crawl up to the outer peripheral surface of the cushioning member rather than the outer peripheral surface of the terminal member. In other words, the first brazed portion is difficult to be arranged on the outer peripheral surface of the terminal member.

ここで、緩衝部材の端子部材側端面が、端子部材の緩衝部材側端面の範囲より外側に位置している場合、ロウ付け接合の際に、第1のロウ付け部を形成するロウ材は、端子部材の外周面に這い上がりやすい。ロウ付け部を形成するロウ材が、端子部材の外周面に配置される構成では、端子部材の熱膨張係数が緩衝部材の熱膨張係数より大きいことに起因して、上記ロウ付け接合におけるロウ材の凝固の際に、端子部材の収縮によりロウ材に引張応力がかかる傾向がある。これにより、ロウ付け部の表面にクラックが発生する傾向がある。一方、本保持装置のように、上記特定断面における第2の方向において、緩衝部材の端子部材側端面が、端子部材の緩衝部材側端面の範囲より内側に位置している構成では、第1のロウ付け部は、端子部材の外周面よりも、端子部材の緩衝部材側端面に配置されやすい。このため、上記ロウ材の凝固の際に、端子部材の収縮によるロウ材への引張応力の発生が抑制される。 Here, when the terminal member side end surface of the cushioning member is located outside the range of the cushioning member side end surface of the terminal member, the brazing material forming the first brazed portion at the time of brazing joining is It easily crawls up on the outer peripheral surface of the terminal member. In the configuration in which the brazing material forming the brazed portion is arranged on the outer peripheral surface of the terminal member, the brazing material in the brazing joint is due to the fact that the coefficient of thermal expansion of the terminal member is larger than the coefficient of thermal expansion of the buffer member. At the time of solidification, the brazing material tends to be subjected to tensile stress due to the shrinkage of the terminal member. As a result, cracks tend to occur on the surface of the brazed portion. On the other hand, in the configuration in which the terminal member side end surface of the cushioning member is located inside the range of the cushioning member side end surface of the terminal member in the second direction in the specific cross section as in the present holding device, the first The brazed portion is more likely to be arranged on the cushioning member side end surface of the terminal member than on the outer peripheral surface of the terminal member. Therefore, when the brazing material is solidified, the generation of tensile stress on the brazing material due to the shrinkage of the terminal member is suppressed.

また、本保持装置では、上記ロウ付け接合におけるロウ材の凝固の際に引張応力の発生が抑制されるため、ひいては、当該第1のロウ付け部に残留する引張残留応力の発生を抑制することができる。このため、上記ロウ付け接合後の熱サイクル時においても、引張残留応力に起因する第1のロウ付け部へのクラックの発生や、当該クラックの伸展を抑制することができる。 Further, in this holding device, since the generation of tensile stress is suppressed at the time of solidification of the brazing material in the brazing joint, the generation of the tensile residual stress remaining in the first brazing portion is suppressed. Can be done. Therefore, even during the thermal cycle after the brazing joint, it is possible to suppress the generation of cracks in the first brazed portion due to the tensile residual stress and the extension of the cracks.

従って、本保持装置によれば、緩衝部材と端子部材とを接合する第1のロウ付け部に引張応力がかかることを抑制することができ、ひいては、第1のロウ付け部にクラックが発生することを抑制することができる。 Therefore, according to this holding device, it is possible to suppress the application of tensile stress to the first brazed portion that joins the cushioning member and the terminal member, and eventually cracks occur in the first brazed portion. Can be suppressed.

(2)上記保持装置において、前記特定断面における前記第2の方向において、前記緩衝部材の前記端子部材側端面は、前記緩衝部材の前記電極側端面の範囲より内側に位置しており、前記特定断面において、前記緩衝部材は、前記端子部材側端面を一辺とする略矩形状の端子部材側部分と、前記電極側端面を一辺とする略矩形状の電極側部分と、から構成されている構成としてもよい。換言すれば、本保持装置では、上記特定断面において、緩衝部材における電極側端面は、端子部材側端面より大きい構成としてもよい。当該構成を採用すれば、緩衝部材の電極側端面が端子部材側端面と同等の面積である構成と比較して、緩衝部材と電極との接合強度を向上させ、ひいては、第2のロウ付け部における引張強度を向上させることができる。従って、本保持装置によれば、電極からの緩衝部材ひいては端子部材の脱離を抑制することができる。 (2) In the holding device, in the second direction in the specific cross section, the terminal member side end surface of the cushioning member is located inside the range of the electrode side end surface of the cushioning member, and the specific In the cross section, the cushioning member is composed of a substantially rectangular terminal member side portion having the terminal member side end surface as one side and a substantially rectangular electrode side portion having the electrode side end surface as one side. May be. In other words, in the present holding device, the electrode side end face of the cushioning member may be larger than the terminal member side end face in the specific cross section. If this configuration is adopted, the joint strength between the cushioning member and the electrode is improved as compared with the configuration in which the electrode side end face of the cushioning member has the same area as the terminal member side end face, and by extension, the second brazed portion. The tensile strength in the above can be improved. Therefore, according to this holding device, it is possible to suppress the detachment of the cushioning member and thus the terminal member from the electrode.

(3)上記保持装置において、前記特定断面における前記第2の方向において、前記電極の前記第2の表面に露出している露出面は、前記緩衝部材の前記電極側端面の範囲より内側に位置している構成としてもよい。換言すれば、上記特定断面において、上記露出面の全面が上記電極側端面で覆われている構成としてもよい。上記露出面において、第2のロウ付け部で覆われない部分が生じると、当該部分、ひいては、電極自体が、大気雰囲気下において、酸化され、または、劣化するおそれがある。当該構成を採用すれば、電極の上記露出面が、緩衝部材の電極側端面の範囲より外側に位置している構成と比較して、上記特定断面における第2の方向において、上記露出面の全面がロウ材(第2のロウ付け部)によって、覆われやすくなる。従って、本保持装置によれば、大気雰囲気下における電極の酸化および劣化を抑制することができ、ひいては、電極からの緩衝部材ひいては端子部材の脱離を抑制することができる。 (3) In the holding device, the exposed surface exposed on the second surface of the electrode is located inside the range of the electrode side end surface of the cushioning member in the second direction in the specific cross section. It may be configured as such. In other words, in the specific cross section, the entire surface of the exposed surface may be covered with the electrode side end surface. If a portion of the exposed surface that is not covered by the second brazed portion is formed, the portion, and thus the electrode itself, may be oxidized or deteriorated in the air atmosphere. If this configuration is adopted, the entire surface of the exposed surface in the second direction in the specific cross section is compared with the configuration in which the exposed surface of the electrode is located outside the range of the electrode side end surface of the cushioning member. Is easily covered by the brazing material (second brazed portion). Therefore, according to this holding device, oxidation and deterioration of the electrode in the atmospheric atmosphere can be suppressed, and by extension, detachment of the cushioning member and thus the terminal member from the electrode can be suppressed.

(4)上記保持装置において、前記第1の方向視において、前記端子部材の前記緩衝部材側端面の外縁は、前記緩衝部材の前記端子部材側端面の外縁を取り囲んでいる構成としてもよい。当該構成を採用すれば、いずれの上記特定断面においても、上記ロウ付け接合の際におけるロウ材への引張応力の発生を抑制し、かつ、第1のロウ付け部における上記引張残留応力の発生を抑制することができる。従って、本保持装置によれば、緩衝部材と端子部材とを接合する第1のロウ付け部に引張応力がかかることをより効果的に抑制することができ、ひいては、第1のロウ付け部にクラックが発生することをより効果的に抑制することができる。 (4) In the holding device, in the first directional view, the outer edge of the end face on the side of the shock absorber of the terminal member may surround the outer edge of the end face on the side of the terminal member of the shock absorber. If this configuration is adopted, the generation of tensile stress on the brazed material at the time of the brazing joint can be suppressed and the generation of the tensile residual stress at the first brazing portion can be suppressed in any of the specific cross sections. It can be suppressed. Therefore, according to this holding device, it is possible to more effectively suppress the application of tensile stress to the first brazed portion that joins the cushioning member and the terminal member, and by extension, the first brazed portion. It is possible to more effectively suppress the occurrence of cracks.

なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、加熱装置、静電チャック、保持装置、それらの製造方法等の形態で実現することが可能である。 The technique disclosed in the present specification can be realized in various forms, for example, a heating device, an electrostatic chuck, a holding device, a manufacturing method thereof, and the like. is there.

本実施形態における加熱装置100の外観構成を概略的に示す斜視図である。It is a perspective view which shows schematic appearance structure of the heating apparatus 100 in this embodiment. 本実施形態における加熱装置100のXZ断面構成を概略的に示す説明図である。It is explanatory drawing which shows typically the XZ cross-sectional structure of the heating apparatus 100 in this embodiment. 本実施形態における加熱装置100の一部分(図2のX1部)のXZ断面構成を拡大して示す説明図である。It is explanatory drawing which enlarges and shows the XZ cross-sectional structure of a part (X1 part of FIG. 2) of the heating apparatus 100 in this embodiment. 本実施形態における加熱装置100の一部分(図2のX1部)のXY断面構成を拡大して示す説明図である。It is explanatory drawing which enlarges and shows the XY cross-sectional structure of a part (X1 part of FIG. 2) of the heating apparatus 100 in this embodiment. 各変形例における加熱装置のXZ断面構成を概略的に示す説明図である。It is explanatory drawing which shows typically the XZ cross-sectional structure of the heating apparatus in each modification. 変形例および比較例における加熱装置のXZ断面構成を概略的に示す説明図である。It is explanatory drawing which shows typically the XZ cross-sectional structure of the heating apparatus in the modified example and the comparative example. 性能評価結果を示す説明図である。It is explanatory drawing which shows the performance evaluation result.

A.実施形態:
A−1.加熱装置100の構成:
図1は、本実施形態における加熱装置100の外観構成を概略的に示す斜視図であり、図2は、本実施形態における加熱装置100のXZ断面構成を概略的に示す説明図である。また、図3は、本実施形態における加熱装置100の一部分(図2のX1部)のXZ断面構成を拡大して示す説明図である。図4は、本実施形態における加熱装置100の一部分(図2のX1部)のXY断面構成を拡大して示す説明図である。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向といい、Z軸負方向を下方向というものとするが、加熱装置100は実際にはそのような向きとは異なる向きで設置されてもよい。
A. Embodiment:
A-1. Configuration of heating device 100:
FIG. 1 is a perspective view schematically showing an external configuration of the heating device 100 in the present embodiment, and FIG. 2 is an explanatory view schematically showing an XZ cross-sectional configuration of the heating device 100 in the present embodiment. Further, FIG. 3 is an explanatory view showing an enlarged XZ cross-sectional configuration of a part (X1 part of FIG. 2) of the heating device 100 in the present embodiment. FIG. 4 is an explanatory view showing an enlarged XY cross-sectional configuration of a part (X1 part of FIG. 2) of the heating device 100 in the present embodiment. Each figure shows XYZ axes that are orthogonal to each other to identify the direction. In the present specification, for convenience, the Z-axis positive direction is referred to as an upward direction, and the Z-axis negative direction is referred to as a downward direction, but the heating device 100 is actually installed in a direction different from such a direction. You may.

加熱装置100は、対象物(例えば、半導体ウェハW)を保持しつつ所定の処理温度(例えば、400〜800℃程度)に加熱する装置であり、サセプタとも呼ばれる。加熱装置100は、例えば、成膜装置(CVD成膜装置、スパッタリング成膜装置等)やエッチング装置(プラズマエッチング装置等)といった半導体製造装置の一部として使用される。 The heating device 100 is a device that heats an object (for example, a semiconductor wafer W) to a predetermined processing temperature (for example, about 400 to 800 ° C.) while holding it, and is also called a susceptor. The heating device 100 is used as a part of a semiconductor manufacturing device such as a film forming apparatus (CVD film forming apparatus, sputtering film forming apparatus, etc.) or an etching apparatus (plasma etching apparatus, etc.).

図1および図2に示すように、加熱装置100は、保持体10と柱状支持体20とを備える。 As shown in FIGS. 1 and 2, the heating device 100 includes a holding body 10 and a columnar support 20.

保持体10は、所定の方向(本実施形態ではZ軸方向)に略直交する表面(以下、「保持面S1」という。)と、保持面S1とは反対側の表面(以下、「裏面S2」という。)と、を有する略円板状の部材である。保持体10は、窒化アルミニウム(AlN)やアルミナ(Al)を主成分とするセラミックスにより形成されている。なお、ここでいう主成分とは、含有割合(重量割合)の最も多い成分を意味する。保持体10の直径は、例えば100mm以上、500mm以下程度であり、保持体10の厚さ(上下方向における長さ)は、例えば3mm以上、20mm以下程度である。保持体10は、特許請求の範囲におけるセラミックス部材に相当し、保持面S1は、特許請求の範囲における第1の表面に相当し、裏面S2は、特許請求の範囲における第2の表面に相当し、Z軸方向は、特許請求の範囲における第1の方向に相当する。 The holding body 10 has a surface (hereinafter, referred to as “holding surface S1”) substantially orthogonal to a predetermined direction (Z-axis direction in the present embodiment) and a surface opposite to the holding surface S1 (hereinafter, “back surface S2”). It is a substantially disk-shaped member having.). Holder 10 is formed of ceramics mainly composed of aluminum nitride (AlN) or alumina (Al 2 O 3). The main component referred to here means the component having the highest content ratio (weight ratio). The diameter of the holding body 10 is, for example, about 100 mm or more and 500 mm or less, and the thickness of the holding body 10 (length in the vertical direction) is, for example, about 3 mm or more and about 20 mm or less. The holding body 10 corresponds to a ceramic member in the claims, the holding surface S1 corresponds to the first surface in the claims, and the back surface S2 corresponds to the second surface in the claims. , Z-axis direction corresponds to the first direction in the claims.

図2に示すように、保持体10の内部には、発熱抵抗体であるヒータ電極50が配置されている。ヒータ電極50は、例えば、タングステンまたはモリブデン等の金属を含む材料により形成されている。本実施形態では、ヒータ電極50は、Z軸方向視で略同心円状に延びる線状のパターンを構成している。ヒータ電極50の線状パターンの両端部は、保持体10の中心部近傍に配置されており、各端部にはビア導体52の上端部が接続されている。また、図2および図3に示すように、保持体10の裏面S2には、一対の凹部12が形成されており、各凹部12の位置には、導電性の給電電極(電極パッド)54が設けられている。本実施形態では、給電電極54は、Z軸方向視で略円形であり、タングステンを含む材料(例えば、タングステンと窒化アルミニウムとの混合材料)により形成されている。また、本実施形態では、給電電極54の緩衝部材60の側の表面全体が、保持体10の裏面S2に露出している(以下、給電電極54の裏面S2に露出している表面を「露出面Se」ともいう)。ただし、給電電極54の少なくとも一部が保持体10の裏面S2に露出している限りにおいて、給電電極54の一部(例えば、端部)が保持体10の内部に埋設されていてもよい。ビア導体52の下端部は、給電電極54に接続されている。その結果、ヒータ電極50と給電電極54とがビア導体52を介して電気的に接続された状態となっている。給電電極54は、特許請求の範囲における電極に相当する。 As shown in FIG. 2, a heater electrode 50, which is a heat generating resistor, is arranged inside the holding body 10. The heater electrode 50 is made of a material containing a metal such as tungsten or molybdenum. In the present embodiment, the heater electrode 50 constitutes a linear pattern extending substantially concentrically in the Z-axis direction. Both ends of the linear pattern of the heater electrode 50 are arranged near the center of the holding body 10, and the upper end of the via conductor 52 is connected to each end. Further, as shown in FIGS. 2 and 3, a pair of recesses 12 are formed on the back surface S2 of the holding body 10, and a conductive feeding electrode (electrode pad) 54 is provided at the position of each recess 12. It is provided. In the present embodiment, the feeding electrode 54 is substantially circular in the Z-axis direction, and is formed of a material containing tungsten (for example, a mixed material of tungsten and aluminum nitride). Further, in the present embodiment, the entire surface of the feeding electrode 54 on the side of the buffer member 60 is exposed on the back surface S2 of the holding body 10 (hereinafter, the surface exposed on the back surface S2 of the feeding electrode 54 is "exposed". Also called "face Se"). However, as long as at least a part of the feeding electrode 54 is exposed on the back surface S2 of the holding body 10, a part (for example, an end portion) of the feeding electrode 54 may be embedded inside the holding body 10. The lower end of the via conductor 52 is connected to the feeding electrode 54. As a result, the heater electrode 50 and the feeding electrode 54 are electrically connected via the via conductor 52. The feeding electrode 54 corresponds to an electrode in the claims.

柱状支持体20は、上記所定の方向(上下方向)に延びる略円柱状部材である。柱状支持体20は、保持体10と同様に、窒化アルミニウムやアルミナを主成分とするセラミックスにより形成されている。柱状支持体20の外径は、例えば30mm以上、90mm以下程度であり、柱状支持体20の高さ(上下方向における長さ)は、例えば100mm以上、300mm以下程度である。 The columnar support 20 is a substantially columnar member extending in the predetermined direction (vertical direction). Like the holding body 10, the columnar support 20 is made of ceramics containing aluminum nitride or alumina as a main component. The outer diameter of the columnar support 20 is, for example, about 30 mm or more and 90 mm or less, and the height (length in the vertical direction) of the columnar support 20 is, for example, about 100 mm or more and 300 mm or less.

保持体10と柱状支持体20とは、保持体10の裏面S2と柱状支持体20の上面S3とが上下方向に対向するように配置されている。柱状支持体20は、保持体10の裏面S2の中心部付近に、公知の接合材料により形成された接合部30を介して接合されている。 The holding body 10 and the columnar support 20 are arranged so that the back surface S2 of the holding body 10 and the upper surface S3 of the columnar support 20 face each other in the vertical direction. The columnar support 20 is joined to the vicinity of the center of the back surface S2 of the holding body 10 via a joining portion 30 formed of a known joining material.

図2に示すように、柱状支持体20には、保持体10の裏面S2側に開口する貫通孔22が形成されている。貫通孔22には、複数の(本実施形態では2つの)端子部材70が収容されている。端子部材70は、例えばZ軸方向視で略円形の柱状部材であり、ニッケル(Ni)含む材料(例えば、純ニッケルやニッケルを含む合金(例えばコバール))により形成されている。ここで、端子部材70の形成材料の熱膨張係数は、例えば、5K−1以上、13K−1以下である。端子部材70における緩衝部材側端面St(図3参照)の寸法については、後述する。 As shown in FIG. 2, the columnar support 20 is formed with a through hole 22 that opens on the back surface S2 side of the holding body 10. A plurality of (two in this embodiment) terminal members 70 are housed in the through hole 22. The terminal member 70 is, for example, a substantially circular columnar member in the Z-axis direction, and is formed of a nickel (Ni) -containing material (for example, pure nickel or an alloy containing nickel (for example, Kovar)). Here, the coefficient of thermal expansion of the material for forming the terminal member 70 is, for example, 5K -1 or more and 13K -1 or less. The dimensions of the cushioning member side end surface St (see FIG. 3) of the terminal member 70 will be described later.

また、Z軸方向において各端子部材70の上端部と各給電電極54との間には、緩衝部材60が配置されている。緩衝部材60は、例えばZ軸方向視で略円形の板状部材であり、タングステンを含む材料(例えば、純タングステンやタングステンを含む合金)により形成されている。緩衝部材60は、端子部材70と給電電極54との間の熱膨張差を緩和する機能を担う部材である。そのため、緩衝部材60の形成材料の熱膨張係数は、給電電極54の形成材料の熱膨張係数と同じ、または、緩衝部材60の形成材料の熱膨張係数は、端子部材70の形成材料の熱膨張係数より小さい。緩衝部材60の形成材料の熱膨張係数は、例えば、6K−1以下である。また、緩衝部材60の形成材料の熱膨張係数と、端子部材70の形成材料の熱膨張係数との差は、例えば、9K−1以下である。緩衝部材60の直径は、例えば4.5mm〜10.0mmである。緩衝部材60の厚さtaは、例えば、2mm以上である。緩衝部材60の構成については、後に詳述する。 Further, a cushioning member 60 is arranged between the upper end portion of each terminal member 70 and each feeding electrode 54 in the Z-axis direction. The cushioning member 60 is, for example, a plate-shaped member that is substantially circular in the Z-axis direction, and is formed of a material containing tungsten (for example, pure tungsten or an alloy containing tungsten). The cushioning member 60 is a member having a function of reducing the difference in thermal expansion between the terminal member 70 and the feeding electrode 54. Therefore, the coefficient of thermal expansion of the material for forming the buffer member 60 is the same as the coefficient of thermal expansion of the material for forming the feeding electrode 54, or the coefficient of thermal expansion of the material for forming the buffer member 60 is the coefficient of thermal expansion of the material for forming the terminal member 70. Less than a coefficient. The coefficient of thermal expansion of the material for forming the buffer member 60 is, for example, 6K- 1 or less. Further, the difference between the coefficient of thermal expansion of the material for forming the buffer member 60 and the coefficient of thermal expansion of the material for forming the terminal member 70 is, for example, 9K- 1 or less. The diameter of the cushioning member 60 is, for example, 4.5 mm to 10.0 mm. The thickness ta of the cushioning member 60 is, for example, 2 mm or more. The configuration of the cushioning member 60 will be described in detail later.

図3に示すように、緩衝部材60の下面(端子部材側端面Sbt)は、端子側ロウ付け部81により、端子部材70(具体的には、緩衝部材側端面St)と接合されている。また、緩衝部材60の上面(電極側端面Sbe)は、電極側ロウ付け部82により、給電電極54の下面(露出面Se)と接合(ロウ付け)されている。端子側ロウ付け部81および電極側ロウ付け部82は、例えば、Ni系(Ni−Cr系合金等)、Au系(純Au、Au−Ni系合金等)、Ag系(純Ag等)のロウ材である。端子側ロウ付け部81は、特許請求の範囲における第1のロウ付け部に相当し、電極側ロウ付け部82は、特許請求の範囲における第2のロウ付け部に相当する。 As shown in FIG. 3, the lower surface (terminal member side end surface Sbt) of the cushioning member 60 is joined to the terminal member 70 (specifically, the cushioning member side end surface St) by the terminal side brazing portion 81. Further, the upper surface (electrode side end surface Sbe) of the buffer member 60 is joined (brazed) to the lower surface (exposed surface Se) of the power feeding electrode 54 by the electrode side brazing portion 82. The terminal-side brazing portion 81 and the electrode-side brazing portion 82 are, for example, Ni-based (Ni—Cr-based alloy, etc.), Au-based (pure Au, Au-Ni-based alloy, etc.), Ag-based (pure Ag, etc.). It is a brazing material. The terminal-side brazing portion 81 corresponds to the first brazing portion in the claims, and the electrode-side brazing portion 82 corresponds to the second brazing portion in the claims.

図示しない電源から各端子部材70、各緩衝部材60、各給電電極54、各ビア導体52を介してヒータ電極50に電圧が印加されると、ヒータ電極50が発熱し、保持体10の保持面S1上に保持された対象物(例えば、半導体ウェハW)が所定の温度(例えば、400〜800℃程度)に加熱される。 When a voltage is applied to the heater electrode 50 from a power source (not shown) via each terminal member 70, each cushioning member 60, each feeding electrode 54, and each via conductor 52, the heater electrode 50 generates heat and the holding surface of the holding body 10 The object held on S1 (for example, the semiconductor wafer W) is heated to a predetermined temperature (for example, about 400 to 800 ° C.).

なお、本実施形態の加熱装置100では、Z軸方向に平行であり(すなわち、保持面S1に略直交し)、かつ、Z軸方向視での緩衝部材60の中心を通る断面(図3に示す断面)および図3のIV−IVの位置(端子部材70の緩衝部材側端面Stの位置)における断面(図4に示す断面)において、次の構成が採用されている。なお、図4に示す点線は、後述の説明のために便宜上図示された点線である。また、以下の通り、本実施形態では、Z軸方向に平行であり、かつ、Z軸方向視での緩衝部材60の中心を通る任意の断面において、以下の構成が採用されている。このため、本実施形態の加熱装置100は、Z軸方向に平行な任意の断面において、以下の構成と同様の構成となっている。 In the heating device 100 of the present embodiment, a cross section that is parallel to the Z-axis direction (that is, substantially orthogonal to the holding surface S1) and passes through the center of the cushioning member 60 in the Z-axis direction (FIG. 3). The following configuration is adopted in the cross section (cross section shown in FIG. 4) and the cross section (cross section shown in FIG. 4) at the position IV-IV in FIG. 3 (the position of the end surface St on the cushioning member side of the terminal member 70). The dotted line shown in FIG. 4 is a dotted line shown for convenience for later explanation. Further, as described below, in the present embodiment, the following configuration is adopted in an arbitrary cross section that is parallel to the Z-axis direction and passes through the center of the cushioning member 60 in the Z-axis direction. Therefore, the heating device 100 of the present embodiment has the same configuration as the following configuration in an arbitrary cross section parallel to the Z-axis direction.

<構成1>
X軸方向において、緩衝部材60の端子部材側端面Sbtは、緩衝部材60の電極側端面Sbeの範囲より内側に位置している。具体的には、当該断面において、端子部材側端面Sbtに対応する線分の両端点が、電極側端面Sbeに対応する線分の両端点より内側に位置している。ここで、端子部材側端面Sbtに対応する線分の長さ(端子部材側端面Sbtの直径Dbt)は、例えば、4.5mm以下であることが好ましい。また、電極側端面Sbeに対応する線分の長さ(電極側端面Sbeの直径Dbe)は、例えば、5mm以上であることが好ましい。また、端子部材側端面Sbtに対応する線分の一方の端点と、電極側端面Sbeに対応する線分の一方の端点との間の距離Lbの2倍の距離(すなわち、端子部材側端面Sbtの直径Dbtと電極側端面Sbeの直径Dbeとの差)は、例えば、端子部材側端面Sbtのロウ付け面積確保の観点から、1mm以下であることが好ましい。また、本実施形態では、Z軸方向視において、緩衝部材60の電極側端面Sbeの外縁Ebeは、緩衝部材60の端子部材側端面Sbtの外縁Ebtを取り囲んでいる。なお、X軸方向は、特許請求の範囲における第2の方向に相当する。
<Structure 1>
In the X-axis direction, the terminal member side end surface Sbt of the cushioning member 60 is located inside the range of the electrode side end surface Sbe of the cushioning member 60. Specifically, in the cross section, the end points of the line segment corresponding to the terminal member side end surface Sbt are located inside the end points of the line segment corresponding to the electrode side end surface Sbe. Here, the length of the line segment corresponding to the terminal member side end surface Sbt (diameter Dbt of the terminal member side end surface Sbt) is preferably 4.5 mm or less, for example. Further, the length of the line segment corresponding to the electrode side end surface Sbe (diameter Dbe of the electrode side end surface Sbe) is preferably 5 mm or more, for example. Further, the distance between one end point of the line segment corresponding to the terminal member side end surface Sbt and one end point of the line segment corresponding to the electrode side end surface Sbe is twice the distance Lb (that is, the terminal member side end surface Sbt). The difference between the diameter Dbt and the diameter Dbe of the electrode side end surface Sbe) is preferably 1 mm or less from the viewpoint of securing the brazing area of the terminal member side end surface Sbt, for example. Further, in the present embodiment, in the Z-axis direction view, the outer edge Ebe of the electrode side end surface Sbe of the cushioning member 60 surrounds the outer edge Ebt of the terminal member side end surface Sbt of the cushioning member 60. The X-axis direction corresponds to the second direction in the claims.

<構成2>
本実施形態では、X軸方向において、緩衝部材60の端子部材側端面Sbtは、端子部材70の緩衝部材側端面Stの範囲より内側に位置している。具体的には、当該断面において、端子部材側端面Sbtに対応する線分の両端点が、緩衝部材側端面Stに対応する線分の両端点より内側に位置している。ここで、緩衝部材側端面Stに対応する線分の長さ(緩衝部材側端面Stの直径Dt)は、例えば、4.5mm以下であることが好ましい。また、緩衝部材側端面Stに対応する線分の一方の端点と、端子部材側端面Sbtに対応する線分の一方の端点との間の距離Ltの2倍の距離(すなわち、緩衝部材側端面Stの直径Dtと端子部材側端面Sbtの直径Dbtとの差)は、例えば、端子部材側端面Sbtのロウ付け面積確保の観点から、1mm以下であることが好ましい。また、本実施形態では、Z軸方向視において、端子部材70の緩衝部材側端面Stの外縁Etは、緩衝部材60の端子部材側端面Sbtの外縁Ebtを取り囲んでいる。
<Structure 2>
In the present embodiment, the terminal member side end surface Sbt of the cushioning member 60 is located inside the range of the cushioning member side end surface St of the terminal member 70 in the X-axis direction. Specifically, in the cross section, the end points of the line segment corresponding to the terminal surface Sbt on the terminal member side are located inside the end points of the line segment corresponding to the end surface St on the cushioning member side. Here, the length of the line segment corresponding to the cushioning member side end surface St (diameter Dt of the cushioning member side end surface St) is preferably 4.5 mm or less, for example. Further, the distance between one end point of the line segment corresponding to the cushion member side end surface St and one end point of the line segment corresponding to the terminal member side end surface Sbt is twice the distance Lt (that is, the cushion member side end surface). The difference between the diameter Dt of St and the diameter Dbt of the terminal member side end surface Sbt) is preferably 1 mm or less from the viewpoint of securing the brazing area of the terminal member side end surface Sbt, for example. Further, in the present embodiment, the outer edge Et of the cushioning member side end surface St of the terminal member 70 surrounds the outer edge Ebt of the terminal member side end surface Sbt of the cushioning member 60 in the Z-axis direction view.

<構成3>
本実施形態では、緩衝部材60は、端子部材側端面Sbtを一辺とする略矩形状の端子部材側部分61と、電極側端面Sbeを一辺とする略矩形状の電極側部分62と、から構成されている。換言すれば、緩衝部材60は、端子部材側端面Sbtを有する略円柱状の端子部材側部分61と、電極側端面Sbeを有する略円柱状の電極側部分62と、から構成されている。ここで、Z軸方向において、端子部材側部分61の厚さt1は、例えば、1mm以上であり、電極側部分62の厚さt2は、例えば、1mm以上である。
<Structure 3>
In the present embodiment, the cushioning member 60 is composed of a substantially rectangular terminal member side portion 61 having a terminal member side end surface Sbt as one side and a substantially rectangular electrode side portion 62 having an electrode side end surface Sbe as one side. Has been done. In other words, the buffer member 60 is composed of a substantially columnar terminal member side portion 61 having a terminal member side end surface Sbt and a substantially columnar electrode side portion 62 having an electrode side end surface Sbe. Here, in the Z-axis direction, the thickness t1 of the terminal member side portion 61 is, for example, 1 mm or more, and the thickness t2 of the electrode side portion 62 is, for example, 1 mm or more.

<構成4>
本実施形態では、X軸方向において、給電電極54の露出面Seは、緩衝部材60の電極側端面Sbeの範囲より内側に位置している。具体的には、当該断面において、露出面Seに対応する線分の両端点が、電極側端面Sbeの両端点より内側に位置している。ここで、露出面Seに対応する線分の長さ(露出面Seの直径De)は、例えば、5mm以上であることが好ましい。また、電極側端面Sbeに対応する線分の一方の端点と、露出面Seに対応する線分の一方の端点との間の距離Leの2倍の距離(すなわち、電極側端面Sbeの直径Dbeと露出面Seの直径Deとの差)は、例えば、露出面Seの全面が、給電電極54と緩衝部材60との間に介在する電極側ロウ付け部82によって覆われやすくなる観点から、2mm以下であることが好ましい。また、本実施形態では、Z軸方向視において、緩衝部材60の電極側端面Sbeの外縁Ebeは、給電電極54の露出面Seの外縁Eeを取り囲んでいる。
<Structure 4>
In the present embodiment, the exposed surface Se of the feeding electrode 54 is located inside the range of the electrode side end surface Sbe of the buffer member 60 in the X-axis direction. Specifically, in the cross section, the end points of the line segment corresponding to the exposed surface Se are located inside the end points of the electrode side end surface Sbe. Here, the length of the line segment corresponding to the exposed surface Se (diameter De of the exposed surface Se) is preferably, for example, 5 mm or more. Further, the distance between one end point of the line segment corresponding to the electrode side end surface Sbe and one end point of the line segment corresponding to the exposed surface Se is twice the distance Le (that is, the diameter Dbe of the electrode side end surface Sbe). The difference between the exposed surface Se and the diameter De of the exposed surface Se) is, for example, 2 mm from the viewpoint that the entire surface of the exposed surface Se is easily covered by the electrode-side brazing portion 82 interposed between the feeding electrode 54 and the buffer member 60. The following is preferable. Further, in the present embodiment, in the Z-axis direction view, the outer edge Ebe of the electrode side end surface Sbe of the buffer member 60 surrounds the outer edge Ee of the exposed surface Se of the feeding electrode 54.

A−2.本実施形態の第1変形例:
図5(A)は、本実施形態の第1変形例における加熱装置100aの構成を概略的に示す説明図である。図5(A)には、上述した図3の断面に対応する第1変形例の加熱装置100aのXZ断面構成が示されている。以下では、第1変形例の加熱装置100aの構成の内、上述した本実施形態の加熱装置100の構成と同一の構成については、同一の符号を付すことによってその説明を適宜省略する。
A-2. First modification of this embodiment:
FIG. 5A is an explanatory diagram schematically showing the configuration of the heating device 100a in the first modification of the present embodiment. FIG. 5A shows an XZ cross-sectional configuration of the heating device 100a of the first modification corresponding to the cross section of FIG. 3 described above. In the following, among the configurations of the heating apparatus 100a of the first modification, the same configurations as the configurations of the heating apparatus 100 of the present embodiment described above will be appropriately omitted by adding the same reference numerals.

図5(A)に示すように、第1変形例の加熱装置100aの構成は、上述した本実施形態の加熱装置100の構成と比較して、緩衝部材60aの形状が異なっている。すなわち、第1変形例における緩衝部材60aは、上記構成3において、本実施形態の緩衝部材60と異なっている。具体的には、当該断面において、緩衝部材60aは、端子部材側端面Sbtと、電極側端面Sbeとをそれぞれ一辺とする略台形状である。換言すれば、緩衝部材60aは、端子部材側端面Sbtを一方の面とし、電極側端面Sbeを他方の面とする略円錐台状である。ここで、端子部材70の緩衝部材側端面Stと、緩衝部材60aの側面Saとから形成される挟角θaは、形成される端子側ロウ付け部81のフィレットの構造(例えば、形状)の安定性の観点から、例えば、50°以上、90°以下である。 As shown in FIG. 5A, the configuration of the heating device 100a of the first modification is different from the configuration of the heating device 100 of the present embodiment described above in that the shape of the buffer member 60a is different. That is, the cushioning member 60a in the first modification is different from the cushioning member 60 of the present embodiment in the above configuration 3. Specifically, in the cross section, the cushioning member 60a has a substantially trapezoidal shape with the terminal member side end surface Sbt and the electrode side end surface Sbe as one side. In other words, the cushioning member 60a has a substantially truncated cone shape with the terminal member side end surface Sbt as one surface and the electrode side end surface Sbe as the other surface. Here, the narrowing angle θa formed from the cushioning member side end surface St of the terminal member 70 and the side surface Sa of the cushioning member 60a stabilizes the structure (for example, shape) of the fillet of the formed terminal side brazing portion 81. From the viewpoint of sex, for example, it is 50 ° or more and 90 ° or less.

A−3.本実施形態の第2変形例:
図5(B)は、本実施形態の第2変形例における加熱装置100bの構成を概略的に示す説明図である。図5(B)には、上述した図3の断面に対応する第2変形例の加熱装置100bのXZ断面構成が示されている。以下では、第2変形例の加熱装置100bの構成の内、上述した本実施形態の加熱装置100の構成と同一の構成については、同一の符号を付すことによってその説明を適宜省略する。
A-3. Second variant of this embodiment:
FIG. 5B is an explanatory diagram schematically showing the configuration of the heating device 100b in the second modification of the present embodiment. FIG. 5B shows the XZ cross-sectional configuration of the heating device 100b of the second modification corresponding to the cross section of FIG. 3 described above. In the following, among the configurations of the heating apparatus 100b of the second modification, the same configurations as the configurations of the heating apparatus 100 of the present embodiment described above will be appropriately described by adding the same reference numerals.

図5(B)に示すように、第2変形例の加熱装置100bの構成は、上述した本実施形態の加熱装置100の構成と比較して、緩衝部材60bの形状が異なっている。すなわち、第2変形例における緩衝部材60bは、上記構成3において、本実施形態の緩衝部材60と異なっている。具体的には、当該断面において、緩衝部材60bは、端子部材側端面Sbtを一辺とする略台形状の端子部材側部分61bと、電極側端面Sbeを一辺とする略矩形状の電極側部分62bと、から構成されている。換言すれば、端子部材側端面Sbtを有する略円錐台状の端子部材側部分61bと、電極側端面Sbeを有する略円柱状の電極側部分62bと、から構成されている。ここで、端子部材70の緩衝部材側端面Stと、緩衝部材60bの端子部材側部分61bにおける側面Sbとから形成される挟角θbは、形成される端子側ロウ付け部81のフィレットの構造(例えば、形状)の安定性の観点から、例えば、10°以上、45°以下である。また、Z軸方向において、端子部材側部分61bの厚さt1は、例えば、1mm以上であり、電極側部分62bの厚さt2は、例えば、1mm以上である。 As shown in FIG. 5B, the configuration of the heating device 100b of the second modification is different from the configuration of the heating device 100 of the present embodiment described above in that the shape of the buffer member 60b is different. That is, the cushioning member 60b in the second modification is different from the cushioning member 60 of the present embodiment in the above configuration 3. Specifically, in the cross section, the cushioning member 60b has a substantially trapezoidal terminal member side portion 61b having the terminal member side end surface Sbt as one side and a substantially rectangular electrode side portion 62b having the electrode side end surface Sbe as one side. It is composed of and. In other words, it is composed of a substantially truncated cone-shaped terminal member side portion 61b having a terminal member side end surface Sbt and a substantially cylindrical electrode side portion 62b having an electrode side end surface Sbe. Here, the narrowing angle θb formed from the end surface St on the buffer member side of the terminal member 70 and the side surface Sb on the terminal member side portion 61b of the cushioning member 60b is formed by the fillet structure of the terminal side brazed portion 81. For example, from the viewpoint of stability of the shape), for example, it is 10 ° or more and 45 ° or less. Further, in the Z-axis direction, the thickness t1 of the terminal member side portion 61b is, for example, 1 mm or more, and the thickness t2 of the electrode side portion 62b is, for example, 1 mm or more.

A−4.本実施形態の第3変形例:
図5(C)は、本実施形態の第3変形例における加熱装置100cの構成を概略的に示す説明図である。図5(C)には、上述した図3の断面に対応する第3変形例の加熱装置100cのXZ断面構成が示されている。以下では、第3変形例の加熱装置100cの構成の内、上述した本実施形態の加熱装置100の構成と同一の構成については、同一の符号を付すことによってその説明を適宜省略する。
A-4. Third variant of this embodiment:
FIG. 5C is an explanatory diagram schematically showing the configuration of the heating device 100c in the third modification of the present embodiment. FIG. 5C shows the XZ cross-sectional configuration of the heating device 100c of the third modification corresponding to the cross section of FIG. 3 described above. In the following, among the configurations of the heating apparatus 100c of the third modification, the same configurations as the configurations of the heating apparatus 100 of the present embodiment described above will be appropriately described by adding the same reference numerals.

図5(C)に示すように、第3変形例の加熱装置100cの構成は、上述した本実施形態の加熱装置100の構成と比較して、緩衝部材60cの形状が異なっている。すなわち、第3変形例における緩衝部材60cは、上記構成4において、本実施形態の緩衝部材60と異なっている。具体的には、当該断面において、X軸方向において、給電電極54の露出面Seは、緩衝部材60cの電極側端面Sbeの範囲より外側に位置している。具体的には、当該断面において、露出面Seに対応する線分の両端点が、電極側端面Sbeの両端点より外側に位置している。ここで、電極側端面Sbeに対応する線分の長さ(電極側端面Sbeの直径Dbe)は、例えば、4mm以上である。また、電極側端面Sbeに対応する線分の一方の端点と、露出面Seに対応する線分の一方の端点との間の距離Leの2倍の距離(すなわち、電極側端面Sbeの直径Dbeと露出面Seの直径Deとの差)は、1mm以下である。また、第3変形例では、Z軸方向視において、給電電極54の露出面Seの外縁Eeは、緩衝部材60の電極側端面Sbeの外縁Ebeを取り囲んでいる。なお、加熱装置100cにおいても、第1実施形態の加熱装置100と同様に、端子部材側端面Sbtを一辺とする略矩形状の端子部材側部分61cと、電極側端面Sbeを一辺とする略矩形状の電極側部分62cと、から構成されている。 As shown in FIG. 5C, the configuration of the heating device 100c of the third modification is different from the configuration of the heating device 100 of the present embodiment described above in that the shape of the buffer member 60c is different. That is, the cushioning member 60c in the third modification is different from the cushioning member 60 of the present embodiment in the above configuration 4. Specifically, in the cross section, the exposed surface Se of the feeding electrode 54 is located outside the range of the electrode side end surface Sbe of the buffer member 60c in the X-axis direction. Specifically, in the cross section, both end points of the line segment corresponding to the exposed surface Se are located outside the end points of the electrode side end surface Sbe. Here, the length of the line segment corresponding to the electrode side end surface Sbe (diameter Dbe of the electrode side end surface Sbe) is, for example, 4 mm or more. Further, the distance between one end point of the line segment corresponding to the electrode side end surface Sbe and one end point of the line segment corresponding to the exposed surface Se is twice the distance Le (that is, the diameter Dbe of the electrode side end surface Sbe). The difference between the exposed surface Se and the diameter De of the exposed surface Se) is 1 mm or less. Further, in the third modification, in the Z-axis direction view, the outer edge Ee of the exposed surface Se of the feeding electrode 54 surrounds the outer edge Ebe of the electrode side end surface Sbe of the cushioning member 60. In the heating device 100c as well, similarly to the heating device 100 of the first embodiment, a substantially rectangular terminal member side portion 61c having the terminal member side end surface Sbt as one side and a substantially rectangular shape having the electrode side end surface Sbe as one side. It is composed of an electrode side portion 62c of the shape.

A−5.本実施形態の第4変形例:
図6(A)は、本実施形態の第4変形例における加熱装置100dの構成を概略的に示す説明図である。図6(A)には、上述した図3の断面に対応する第4変形例の加熱装置100dのXZ断面構成が示されている。以下では、第4変形例の加熱装置100dの構成の内、上述した本実施形態の加熱装置100の構成と同一の構成については、同一の符号を付すことによってその説明を適宜省略する。
A-5. Fourth variant of this embodiment:
FIG. 6A is an explanatory diagram schematically showing the configuration of the heating device 100d in the fourth modification of the present embodiment. FIG. 6A shows the XZ cross-sectional configuration of the heating device 100d of the fourth modification corresponding to the cross section of FIG. 3 described above. In the following, among the configurations of the heating apparatus 100d of the fourth modification, the same configurations as the configurations of the heating apparatus 100 of the present embodiment described above will be appropriately omitted by adding the same reference numerals.

図6(A)に示すように、第4変形例の加熱装置100dの構成は、上述した本実施形態の加熱装置100の構成と比較して、緩衝部材60dの形状が異なっている。すなわち、第4変形例における緩衝部材60dは、上記構成1および構成3において、本実施形態の緩衝部材60と異なっている。具体的には、当該断面において、X軸方向において、緩衝部材60dの端子部材側端面Sbtは、緩衝部材60dの電極側端面Sbeと同じ位置に位置している。換言すれば、当該断面において、端子部材側端面Sbtに対応する線分の両端点が、電極側端面Sbeに対応する線分の両端点とそれぞれ同じ位置に位置している。すなわち、当該断面において、緩衝部材60dは、端子部材側端面Sbtと、電極側端面Sbeとをそれぞれ一辺とする略矩形状である。また、緩衝部材60dは、端子部材側端面Sbtを一方の面と、電極側端面Sbeを他方の面とする、Z軸方向に延びる略円柱状である。第4変形例において、緩衝部材60dにおける、端子部材側端面Sbtに対応する線分の長さ(端子部材側端面Sbtの直径Dbt)および電極側端面Sbeに対応する線分の長さ(電極側端面Sbeの直径Dbe)は、例えば、6mm以下である。また、第4変形例において、給電電極54の露出面Seに対応する線分の長さ(露出面Seの直径De)は、例えば、6mm以下である。 As shown in FIG. 6A, the configuration of the heating device 100d of the fourth modification is different from the configuration of the heating device 100 of the present embodiment described above in that the shape of the buffer member 60d is different. That is, the cushioning member 60d in the fourth modification is different from the cushioning member 60 of the present embodiment in the above configurations 1 and 3. Specifically, in the cross section, the terminal member side end surface Sbt of the cushioning member 60d is located at the same position as the electrode side end surface Sbe of the cushioning member 60d in the X-axis direction. In other words, in the cross section, the end points of the line segment corresponding to the terminal member side end surface Sbt are located at the same positions as the end points of the line segment corresponding to the electrode side end surface Sbe. That is, in the cross section, the cushioning member 60d has a substantially rectangular shape with the terminal member side end surface Sbt and the electrode side end surface Sbe as one side. Further, the cushioning member 60d is a substantially cylindrical shape extending in the Z-axis direction, with the terminal member side end surface Sbt as one surface and the electrode side end surface Sbe as the other surface. In the fourth modification, the length of the line segment corresponding to the terminal member side end surface Sbt (diameter Dbt of the terminal member side end surface Sbt) and the length of the line segment corresponding to the electrode side end surface Sbe in the buffer member 60d (electrode side). The diameter Dbe) of the end face Sbe) is, for example, 6 mm or less. Further, in the fourth modification, the length of the line segment corresponding to the exposed surface Se of the feeding electrode 54 (diameter De of the exposed surface Se) is, for example, 6 mm or less.

A−6.比較例:
図6(B)は、比較例における加熱装置100xの構成を概略的に示す説明図である。図6(B)には、上述した図3の断面に対応する比較例の加熱装置100xのXZ断面構成が示されている。以下では、比較例の加熱装置100xの構成の内、上述した本実施形態の加熱装置100の構成と同一の構成については、同一の符号を付すことによってその説明を適宜省略する。
A-6. Comparative example:
FIG. 6B is an explanatory diagram schematically showing the configuration of the heating device 100x in the comparative example. FIG. 6B shows the XZ cross-sectional configuration of the heating device 100x of the comparative example corresponding to the cross section of FIG. 3 described above. In the following, among the configurations of the heating apparatus 100x of the comparative example, the same configurations as the configurations of the heating apparatus 100 of the present embodiment described above will be appropriately omitted by adding the same reference numerals.

図6(B)に示すように、比較例の加熱装置100xの構成は、上述した本実施形態の加熱装置100の構成と比較して、緩衝部材60xの形状が異なっている。すなわち、比較例における緩衝部材60xは、上記構成2において、本実施形態の緩衝部材60と異なっている。具体的には、比較例では、X軸方向において、緩衝部材60xの端子部材側端面Sbtは、端子部材70の緩衝部材側端面Stの範囲より外側に位置している。具体的には、当該断面において、端子部材側端面Sbtに対応する線分の両端点が、緩衝部材側端面Stに対応する線分の両端点より外側に位置している。ここで、端子部材側端面Sbtに対応する線分の長さ(端子部材側端面Sbtの直径Dbt)は、例えば、4mm以上である。また、緩衝部材側端面Stに対応する線分の一方の端点と、端子部材側端面Sbtに対応する線分の一方の端点との間の距離Ltの2倍の距離(すなわち、緩衝部材側端面Stの直径Dtと端子部材側端面Sbtの直径Dbtとの差)は、例えば、1mm以上である。 As shown in FIG. 6B, the configuration of the heating device 100x of the comparative example is different from the configuration of the heating device 100 of the present embodiment described above in that the shape of the buffer member 60x is different. That is, the cushioning member 60x in the comparative example is different from the cushioning member 60 of the present embodiment in the above configuration 2. Specifically, in the comparative example, in the X-axis direction, the terminal member side end surface Sbt of the cushioning member 60x is located outside the range of the cushioning member side end surface St of the terminal member 70. Specifically, in the cross section, the end points of the line segment corresponding to the terminal surface Sbt on the terminal member side are located outside the end points of the line segment corresponding to the end surface St on the cushioning member side. Here, the length of the line segment corresponding to the terminal member side end surface Sbt (diameter Dbt of the terminal member side end surface Sbt) is, for example, 4 mm or more. Further, the distance between one end point of the line segment corresponding to the cushion member side end surface St and one end point of the line segment corresponding to the terminal member side end surface Sbt is twice the distance Lt (that is, the cushion member side end surface). The difference between the diameter Dt of St and the diameter Dbt of the end surface Sbt on the terminal member side) is, for example, 1 mm or more.

A−7.加熱装置100の製造方法:
本実施形態の加熱装置100の製造方法は、例えば以下の通りである。初めに、保持体10と柱状支持体20とを作製する。
A-7. Manufacturing method of heating device 100:
The manufacturing method of the heating device 100 of this embodiment is as follows, for example. First, the holding body 10 and the columnar support 20 are produced.

保持体10の作製方法は、例えば以下の通りである。まず、窒化アルミニウム粉末100重量部に、酸化イットリウム(Y)粉末1重量部と、アクリル系バインダ20重量部と、適量の分散剤および可塑剤とを加えた混合物に、トルエン等の有機溶剤を加え、ボールミルにて20時間混合し、グリーンシート用スラリーを作製する。このグリーンシート用スラリーをキャスティング装置でシート状に成形した後に乾燥させ、グリーンシートを複数枚作製する。 The method for producing the retainer 10 is as follows, for example. First, 100 parts by weight of aluminum nitride powder, and yttrium oxide (Y 2 O 3) powder, 1 part by weight, and 20 parts by weight of an acrylic binder, the mixture was added a suitable amount of dispersant and plasticizer, organic or toluene A solvent is added and mixed in a ball mill for 20 hours to prepare a slurry for a green sheet. This green sheet slurry is formed into a sheet by a casting device and then dried to prepare a plurality of green sheets.

また、窒化アルミニウム粉末、アクリル系バインダ、テルピネオール等の有機溶剤の混合物に、タングステン等の金属粉末を添加して混練することにより、メタライズペーストを作製する。このメタライズペーストを例えばスクリーン印刷装置を用いて印刷することにより、特定の各グリーンシートに、後にヒータ電極50や給電電極54等となる未焼結導体層を形成する。また、グリーンシートにあらかじめビア孔を設けた状態で印刷することにより、後にビア導体52となる未焼結導体部を形成する。 Further, a metallized paste is prepared by adding a metal powder such as tungsten to a mixture of an organic solvent such as aluminum nitride powder, an acrylic binder and terpineol and kneading the mixture. By printing this metallized paste using, for example, a screen printing device, an unsintered conductor layer that will later become a heater electrode 50, a feeding electrode 54, or the like is formed on each specific green sheet. Further, by printing with the via holes provided in advance on the green sheet, an unsintered conductor portion that will later become the via conductor 52 is formed.

次に、これらのグリーンシートを複数枚(例えば20枚)熱圧着し、必要に応じて外周を切断して、グリーンシート積層体(例えば厚さ8mm)を作製する。このグリーンシート積層体をマシニングによって切削加工して円板状の成形体を作製し、この成形体を脱脂し、さらにこの脱脂体を焼成して焼成体を作製する。この焼成体の表面を研磨加工する。以上の工程により、保持体10が作製される。 Next, a plurality of these green sheets (for example, 20 sheets) are thermocompression bonded, and if necessary, the outer circumference is cut to prepare a green sheet laminate (for example, a thickness of 8 mm). This green sheet laminate is cut by machining to produce a disk-shaped molded body, the molded body is degreased, and the degreased body is further fired to produce a fired body. The surface of this fired body is polished. The holding body 10 is manufactured by the above steps.

また、柱状支持体20の作製方法は、例えば以下の通りである。まず、窒化アルミニウム粉末100重量部に、酸化イットリウム粉末1重量部と、PVAバインダ3重量部と、適量の分散剤および可塑剤とを加えた混合物に、メタノール等の有機溶剤を加え、ボールミルにて混合し、スラリーを得る。このスラリーをスプレードライヤーにて顆粒化し、原料粉末を作製する。次に、貫通孔22に対応する中子が配置されたゴム型に原料粉末を充填し、冷間静水圧プレスして成形体を得る。得られた成形体を脱脂し、さらにこの脱脂体を焼成する。以上の工程により、柱状支持体20が作製される。 The method for producing the columnar support 20 is as follows, for example. First, an organic solvent such as methanol is added to a mixture of 100 parts by weight of aluminum nitride powder, 1 part by weight of yttrium oxide powder, 3 parts by weight of PVA binder, and an appropriate amount of a dispersant and a plasticizer, and a ball mill is used. Mix to obtain a slurry. This slurry is granulated with a spray dryer to prepare a raw material powder. Next, the raw material powder is filled in the rubber mold in which the core corresponding to the through hole 22 is arranged, and cold hydrostatic pressure pressing is performed to obtain a molded product. The obtained molded body is degreased, and the degreased body is further fired. The columnar support 20 is manufactured by the above steps.

次に、保持体10と柱状支持体20とを接合する。保持体10の裏面S2および柱状支持体20の上面S3に対して必要によりラッピング加工を行った後、保持体10の裏面S2と柱状支持体20の上面S3との少なくとも一方に、例えば希土類や有機溶剤等を混合してペースト状にした公知の接合剤を均一に塗布した後、脱脂処理する。次いで、保持体10の裏面S2と柱状支持体20の上面S3とを重ね合わせ、ホットプレス焼成を行うことにより、保持体10と柱状支持体20とを接合する。 Next, the holding body 10 and the columnar support 20 are joined. After lapping the back surface S2 of the holding body 10 and the upper surface S3 of the columnar support 20 as necessary, at least one of the back surface S2 of the holding body 10 and the upper surface S3 of the columnar support 20 is, for example, rare earth or organic. A known bonding agent made into a paste by mixing a solvent or the like is uniformly applied, and then degreased. Next, the back surface S2 of the holding body 10 and the upper surface S3 of the columnar support 20 are overlapped with each other, and hot press firing is performed to join the holding body 10 and the columnar support 20.

保持体10と柱状支持体20との接合の後、各緩衝部材60を貫通孔22内に挿入し、各緩衝部材60の電極側端面Sbeを各給電電極54の露出面Seに、ロウ材(例えば、Ni系、Au系、Ag系のロウ材)を用いてロウ付けすることにより、電極側ロウ付け部82を形成する。また、各端子部材70を貫通孔22内に挿入し、各端子部材70の緩衝部材側端面Stを各緩衝部材60の端子部材側端面Sbtに、ロウ材(例えば、Ni系、Au系、Ag系のロウ材)を用いてロウ付けすることにより、端子側ロウ付け部81を形成する。各ロウ付けは、真空炉を用いて所定のロウ付け条件(真空中、温度:950℃〜1150℃程度、時間:10分間〜30分間程度)にて行うことができる。主として以上の製造方法により、上述した構成の加熱装置100が製造される。 After joining the holding body 10 and the columnar support 20, each cushioning member 60 is inserted into the through hole 22, and the electrode side end surface Sbe of each cushioning member 60 is placed on the exposed surface Se of each feeding electrode 54 with a brazing material ( For example, the electrode side brazed portion 82 is formed by brazing using a Ni-based, Au-based, or Ag-based brazing material). Further, each terminal member 70 is inserted into the through hole 22, and a brazing material (for example, Ni-based, Au-based, Ag) is used to connect the cushioning member-side end surface St of each terminal member 70 to the terminal member-side end surface Sbt of each cushioning member 60. The terminal-side brazing portion 81 is formed by brazing using the brazing material of the system). Each brazing can be performed using a vacuum furnace under predetermined brazing conditions (in vacuum, temperature: about 950 ° C to 1150 ° C, time: about 10 minutes to 30 minutes). The heating device 100 having the above-described configuration is mainly manufactured by the above manufacturing method.

なお、緩衝部材60の作製方法は、例えば以下の通りである。緩衝部材60の形成材料で形成され、かつ、緩衝部材60における電極側端面Sbeの直径Dbeと略同径の略円柱状の柱体を準備する。当該柱体を、その長手方向において、緩衝部材60の厚さtaと略同一となるよう切断する。切断された柱体を旋盤加工により、上記形状(端子部材側部分61の直径Dbt,厚さt1、電極側部分62の直径Dbe,厚さt2)となるよう加工することにより、緩衝部材60を作製することができる。 The method for manufacturing the buffer member 60 is as follows, for example. A substantially columnar pillar body formed of the material for forming the cushioning member 60 and having a diameter substantially the same as the diameter Dbe of the electrode side end surface Sbe in the cushioning member 60 is prepared. The pillar is cut so as to be substantially the same as the thickness ta of the cushioning member 60 in the longitudinal direction thereof. The buffer member 60 is formed by lathe processing the cut pillar body so as to have the above shape (diameter Dbt, thickness t1 of the terminal member side portion 61, diameter Dbe, thickness t2 of the electrode side portion 62). Can be made.

A−8.性能評価:
上述した本実施形態の加熱装置100および各変形例の加熱装置、比較例の加熱装置における効果を確認すべく性能評価を行った。図7は、性能評価結果を示す説明図である。
A-8. Performance evaluation:
Performance evaluation was performed to confirm the effects of the heating device 100 of the present embodiment described above, the heating device of each modification, and the heating device of the comparative example. FIG. 7 is an explanatory diagram showing the performance evaluation result.

図7に示すように、性能評価には、6個のサンプル(SA1〜SA6)の加熱装置が用いられた。各サンプルは、上述した実施形態の加熱装置の製造方法に準じた製造方法で作製した。各サンプルは、緩衝部材の構成が互いに異なっている。 As shown in FIG. 7, a heating device for 6 samples (SA1 to SA6) was used for the performance evaluation. Each sample was prepared by a manufacturing method according to the manufacturing method of the heating device of the above-described embodiment. Each sample has a different structure of cushioning member.

具体的には、サンプルSA1では、本実施形態の加熱装置100における緩衝部材60と同様の構成を有する緩衝部材を用いた。サンプルSA2〜SA6については、それぞれ、第1変形例の加熱装置100aにおける緩衝部材60a、第2変形例の加熱装置100bにおける緩衝部材60b、第3変形例の加熱装置100cにおける緩衝部材60c、第4変形例の加熱装置100dにおける緩衝部材60d、比較例の加熱装置100xにおける緩衝部材60xと、同様の構成を有する緩衝部材を用いた。 Specifically, in the sample SA1, a buffer member having the same configuration as the buffer member 60 in the heating device 100 of the present embodiment was used. Regarding the samples SA2 to SA6, the cushioning member 60a in the heating device 100a of the first modification, the cushioning member 60b in the heating device 100b of the second modification, the buffer member 60c in the heating device 100c of the third modification, and the fourth A cushioning member 60d in the heating device 100d of the modified example, a cushioning member 60x in the heating device 100x of the comparative example, and a cushioning member having the same configuration were used.

A−8−1.評価方法について:
上記サンプルSA1〜SA6を対象として、端子部材70の給電電極54への接合時(すなわち、ロウ付け時)における、端子側ロウ付け部81へのクラックの発生を評価した。ロウ付け時のロウ付け条件は、上述した実施形態の加熱装置100の製造方法に準じたロウ付け条件とした。ロウ付け時におけるクラックの発生の評価は、ロウ付け後、室温まで冷却した後における各サンプルについて行った。なお、各サンプルを複数個用意した(例えば、n個。具体的には、例えば、サンプルSA1〜SA6をそれぞれ2個)。まず、当該各サンプルのうちの一部(例えば、m個)を、研磨加工して、Z軸方向に略平行な断面であって、端子側ロウ付け部81を含む断面(例えば、図3に示す断面)について断面出しを実施した。当該得られた断面について、顕微鏡観察にてクラックの有無を判定した。クラックの発生がない場合に「◎」、1本または2本である場合に「○」、3本以上である場合に「×」と判定した。クラックが発生したサンプルについては、クラックの長さを測定した。
A-8-1. Evaluation method:
For the samples SA1 to SA6, the occurrence of cracks in the terminal-side brazed portion 81 at the time of joining the terminal member 70 to the feeding electrode 54 (that is, at the time of brazing) was evaluated. The brazing conditions at the time of brazing were the brazing conditions according to the manufacturing method of the heating device 100 of the above-described embodiment. The generation of cracks during brazing was evaluated for each sample after brazing and cooling to room temperature. A plurality of each sample was prepared (for example, n pieces. Specifically, for example, two samples SA1 to SA6 each). First, a part (for example, m pieces) of each of the samples is polished to have a cross section substantially parallel to the Z-axis direction and includes a terminal-side brazed portion 81 (for example, in FIG. 3). (Cross section shown) was cross-sectioned. The presence or absence of cracks was determined by microscopic observation of the obtained cross section. When there was no crack, it was judged as "⊚", when there were one or two cracks, it was judged as "◯", and when there were three or more cracks, it was judged as "x". For the cracked sample, the length of the crack was measured.

また、サンプルSA1〜SA6を対象として、熱サイクル時における、端子側ロウ付け部81へのクラックの発生および発生したクラックの伸展を評価した。当該熱サイクルの熱サイクル条件は、温度700℃まで各サンプルを昇温した後、室温まで冷却するサイクルを1サイクルとし、当該サイクルを300サイクル行うことを条件とした。熱サイクル時におけるクラックの発生の評価は、室温まで冷却した後における各サンプルのうち、ロウ付け時においてクラックの発生の判定が「◎」であったサンプルについて行った。まず、当該各サンプルのうちの残り(例えば、n−m個)について、上記と同様にして断面出しを実施した。当該得られた断面について、顕微鏡観察にてクラックの有無を判定した。クラックの発生がない場合に「◎」、1本または2本である場合に「○」、3本以上である場合に「×」と判定した。また、熱サイクル時における発生したクラックの伸展の評価は、室温まで冷却した後における各サンプルのうち、ロウ付け時においてクラックの発生の判定が「○」、「×」であったサンプルについて行った。まず、当該各サンプルのうちの残り(例えば、n−m個)について、上記と同様にして断面出しを実施した。当該得られた断面について、顕微鏡観察にてクラックの長さを測定した。当該クラックの長さが、ロウ付け時に発生したクラックの長さに対して20%以上長い場合に「×」、20%未満であった場合に「◎」と判定した。 Further, for the samples SA1 to SA6, the occurrence of cracks in the terminal-side brazed portion 81 and the extension of the generated cracks during the thermal cycle were evaluated. The thermal cycle condition of the thermal cycle was that each sample was heated to a temperature of 700 ° C. and then cooled to room temperature as one cycle, and the cycle was performed for 300 cycles. The evaluation of the occurrence of cracks during the thermal cycle was carried out for each sample after cooling to room temperature, in which the judgment of the occurrence of cracks was “⊚” at the time of brazing. First, the remaining (for example, nm) of each of the samples was cross-sectioned in the same manner as described above. The presence or absence of cracks was determined by microscopic observation of the obtained cross section. When there was no crack, it was judged as "⊚", when there were one or two cracks, it was judged as "◯", and when there were three or more cracks, it was judged as "x". In addition, the elongation of cracks generated during the thermal cycle was evaluated for each sample after cooling to room temperature, in which the judgment of crack generation during brazing was "○" or "×". .. First, the remaining (for example, nm) of each of the samples was cross-sectioned in the same manner as described above. The length of the crack was measured by microscopic observation of the obtained cross section. When the length of the crack was 20% or more longer than the length of the crack generated during brazing, it was judged as "x", and when it was less than 20%, it was judged as "⊚".

また、サンプルSA1〜SA6を対象として、電極側ロウ付け部82における引張強度を評価した。具体的には、端子部材70を垂直方向に引張破断する荷重の測定を実施した。この結果、引張強度が20kgf以上である場合に「◎」、引張強度が20kgf未満である場合に「×」と判定した。 In addition, the tensile strength of the electrode-side brazed portion 82 was evaluated for the samples SA1 to SA6. Specifically, the load for tensilely breaking the terminal member 70 in the vertical direction was measured. As a result, it was determined as "⊚" when the tensile strength was 20 kgf or more, and as "x" when the tensile strength was less than 20 kgf.

また、サンプルSA1〜SA6を対象として、給電電極54における耐酸化性を評価した。具体的には、各サンプルを、所定の条件(温度:600℃、時間:1000時間)下に晒すことによって実施した。この結果、端子部材70が給電電極54から脱離した場合に「×」、脱離しなかった場合に「◎」と判定した。 In addition, the oxidation resistance of the feeding electrode 54 was evaluated for the samples SA1 to SA6. Specifically, each sample was exposed to predetermined conditions (temperature: 600 ° C., time: 1000 hours). As a result, it was determined that the terminal member 70 was “x” when it was detached from the feeding electrode 54, and “⊚” when it was not detached.

A−8−2.評価結果について:
図7に示すように、サンプルSA1では、ロウ付け時クラックの発生、熱サイクル時クラックの発生、引張強度および耐酸化性のいずれにおいても「◎」であり、良好な結果が得られた。サンプルSA1は、実施形態の加熱装置100と同様に、上記断面において、X軸方向において、緩衝部材60の端子部材側端面Sbtが、端子部材70の緩衝部材側端面Stの範囲より内側に位置している(図3参照)。このため、ロウ付け接合の際に、端子側ロウ付け部81を形成するロウ材が、端子部材70の外周面よりも、緩衝部材60の外周面に這い上がりやすく、換言すれば、端子側ロウ付け部81が端子部材70の外周面に配置されにくい。これにより、ロウ付け時のクラックの発生および熱サイクル時のクラックの発生において良好な結果が得られたものと考えられる。また、サンプルSA1は、緩衝部材60において、給電電極54と接合する電極側端面Sbeの直径Dbe(電極側端面Sbeの面積)が、端子部材側端面Sbtの直径Dbt(端子部材側端面Sbtの面積)より大きい。これにより、緩衝部材60と給電電極54との接合強度が向上した結果、電極側ロウ付け部82における引張強度において良好な結果が得られたものと考えられる。また、サンプルSA1では、給電電極54の露出面Seが、緩衝部材60の電極側端面Sbeで覆われている。これにより、露出面Seの全面が、給電電極54と緩衝部材60との間に介在する電極側ロウ付け部82によって、覆われやすく、給電電極54の大気雰囲気かにおける酸化および劣化が抑制された結果、給電電極54からの端子部材70の脱離において良好な結果が得られたものと考えられる。
A-8-2. Evaluation result:
As shown in FIG. 7, in the sample SA1, cracks were generated during brazing, cracks were generated during the thermal cycle, and the tensile strength and oxidation resistance were all “⊚”, and good results were obtained. In the sample SA1, similarly to the heating device 100 of the embodiment, in the above cross section, the terminal member side end surface Sbt of the cushioning member 60 is located inside the range of the cushioning member side end surface St of the terminal member 70 in the X-axis direction. (See Fig. 3). Therefore, at the time of brazing joining, the brazing material forming the terminal-side brazing portion 81 is more likely to crawl up to the outer peripheral surface of the cushioning member 60 than the outer peripheral surface of the terminal member 70, in other words, the terminal-side brazing. It is difficult for the attachment portion 81 to be arranged on the outer peripheral surface of the terminal member 70. As a result, it is considered that good results were obtained in the generation of cracks during brazing and the generation of cracks during the thermal cycle. Further, in the sample SA1, in the buffer member 60, the diameter Dbe of the electrode side end surface Sbe (area of the electrode side end surface Sbe) to be joined to the feeding electrode 54 is the diameter Dbt of the terminal member side end surface Sbt (area of the terminal member side end surface Sbt). ) Greater. As a result, it is considered that as a result of improving the bonding strength between the buffer member 60 and the feeding electrode 54, a good result was obtained in the tensile strength of the electrode-side brazed portion 82. Further, in the sample SA1, the exposed surface Se of the feeding electrode 54 is covered with the electrode side end surface Sbe of the buffer member 60. As a result, the entire surface of the exposed surface Se is easily covered by the electrode-side brazing portion 82 interposed between the feeding electrode 54 and the buffer member 60, and oxidation and deterioration of the feeding electrode 54 in the atmospheric atmosphere are suppressed. As a result, it is considered that good results were obtained in the detachment of the terminal member 70 from the feeding electrode 54.

また、サンプルSA2においても、サンプルSA1と同様に、ロウ付け時クラックの発生、熱サイクル時クラックの発生、引張強度および耐酸化性のいずれにおいても「◎」であり、良好な結果が得られた。これは、サンプルSA2においても、上記サンプルSA1と同様に、上記断面において、X軸方向において、緩衝部材60aの端子部材側端面Sbtが、端子部材70の緩衝部材側端面Stの範囲より内側に位置していること、給電電極54と接合する電極側端面Sbeの直径Dbe(電極側端面Sbeの面積)が、端子部材側端面Sbtの直径Dbt(端子部材側端面Sbtの面積)より大きいこと、給電電極54の露出面Seが、緩衝部材60aの電極側端面Sbeで覆われていることによるものと考えられる。 Further, in the sample SA2 as well, as in the sample SA1, the cracks generated during brazing, the cracks generated during the thermal cycle, the tensile strength and the oxidation resistance were all “◎”, and good results were obtained. .. This is because, in the sample SA2 as well, in the cross section, the terminal member side end surface Sbt of the cushioning member 60a is located inside the range of the cushioning member side end surface St of the terminal member 70 in the X-axis direction. The diameter Dbe of the electrode side end surface Sbe to be joined to the power supply electrode 54 (area of the electrode side end surface Sbe) is larger than the diameter Dbt of the terminal member side end surface Sbt (area of the terminal member side end surface Sbt). It is considered that this is because the exposed surface Se of the electrode 54 is covered with the electrode side end surface Sbe of the cushioning member 60a.

また、サンプルSA3においては、ロウ付け時クラックの発生が「○」である以外は、熱サイクル時クラックの伸展、引張強度および耐酸化性のいずれにおいても「◎」であり、良好な結果が得られた。これは、サンプルSA3においても、上記サンプルSA1と同様に、上記断面において、X軸方向において、緩衝部材60bの端子部材側端面Sbtが、端子部材70の緩衝部材側端面Stの範囲より内側に位置していること、給電電極54と接合する電極側端面Sbeの直径Dbe(電極側端面Sbeの面積)が、端子部材側端面Sbtの直径Dbt(端子部材側端面Sbtの面積)より大きいこと、給電電極54の露出面Seが、緩衝部材60bの電極側端面Sbeで覆われていることによるものと考えられる。また、ロウ付け時クラックの発生が「○」である結果については、端子部材70の緩衝部材側端面Stと、緩衝部材60bの端子部材側部分61bにおける側面Sbとから形成される挟角θbが小さすぎると熱応力の影響を受けやすいことによるものと考えられる。 Further, in the sample SA3, except that the occurrence of cracks during brazing was "○", the elongation, tensile strength and oxidation resistance of the cracks during the thermal cycle were all "◎", and good results were obtained. Was brazed. This is because, in the sample SA3 as well, in the cross section, the terminal member side end surface Sbt of the cushioning member 60b is located inside the range of the cushioning member side end surface St of the terminal member 70 in the X-axis direction. The diameter Dbe of the electrode side end surface Sbe to be joined to the power supply electrode 54 (area of the electrode side end surface Sbe) is larger than the diameter Dbt of the terminal member side end surface Sbt (area of the terminal member side end surface Sbt). It is considered that this is because the exposed surface Se of the electrode 54 is covered with the electrode side end surface Sbe of the cushioning member 60b. Regarding the result that the occurrence of cracks at the time of brazing is “◯”, the sandwich angle θb formed from the end surface St on the buffer member side of the terminal member 70 and the side surface Sb on the terminal member side portion 61b of the buffer member 60b If it is too small, it is considered that it is easily affected by thermal stress.

また、サンプルSA4においては、耐酸化性が「×」である以外は、ロウ付け時クラックの発生、熱サイクル時クラックの発生および引張強度のいずれにおいても「◎」であり、良好な結果が得られた。これは、サンプルSA4においても、上記サンプルSA1と同様に、上記断面において、X軸方向において、緩衝部材60cの端子部材側端面Sbtが、端子部材70の緩衝部材側端面Stの範囲より内側に位置していること、給電電極54と接合する電極側端面Sbeの直径Dbe(電極側端面Sbeの面積)が、端子部材側端面Sbtの直径Dbt(端子部材側端面Sbtの面積)より大きいことによるものと考えられる。また、耐酸化性が「×」である結果については、給電電極54の露出面Seの一部が、緩衝部材60cの電極側端面Sbeで覆われていないことによるものと考えられる。 Further, in the sample SA4, except that the oxidation resistance was "x", the cracks during brazing, the cracks during the thermal cycle, and the tensile strength were all "◎", and good results were obtained. Was brazed. This is because, in the sample SA4 as well, in the cross section, the terminal member side end surface Sbt of the cushioning member 60c is located inside the range of the cushioning member side end surface St of the terminal member 70 in the X-axis direction. This is because the diameter Dbe (area of the electrode side end surface Sbe) of the electrode side end surface Sbe to be joined to the feeding electrode 54 is larger than the diameter Dbt (area of the terminal member side end surface Sbt) of the terminal member side end surface Sbt. it is conceivable that. Further, it is considered that the result that the oxidation resistance is "x" is that a part of the exposed surface Se of the feeding electrode 54 is not covered with the electrode side end surface Sbe of the buffer member 60c.

また、サンプルSA5においては、引張強度が「×」である以外は、ロウ付け時クラックの発生、熱サイクル時クラックの発生および耐酸化性のいずれにおいても「◎」であり、良好な結果が得られた。これは、サンプルSA5においても、上記サンプルSA1と同様に、上記断面において、X軸方向において、緩衝部材60dの端子部材側端面Sbtが、端子部材70の緩衝部材側端面Stの範囲より内側に位置していること、給電電極54の露出面Seが、緩衝部材60bの電極側端面Sbeで覆われていることによるものと考えられる。また、引張強度が「×」である結果については、上記断面において、X軸方向において、給電電極54と接合する電極側端面Sbeの直径Dbe(電極側端面Sbeの面積)と、端子部材側端面Sbtの直径Dbt(端子部材側端面Sbtの面積)とが同等であることによるものと考えられる。 Further, in the sample SA5, except that the tensile strength was "x", the cracks during brazing, the cracks during the thermal cycle, and the oxidation resistance were all "◎", and good results were obtained. Was brazed. This is because, in the sample SA5 as well, in the cross section, the terminal member side end surface Sbt of the cushioning member 60d is located inside the range of the cushioning member side end surface St of the terminal member 70 in the X-axis direction. It is considered that this is because the exposed surface Se of the feeding electrode 54 is covered with the electrode side end surface Sbe of the buffer member 60b. Regarding the result that the tensile strength is "x", in the above cross section, in the X-axis direction, the diameter Dbe of the electrode side end surface Sbe (area of the electrode side end surface Sbe) to be joined to the feeding electrode 54 and the terminal member side end surface. It is considered that this is because the diameter Dbt of Sbt (the area of the end surface Sbt on the terminal member side) is equivalent.

また、サンプルSA6においては、引張強度および耐酸化性は「◎」である一方、ロウ付け時クラックの発生および熱サイクル時クラックの伸展は「×」である結果となった。引張強度および耐酸化性については、サンプルSA6においても、上記サンプルSA1と同様に、上記断面において、X軸方向において、給電電極54と接合する電極側端面Sbeの直径Dbe(電極側端面Sbeの面積)が、端子部材側端面Sbtの直径Dbt(端子部材側端面Sbtの面積)より大きいこと、給電電極54の露出面Seが、緩衝部材60xの電極側端面Sbeで覆われていることによるものと考えられる。一方、ロウ付け時クラックの発生および熱サイクル時クラックの伸展については、上記断面において、X軸方向において、緩衝部材60xの端子部材側端面Sbtが、端子部材70の緩衝部材側端面Stの範囲より外側に位置していることによるものと考えられる。 Further, in the sample SA6, the tensile strength and the oxidation resistance were "⊚", while the occurrence of cracks during brazing and the extension of cracks during the thermal cycle were "x". Regarding the tensile strength and oxidation resistance, in the sample SA6 as well as in the sample SA1, in the cross section, in the X-axis direction, the diameter Dbe of the electrode side end surface Sbe to be joined to the feeding electrode 54 (the area of the electrode side end surface Sbe). ) Is larger than the diameter Dbt of the terminal member side end surface Sbt (the area of the terminal member side end surface Sbt), and the exposed surface Se of the feeding electrode 54 is covered with the electrode side end surface Sbe of the cushioning member 60x. Conceivable. On the other hand, regarding the occurrence of cracks during brazing and the extension of cracks during the thermal cycle, in the above cross section, the terminal member side end surface Sbt of the cushioning member 60x is within the range of the cushioning member side end surface St of the terminal member 70 in the X-axis direction. It is considered that it is located on the outside.

A−9.本実施形態の効果:
以上説明したように、本実施形態の加熱装置100は、保持体10と端子部材70とを備え、保持体10の保持面S1上に半導体ウェハW等の対象物を保持する装置である。保持体10は、Z軸方向に略直交する保持面S1と、保持面S1とは反対側の裏面S2とを有する部材である。保持体10の裏面S2に露出するように給電電極54が配置されている。Z軸方向において給電電極54と端子部材70との間には、端子部材70の熱膨張係数より小さい熱膨張係数を有する緩衝部材60が配置されている。また、本実施形態の加熱装置100は、緩衝部材60と端子部材70とを接合する端子側ロウ付け部81と、給電電極54と緩衝部材60とを接合する電極側ロウ付け部82とを備える。また、本実施形態の加熱装置100では、上記断面において、X軸方向において、緩衝部材60の端子部材側端面Sbtは、電極側端面Sbeの範囲以内に位置している。さらに、X軸方向において、緩衝部材60の端子部材側端面Sbtは、端子部材70の緩衝部材側端面Stの範囲より内側に位置している。
A-9. Effect of this embodiment:
As described above, the heating device 100 of the present embodiment is a device including a holding body 10 and a terminal member 70, and holds an object such as a semiconductor wafer W on the holding surface S1 of the holding body 10. The holding body 10 is a member having a holding surface S1 substantially orthogonal to the Z-axis direction and a back surface S2 on the opposite side of the holding surface S1. The feeding electrode 54 is arranged so as to be exposed on the back surface S2 of the holding body 10. A buffer member 60 having a coefficient of thermal expansion smaller than the coefficient of thermal expansion of the terminal member 70 is arranged between the feeding electrode 54 and the terminal member 70 in the Z-axis direction. Further, the heating device 100 of the present embodiment includes a terminal-side brazing portion 81 for joining the buffer member 60 and the terminal member 70, and an electrode-side brazing portion 82 for joining the feeding electrode 54 and the buffer member 60. .. Further, in the heating device 100 of the present embodiment, in the above cross section, the terminal member side end surface Sbt of the buffer member 60 is located within the range of the electrode side end surface Sbe in the X-axis direction. Further, in the X-axis direction, the terminal member side end surface Sbt of the cushioning member 60 is located inside the range of the cushioning member side end surface St of the terminal member 70.

本実施形態の加熱装置100では、上記断面におけるX軸方向において、緩衝部材60の端子部材側端面Sbtは、端子部材70の緩衝部材側端面Stの範囲より内側に位置している。このため、ロウ付け接合の際に、端子側ロウ付け部81を形成するロウ材は、端子部材70の外周面よりも、緩衝部材60の外周面に這い上がりやすい。換言すれば、端子側ロウ付け部81は端子部材70の外周面に配置されにくい。 In the heating device 100 of the present embodiment, the terminal member side end surface Sbt of the cushioning member 60 is located inside the range of the cushioning member side end surface St of the terminal member 70 in the X-axis direction in the cross section. Therefore, at the time of brazing joining, the brazing material forming the terminal-side brazing portion 81 tends to crawl up to the outer peripheral surface of the cushioning member 60 rather than the outer peripheral surface of the terminal member 70. In other words, the terminal-side brazing portion 81 is difficult to be arranged on the outer peripheral surface of the terminal member 70.

ここで、緩衝部材60の端子部材側端面Sbtが、端子部材70の緩衝部材側端面Stの範囲より外側に位置している場合、ロウ付け接合の際に、端子側ロウ付け部81を形成するロウ材は、端子部材70の外周面に這い上がりやすい。ロウ付け部を形成するロウ材が、端子部材70の外周面に配置される構成では、端子部材70の熱膨張係数が緩衝部材60の熱膨張係数より大きいことに起因して、上記ロウ付け接合におけるロウ材の凝固の際に、端子部材70の収縮によりロウ材に引張応力がかかる傾向がある。これにより、ロウ付け部の表面にクラックが発生する傾向がある。一方、本実施形態の加熱装置100のように、上記断面におけるX軸方向において、緩衝部材60の端子部材側端面Sbtが、端子部材70の緩衝部材側端面Stの範囲より内側に位置している構成では、端子側ロウ付け部81は、端子部材70の外周面よりも、端子部材70の緩衝部材側端面Stに配置されやすい。このため、上記ロウ材の凝固の際に、端子部材70の収縮によるロウ材への引張応力の発生が抑制される。 Here, when the terminal member side end surface Sbt of the cushioning member 60 is located outside the range of the cushioning member side end surface St of the terminal member 70, the terminal side brazing portion 81 is formed at the time of brazing joining. The brazing material easily crawls up on the outer peripheral surface of the terminal member 70. In the configuration in which the brazing material forming the brazing portion is arranged on the outer peripheral surface of the terminal member 70, the brazing joint is caused by the fact that the coefficient of thermal expansion of the terminal member 70 is larger than the coefficient of thermal expansion of the buffer member 60. When the brazing material is solidified in the above, the brazing material tends to be subjected to tensile stress due to the shrinkage of the terminal member 70. As a result, cracks tend to occur on the surface of the brazed portion. On the other hand, like the heating device 100 of the present embodiment, the terminal member side end surface Sbt of the cushioning member 60 is located inside the range of the cushioning member side end surface St of the terminal member 70 in the X-axis direction in the cross section. In the configuration, the terminal-side brazing portion 81 is more likely to be arranged on the cushioning member-side end surface St of the terminal member 70 than on the outer peripheral surface of the terminal member 70. Therefore, when the brazing material is solidified, the generation of tensile stress on the brazing material due to the shrinkage of the terminal member 70 is suppressed.

また、本実施形態の加熱装置100では、上記ロウ付け接合におけるロウ材の凝固の際に引張応力の発生が抑制されるため、ひいては、端子側ロウ付け部81に残留する引張残留応力の発生を抑制することができる。このため、上記ロウ付け接合後の熱サイクル時においても、引張残留応力に起因する端子側ロウ付け部81へのクラックの発生や、当該クラックの伸展を抑制することができる。 Further, in the heating device 100 of the present embodiment, the generation of tensile stress is suppressed at the time of solidification of the brazing material in the brazing joint, so that the generation of tensile residual stress remaining in the brazing portion 81 on the terminal side is generated. It can be suppressed. Therefore, even during the thermal cycle after the brazing joint, it is possible to suppress the generation of cracks in the terminal-side brazing portion 81 due to the tensile residual stress and the extension of the cracks.

従って、本実施形態の加熱装置100によれば、緩衝部材60と端子部材70とを接合する端子側ロウ付け部81に引張応力がかかることを抑制することができ、ひいては、端子側ロウ付け部81にクラックが発生することを抑制することができる。 Therefore, according to the heating device 100 of the present embodiment, it is possible to suppress the application of tensile stress to the terminal-side brazing portion 81 that joins the cushioning member 60 and the terminal member 70, and by extension, the terminal-side brazing portion. It is possible to suppress the occurrence of cracks in 81.

また、本実施形態の加熱装置100では、上記断面におけるX軸方向において、緩衝部材60の端子部材側端面Sbtは、緩衝部材60の電極側端面Sbeの範囲より内側に位置している。また、上記断面において、緩衝部材60は、端子部材側端面Sbtを一辺とする略矩形状の端子部材側部分61と、電極側端面Sbeを一辺とする略矩形状の電極側部分62とから構成されている。換言すれば、本実施形態の加熱装置100では、上記断面において、緩衝部材60における電極側端面Sbeは、端子部材側端面Sbtより大きい。このため、緩衝部材60の電極側端面Sbeが端子部材側端面Sbtと同等の面積である構成と比較して、緩衝部材60と給電電極54との接合強度を向上させ、ひいては、電極側ロウ付け部82における引張強度を向上させることができる。従って、本実施形態の加熱装置100によれば、給電電極54からの緩衝部材60ひいては端子部材70の脱離を抑制することができる。 Further, in the heating device 100 of the present embodiment, the terminal member side end surface Sbt of the cushioning member 60 is located inside the range of the electrode side end surface Sbe of the cushioning member 60 in the X-axis direction in the cross section. Further, in the above cross section, the cushioning member 60 is composed of a substantially rectangular terminal member side portion 61 having a terminal member side end surface Sbt as one side and a substantially rectangular electrode side portion 62 having an electrode side end surface Sbe as one side. Has been done. In other words, in the heating device 100 of the present embodiment, in the above cross section, the electrode side end surface Sbe of the buffer member 60 is larger than the terminal member side end surface Sbt. Therefore, the joint strength between the cushioning member 60 and the feeding electrode 54 is improved as compared with the configuration in which the electrode side end surface Sbe of the cushioning member 60 has the same area as the terminal member side end surface Sbt, and thus the electrode side brazing. The tensile strength in the portion 82 can be improved. Therefore, according to the heating device 100 of the present embodiment, it is possible to suppress the detachment of the buffer member 60 and thus the terminal member 70 from the feeding electrode 54.

また、本実施形態の加熱装置100では、上記断面におけるX軸方向において、給電電極54における保持体10の裏面S2に露出している露出面Seは、緩衝部材60の電極側端面Sbeの範囲より内側に位置している。換言すれば、上記断面において、上記露出面Seの全面が上記電極側端面Sbeで覆われている。上記露出面Seにおいて、電極側ロウ付け部82で覆われない部分が生じると、当該部分、ひいては、給電電極54自体が、大気雰囲気下において、酸化され、または、劣化するおそれがある。本実施形態の加熱装置100では、給電電極54の上記露出面Seが、緩衝部材60の電極側端面Sbeの範囲より外側に位置している構成と比較して、上記断面におけるX軸方向において、上記露出面Seの全面がロウ材(電極側ロウ付け部82)によって、覆われやすくなる。従って、本実施形態の加熱装置100によれば、大気雰囲気下における給電電極54の酸化および劣化を抑制することができ、ひいては、給電電極54からの緩衝部材60ひいては端子部材70の脱離を抑制することができる。 Further, in the heating device 100 of the present embodiment, the exposed surface Se exposed on the back surface S2 of the holding body 10 in the feeding electrode 54 in the X-axis direction in the cross section is within the range of the electrode side end surface Sbe of the cushioning member 60. It is located inside. In other words, in the cross section, the entire surface of the exposed surface Se is covered with the electrode side end surface Sbe. If a portion of the exposed surface Se that is not covered by the electrode-side brazed portion 82 is formed, the portion, and thus the feeding electrode 54 itself, may be oxidized or deteriorated in the air atmosphere. In the heating device 100 of the present embodiment, the exposed surface Se of the feeding electrode 54 is located outside the range of the electrode side end surface Sbe of the buffer member 60 in the X-axis direction in the cross section, as compared with the configuration. The entire surface of the exposed surface Se is easily covered with the brazing material (electrode-side brazing portion 82). Therefore, according to the heating device 100 of the present embodiment, oxidation and deterioration of the feeding electrode 54 in the atmospheric atmosphere can be suppressed, and by extension, detachment of the buffer member 60 and thus the terminal member 70 from the feeding electrode 54 can be suppressed. can do.

また、本実施形態の加熱装置100では、Z軸方向視において、端子部材70の緩衝部材側端面Stの外縁Etは、緩衝部材60の端子部材側端面Sbtの外縁Ebtを取り囲んでいる。このため、いずれの上記断面においても、上記ロウ付け接合の際におけるロウ材への引張応力の発生を抑制し、かつ、端子側ロウ付け部81における上記引張残留応力の発生を抑制することができる。従って、本実施形態の加熱装置100によれば、緩衝部材60と端子部材70とを接合する端子側ロウ付け部81に引張応力がかかることをより効果的に抑制することができ、ひいては、端子側ロウ付け部81にクラックが発生することをより効果的に抑制することができる。 Further, in the heating device 100 of the present embodiment, the outer edge Et of the cushioning member side end surface St of the terminal member 70 surrounds the outer edge Ebt of the terminal member side end surface Sbt of the cushioning member 60 in the Z-axis direction view. Therefore, in any of the above cross sections, it is possible to suppress the generation of tensile stress on the brazed material at the time of the brazing joint and the generation of the tensile residual stress at the terminal side brazing portion 81. .. Therefore, according to the heating device 100 of the present embodiment, it is possible to more effectively suppress the application of tensile stress to the terminal-side brazed portion 81 that joins the cushioning member 60 and the terminal member 70, and by extension, the terminal. It is possible to more effectively suppress the occurrence of cracks in the side brazed portion 81.

B.変形例:
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
B. Modification example:
The technique disclosed in the present specification is not limited to the above-described embodiment, and can be transformed into various forms without departing from the gist thereof. For example, the following modifications are also possible.

上記実施形態における加熱装置100の構成は、あくまで例示であり、種々変形可能である。例えば、本実施形態において、Z軸方向に平行であり、かつ、Z軸方向視での緩衝部材60の中心を通る少なくとも一つの断面において、上記構成が採用されてもよい。また、本実施形態において、Z軸方向に平行であり、かつ、Z軸方向視での緩衝部材60の中心を通らない少なくとも一つの断面において、上記構成が採用されてもよい。 The configuration of the heating device 100 in the above embodiment is merely an example and can be variously modified. For example, in the present embodiment, the above configuration may be adopted in at least one cross section that is parallel to the Z-axis direction and passes through the center of the cushioning member 60 in the Z-axis direction. Further, in the present embodiment, the above configuration may be adopted in at least one cross section that is parallel to the Z-axis direction and does not pass through the center of the cushioning member 60 in the Z-axis direction.

本実施形態の加熱装置100において、給電電極54の表面の内、緩衝部材60の電極側端面Sbeに対向する表面(以下、「給電電極54の下面」ともいう)の一部が、保持体10の裏面S2に露出している構成が採用されてもよい。このような構成において、露出面Seは、当該給電電極54の下面の内の保持体10の裏面S2に露出した部分に相当する。 In the heating device 100 of the present embodiment, a part of the surface of the feeding electrode 54 facing the electrode side end surface Sbe of the buffer member 60 (hereinafter, also referred to as “lower surface of the feeding electrode 54”) is the holding body 10. A configuration exposed on the back surface S2 of the above may be adopted. In such a configuration, the exposed surface Se corresponds to a portion of the lower surface of the feeding electrode 54 exposed to the back surface S2 of the holding body 10.

また、上記実施形態における各部材の形状は、あくまで一例であり、種々変形可能である。例えば、上記実施形態では、給電電極54はZ軸方向視で略円形であるとしているが、給電電極54のZ軸方向視での形状は略円形以外の形状であってもよい。緩衝部材60や端子部材70についても同様である。 Further, the shape of each member in the above embodiment is merely an example and can be variously deformed. For example, in the above embodiment, the feeding electrode 54 is said to be substantially circular in the Z-axis direction, but the shape of the feeding electrode 54 in the Z-axis direction may be a shape other than the substantially circular shape. The same applies to the cushioning member 60 and the terminal member 70.

また、上記実施形態の加熱装置100における各部材を形成する材料は、あくまで例示であり、各部材が他の材料により形成されてもよい。また、上記実施形態における加熱装置100の製造方法は、あくまで一例であり、種々変形可能である。 Further, the material forming each member in the heating device 100 of the above embodiment is merely an example, and each member may be formed of another material. Further, the method for manufacturing the heating device 100 in the above embodiment is merely an example, and various modifications can be made.

また、上記実施形態では、ヒータ電極50に電気的に接続された給電電極54と、端子部材70と、給電電極54と端子部材70との間に配置された緩衝部材60と、緩衝部材60と端子部材70との間を接合する端子側ロウ付け部81と、緩衝部材60と給電電極54との間を接合する電極側ロウ付け部82と、を備える加熱装置100について詳細に説明したが、本明細書に開示された技術は、保持体の裏面に少なくとも一部が露出するように配置されたヒータ電極、RF電極またはRF電極に電気的に接続された給電電極等の電極と、端子部材と、電極と端子部材との間に配置された緩衝部材と、緩衝部材と端子部材との間を接合する端子側ロウ付け部と、緩衝部材と電極との間を接合する電極側ロウ付け部と、を備え、保持体の表面上に対象物を保持する他の保持装置(例えば、静電チャック等)にも同様に適用可能である。 Further, in the above embodiment, the feeding electrode 54 electrically connected to the heater electrode 50, the terminal member 70, the cushioning member 60 arranged between the feeding electrode 54 and the terminal member 70, and the buffering member 60 Although the heating device 100 including the terminal-side brazing portion 81 for joining the terminal member 70 and the electrode-side brazing portion 82 for joining the buffer member 60 and the feeding electrode 54 has been described in detail. The techniques disclosed herein include electrodes such as heater electrodes, RF electrodes or feeding electrodes electrically connected to RF electrodes, which are arranged so that at least a part is exposed on the back surface of the holder, and terminal members. And a cushioning member arranged between the electrode and the terminal member, a terminal-side brazing portion for joining between the cushioning member and the terminal member, and an electrode-side brazing portion for joining between the cushioning member and the electrode. And, it can be similarly applied to other holding devices (for example, an electrostatic chuck, etc.) that hold an object on the surface of the holding body.

10:保持体 12:凹部 20:柱状支持体 22:貫通孔 30:接合部 50:ヒータ電極 52:ビア導体 54:給電電極 60:緩衝部材 60a:緩衝部材 60b:緩衝部材 60c:緩衝部材 60d:緩衝部材 60x:緩衝部材 61:端子部材側部分 61b:端子部材側部分 61c:端子部材側部分 62:電極側部分 62b:電極側部分 62c:電極側部分 70:端子部材 81:端子側ロウ付け部 82:電極側ロウ付け部 100:加熱装置 100a:加熱装置 100b:加熱装置 100c:加熱装置 100d:加熱装置 100x:加熱装置 S1:保持面 S2:裏面 S3:上面 Sa:側面 Sb:側面 Sbe:電極側端面 Sbt:端子部材側端面 Se:露出面 St:緩衝部材側端面 W:半導体ウェハ 10: Holder 12: Recession 20: Columnar support 22: Through hole 30: Joint 50: Heater electrode 52: Via conductor 54: Feed electrode 60: Buffer member 60a: Buffer member 60b: Buffer member 60c: Buffer member 60d: Buffer member 60x: Buffer member 61: Terminal member side part 61b: Terminal member side part 61c: Terminal member side part 62: Electrode side part 62b: Electrode side part 62c: Electrode side part 70: Terminal member 81: Terminal side brazed part 82: Electrode side brazed part 100: Heating device 100a: Heating device 100b: Heating device 100c: Heating device 100d: Heating device 100x: Heating device S1: Holding surface S2: Back surface S3: Top surface Sa: Side surface Sb: Side surface Sbe: Electrode Side end surface Sbt: Terminal member side end surface Se: Exposed surface St: Buffer member side end surface W: Semiconductor wafer

Claims (4)

第1の方向に略直交する第1の表面と、前記第1の表面とは反対側の第2の表面と、を有する保持体と、
前記保持体の前記第2の表面に少なくとも一部が露出するように配置された電極と、
端子部材と、
前記第1の方向において前記電極と前記端子部材との間に配置された緩衝部材と、
前記緩衝部材と前記端子部材とを接合する第1のロウ付け部と、
前記電極と前記緩衝部材とを接合する第2のロウ付け部と、
を備え、前記保持体の前記第1の表面上に対象物を保持する保持装置において、
前記緩衝部材の熱膨張係数は、前記端子部材の熱膨張係数より小さく、
前記第1の表面に略直交する少なくとも1つの特定断面において、
前記第1の方向に略直交する第2の方向において、前記緩衝部材の前記第1の方向における端面のうち、前記端子部材に対向する端子部材側端面は、前記緩衝部材における前記電極に対向する電極側端面の範囲以内に位置しており、
前記第2の方向において、前記緩衝部材の前記端子部材側端面は、前記端子部材の前記第1の方向における端面のうち、前記端子部材側端面に対向する緩衝部材側端面の範囲より内側に位置している、
ことを特徴とする保持装置。
A retainer having a first surface that is substantially orthogonal to the first direction and a second surface that is opposite to the first surface.
An electrode arranged so that at least a part of the holder is exposed on the second surface of the holder.
With terminal members
A cushioning member arranged between the electrode and the terminal member in the first direction,
A first brazed portion that joins the cushioning member and the terminal member,
A second brazed portion that joins the electrode and the buffer member,
In a holding device for holding an object on the first surface of the holding body.
The coefficient of thermal expansion of the buffer member is smaller than the coefficient of thermal expansion of the terminal member.
In at least one specific cross section substantially orthogonal to the first surface
In the second direction substantially orthogonal to the first direction, of the end faces of the cushioning member in the first direction, the terminal member-side end face facing the terminal member faces the electrode of the cushioning member. It is located within the range of the electrode side end face and
In the second direction, the terminal member side end face of the shock absorber is located inside the range of the cushion member side end face facing the terminal member side end face of the terminal face of the terminal member in the first direction. doing,
A holding device characterized by that.
請求項1に記載の保持装置において、
前記特定断面における前記第2の方向において、前記緩衝部材の前記端子部材側端面は、前記緩衝部材の前記電極側端面の範囲より内側に位置しており、
前記特定断面において、前記緩衝部材は、
前記端子部材側端面を一辺とする略矩形状の端子部材側部分と、
前記電極側端面を一辺とする略矩形状の電極側部分と、から構成されている、
ことを特徴とする保持装置。
In the holding device according to claim 1,
In the second direction of the specific cross section, the terminal member side end face of the cushioning member is located inside the range of the electrode side end face of the cushioning member.
In the specific cross section, the cushioning member is
A substantially rectangular terminal member side portion having the terminal member side end surface as one side,
It is composed of a substantially rectangular electrode-side portion having the electrode-side end surface as one side.
A holding device characterized by that.
請求項1または請求項2に記載の保持装置において、
前記特定断面における前記第2の方向において、前記電極の前記第2の表面に露出している露出面は、前記緩衝部材の前記電極側端面の範囲より内側に位置している、
ことを特徴とする保持装置。
In the holding device according to claim 1 or 2.
In the second direction of the specific cross section, the exposed surface exposed on the second surface of the electrode is located inside the range of the electrode side end surface of the cushioning member.
A holding device characterized by that.
請求項1から請求項3までのいずれか一項に記載の保持装置において、
前記第1の方向視において、前記端子部材の前記緩衝部材側端面の外縁は、前記緩衝部材の前記端子部材側端面の外縁を取り囲んでいる、
ことを特徴とする保持装置。
In the holding device according to any one of claims 1 to 3.
In the first directional view, the outer edge of the end face of the terminal member on the side of the shock absorber surrounds the outer edge of the end face of the shock absorber on the side of the terminal member.
A holding device characterized by that.
JP2019144135A 2019-08-06 2019-08-06 Supporting device Pending JP2021027180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019144135A JP2021027180A (en) 2019-08-06 2019-08-06 Supporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019144135A JP2021027180A (en) 2019-08-06 2019-08-06 Supporting device

Publications (1)

Publication Number Publication Date
JP2021027180A true JP2021027180A (en) 2021-02-22

Family

ID=74664788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019144135A Pending JP2021027180A (en) 2019-08-06 2019-08-06 Supporting device

Country Status (1)

Country Link
JP (1) JP2021027180A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130609A (en) * 2006-11-16 2008-06-05 Ngk Insulators Ltd Heating apparatus
JP2008198975A (en) * 2007-01-17 2008-08-28 Tokyo Electron Ltd Mounting table structure and processing apparatus
JP2017183329A (en) * 2016-03-28 2017-10-05 日本碍子株式会社 Wafer mounting device
JP2018203581A (en) * 2017-06-07 2018-12-27 日本特殊陶業株式会社 Ceramic structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130609A (en) * 2006-11-16 2008-06-05 Ngk Insulators Ltd Heating apparatus
JP2008198975A (en) * 2007-01-17 2008-08-28 Tokyo Electron Ltd Mounting table structure and processing apparatus
JP2017183329A (en) * 2016-03-28 2017-10-05 日本碍子株式会社 Wafer mounting device
JP2018203581A (en) * 2017-06-07 2018-12-27 日本特殊陶業株式会社 Ceramic structure

Similar Documents

Publication Publication Date Title
KR100709544B1 (en) Joined body and manufacturing method for the same
US7375046B2 (en) Yttria sintered body, ceramic member using yttria sintered body, and manufacturing method of yttria sintered body
JP4796354B2 (en) Electrostatic chuck and method for producing yttria sintered body
JP2005101108A (en) Method for manufacturing placement table
JP6921306B2 (en) Holding device and manufacturing method of holding device
TW201616915A (en) Joining structure
CN107872903B (en) Heating device
JP6082524B2 (en) Bonded body of ceramic member and metal member and manufacturing method thereof
JP2021027180A (en) Supporting device
JP4768185B2 (en) Electrostatic chuck, susceptor and manufacturing method thereof
JP2020191199A (en) Heater and manufacturing method for heater
US20040146737A1 (en) Joined structures of ceramics
JP7227806B2 (en) holding device
JP7208801B2 (en) holding device
TWI772767B (en) Electrode-embedded member, method for manufacturing the same, electrostatic clip, and ceramic heater
JP2021015926A (en) Method for manufacturing retainer
JP7265941B2 (en) zygote
JP2020033236A (en) Conjugate
JP2002016005A (en) Electrode terminal junction ceramic member for semiconductor manufacturing device, and its manufacturing method
JP2022034700A (en) Joint body, and substrate holding member
JP2020205294A (en) Holding device and manufacturing method of the same
JP2021170567A (en) Holding device and manufacturing method thereof
JP2023116214A (en) Electrode embedded member and method of manufacturing the same
JP2021015928A (en) Retainer
JP2020174137A (en) Holding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240110

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20240322