JP2021025059A - Method of extending hot blast pipe and method of constructing additional hot blast stove - Google Patents

Method of extending hot blast pipe and method of constructing additional hot blast stove Download PDF

Info

Publication number
JP2021025059A
JP2021025059A JP2019140833A JP2019140833A JP2021025059A JP 2021025059 A JP2021025059 A JP 2021025059A JP 2019140833 A JP2019140833 A JP 2019140833A JP 2019140833 A JP2019140833 A JP 2019140833A JP 2021025059 A JP2021025059 A JP 2021025059A
Authority
JP
Japan
Prior art keywords
pipe
hot air
extension
shielding
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019140833A
Other languages
Japanese (ja)
Other versions
JP7247047B2 (en
Inventor
和美 倉吉
Kazumi Kurayoshi
和美 倉吉
土井 昭仁
Akihito Doi
昭仁 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2019140833A priority Critical patent/JP7247047B2/en
Priority to KR1020200093634A priority patent/KR102490269B1/en
Publication of JP2021025059A publication Critical patent/JP2021025059A/en
Application granted granted Critical
Publication of JP7247047B2 publication Critical patent/JP7247047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/10Other details, e.g. blast mains
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/02Brick hot-blast stoves
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/08Iron hot-blast stoves
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/16Cooling or drying the hot-blast

Abstract

To provide a method of extending a hot blast pipe and a method of constructing an additional hot blast stove capable of minimizing a shutdown period of a blast furnace.SOLUTION: The present invention provides a method of extending the hot blast pipe connected with the blast furnace and existing hot blast stoves and connecting the same to an additional hot blast stove, in which a portion of the hot blast pipe is opened and a connecting pipe that communicates with the hot blast pipe is installed, and a blocking pipe whose inside is closed with a blocking plate is connected to the connecting pipe in a preparatory step S1, an extension pipe is installed from the blocking pipe to the additional hot blast stove in an extension step S2, and the blocking pipe is removed from between the connecting pipe and a communication pipe, whose inside communicates between the connection pipe and the extension pipe, is installed so as to communicate the connecting pipe with the extension pipe, in a communication step S3.SELECTED DRAWING: Figure 4

Description

本発明は、熱風管の延長方法および熱風炉の増設方法に関する。 The present invention relates to a method of extending a hot air pipe and a method of expanding a hot air furnace.

製銑用の高炉には、炉内に熱風を供給するための熱風炉が設置される。
熱風炉は、燃焼室および蓄熱室を備えて構成され、燃焼室で空気を加熱し、加熱された空気を蓄熱室に通すことで、蓄熱室内の蓄熱煉瓦に蓄熱する。十分に蓄熱された蓄熱室に空気を通すことで、この空気を加熱することができる。
通常、高炉1基に対して熱風炉が3〜5基設けられ、各熱風炉は熱風管を介して高炉の環状管に接続され、熱風炉の熱風は熱風管から環状管を経て羽口から高炉内へと供給される。熱風管は、高炉に至る熱風本管と、熱風本管から各熱風炉へと分岐する熱風枝管とで構成される。
複数基ある熱風炉においては、各熱風炉で燃焼(蓄熱)と送風(熱風供給)とを交互に繰り返すとともに、各熱風枝管に設置された熱風弁により熱風炉を順次切り替えることによって、高炉に対して高温の送風を常に連続して行うことができる(特許文献1参照)。
In the iron-making blast furnace, a hot-air furnace for supplying hot air into the furnace is installed.
The hot air furnace is configured to include a combustion chamber and a heat storage chamber, and heats air in the combustion chamber and passes the heated air through the heat storage chamber to store heat in the heat storage bricks in the heat storage chamber. This air can be heated by passing air through a heat storage chamber that has sufficiently stored heat.
Normally, 3 to 5 hot air furnaces are provided for one blast furnace, and each hot air furnace is connected to the annular pipe of the blast furnace via a hot air pipe, and the hot air of the hot air furnace passes from the hot air pipe to the annular pipe and from the tuyere. It is supplied into the blast furnace. The hot air pipe is composed of a hot air main pipe leading to the blast furnace and a hot air branch pipe branching from the hot air main pipe to each hot air furnace.
In multiple hot air furnaces, combustion (heat storage) and ventilation (hot air supply) are alternately repeated in each hot air furnace, and the hot air furnaces are sequentially switched by the hot air valves installed in each hot air branch pipe to make a blast furnace. On the other hand, high-temperature air can always be continuously blown (see Patent Document 1).

このような熱風炉と高炉とを結ぶ熱風枝管ないし熱風本管では、内部を流通する高温(1100〜1300℃)の熱風に耐えるべく、鋼製の管材の内面に耐火煉瓦を張った構造が採用される。
これらの耐火煉瓦は、高炉の改修工事の際に熱風管内を常温まで冷却した際に、部分的もしくは全面的に補修されることが多い。しかしながら、近年は、高炉の寿命も約15〜20年と長くなっており、その期間の途中で耐火煉瓦が損傷、脱落することもある。耐火煉瓦の損傷等をそのまま放置しておくと、鉄皮温度が上昇し、ひいては鉄皮に開口が生じ、高炉の操業に支障をきたすこともある。従って、耐火煉瓦が損傷した場合は、通常操業時であっても早急な補修が必要である。
In such a hot air branch pipe or a hot air main pipe connecting a hot air furnace and a blast furnace, a structure in which refractory bricks are stretched on the inner surface of a steel pipe material in order to withstand the high temperature (1100 to 1300 ° C.) hot air flowing inside. Will be adopted.
These refractory bricks are often partially or completely repaired when the inside of the hot air pipe is cooled to room temperature during the repair work of the blast furnace. However, in recent years, the life of the blast furnace has been extended to about 15 to 20 years, and the refractory bricks may be damaged or fall off during that period. If the refractory bricks are left as they are, the temperature of the iron skin rises, which in turn creates an opening in the iron skin, which may hinder the operation of the blast furnace. Therefore, if refractory bricks are damaged, urgent repair is required even during normal operation.

通常操業時に補修する方法としては、1〜2ケ月毎に行われる高炉の定修(定期補修)時に、熱風管内へ作業者が立ち入り、耐熱煉瓦の補修を行うしかない。
ここで、高炉の定修時間は、高炉および熱風炉の冷却を避け安定的に立ち上げるために、約24〜48時間が一般的で、最長でも120時間が限界である。補修を行うためには、熱風管内を人が入れる温度まで冷却することが必要である。
しかし、熱風の送風を止めても、熱風管内は温度が直ちに下がるものではなく、作業者が立ち入り可能な温度まで待機すると、補修に利用できる時間が短くなってしまう。
一方で、高炉の寿命期間に発生するとは限らない熱風管内部の補修に対し、内部冷却装置などの専用の構成を準備することは、設備費用的に見合わないものであった。
このような問題に対し、熱風炉における既存の構成を利用して外気を取り込み、熱風管内を冷却する流れを形成する技術が提案されている(特許文献2参照)。
The only way to repair during normal operation is to have a worker enter the hot air pipe and repair the heat-resistant bricks during the regular repair (regular repair) of the blast furnace, which is carried out every one to two months.
Here, the regular repair time of the blast furnace is generally about 24 to 48 hours in order to avoid cooling of the blast furnace and the hot air furnace and to start up stably, and the maximum is 120 hours. In order to perform repairs, it is necessary to cool the inside of the hot air tube to a temperature that allows humans to enter.
However, even if the hot air is stopped, the temperature inside the hot air pipe does not drop immediately, and if the operator waits until the temperature is accessible, the time available for repair will be shortened.
On the other hand, for repairing the inside of the hot air pipe, which does not always occur during the life of the blast furnace, preparing a dedicated configuration such as an internal cooling device was not worth the equipment cost.
To solve such a problem, a technique has been proposed in which an existing configuration in a hot air furnace is used to take in outside air and form a flow for cooling the inside of the hot air pipe (see Patent Document 2).

特開2007−262489号公報JP-A-2007-262489 特開2013−224466号公報Japanese Unexamined Patent Publication No. 2013-224466

前述のように、高炉1基に対して通常は3〜5基の熱風炉が建設される。一方、建設時以外でも、高炉によっては、既設の熱風炉に対して熱風炉の増設が必要になることがある。例えば、高炉の能力を増強するために、熱風炉の送風能力を向上させたい場合がある。また、いずれかの熱風炉が損傷した際には、この熱風炉を休止させて補修する必要があるが、熱風炉を1基休止させた状態でも高炉の能力が低下しないように、全体としての熱風供給能力を確保するべく、熱風炉を増設する場合がある。
熱風炉の増設の際には、たとえば既設の3基が接続された熱風本管を延長し、追加の1基に連結する。熱風本管の延長にあたっては、熱風本管の一部を切り開き、そこに延長用の熱風管を接続する作業を行う。この作業の際に、熱風本管の内部温度が問題となる。
As described above, usually 3 to 5 hot blast furnaces are constructed for each blast furnace. On the other hand, even when not at the time of construction, depending on the blast furnace, it may be necessary to add a hot air furnace to the existing hot air furnace. For example, in order to increase the capacity of the blast furnace, it may be desired to improve the blowing capacity of the hot air furnace. In addition, when one of the hot blast furnaces is damaged, it is necessary to suspend and repair this hot blast furnace, but as a whole, the capacity of the blast furnace does not decrease even if one hot blast furnace is suspended. A hot air furnace may be added to secure the hot air supply capacity.
When adding a hot air furnace, for example, the hot air main to which the existing three units are connected is extended and connected to the additional one. When extending the hot air main, a part of the hot air main is cut open and the extension hot air pipe is connected to it. During this work, the internal temperature of the hot air main becomes a problem.

すなわち、高炉が稼働状態であるとき、熱風本管の内部が1100〜1300℃の高温となっており、一部を切り開いて熱風管の延長部分を接続する作業は困難である。
一方、高炉の定修期間、つまり熱風炉からの熱風の供給が停止され、熱風本管の内部温度が低下する時期を利用すれば、熱風本管に延長部分を接続する作業が可能である。しかし、定期補修のための高炉の停止期間は、前述の通り限られており、熱風本管を切り開き、追加の熱風炉に至る延長部分を設置する作業には十分でない。
このようなことから、熱風本管を延長するためには、高炉が長期間休止する高炉の改修工事の際に実施することが一般的であった。高炉の改修工事の際は、熱風管が常温まで冷却されているため、容易に接続が可能である。しかしながら、高炉の改修期間は、15年から20年と長く、その間に熱風炉を建設することができないという問題があった。このため、熱風炉が損傷した場合は、熱風炉の休止に伴い高炉への送風温度が低下し、高炉の生産能力の低下による経済的な損失が避けられなかった。
That is, when the blast furnace is in operation, the inside of the hot air main pipe has a high temperature of 1100 to 1300 ° C., and it is difficult to cut open a part of the hot air main pipe and connect the extended portion of the hot air pipe.
On the other hand, if the regular repair period of the blast furnace, that is, the time when the supply of hot air from the hot air furnace is stopped and the internal temperature of the hot air main is lowered, it is possible to connect the extension portion to the hot air main. However, the shutdown period of the blast furnace for periodic repair is limited as described above, and it is not sufficient for the work of cutting open the hot air main and installing an extension part leading to an additional hot air furnace.
For this reason, in order to extend the hot air main, it was common to carry out the repair work of the blast furnace where the blast furnace is suspended for a long period of time. During the repair work of the blast furnace, the hot air pipe is cooled to room temperature, so it can be easily connected. However, the repair period of the blast furnace is as long as 15 to 20 years, and there is a problem that a hot air furnace cannot be constructed during that period. Therefore, when the hot blast furnace is damaged, the temperature of the blast furnace is lowered due to the shutdown of the hot blast furnace, and an economic loss due to a decrease in the production capacity of the blast furnace is unavoidable.

本発明の目的は、高炉の停止期間を最小限にできる熱風管の延長方法および熱風炉の増設方法を提供することである。 An object of the present invention is to provide a method for extending a hot air pipe and a method for expanding a hot air furnace, which can minimize the shutdown period of the blast furnace.

本発明の熱風管の延長方法は、高炉および既設熱風炉が接続された熱風管を延長して増設熱風炉に接続する熱風管の延長方法であって、準備工程として、前記熱風管の一部を開放して前記熱風管に連通する接続管を設置し、前記接続管に内部が遮蔽板で閉鎖された遮蔽管を接続しておき、延長工程として、前記遮蔽管から前記増設熱風炉に至る延長管を設置し、連通工程として、前記接続管と前記延長管との間から前記遮蔽管を撤去し、前記接続管と前記延長管との間に内部が開通している連通管を設置して前記接続管と前記延長管とを連通させることを特徴とする。 The method of extending the hot air pipe of the present invention is a method of extending the hot air pipe to which the blast furnace and the existing hot air furnace are connected and connecting to the additional hot air furnace, and as a preparatory step, a part of the hot air pipe. Is opened to install a connecting pipe that communicates with the hot air pipe, and a shielding pipe whose inside is closed by a shielding plate is connected to the connecting pipe, and as an extension step, the shielding pipe reaches the additional hot air furnace. An extension pipe is installed, and as a communication step, the shielding pipe is removed from between the connection pipe and the extension pipe, and a communication pipe whose inside is open is installed between the connection pipe and the extension pipe. It is characterized in that the connecting pipe and the extension pipe are communicated with each other.

このような本発明では、熱風管を延長して増設熱風炉に接続する作業工程を、準備工程、延長工程、および連通工程の3つに分割することができる。
3つの工程のうち、準備工程および連通工程では、熱風管を一時的に開放する必要があるが、途中の延長工程では熱風管が遮蔽管で閉じられている。従って、高炉の定修期間に準備工程を実施し、高炉が再稼働した状態で延長工程を実施し、熱風炉の増設が完了したのちの高炉の定修期間に連通工程を実施することができる。その結果、工期が長い延長工程の間は高炉を停止する必要がなく、準備工程および連通工程は別の定修期間に実施すればよいから、熱風管延長のための高炉の停止期間を最小限にでき、実質的に熱風管の延長目的での高炉の長期間停止を解消できる。
また、本発明では、高炉の停止期間を最小限にするために、最小の改造範囲としている。すなわち、準備工程では、熱風管の端末部分のみ撤去し、接続管を設置すればよく、まだ延長管も設置していないことから、外部からの作業も容易であり、延長管との接続のための長さ調整等も必要ない。
なお、延長管に接続される増設熱風炉は、準備工程に先立って建設しておくことができる。また、延長管についても、一部を増設熱風炉とともに準備工程に先立って設置しておいてもよい。
In such an invention, the work process of extending the hot air pipe and connecting it to the additional hot air furnace can be divided into three, a preparation process, an extension process, and a communication process.
Of the three steps, the hot air pipe needs to be temporarily opened in the preparation step and the communication step, but the hot air pipe is closed by the shielding pipe in the extension step in the middle. Therefore, it is possible to carry out the preparatory process during the regular repair period of the blast furnace, carry out the extension process with the blast furnace restarted, and carry out the communication process during the regular repair period of the blast furnace after the expansion of the hot air furnace is completed. .. As a result, it is not necessary to stop the blast furnace during the extension process with a long construction period, and the preparation process and the communication process can be carried out during another regular repair period, so the shutdown period of the blast furnace for extending the hot air pipe is minimized. This can substantially eliminate the long-term shutdown of the blast furnace for the purpose of extending the hot air pipe.
Further, in the present invention, the minimum modification range is set in order to minimize the shutdown period of the blast furnace. That is, in the preparatory process, only the terminal part of the hot air pipe needs to be removed and the connecting pipe is installed, and since the extension pipe has not been installed yet, the work from the outside is easy and the connection with the extension pipe is required. There is no need to adjust the length of the tube.
The additional hot air furnace connected to the extension pipe can be constructed prior to the preparatory process. In addition, a part of the extension pipe may be installed together with the additional hot air furnace prior to the preparation process.

本発明の延長方法において、前記準備工程では、前記熱風管の一部を開放したのち、前記熱風管の開口内側に防熱板を設置しておき、前記熱風管に連通する前記接続管を設置し、前記防熱板を撤去したのち、前記遮蔽管を設置することが好ましい。 In the extension method of the present invention, in the preparatory step, after opening a part of the hot air pipe, a heat shield is installed inside the opening of the hot air pipe, and the connection pipe communicating with the hot air pipe is installed. It is preferable to install the shielding pipe after removing the heat insulating plate.

このような本発明では、熱風管の一部を開放したのち防熱板を設置することで、接続管の設置および耐火物の施工作業時に、熱風管からの熱を遮蔽することができる。準備工程は、高炉の定修時に実施するが、熱風管の温度も高く、正面からの輻射熱によって、作業時に相当な熱に曝される。しかし、防熱板を用いることで、熱風管からの熱を遮蔽でき、高炉の停止後に短時間で準備工程の作業を進めることができる。 In the present invention as described above, by installing the heat shield plate after opening a part of the hot air pipe, it is possible to shield the heat from the hot air pipe during the installation of the connection pipe and the construction work of the refractory. The preparatory process is carried out during the regular repair of the blast furnace, but the temperature of the hot air pipe is also high, and the radiant heat from the front exposes it to considerable heat during the work. However, by using the heat shield, the heat from the hot air pipe can be shielded, and the work of the preparation process can be advanced in a short time after the blast furnace is stopped.

本発明の熱風管の延長方法において、前記接続管には、前記熱風管と反対側および前記延長管の接続管側にそれぞれ接続形状を形成しておき、前記遮蔽管および前記連通管の両端には、それぞれ前記接続管および前記延長管の前記接続形状と接続可能な被接続形状を形成しておくことが好ましい。 In the method of extending a hot air pipe of the present invention, the connection pipe is formed with a connection shape on the side opposite to the hot air pipe and on the connection pipe side of the extension pipe, respectively, and is formed at both ends of the shielding pipe and the communication pipe. It is preferable to form a connected shape that can be connected to the connecting shape of the connecting pipe and the extension pipe, respectively.

このような本発明では、接続形状と被接続形状とにより、接続管および延長管と遮蔽管との接続、または接続管および延長管と連通管との接続が行われる。つまり、遮蔽管および連通管の被接続形状が共通であるため、遮蔽管および連通管はいずれも接続管および延長管に確実かつ効率よく接続できる。
従って、連通工程においては、接続管から遮蔽管を分離して連通管に置き換える際に、作業を確実かつ効率よく行うことができる。
なお、接続形状および被接続形状としては、互いに向かい合わせてボルト締結可能なフランジ形状が利用できる。また、接続形状および被接続形状として、凹凸嵌合する形状などであってもよい。
In such an invention, the connection pipe and the extension pipe and the shielding pipe are connected, or the connection pipe and the extension pipe and the communication pipe are connected, depending on the connection shape and the connected shape. That is, since the shield pipe and the communication pipe have the same connected shape, both the shield pipe and the communication pipe can be reliably and efficiently connected to the connection pipe and the extension pipe.
Therefore, in the communication step, when the shielding pipe is separated from the connecting pipe and replaced with the communicating pipe, the work can be performed reliably and efficiently.
As the connection shape and the connected shape, a flange shape that can be bolted to face each other can be used. Further, the connection shape and the connected shape may be a shape that fits unevenly.

本発明の熱風管の延長方法において、前記遮蔽管は、前記遮蔽板の前記接続管側に耐火物が設置され、前記遮蔽板の前記延長管側に水冷構造が設置されていることが好ましい。
遮蔽管の内部の遮蔽板の温度が高く、熱風管の温度と圧力に耐えるようにするには、数百mmの耐火物の厚さと剛性の高い遮蔽板が必要となり、遮蔽管の長さは、長く、重いものとなってしまう。
これに対し、本発明では、遮蔽板部分を水冷構造とすることで、耐火物の厚さも薄くでき、コンパクトな遮蔽管となり、最後の連通工程も容易となる。
In the method for extending a hot air pipe of the present invention, it is preferable that a refractory material is installed on the connecting pipe side of the shielding plate and a water cooling structure is installed on the extension pipe side of the shielding plate.
The temperature of the shielding plate inside the shielding tube is high, and in order to withstand the temperature and pressure of the hot air tube, a refractory thickness of several hundred mm and a highly rigid shielding plate are required, and the length of the shielding tube is long. , Long and heavy.
On the other hand, in the present invention, by making the shielding plate portion a water-cooled structure, the thickness of the refractory can be reduced, the shielding tube becomes compact, and the final communication step becomes easy.

本発明の熱風管の延長方法において、前記延長管には、途中に伸縮管が設置されていることが好ましい。
このような本発明では、連通工程において、接続管と延長管との間に設置されている遮蔽管を撤去するためには、各々の接続部分の間隔を拡げる必要がある。延長管に伸縮管が設置されていれば、この伸縮管をジャッキ等で縮めることで、延長管および遮蔽管の接続部分の間隔を拡げて、遮蔽管を撤去することができる。遮蔽管の撤去後、同一長さの連通管を設置し、先に縮めた伸縮管を元の長さに戻すことで、延長管と連通管とを接続することができる。
なお、伸縮管としては、熱風管の途中に熱風炉ごとに設置される熱膨張吸収用の伸縮管を利用してもよいが、連通管から伸縮管までの距離が長い場合、伸縮作業に大きな力を必要とすることから、連結管からに近い部分に連通工程専用の伸縮管を設けてもよい。目安として、連通管から伸縮管までの距離が8mより遠い場合は、専用の伸縮管を設置した方が好ましい。伸縮管としては、例えばジャバラ管などが利用できる。
In the method for extending a hot air pipe of the present invention, it is preferable that a telescopic pipe is installed in the middle of the extension pipe.
In such a present invention, in order to remove the shielding pipe installed between the connecting pipe and the extension pipe in the communication process, it is necessary to widen the distance between the connecting portions. If a telescopic pipe is installed in the extension pipe, the shield pipe can be removed by expanding the distance between the extension pipe and the connecting portion of the shield pipe by shrinking the telescopic pipe with a jack or the like. After removing the shielding pipe, a communication pipe of the same length is installed, and the previously contracted telescopic pipe is returned to the original length, so that the extension pipe and the communication pipe can be connected.
As the expansion / contraction pipe, an expansion / contraction pipe for thermal expansion / absorption installed in the middle of the hot air pipe may be used, but if the distance from the communication pipe to the expansion / contraction pipe is long, it is large for expansion / contraction work. Since force is required, an expansion / contraction pipe dedicated to the communication process may be provided in a portion close to the connecting pipe. As a guide, when the distance from the communicating pipe to the telescopic pipe is longer than 8 m, it is preferable to install a dedicated telescopic pipe. As the telescopic tube, for example, a bellows tube or the like can be used.

本発明の熱風炉の増設方法は、高炉および既設熱風炉が接続された熱風管の一部に延長管を介して増設熱風炉を接続する熱風炉の増設方法であって、前記増設熱風炉の建設を行うとともに、準備工程として、前記熱風管の一部を開放して前記熱風管に連通する接続管を設置し、前記接続管に内部が遮蔽板で閉鎖された遮蔽管を接続しておき、延長工程として、前記遮蔽管から前記増設熱風炉に至る延長管を設置し、前記増設熱風炉の建設ができたのち、連通工程として、前記接続管と前記延長管との間から前記遮蔽管を分離して撤去し、前記接続管と前記延長管との間に内部が開通している連通管を設置して前記接続管と前記延長管とを連通させることを特徴とする。
このような本発明では、前述した本発明の熱風管の延長方法で説明した通りの効果を得ることができる。
The method for expanding the hot air furnace of the present invention is a method for expanding the hot air furnace in which the additional hot air furnace is connected to a part of the hot air pipe to which the blast furnace and the existing hot air furnace are connected via an extension pipe. Along with the construction, as a preparatory step, a part of the hot air pipe is opened to install a connecting pipe that communicates with the hot air pipe, and a shielding pipe whose inside is closed by a shielding plate is connected to the connecting pipe. As an extension step, an extension pipe from the shield pipe to the extension hot air furnace is installed, and after the extension hot air furnace can be constructed, the shield pipe is connected between the connection pipe and the extension pipe as a communication step. Is separated and removed, and a communication pipe having an open inside is installed between the connection pipe and the extension pipe to communicate the connection pipe and the extension pipe.
In such an invention, the effect as described in the above-described method for extending a hot air tube of the present invention can be obtained.

本発明によれば、高炉の停止期間を最小限にできる熱風管の延長方法および熱風炉の増設方法を提供することができる。 According to the present invention, it is possible to provide a method of extending a hot air pipe and a method of adding a hot air furnace that can minimize the shutdown period of the blast furnace.

本発明の一実施形態の熱風炉増設前の高炉設備を示す平面図。The plan view which shows the blast furnace equipment before the addition of the hot blast furnace of one Embodiment of this invention. 前記実施形態の熱風炉増設後の高炉設備を示す平面図。The plan view which shows the blast furnace equipment after the hot blast furnace expansion of the said embodiment. 前記実施形態の作業進行を示す模式図。The schematic diagram which shows the work progress of the said embodiment. 前記実施形態の施工手順を示すフローチャート。The flowchart which shows the construction procedure of the said embodiment. 前記実施形態の準備工程の各手順を示す模式図。The schematic diagram which shows each procedure of the preparation process of said embodiment. 前記実施形態の延長工程および連通工程を示す模式図。The schematic diagram which shows the extension process and the communication process of the said embodiment. 前記実施形態の遮蔽管の水冷構造を示す断面図。The cross-sectional view which shows the water-cooled structure of the shielding tube of the said embodiment. 前記実施形態の遮蔽管の水冷構造を示す正面図。The front view which shows the water cooling structure of the shielding pipe of the said embodiment. 本発明の他の実施形態の遮蔽管を示す断面図。The cross-sectional view which shows the shielding tube of another embodiment of this invention. 本発明の他の実施形態の高炉設備を示す平面図。The plan view which shows the blast furnace equipment of another embodiment of this invention.

以下、本発明の一実施形態を図面に基づいて説明する。
図1において、熱風供給装置1は、熱風を生成する3つの熱風炉11,12,13を備え、各熱風炉11〜13で生成された熱風が、熱風管2を経由して高炉3に供給される。各熱風炉11,12,13は、それぞれ混冷炉111,121,131、燃焼炉112,122,132、および蓄熱炉113,123,133を有する外燃式熱風炉である。ただし、各熱風炉11〜13は、他の型式のものであってもよい。
熱風管2は、高炉3に至る熱風本管20を有し、熱風本管20と各熱風炉11,12,13の混冷炉111,121,131とは、それぞれ熱風枝管21,22,23で結ばれている。熱風本管20には、熱風枝管21,22,23の接続部位の高炉3側に、ジャバラ管を用いた熱膨張吸収用の伸縮管41,42,43が設置されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, the hot air supply device 1 includes three hot air furnaces 11, 12, and 13 that generate hot air, and hot air generated by each of the hot air furnaces 11 to 13 is supplied to the blast furnace 3 via a hot air pipe 2. Will be done. Each of the hot blast furnaces 11, 12, and 13 is an external combustion type hot blast furnace having a mixed cooling furnace 111, 121, 131, a combustion furnace 112, 122, 132, and a heat storage furnace 113, 123, 133, respectively. However, each hot air furnace 11 to 13 may be of another type.
The hot air pipe 2 has a hot air main pipe 20 leading to the blast furnace 3, and the hot air main pipe 20 and the mixed cooling furnaces 111, 121, 131 of the hot air furnaces 11, 12, and 13 are hot air branch pipes 21, 22, respectively. It is tied at 23. In the hot air main pipe 20, expansion pipes 41, 42, 43 for thermal expansion absorption using bellows pipes are installed on the blast furnace 3 side of the connection portion of the hot air branch pipes 21, 22, 23.

図2において、本実施形態では、熱風供給装置1に設置された3基の熱風炉11〜13(既設熱風炉)に対し、さらに1基の熱風炉14(増設熱風炉)を増設する。そして、熱風炉14を熱風本管20に接続するために、熱風本管20の端部に延長管34を接続して熱風本管20を延長する。
これらの熱風炉14の増設作業および熱風本管20の延長作業は、高炉3の稼働とは別に実施していくが、延長管34と熱風本管20との接続作業は、高炉3が停止状態でないと実施できない。
In FIG. 2, in the present embodiment, one hot air furnace 14 (additional hot air furnace) is added to the three hot air furnaces 11 to 13 (existing hot air furnaces) installed in the hot air supply device 1. Then, in order to connect the hot air furnace 14 to the hot air main 20, an extension pipe 34 is connected to the end of the hot air main 20 to extend the hot air main 20.
The expansion work of the hot air furnace 14 and the extension work of the hot air main 20 are carried out separately from the operation of the blast furnace 3, but the connection work between the extension pipe 34 and the hot air main 20 is in a state where the blast furnace 3 is stopped. It cannot be carried out without it.

図3において、高炉3が、高炉稼働1、定修1、高炉稼働2、定修2、高炉稼働3と進行する場合、高炉稼働1またはそれ以前から定修2までの期間に熱風炉14の増設作業(増設熱風炉構築)を実施する。さらに、定修1から高炉稼働2を経て定修2にわたる期間に熱風本管20の延長作業を実施する。なお、熱風本管20から離れた部位の延長管34は、熱風炉14の増設作業とともに高炉稼働1の前から実施してもよい。
このうち、熱風本管20の延長手順は、準備工程S1、延長工程S2、および連通工程S3を含む。準備工程S1は定修1の期間内に実施され、延長工程S2は高炉稼働2の期間内に実施され、連通工程S3は定修2の期間内に実施される。
図4に、準備工程S1、延長工程S2、および連通工程S3における具体的な施工の手順S11〜S36を示す。
In FIG. 3, when the blast furnace 3 progresses to the blast furnace operation 1, the regular repair 1, the blast furnace operation 2, the regular repair 2, and the blast furnace operation 3, the hot air furnace 14 is used in the period from the blast furnace operation 1 or earlier to the regular repair 2. Carry out expansion work (construction of additional hot blast furnace). Further, the extension work of the hot air main 20 is carried out during the period from the regular repair 1 to the blast furnace operation 2 to the regular repair 2. The extension pipe 34 at a portion away from the hot air main 20 may be carried out before the blast furnace operation 1 together with the expansion work of the hot air furnace 14.
Of these, the extension procedure of the hot air main 20 includes a preparation step S1, an extension step S2, and a communication step S3. The preparatory step S1 is carried out within the period of regular repair 1, the extension step S2 is carried out within the period of blast furnace operation 2, and the communication step S3 is carried out within the period of regular repair 2.
FIG. 4 shows specific construction procedures S11 to S36 in the preparation step S1, the extension step S2, and the communication step S3.

準備工程S1では、高炉3を一時停止させたのち(図4の手順S11、図3の定修1)、熱風本管20の端末を切除し、周辺の耐火物を撤去する(手順S12)。この際、耐火物の解体により、熱風本管20と貫通すると熱風が噴き出すこともあるため、熱風本管20に設置された図示しないブリーダ管を開放したり、隣接する熱風炉を利用したりして、ドラフトによる熱風の吹き出しを避けたほうがよい(特許文献2参照)。
次に、熱風本管20の内部に防熱板30(後述)を設置し(手順S13)、末端開口に接続管31(後述)を溶接し(手順S14)、接続管31の内側に耐火物を設置する(手順S15)。これら接続管31の管内作業が完了したら、防熱板を撤去(手順S16)し、遮蔽管32(後述)を接続管31に接続する(手順S17)。
これらの手順S13〜S17が完了したら、高炉3の稼働を再開させる(手順S18、図3の高炉稼働2)。
In the preparation step S1, after the blast furnace 3 is temporarily stopped (procedure S11 in FIG. 4, fixed repair 1 in FIG. 3), the terminal of the hot air main 20 is excised and the surrounding refractory is removed (procedure S12). At this time, due to the dismantling of the refractory, hot air may be blown out when it penetrates the hot air main 20. Therefore, the bleeder pipe (not shown) installed in the hot air main 20 may be opened or an adjacent hot air furnace may be used. Therefore, it is better to avoid blowing hot air from the draft (see Patent Document 2).
Next, a heat shield 30 (described later) is installed inside the hot air main pipe 20 (procedure S13), a connecting pipe 31 (described later) is welded to the end opening (procedure S14), and a refractory material is placed inside the connecting pipe 31. Install (procedure S15). When the work inside the connecting pipe 31 is completed, the heat insulating plate is removed (procedure S16), and the shielding pipe 32 (described later) is connected to the connecting pipe 31 (procedure S17).
When these procedures S13 to S17 are completed, the operation of the blast furnace 3 is restarted (procedure S18, blast furnace operation 2 in FIG. 3).

図5に、準備工程S1における具体的な作業内容を示す。
手順S12では、図5(A)のように、熱風本管20の末端201を切除して開口202を形成し、図5(B)のように、開口202を通して熱風本管20の内部に防熱板30を設置する(手順S13)。防熱板30は、例えば不燃性で断熱性を有するグラスウールなどを板状に成形したものなどが利用できる。この防熱板30により、熱風本管20からの輻射熱が遮断され、開口202側の管内作業を容易とすることができる。そして、開口202から所定幅にわたって熱風本管20の内側の耐火物203を撤去する。
FIG. 5 shows specific work contents in the preparation step S1.
In step S12, as shown in FIG. 5A, the end 201 of the hot air main 20 is cut off to form an opening 202, and as shown in FIG. 5B, heat is shielded inside the hot air main 20 through the opening 202. The board 30 is installed (procedure S13). As the heat insulating plate 30, for example, glass wool or the like which is nonflammable and has heat insulating properties and is molded into a plate shape can be used. The heat shield plate 30 blocks radiant heat from the hot air main pipe 20 and facilitates work inside the pipe on the opening 202 side. Then, the refractory 203 inside the hot air main 20 is removed from the opening 202 over a predetermined width.

手順S14では、図5(C)のように、熱風本管20の末端の開口202に接続管31を溶接する。
接続管31は、熱風本管20と同径だが短尺の鋼管であり、熱風本管20に溶接される側とは反対側にフランジ311(接続形状)を有する。なお、フランジ311を直接熱風本管20に形成することも可能であるが、フランジ311を熱風本管20の外周面に垂直に溶接することは現場では難しいので、工場にて接続管31にフランジ311を溶接し、接続管31と熱風本管20とを溶接する方が取付精度もよく作業も容易である。
手順S15では、図5(D)のように、接続管31の内側から熱風本管20の内側(手順S13で撤去した部分)まで連続して耐火物312を設置する。
In step S14, as shown in FIG. 5C, the connecting pipe 31 is welded to the opening 202 at the end of the hot air main pipe 20.
The connecting pipe 31 is a steel pipe having the same diameter as the hot air main pipe 20 but being short, and has a flange 311 (connection shape) on the side opposite to the side welded to the hot air main pipe 20. Although it is possible to form the flange 311 directly on the hot air main 20, it is difficult to weld the flange 311 perpendicularly to the outer peripheral surface of the hot air main 20 at the site, so the flange is attached to the connecting pipe 31 at the factory. It is better to weld 311 and then weld the connection pipe 31 and the hot air main pipe 20 to improve the mounting accuracy and work.
In step S15, as shown in FIG. 5D, the refractory material 312 is continuously installed from the inside of the connecting pipe 31 to the inside of the hot air main pipe 20 (the portion removed in step S13).

手順S16で防熱板30を撤去した後、手順S17では、図5(E)のように、遮蔽管32を接続管31に接続する。
遮蔽管32は、熱風本管20と同径だが短尺の鋼管であり、接続管31に接続される側にフランジ321(被接続形状)を有し、反対側にフランジ322(接続形状)を有する。フランジ321,322は、接続管31のフランジ311と同径かつ同位置にボルト孔を有し、互いに向かい合わせてボルト締結が可能である。
遮蔽管32の内部には、遮蔽板320が設置されている。遮蔽板320は全周を遮蔽管32の内側に溶接され、遮蔽管32を接続管31に接続した際には、熱風本管20の末端を気密状態に封止可能である。
After removing the heat insulating plate 30 in step S16, in step S17, the shielding pipe 32 is connected to the connecting pipe 31 as shown in FIG. 5 (E).
The shielding pipe 32 is a short steel pipe having the same diameter as the hot air main pipe 20, and has a flange 321 (connected shape) on the side connected to the connecting pipe 31 and a flange 322 (connecting shape) on the opposite side. .. The flanges 321 and 322 have bolt holes having the same diameter and the same position as the flange 311 of the connecting pipe 31, and can be bolted to face each other.
A shielding plate 320 is installed inside the shielding tube 32. The entire circumference of the shielding plate 320 is welded to the inside of the shielding pipe 32, and when the shielding pipe 32 is connected to the connecting pipe 31, the end of the hot air main pipe 20 can be sealed in an airtight state.

図7および図8に、本実施形態で遮蔽管32として用いる遮蔽管32Aの具体的構造を示す。
図7において、遮蔽管32Aの内部には鋼板51が設置され、この鋼板51により前述した遮蔽板320が形成されている。鋼板51の片面(接続管31側の表面)には、キャスタブルなどの耐火物53が張られている。鋼板51には、耐火物53の食い付き性を高めるためのスタッド54が多数配置されている。
鋼板51の反対側(延長管34側)には、別の鋼板52が設置され、鋼板51と鋼板52との間の空間には複数の仕切板55,56が設置されている。
7 and 8 show a specific structure of the shielding tube 32A used as the shielding tube 32 in the present embodiment.
In FIG. 7, a steel plate 51 is installed inside the shielding pipe 32A, and the above-mentioned shielding plate 320 is formed by the steel plate 51. A refractory material 53 such as a castable material is stretched on one side of the steel plate 51 (the surface on the connecting pipe 31 side). A large number of studs 54 for improving the biting property of the refractory 53 are arranged on the steel plate 51.
Another steel plate 52 is installed on the opposite side (extension pipe 34 side) of the steel plate 51, and a plurality of partition plates 55 and 56 are installed in the space between the steel plate 51 and the steel plate 52.

図8にも示すように、複数の水平な仕切板55および縦方向の仕切板56により、鋼板51と鋼板52との間の空間は複数の区画に仕切られている。水平な仕切板55にはそれぞれ連通孔57が形成されている。遮蔽管32Aの下部および上部には、鋼板51と鋼板52との間の空間に連通する導入管58および排出管59が設置されている。 As shown in FIG. 8, the space between the steel plate 51 and the steel plate 52 is partitioned into a plurality of sections by the plurality of horizontal partition plates 55 and the vertical partition plate 56. A communication hole 57 is formed in each of the horizontal partition plates 55. An introduction pipe 58 and a discharge pipe 59 communicating with each other in the space between the steel plate 51 and the steel plate 52 are installed in the lower part and the upper part of the shielding pipe 32A.

遮蔽管32Aにおいては、これらの仕切板55,56、連通孔57、導入管58および排出管59により、冷却構造が形成されている。導入管58から導入された冷却水は、仕切板55,56による区画を順次通過し、排出管59から排出される。この際、連通孔57は、上下に隣接するものが互いに離れた位置に設置されており、冷却水は仕切板55,56による区画をジグザグ状に通過し、鋼板51(遮蔽板320)に対する冷却効果を高めることができる。 In the shielding pipe 32A, a cooling structure is formed by these partition plates 55 and 56, communication holes 57, introduction pipe 58 and discharge pipe 59. The cooling water introduced from the introduction pipe 58 sequentially passes through the sections formed by the partition plates 55 and 56, and is discharged from the discharge pipe 59. At this time, the communication holes 57 are installed at positions where the vertically adjacent ones are separated from each other, and the cooling water passes through the sections formed by the partition plates 55 and 56 in a zigzag manner to cool the steel plate 51 (shielding plate 320). The effect can be enhanced.

このように、定修1の期間に、手順S13で開放した熱風本管20の末端が、手順S17で気密状態に封止されることで、手順S19で高炉3を稼働(図3の高炉稼働2)させることが可能となる。
高炉稼働2の期間には、延長工程S2を実施する。
In this way, during the period of regular repair 1, the end of the hot air main 20 opened in step S13 is sealed in an airtight state in step S17, so that the blast furnace 3 is operated in step S19 (blast furnace operation in FIG. 3). 2) It becomes possible to make it.
During the period of blast furnace operation 2, the extension step S2 is carried out.

延長工程S2では、高炉3の稼働状態で、熱風炉14(増設熱風炉)に至る延長管34を設置し、延長管34の内側に耐火物を設置する(図4の手順S21)。
図6に、延長工程S2および連通工程S3における具体的な作業内容を示す。
図6(A)のように、準備工程S1により、熱風本管20の末端には接続管31に遮蔽管32が接続され、高炉3が稼働状態でも熱風本管20からの熱風や輻射は遮蔽されている。
図6(B)のように、延長管34は、遮蔽管32の端部から熱風本管20を延長するように設置され、先端が増設される熱風炉14の熱風枝管24に接続される。
In the extension step S2, the extension pipe 34 leading to the hot air furnace 14 (extended hot air furnace) is installed in the operating state of the blast furnace 3, and the refractory material is installed inside the extension pipe 34 (procedure S21 in FIG. 4).
FIG. 6 shows specific work contents in the extension step S2 and the communication step S3.
As shown in FIG. 6A, the shielding pipe 32 is connected to the connecting pipe 31 at the end of the hot air main 20 by the preparation step S1, and the hot air and radiation from the hot air main 20 are shielded even when the blast furnace 3 is in operation. Has been done.
As shown in FIG. 6B, the extension pipe 34 is installed so as to extend the hot air main pipe 20 from the end of the shielding pipe 32, and is connected to the hot air branch pipe 24 of the hot air furnace 14 to which the tip is added. ..

延長管34は、熱風本管20と同径の鋼管であり、遮蔽管32に対向される端部にフランジ341(被接続形状)を有する。フランジ341は、前述したフランジ311,321,322と同径かつ同位置にボルト孔を有し、遮蔽管32のフランジ322と互いに向かい合わせてボルト締結が可能である。
延長管34の内側には、全面に耐火物340が設置される。
延長管34の途中には、伸縮管44が形成されている。
伸縮管44は、熱風本管20に既設の伸縮管41,42,43と同様なジャバラ管などで形成される。
The extension pipe 34 is a steel pipe having the same diameter as the hot air main pipe 20, and has a flange 341 (connected shape) at an end facing the shielding pipe 32. The flange 341 has a bolt hole having the same diameter and the same position as the flanges 311, 321, 322 described above, and can be bolted to face the flange 322 of the shielding pipe 32.
A refractory 340 is installed on the entire surface of the extension pipe 34.
A telescopic tube 44 is formed in the middle of the extension tube 34.
The telescopic pipe 44 is formed of a bellows pipe or the like similar to the existing telescopic pipes 41, 42, 43 in the hot air main pipe 20.

このように、高炉稼働2の期間に、延長工程S2を実施することで、遮蔽管32から熱風炉14に至る延長管34が完成する。
高炉稼働2に続く定修2の期間には、連通工程S3を実施する。
In this way, by carrying out the extension step S2 during the period of the blast furnace operation 2, the extension pipe 34 from the shielding pipe 32 to the hot air furnace 14 is completed.
During the period of regular repair 2 following the blast furnace operation 2, the communication step S3 is carried out.

連通工程S3では、高炉3を一時停止させたのち(図4の手順S31、図3の定修2)、遮蔽管32を接続管31および延長管34と分離して撤去する(手順S32)。なお、分離時は、前述の準備工程にて記載のように熱風が噴き出す可能性があるため、ドラフトを講じておいた方がよい。次に、連通管33(後述)を設置し、接続管31に接続したのち、連通管33と延長管34とを接続する(手順S33)。 In the communication step S3, after the blast furnace 3 is temporarily stopped (procedure S31 in FIG. 4, fixed repair 2 in FIG. 3), the shielding pipe 32 is separated from the connecting pipe 31 and the extension pipe 34 and removed (procedure S32). At the time of separation, hot air may be blown out as described in the above-mentioned preparation step, so it is better to take a draft. Next, the communication pipe 33 (described later) is installed, connected to the connection pipe 31, and then the communication pipe 33 and the extension pipe 34 are connected (procedure S33).

図6(C)のように、連通管33は、接続管31と延長管34との間の、遮蔽管32が撤去された部分に置き換えるように設置される。
連通管33は、前述した遮蔽管32と同径かつ同長さの短尺の鋼管であり、接続管31に接続される側にフランジ331(被接続形状)を有し、反対側にフランジ332(接続形状)を有する。フランジ331,332は、前述した遮蔽管32のフランジ321,322と同様であり、接続管31のフランジ311および延長管34のフランジ341と向かい合わせてボルト締結が可能である。
連通管33は、フランジ331側から332側まで内部が連通されており、その内側には、全面に耐火物330が設置されている。
As shown in FIG. 6C, the communication pipe 33 is installed so as to replace the portion between the connecting pipe 31 and the extension pipe 34 from which the shielding pipe 32 has been removed.
The communication pipe 33 is a short steel pipe having the same diameter and length as the shielding pipe 32 described above, has a flange 331 (connected shape) on the side connected to the connecting pipe 31, and a flange 332 (connected shape) on the opposite side. Connection shape). The flanges 331 and 332 are the same as the flanges 321 and 322 of the shielding pipe 32 described above, and can be bolted to face the flange 311 of the connecting pipe 31 and the flange 341 of the extension pipe 34.
The inside of the communication pipe 33 is communicated from the flange 331 side to the 332 side, and a refractory material 330 is installed on the entire surface inside the communication pipe 33.

連通管33が遮蔽管32と同寸であるため、接続管31と延長管34との間で、遮蔽管32を撤去したあとに連通管33を設置することができる。ただし、遮蔽管32の撤去の際、および連通管33の設置の際に、各々と接続管31および延長管34との間に隙間がないと、前述した撤去または設置の作業が困難である。そこで、延長管34に形成された伸縮管44を利用し、延長管34のフランジ341側を進退させて作業隙間を確保する。 Since the communication pipe 33 has the same size as the shielding pipe 32, the communication pipe 33 can be installed between the connecting pipe 31 and the extension pipe 34 after the shielding pipe 32 is removed. However, if there is no gap between each of the shielding pipe 32 and the communication pipe 33 when removing the shielding pipe 32 and when installing the communication pipe 33, the above-mentioned removal or installation work is difficult. Therefore, the telescopic pipe 44 formed in the extension pipe 34 is used to advance and retreat the flange 341 side of the extension pipe 34 to secure a work gap.

すなわち、遮蔽管32の撤去(手順S33)の際には、延長管34を縮めることで、延長管34のフランジ341側を遮蔽管32から離隔させ、遮蔽管32と延長管34との間に作業隙間を確保する。一方、連通管33の設置(手順S34)の際には、延長管34を延ばすことで、延長管34のフランジ341側を連通管33に近接させ、連通管33との隙間を解消し、互いに密接状態として接続を行う。なお、伸縮管44を利用して進退させることから、進退量は、作業に必要な最低限の寸法10〜20mm程度に留めるように注意が必要である。 That is, when the shielding pipe 32 is removed (procedure S33), the extension pipe 34 is contracted to separate the flange 341 side of the extension pipe 34 from the shielding pipe 32, and between the shielding pipe 32 and the extension pipe 34. Secure a work gap. On the other hand, when the communication pipe 33 is installed (procedure S34), the extension pipe 34 is extended so that the flange 341 side of the extension pipe 34 is brought close to the communication pipe 33, the gap with the communication pipe 33 is eliminated, and each other is eliminated. Connect as close contact. Since the telescopic tube 44 is used to advance and retreat, care must be taken to keep the amount of advance and retreat to the minimum size of about 10 to 20 mm necessary for the work.

以上の連通工程S3までを行うことで、熱風本管20から接続管31、連通管33、延長管34までが連通され、熱風本管20の延長が実現する。そして、熱風本管20に熱風炉14が接続され、既設の熱風炉11〜13に対して熱風炉14(増設熱風炉)の増設が実現する。
これらの手順S31〜S33が完了したら、高炉3の稼働を再開させる(手順S34、図3の高炉稼働3)。
By performing the above communication steps S3, the hot air main pipe 20 is communicated with the connecting pipe 31, the communication pipe 33, and the extension pipe 34, and the hot air main pipe 20 is extended. Then, the hot air furnace 14 is connected to the hot air main 20, and the hot air furnace 14 (additional hot air furnace) can be added to the existing hot air furnaces 11 to 13.
When these procedures S31 to S33 are completed, the operation of the blast furnace 3 is restarted (procedure S34, blast furnace operation 3 in FIG. 3).

このような本実施形態によれば、以下のような効果が得られる。
本実施形態では、高炉3および熱風炉11〜13(既設熱風炉)が接続された熱風本管20を延長して熱風炉14(増設熱風炉)に接続するために、準備工程S1、延長工程S2、および連通工程S3を実施した。
準備工程S1として、熱風本管20の一部を開放して熱風本管20に連通する接続管31を設置し(図4の手順S14)、接続管31に内部が遮蔽板320で閉鎖された遮蔽管32を接続した(手順S17)。
延長工程S2として、遮蔽管32から熱風炉14に至る延長管34を設置した(手順S21)。
連通工程S3として、遮蔽管32を接続管31から分離して撤去し(手順S32)、接続管31と延長管34との間に内部が開通している連通管33を設置し、接続管31と延長管34とを連通させた(手順S33)。
According to this embodiment, the following effects can be obtained.
In the present embodiment, in order to extend the hot air main 20 to which the blast furnace 3 and the hot air furnaces 11 to 13 (existing hot air furnace) are connected and connect them to the hot air furnace 14 (additional hot air furnace), the preparation step S1 and the extension step S2 and the communication step S3 were carried out.
As the preparation step S1, a part of the hot air main 20 was opened and a connecting pipe 31 communicating with the hot air main 20 was installed (procedure S14 in FIG. 4), and the inside of the connecting pipe 31 was closed by a shielding plate 320. The shielding tube 32 was connected (procedure S17).
As the extension step S2, an extension pipe 34 extending from the shielding pipe 32 to the hot air furnace 14 was installed (procedure S21).
As the communication step S3, the shielding pipe 32 is separated from the connecting pipe 31 and removed (procedure S32), and a communication pipe 33 having an open inside is installed between the connecting pipe 31 and the extension pipe 34, and the connecting pipe 31 is installed. And the extension pipe 34 were communicated with each other (procedure S33).

これにより、本実施形態では、熱風本管20を延長して熱風炉14に接続する作業工程を、準備工程S1、延長工程S2、および連通工程S3の3つに分割することができる。
3つの工程のうち、準備工程S1および連通工程S3では、熱風本管20を一時的に開放する必要があるが、途中の延長工程S2では熱風本管20が遮蔽管32で閉じられている。従って、高炉3の定期的な停止期間(図3の定修1)に準備工程S1を実施し、高炉3が再稼働した状態(高炉稼働2)で延長工程S2を実施し、次回以降の停止期間(定修2)に連通工程S3を実施することができる。
Thereby, in the present embodiment, the work step of extending the hot air main 20 and connecting it to the hot air furnace 14 can be divided into three steps: a preparation step S1, an extension step S2, and a communication step S3.
Of the three steps, the hot air main 20 needs to be temporarily opened in the preparation step S1 and the communication step S3, but the hot air main 20 is closed by the shielding pipe 32 in the extension step S2 in the middle. Therefore, the preparation step S1 is carried out during the periodic shutdown period of the blast furnace 3 (fixed repair 1 in FIG. 3), the extension step S2 is carried out with the blast furnace 3 restarted (blast furnace operation 2), and the next and subsequent shutdowns are performed. The communication step S3 can be carried out during the period (fixed repair 2).

その結果、工期が長い延長工程S2の間は高炉3を停止する必要がなく、準備工程S1および連通工程S3は別の停止期間(定修1および定修2)に実施すればよいから、熱風本管20の延長のための停止期間を最小限にでき、実質的に熱風本管20の延長目的での高炉3の停止を解消できる。 As a result, it is not necessary to stop the blast furnace 3 during the extension step S2, which has a long construction period, and the preparation step S1 and the communication step S3 may be carried out during different stop periods (fixed repair 1 and fixed repair 2). The shutdown period for the extension of the main 20 can be minimized, and the shutdown of the blast furnace 3 for the purpose of extending the hot air main 20 can be substantially eliminated.

図3の下段において、熱風本管20の延長目的での高炉3の休止を行う場合、高炉稼働Aの期間から高炉3を休止させ、その間に準備工程S1、延長工程S2、および連通工程S3の作業手順を全て実施することになる。その結果、延長完了ののち高炉稼働Bに入るまでの停止期間が長大化せざるを得ない。
これに対し、本実施形態では、前述の通り延長工程S2は高炉稼働2の期間に行うことができ、準備工程S1および連通工程S3は別の停止期間(定修1および定修2)に実施でき、高炉3の停止期間を最小にすることができる。なお、準備工程S1は、高炉3の定修期間を使用して行うが、将来熱風炉の増設計画がある場合、長期間高炉3が休止する改修工事の際に実施しておくことも可能である。
In the lower part of FIG. 3, when the blast furnace 3 is stopped for the purpose of extending the hot air main 20, the blast furnace 3 is stopped from the period of the blast furnace operation A, and the preparation step S1, the extension step S2, and the communication step S3 are performed during that period. All work procedures will be carried out. As a result, the suspension period from the completion of the extension to the start of the blast furnace operation B has to be lengthened.
On the other hand, in the present embodiment, as described above, the extension step S2 can be performed during the period of the blast furnace operation 2, and the preparation step S1 and the communication step S3 are carried out during different stop periods (fixed repair 1 and fixed repair 2). It is possible to minimize the downtime of the blast furnace 3. The preparatory step S1 is carried out using the regular repair period of the blast furnace 3, but if there is a plan to expand the hot air furnace in the future, it can be carried out during the repair work in which the blast furnace 3 is suspended for a long period of time. is there.

本実施形態において、準備工程S1では、接続管31の設置前に熱風本管20の開口内側に防熱板30を設置しておき(手順S13)、遮蔽管32の設置前に防熱板30を撤去した(手順S16)。
これにより、本実施形態では、熱風本管20の一部を開放したのち防熱板30を設置することで、接続管31の設置および遮蔽管32の接続の作業時に、熱風本管20からの輻射熱を遮蔽することができる。準備工程S1は、高炉3の停止時(定修1)に実施するが、熱風本管20の管内温度も高く、作業時に相当な熱に曝される。しかし、防熱板30を用いることで、熱風本管20からの熱を遮蔽でき、高炉3の停止後に短時間で準備工程S1の作業を進めることができる。
In the present embodiment, in the preparation step S1, the heat shield 30 is installed inside the opening of the hot air main pipe 20 before the connection pipe 31 is installed (procedure S13), and the heat shield 30 is removed before the shield pipe 32 is installed. (Procedure S16).
As a result, in the present embodiment, by installing the heat insulating plate 30 after opening a part of the hot air main 20, radiant heat from the hot air main 20 is generated during the work of installing the connecting pipe 31 and connecting the shielding pipe 32. Can be shielded. The preparatory step S1 is carried out when the blast furnace 3 is stopped (fixed repair 1), but the temperature inside the hot air main pipe 20 is also high, and it is exposed to considerable heat during the work. However, by using the heat shield 30, the heat from the hot air main 20 can be shielded, and the work of the preparation step S1 can proceed in a short time after the blast furnace 3 is stopped.

本実施形態において、接続管31には、熱風本管20と反対側にフランジ311(接続形状)を形成しておき、遮蔽管32および連通管33には、それぞれ接続管31と接続される側にフランジ311と接続可能なフランジ321,331(被接続形状)を形成しておいた。
これにより、本実施形態では、フランジ311とフランジ321とにより、接続管31と遮蔽管32との接続が行われ(手順S17)、フランジ311とフランジ331とにより、接続管31と連通管33との接続が行われる(手順S34)。つまり、遮蔽管32および連通管33のフランジ321,331(被接続形状)が共通であるため、遮蔽管32および連通管33はいずれも接続管31に確実かつ効率よく接続できる。
In the present embodiment, the connecting pipe 31 is formed with a flange 311 (connection shape) on the side opposite to the hot air main pipe 20, and the shielding pipe 32 and the communicating pipe 33 are connected to the connecting pipe 31, respectively. The flanges 321 and 331 (connected shape) that can be connected to the flange 311 are formed on the surface.
As a result, in the present embodiment, the connecting pipe 31 and the shielding pipe 32 are connected by the flange 311 and the flange 321 (procedure S17), and the connecting pipe 31 and the communicating pipe 33 are connected by the flange 311 and the flange 331. Connection is made (procedure S34). That is, since the flanges 321 and 331 (connected shapes) of the shielding pipe 32 and the communicating pipe 33 are common, both the shielding pipe 32 and the communicating pipe 33 can be reliably and efficiently connected to the connecting pipe 31.

同様に、遮蔽管32および連通管33の反対側には、それぞれフランジ321,331と共通のフランジ322,332(被接続形状)を形成するとともに、延長管34のフランジ341(接続形状)をこれらのフランジ322,332と接続可能としたので、延長管34の側についても遮蔽管32および連通管33を確実かつ効率よく接続できる。
従って、連通工程S3においては、接続管31から遮蔽管32を分離して連通管33に置き換える際に、作業を確実かつ効率よく行うことができる。
Similarly, on the opposite sides of the shielding pipe 32 and the communicating pipe 33, flanges 322 and 332 (connected shape) common to the flanges 321 and 331 are formed, and the flange 341 (connecting shape) of the extension pipe 34 is formed therein. Since it is possible to connect to the flanges 322 and 332 of the above, the shielding pipe 32 and the communicating pipe 33 can be reliably and efficiently connected to the extension pipe 34 side as well.
Therefore, in the communication step S3, when the shielding pipe 32 is separated from the connecting pipe 31 and replaced with the communication pipe 33, the work can be performed reliably and efficiently.

本実施形態において、遮蔽管32には、遮蔽板320(図7の鋼板51)の接続管31側に耐火物53を設置するとともに、遮蔽板320の延長管34側に、仕切板55,56、連通孔57、導入管58および排出管59で構成される水冷構造を設置した。
遮蔽管32の内部の遮蔽板320の温度が高く、熱風管の温度と圧力に耐えるようにするには、数百mmの耐火物の厚さと剛性の高い遮蔽板が必要となり、遮蔽管32の長さは、長く、重いものとなってしまう。
これに対し、本実施形態では、遮蔽板320を水冷構造とすることで、耐火物53の厚さも薄くでき、コンパクトな遮蔽管32となり、最後の連通工程S3も容易となる。
In the present embodiment, the shielding pipe 32 is provided with a refractory 53 on the connecting pipe 31 side of the shielding plate 320 (steel plate 51 in FIG. 7), and the partition plates 55 and 56 are installed on the extension pipe 34 side of the shielding plate 320. , A water-cooled structure composed of a communication hole 57, an introduction pipe 58 and a discharge pipe 59 was installed.
The temperature of the shielding plate 320 inside the shielding tube 32 is high, and in order to withstand the temperature and pressure of the hot air tube, a refractory thickness of several hundred mm and a highly rigid shielding plate are required. The length is long and heavy.
On the other hand, in the present embodiment, by making the shielding plate 320 a water-cooled structure, the thickness of the refractory 53 can be reduced, the shielding tube 32 becomes compact, and the final communication step S3 can be facilitated.

本実施形態において、延長管34には、途中に伸縮管44を形成しておいた。
これにより、本実施形態では、連通工程S3において、接続管31から遮蔽管32を分離して撤去する際(手順S33)に、伸縮管44を収縮させて延長管34を遮蔽管32から離れる方向へ変位させることで、接続管31と遮蔽管32との間、および遮蔽管32と延長管34との間に、作業隙間を確保することができる。
また、遮蔽管32を撤去し、連通管33に置き換える際(手順S34〜S35)に、伸縮管44を伸長させて延長管34を連通管33に近づく方向へ変位させることで、接続管31と連通管33との間、および連通管33と延長管34との間の隙間を解消し、各々の間を確実に接続することができる。
In the present embodiment, the extension pipe 34 is formed with a telescopic pipe 44 in the middle.
As a result, in the present embodiment, when the shielding pipe 32 is separated from the connecting pipe 31 and removed (procedure S33) in the communication step S3, the expansion pipe 44 is contracted and the extension pipe 34 is separated from the shielding pipe 32. By shifting to, a working gap can be secured between the connecting pipe 31 and the shielding pipe 32 and between the shielding pipe 32 and the extension pipe 34.
Further, when the shielding pipe 32 is removed and replaced with the communication pipe 33 (procedures S34 to S35), the expansion pipe 44 is extended and the extension pipe 34 is displaced in the direction closer to the communication pipe 33 to form the connecting pipe 31. The gaps between the communication pipe 33 and the communication pipe 33 and the extension pipe 34 can be eliminated, and the connections can be ensured between the two.

なお、本発明は前述した実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形などは本発明に含まれる。
前記実施形態では、遮蔽管32として、図7および図8に示す水冷構造の遮蔽管32Aを用いた。しかし、水冷構造の遮蔽管32Aは本発明に必須ではなく、図9のような非水冷式の遮蔽管32Bを用いてもよい。
The present invention is not limited to the above-described embodiment, and modifications within the range in which the object of the present invention can be achieved are included in the present invention.
In the above embodiment, as the shielding tube 32, the shielding tube 32A having the water-cooled structure shown in FIGS. 7 and 8 was used. However, the water-cooled shielding tube 32A is not essential to the present invention, and a non-water-cooled shielding tube 32B as shown in FIG. 9 may be used.

図9において、遮蔽管32Bの内部には鋼板61が設置され、この鋼板61により前述した遮蔽板320が形成されている。鋼板61の片面(接続管31側の表面)には、キャスタブルなどの耐火物62が張られている。鋼板61には、耐火物62の食い付き性を高めるためのスタッド63が多数配置されている。
耐火物62の表面に沿って、耐火レンガ64が2層にわたって積まれている。これにより、遮蔽管32Bの接続管31側には十分な厚さの耐火物層が形成されている。
鋼板61の反対側(延長管34側)には、鋼板61を支えるブラケット65が溶接されているとともに、H形鋼66が縦横に組まれている。
In FIG. 9, a steel plate 61 is installed inside the shielding pipe 32B, and the above-mentioned shielding plate 320 is formed by the steel plate 61. A refractory material 62 such as a castable material is stretched on one side of the steel plate 61 (the surface on the connecting pipe 31 side). A large number of studs 63 for enhancing the biting property of the refractory 62 are arranged on the steel plate 61.
Along the surface of the refractory 62, refractory bricks 64 are stacked in two layers. As a result, a refractory layer having a sufficient thickness is formed on the connecting pipe 31 side of the shielding pipe 32B.
A bracket 65 for supporting the steel plate 61 is welded to the opposite side of the steel plate 61 (extension pipe 34 side), and H-shaped steel 66 is assembled vertically and horizontally.

本発明では、このような非水冷式の遮蔽管32Bを用いてもよい。ただし、前述した水冷式の遮蔽管32A方が、軽く、コンパクトとなるため、連通工程S3で実施される遮蔽管32と連通管33の入替え作業を容易にできる。
例えば、両者を比較すると非水令式の遮蔽管32Bの場合、長さが約800mm、重量12tであったのに対し、水令構造の遮蔽管32Aの場合は、長さが約500mm、重量7tと約60%に低減できる。
In the present invention, such a non-water-cooled shielding tube 32B may be used. However, since the water-cooled shielding pipe 32A described above is lighter and more compact, it is possible to easily replace the shielding pipe 32 and the communicating pipe 33, which is carried out in the communication step S3.
For example, when comparing the two, the non-water-aged type shielding pipe 32B had a length of about 800 mm and a weight of 12 tons, whereas the water-aged type shielding pipe 32A had a length of about 500 mm and a weight of about 500 mm. It can be reduced to 7 tons, which is about 60%.

なお、前記実施形態では、遮蔽板320において、接続管31側のみ耐火物53が施工されているが、延長管34側にも耐火物を施工してもよい。延長管34側へも耐火物を施工した場合、熱風炉14の立ち上げ時に延長管34も乾燥をしようとした場合に有効である。 In the above embodiment, in the shielding plate 320, the refractory material 53 is installed only on the connecting pipe 31 side, but the refractory material may also be installed on the extension pipe 34 side. When a refractory material is also applied to the extension pipe 34 side, it is effective when the extension pipe 34 is also intended to be dried when the hot air furnace 14 is started up.

前記実施形態では、熱風炉14の増設作業(増設熱風炉構築)を、高炉稼働1またはそれ以前から定修1までの期間に実施するとしていた。準備工程S1に先立つ事前施工としては、熱風炉14の構築に限らず、熱風枝管24ないし延長管34の一部など、高炉3の運転状態に影響ない部分であれば実施してもよい。 In the above embodiment, the expansion work of the hot blast furnace 14 (construction of the additional hot blast furnace) is carried out during the period from the blast furnace operation 1 or earlier to the regular repair 1. The pre-construction prior to the preparatory step S1 is not limited to the construction of the hot air furnace 14, and may be carried out as long as it does not affect the operating state of the blast furnace 3, such as a part of the hot air branch pipe 24 or the extension pipe 34.

前記実施形態では、接続形状であるフランジ311,341と、被接続形状であるフランジ321,322,331,332を用い、これらを全て同じ形状としたが、接続形状と被接続形状とを互いに異なる形状としてもよい。また、接続形状および被接続形状としては、フランジ形状に限らず、互いに凹凸嵌合する形状などであってもよい。要するに、遮蔽管32および連通管33に形成される被接続形状どうしが共通であれば、遮蔽管32および連通管33の置き換え作業を効率的に行える。
さらに、接続形状および被接続形状(フランジ311,321,322,331,332,341)は、予め各管(接続管31、遮蔽管32、連通管33、および延長管34)に工場施工しておいてもよく、現場で各管の端部に溶接してもよい。
遮蔽管32の遮蔽板320は、予め工場施工してもよいが、現場施工してもよい。
連通管33の耐火物330は、予め工場施工してもよいが、現場施工してもよい。
In the above embodiment, the flanges 311, 341 which are the connection shapes and the flanges 321, 322, 321 and 332 which are the connected shapes are used, and they are all the same shape, but the connection shape and the connected shape are different from each other. It may be in shape. Further, the connection shape and the connected shape are not limited to the flange shape, and may be a shape in which the surfaces are unevenly fitted to each other. In short, if the connected shapes formed in the shielding pipe 32 and the communicating pipe 33 are common, the work of replacing the shielding pipe 32 and the communicating pipe 33 can be efficiently performed.
Further, the connection shape and the connected shape (flange 311, 3211, 322, 331, 332, 341) are factory-installed on each pipe (connection pipe 31, shielding pipe 32, communication pipe 33, and extension pipe 34) in advance. It may be left in place or welded to the end of each pipe in the field.
The shielding plate 320 of the shielding tube 32 may be constructed in the factory in advance, or may be constructed on-site.
The refractory material 330 of the communication pipe 33 may be constructed in the factory in advance, or may be constructed in the field.

前記実施形態では、延長管34の途中に形成される熱膨張吸収用の伸縮管44を利用して、接続管31から遮蔽管32を分離して撤去する際(手順S33)の作業隙間を確保し、および遮蔽管32を撤去して連通管33に置き換える際(手順S34〜S35)の作業隙間を解消していた。
これに対し、延長管34において、熱膨張対策用の伸縮管44とは別に、連通工程専用の伸縮管を設けてもよい。
In the above embodiment, a working gap is secured when the shielding pipe 32 is separated from the connecting pipe 31 and removed by using the expansion pipe 44 for thermal expansion absorption formed in the middle of the extension pipe 34 (procedure S33). However, when the shielding pipe 32 was removed and replaced with the communication pipe 33 (procedures S34 to S35), the work gap was eliminated.
On the other hand, in the extension pipe 34, a telescopic pipe dedicated to the communication process may be provided in addition to the telescopic pipe 44 for measures against thermal expansion.

図8において、本発明の他の実施形態では、延長管34の伸縮管44から連通管33に接続される端部までの距離が前記実施形態よりも長い。このような場合、連通工程S3において、接続管31から遮蔽管32を分離して撤去する際(手順S33)、および遮蔽管32を撤去して連通管33に置き換える際(手順S34〜S35)に、伸縮管44の伸縮を伴って変位する延長管34の長さが長くなり、変位する重量が大きくなるため、作業の困難性が増すことがある。これに対し、延長管34の遮蔽管32側の端部に近い部分に、連通工程専用の伸縮管45を設けることで、同端部から伸縮管45までの長さおよび重量を削減でき、作業隙間の確保および解消を容易に行うことができる。 In FIG. 8, in another embodiment of the present invention, the distance from the telescopic pipe 44 of the extension pipe 34 to the end connected to the communication pipe 33 is longer than that of the embodiment. In such a case, in the communication step S3, when the shielding pipe 32 is separated from the connecting pipe 31 and removed (procedure S33), and when the shielding pipe 32 is removed and replaced with the communication pipe 33 (procedures S34 to S35). Since the length of the extension pipe 34 that displaces with the expansion and contraction of the expansion pipe 44 becomes long and the weight that displaces increases, the difficulty of work may increase. On the other hand, by providing the expansion pipe 45 dedicated to the communication process near the end of the extension pipe 34 on the shielding pipe 32 side, the length and weight from the same end to the expansion pipe 45 can be reduced, and the work can be performed. It is possible to easily secure and eliminate the gap.

本発明は、熱風管の延長方法および熱風炉の増設方法に利用できる。 The present invention can be used as a method for extending a hot air pipe and a method for expanding a hot air furnace.

1…熱風供給装置、111,121,131,141…混冷炉、112,122,132,142…燃焼炉、113,123,133,143…蓄熱炉、11,12,13,14…熱風炉、2…熱風管、20…熱風本管、201…末端、202…開口、203…耐火物、21,22,23,24…熱風枝管、3…高炉、30…防熱板、31…接続管、32…遮蔽管、33…連通管、34…延長管、311,341…フランジ(接続形状)、321,322,331,332…フランジ(被接続形状)、312,330,340…耐火物、320…遮蔽板、41,42,43,44,45…伸縮管、51,61…遮蔽板を構成する鋼板、52…鋼板、53,62…耐火物、54,63…スタッド、55,56,57,58,59…水冷構造を構成する仕切板、連通孔、導入管および排出管、ブラケット、64…耐火物である耐火レンガ、65…ブラケット,66…H形鋼、S1…準備工程、S2…延長工程、S3…連通工程。 1 ... Hot air supply device, 111, 121, 131, 141 ... Mixing and cooling furnace, 112, 122, 132, 142 ... Combustion furnace, 113, 123, 133, 143 ... Heat storage furnace, 11, 12, 13, 14 ... Hot air furnace 2, 2 ... hot air pipe, 20 ... hot air main, 201 ... end, 202 ... opening, 203 ... refractory, 21, 22, 23, 24 ... hot air branch pipe, 3 ... blast furnace, 30 ... heat shield, 31 ... connection pipe , 32 ... shielding pipe, 33 ... communicating pipe, 34 ... extension pipe, 311,341 ... flange (connection shape), 321,322,331,332 ... flange (connected shape), 312,330,340 ... refractory, 320 ... shielding plate, 41, 42, 43, 44, 45 ... expansion tube, 51, 61 ... steel plate constituting the shielding plate, 52 ... steel plate, 53, 62 ... refractory, 54, 63 ... stud, 55, 56, 57, 58, 59 ... Partition plate, communication hole, introduction pipe and discharge pipe, bracket, 64 ... refractory refractory brick, 65 ... bracket, 66 ... H-shaped steel, S1 ... preparation process, S2 ... extension process, S3 ... communication process.

Claims (6)

高炉および既設熱風炉が接続された熱風管を延長して増設熱風炉に接続する熱風管の延長方法であって、
準備工程として、前記熱風管の一部を開放して前記熱風管に連通する接続管を設置し、前記接続管に内部が遮蔽板で閉鎖された遮蔽管を接続しておき、
延長工程として、前記遮蔽管から前記増設熱風炉に至る延長管を設置し、
連通工程として、前記接続管と前記延長管との間から前記遮蔽管を撤去し、前記接続管と前記延長管との間に内部が開通している連通管を設置して、前記接続管と前記延長管とを連通させることを特徴とする熱風管の延長方法。
It is a method of extending the hot air pipe to which the blast furnace and the existing hot air furnace are connected and connecting to the additional hot air furnace.
As a preparatory step, a part of the hot air pipe is opened to install a connecting pipe communicating with the hot air pipe, and a shielding pipe whose inside is closed by a shielding plate is connected to the connecting pipe.
As an extension process, an extension pipe from the shielding pipe to the additional hot air furnace is installed.
As a communication step, the shielding pipe is removed from between the connection pipe and the extension pipe, and a communication pipe having an open inside is installed between the connection pipe and the extension pipe to form a communication pipe with the connection pipe. A method for extending a hot air pipe, which comprises communicating with the extension pipe.
請求項1に記載の熱風管の延長方法において、
前記準備工程では、前記熱風管の一部を開放したのち、前記熱風管の開口内側に防熱板を設置しておき、前記熱風管に連通する前記接続管を設置し、前記防熱板を撤去したのち、前記遮蔽管を設置することを特徴とする熱風管の延長方法。
In the method for extending a hot air pipe according to claim 1,
In the preparatory step, after opening a part of the hot air pipe, a heat shield was installed inside the opening of the hot air pipe, the connection pipe communicating with the hot air pipe was installed, and the heat shield was removed. Later, a method of extending the hot air pipe, which comprises installing the shielding pipe.
請求項1または請求項2に記載の熱風管の延長方法において、
前記接続管には、前記熱風管と反対側および前記延長管の接続管側にそれぞれ接続形状を形成しておき、
前記遮蔽管および前記連通管の両端には、それぞれ前記接続管および前記延長管の前記接続形状と接続可能な被接続形状を形成しておくことを特徴とする熱風管の延長方法。
In the method for extending a hot air pipe according to claim 1 or 2.
The connection pipe is formed with a connection shape on the side opposite to the hot air pipe and on the connection pipe side of the extension pipe, respectively.
A method for extending a hot air pipe, characterized in that a connected shape that can be connected to the connection shape of the connection pipe and the extension pipe is formed at both ends of the shielding pipe and the communication pipe, respectively.
請求項1から請求項3のいずれか一項に記載の熱風管の延長方法において、
前記遮蔽管は、前記遮蔽板の前記接続管側に耐火物が設置され、前記遮蔽板の前記延長管側に水冷構造が設置されていることを特徴とする熱風管の延長方法。
In the method for extending a hot air pipe according to any one of claims 1 to 3,
The shielding pipe is a method for extending a hot air pipe, characterized in that a refractory is installed on the connecting pipe side of the shielding plate and a water cooling structure is installed on the extension pipe side of the shielding plate.
請求項1から請求項4のいずれか一項に記載の熱風管の延長方法において、
前記延長管には、途中に伸縮管が設置されていることを特徴とする熱風管の延長方法。
In the method for extending a hot air pipe according to any one of claims 1 to 4.
A method of extending a hot air pipe, characterized in that a telescopic pipe is installed in the middle of the extension pipe.
高炉および既設熱風炉が接続された熱風管の一部に延長管を介して増設熱風炉を接続する熱風炉の増設方法であって、
前記増設熱風炉の建設を行うとともに、
準備工程として、前記熱風管の一部を開放して前記熱風管に連通する接続管を設置し、前記接続管に内部が遮蔽板で閉鎖された遮蔽管を接続しておき、
延長工程として、前記遮蔽管から前記増設熱風炉に至る延長管を設置し、
前記増設熱風炉の建設ができたのち、
連通工程として、前記接続管と前記延長管との間から前記遮蔽管を分離して撤去し、前記接続管と前記延長管との間に内部が開通している連通管を設置して前記接続管と前記延長管とを連通させることを特徴とする熱風炉の増設方法。
It is a method of adding a hot air furnace in which an additional hot air furnace is connected to a part of the hot air pipe to which the blast furnace and the existing hot air furnace are connected via an extension pipe.
In addition to constructing the additional hot air furnace
As a preparatory step, a part of the hot air pipe is opened to install a connecting pipe communicating with the hot air pipe, and a shielding pipe whose inside is closed by a shielding plate is connected to the connecting pipe.
As an extension process, an extension pipe from the shielding pipe to the additional hot air furnace is installed.
After the construction of the additional hot air furnace was completed,
As a communication step, the shielding pipe is separated and removed from between the connection pipe and the extension pipe, and a communication pipe having an open inside is installed between the connection pipe and the extension pipe to connect the connection pipe. A method for expanding a hot air furnace, characterized in that a pipe and the extension pipe are communicated with each other.
JP2019140833A 2019-07-31 2019-07-31 Method for extending hot air pipes and method for increasing the number of hot air furnaces Active JP7247047B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019140833A JP7247047B2 (en) 2019-07-31 2019-07-31 Method for extending hot air pipes and method for increasing the number of hot air furnaces
KR1020200093634A KR102490269B1 (en) 2019-07-31 2020-07-28 Method of extending hot-blast pipe and method of adding hot- blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019140833A JP7247047B2 (en) 2019-07-31 2019-07-31 Method for extending hot air pipes and method for increasing the number of hot air furnaces

Publications (2)

Publication Number Publication Date
JP2021025059A true JP2021025059A (en) 2021-02-22
JP7247047B2 JP7247047B2 (en) 2023-03-28

Family

ID=74561602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019140833A Active JP7247047B2 (en) 2019-07-31 2019-07-31 Method for extending hot air pipes and method for increasing the number of hot air furnaces

Country Status (2)

Country Link
JP (1) JP7247047B2 (en)
KR (1) KR102490269B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227002A (en) * 1975-08-28 1977-03-01 Ishikawajima Harima Heavy Ind Co Ltd Protection device for hot blast outlet pipe for blast furnaces
JPS62139806A (en) * 1985-12-12 1987-06-23 Nippon Steel Corp Method for repairing brick on inside wall of hot stove
JPH0551615A (en) * 1991-08-22 1993-03-02 Kawasaki Steel Corp Method for connecting hot air pipe for blast furnace
JP2007314821A (en) * 2006-05-23 2007-12-06 Nippon Steel Engineering Co Ltd Method for intercepting heat at repairing time of hot-blast tube line
JP2009242817A (en) * 2008-03-28 2009-10-22 Jfe Steel Corp Shield plug for repairing hot-blast main of industrial furnace and method for repairing the hot-blast main
JP2012012691A (en) * 2010-07-05 2012-01-19 Jfe Steel Corp Method for replacing hot-air pipe for supplying hot air to blast furnace
WO2012120691A1 (en) * 2011-03-09 2012-09-13 Jfeスチール株式会社 Hot-blast branch pipe structure of blast furnace hot stove and hot-blast branch pipe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029447B2 (en) * 2012-12-14 2016-11-24 川崎重工業株式会社 Front wheel support structure for saddle-ride type vehicles
KR101839302B1 (en) * 2016-11-03 2018-03-19 주식회사 포스코건설 Mounting portion for burner of hot blast furnace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227002A (en) * 1975-08-28 1977-03-01 Ishikawajima Harima Heavy Ind Co Ltd Protection device for hot blast outlet pipe for blast furnaces
JPS62139806A (en) * 1985-12-12 1987-06-23 Nippon Steel Corp Method for repairing brick on inside wall of hot stove
JPH0551615A (en) * 1991-08-22 1993-03-02 Kawasaki Steel Corp Method for connecting hot air pipe for blast furnace
JP2007314821A (en) * 2006-05-23 2007-12-06 Nippon Steel Engineering Co Ltd Method for intercepting heat at repairing time of hot-blast tube line
JP2009242817A (en) * 2008-03-28 2009-10-22 Jfe Steel Corp Shield plug for repairing hot-blast main of industrial furnace and method for repairing the hot-blast main
JP2012012691A (en) * 2010-07-05 2012-01-19 Jfe Steel Corp Method for replacing hot-air pipe for supplying hot air to blast furnace
WO2012120691A1 (en) * 2011-03-09 2012-09-13 Jfeスチール株式会社 Hot-blast branch pipe structure of blast furnace hot stove and hot-blast branch pipe

Also Published As

Publication number Publication date
KR102490269B1 (en) 2023-01-20
JP7247047B2 (en) 2023-03-28
KR20210015673A (en) 2021-02-10

Similar Documents

Publication Publication Date Title
JP2594737Y2 (en) Insulation box for coke oven repair
JP6753338B2 (en) Hot brick transshipment repair method for coke oven
US10578363B2 (en) Extended leg return elbow for use with a steel making furnace and method thereof
JP2021025059A (en) Method of extending hot blast pipe and method of constructing additional hot blast stove
JP2960518B2 (en) Method and apparatus for repairing hot flame path of coke oven at high temperature
US20080050689A1 (en) Method of stabilising a refractory inner wall of a hot blast generating device and use thereof in a hot repair method
CN114058760A (en) Method for quickly replacing local hot air pipeline on hot air pipe of blast furnace
KR100447892B1 (en) The exchangeable connecting pipe of hot stove having cooling ability
JPH07247481A (en) Method for hot repairing of coke oven
JP5914134B2 (en) Cooling method and repair method of hot air pipe
JP4124011B2 (en) Heat retention method and apparatus during brick replacement of hot-burn furnace combustion chamber burner
RU2109818C1 (en) Method of manufacturing shaft of blast furnace
JP2614582B2 (en) Temperature control method of non-repaired part during hot repair of coke oven
JP2020186448A (en) Furnace bottom cooling method for repairing blast furnace
US1544869A (en) Furnace
JPH08159668A (en) Method for hot repair of high-temperature furnace wall and heat insulating device
US2976854A (en) Fluid cooled furnace structure
KR100949017B1 (en) Expansion joint Structure of Hot stove equipment in Blast furnace
US2176336A (en) Cupola furnace
JP2021161519A (en) Installation method of hot blast stove
JP5261713B2 (en) Hot metal construction method
JPS62139806A (en) Method for repairing brick on inside wall of hot stove
Cobo et al. Operation of an Open-Type Anode Baking Furnace With a Temporary Crossover
CN116334334A (en) Internal combustion type hot-blast stove pipeline system
SU831783A1 (en) Blast furnace cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230315

R150 Certificate of patent or registration of utility model

Ref document number: 7247047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350