JP2021021527A - Thermostatic expansion valve and refrigeration cycle system - Google Patents

Thermostatic expansion valve and refrigeration cycle system Download PDF

Info

Publication number
JP2021021527A
JP2021021527A JP2019137825A JP2019137825A JP2021021527A JP 2021021527 A JP2021021527 A JP 2021021527A JP 2019137825 A JP2019137825 A JP 2019137825A JP 2019137825 A JP2019137825 A JP 2019137825A JP 2021021527 A JP2021021527 A JP 2021021527A
Authority
JP
Japan
Prior art keywords
temperature
expansion valve
refrigerant
evaporator
type expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019137825A
Other languages
Japanese (ja)
Other versions
JP7347984B2 (en
Inventor
裕正 ▲高▼田
裕正 ▲高▼田
Yasumasa Takata
佐藤 祐一
Yuichi Sato
祐一 佐藤
雄一郎 當山
Yuichiro Toyama
雄一郎 當山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2019137825A priority Critical patent/JP7347984B2/en
Priority to CN202010648592.3A priority patent/CN112303966B/en
Publication of JP2021021527A publication Critical patent/JP2021021527A/en
Application granted granted Critical
Publication of JP7347984B2 publication Critical patent/JP7347984B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures

Abstract

To provide a thermostatic expansion valve capable of controlling a refrigerant state at an evaporation outlet to make refrigerant wet steam stably with a simple configuration, and a refrigeration cycle system.SOLUTION: A refrigeration cycle system comprises an evaporator 40 that cools a heating element 100 to be cooled, and a thermostatic expansion valve 10. The thermostatic expansion valve 10 sets a "static superheat degree" (SSH) to a lower temperature side than a refrigerant saturation line so that an outlet refrigerant of the evaporator 40 becomes wet steam in an operating temperature range of the heating element 100. That is, a valve opening start temperature with respect to secondary pressure is set lower than a refrigerant saturation temperature (temperature on the refrigerant saturation line). Similarly, the "nominal capacity valve opening characteristic" line and a "fully opening characteristic" line are also set on the lower temperature side than the refrigerant saturation line.SELECTED DRAWING: Figure 1

Description

本発明は、冷却装置等の冷凍サイクルシステムにおいて蒸発器の冷却能力を制御する温度式膨張弁及び冷凍サイクルシステムに関する。 The present invention relates to a temperature expansion valve and a refrigeration cycle system that control the cooling capacity of an evaporator in a refrigeration cycle system such as a cooling device.

従来、例えば情報処理分野において、サーバ等の大量に発熱するシステムを冷却することが行われている。この際、発熱素子を許容温度内の一定温度に維持する必要があるため、冷却装置の蒸発器の冷却能力を制御する必要がある。このような冷却装置として、温度式膨張弁により冷却能力を制御するものが、例えば特許第3758074号公報(特許文献1)に開示されている。この特許文献1のものは、蒸発器(コールドプレート)の後段に加熱部を設け、加熱部の下流に感温筒を取り付けて過熱度を制御することにより、蒸発器出口における冷媒状態を湿り蒸気となるようにするものである。 Conventionally, for example, in the field of information processing, cooling a system that generates a large amount of heat such as a server has been performed. At this time, since it is necessary to maintain the heat generating element at a constant temperature within the allowable temperature, it is necessary to control the cooling capacity of the evaporator of the cooling device. As such a cooling device, a device that controls the cooling capacity by a temperature type expansion valve is disclosed, for example, in Japanese Patent No. 3758074 (Patent Document 1). In Patent Document 1, a heating unit is provided at the subsequent stage of the evaporator (cold plate), and a temperature sensitive cylinder is attached downstream of the heating unit to control the degree of superheat, thereby moistening the refrigerant state at the evaporator outlet and steam. It is intended to be.

特許第3758074号公報Japanese Patent No. 3758074

特許文献1の従来の技術では、冷却装置のシステムに加熱部と加熱制御部とを設ける必要があり、システム構成が煩雑になるという問題がある。 In the conventional technique of Patent Document 1, it is necessary to provide a heating unit and a heating control unit in the system of the cooling device, and there is a problem that the system configuration becomes complicated.

本発明は、簡単な構成で、蒸発器出口での冷媒状態を安定して湿り蒸気となるように制御できる感温式温度膨張弁及び冷凍サイクルシステムを提供することを課題とする。 An object of the present invention is to provide a temperature-sensitive temperature expansion valve and a refrigeration cycle system capable of stably controlling the state of the refrigerant at the outlet of the evaporator so as to become moist steam with a simple configuration.

本発明の温度式膨張弁は、感温部を備えた温度式膨張弁において、冷却対象である発熱体の使用温度範囲にて、蒸発器出口冷媒が湿り蒸気となるように、二次圧力に対する弁開き始め温度が冷媒飽和温度より低く設定されていることを特徴とする。 The temperature type expansion valve of the present invention is a temperature type expansion valve provided with a temperature sensitive portion, and is subject to secondary pressure so that the evaporator outlet refrigerant becomes moist steam in the operating temperature range of the heating element to be cooled. The valve opening start temperature is set lower than the refrigerant saturation temperature.

このような本発明の温度式膨張弁によれば、感温部で検知される温度が高いほど冷媒流量が増加するように設定されており、冷却対象である発熱体の使用温度範囲にて、蒸発器出口冷媒が湿り蒸気となるように、二次圧力に対する弁開き始め温度が冷媒飽和温度より低く(すなわち冷媒の液相の範囲に)設定されている。したがって、この温度式膨張弁を用いた冷凍サイクルシステムにより冷凍装置を構成すると、蒸発器出口の冷媒状態が安定して湿り蒸気となり、発熱体を均一に冷却できて発熱体の温度分布を均一に保つことができる。 According to such a temperature type expansion valve of the present invention, the refrigerant flow rate is set to increase as the temperature detected by the temperature sensitive portion increases, and the refrigerant flow rate is set to increase within the operating temperature range of the heating element to be cooled. The valve opening temperature with respect to the secondary pressure is set lower than the refrigerant saturation temperature (that is, within the liquid phase range of the refrigerant) so that the evaporator outlet refrigerant becomes moist steam. Therefore, if the refrigeration system is configured with a refrigeration cycle system using this temperature type expansion valve, the refrigerant state at the evaporator outlet becomes stable and becomes moist steam, the heating element can be cooled uniformly, and the temperature distribution of the heating element becomes uniform. Can be kept.

この際、前記発熱体の熱負荷変動時に弁が公称能力時の開度となった場合でも、前記蒸発器出口における冷媒が常に湿り蒸気となるように、弁が公称能力時の開度となる温度を、冷媒飽和温度よりも低く設定されていることを特徴とする温度式膨張弁が好ましい。 At this time, even if the valve has an opening at the nominal capacity when the heat load of the heating element fluctuates, the valve has an opening at the nominal capacity so that the refrigerant at the evaporator outlet always becomes moist steam. A temperature type expansion valve characterized in that the temperature is set lower than the refrigerant saturation temperature is preferable.

また、前記発熱体の熱負荷変動時に弁が全開になった場合でも、前記蒸発器出口における冷媒が常に湿り蒸気となるように、弁全開となる温度が、冷媒飽和温度よりも低く設定されていることを特徴とする温度式膨張弁が好ましい。 Further, even when the valve is fully opened when the heat load of the heating element fluctuates, the temperature at which the valve is fully opened is set lower than the refrigerant saturation temperature so that the refrigerant at the evaporator outlet is always moist steam. A temperature type expansion valve characterized by the above is preferable.

また、この際、内部均圧式であることを特徴とする温度式膨張弁が好ましい。 Further, at this time, a temperature type expansion valve characterized by an internal pressure equalization type is preferable.

また、前記蒸発器出口における冷媒が常に湿り蒸気となるように、二次圧力に対する弁開き始め温度が、冷媒飽和温度よりも前記蒸発器の圧力損失分の冷媒飽和相当温度だけ低く設定されていることを特徴とする温度式膨張弁が好ましい。 Further, the valve opening start temperature with respect to the secondary pressure is set lower than the refrigerant saturation temperature by the temperature corresponding to the refrigerant saturation corresponding to the pressure loss of the evaporator so that the refrigerant at the evaporator outlet is always moist steam. A temperature type expansion valve characterized by this is preferable.

また、前記感温部のチャージ方式が吸着チャージ方式であることを特徴とする温度式膨張弁が好ましい。 Further, a temperature type expansion valve characterized in that the charge method of the temperature sensitive portion is an adsorption charge method is preferable.

また、本発明の冷凍サイクルシステムは、圧縮機と、凝縮器と、蒸発器と、前記凝縮器と前記蒸発器との間に設けられた絞り装置とを含む冷凍サイクルシステムであって、前記いずれかの温度式膨張弁が、前記絞り装置として用いられていることを特徴とする。 Further, the refrigeration cycle system of the present invention is a refrigeration cycle system including a compressor, a condenser, an evaporator, and a drawing device provided between the condenser and the evaporator. The temperature type expansion valve is characterized in that it is used as the throttle device.

本発明の温度式膨張弁及び冷凍サイクルシステムによれば、簡単な構成で、蒸発器出口での冷媒状態を安定して湿り蒸気となるように制御でき、冷却装置において発熱体を均一に冷却できて発熱体の温度分布を均一に保つことができる。 According to the temperature type expansion valve and the refrigeration cycle system of the present invention, the refrigerant state at the evaporator outlet can be controlled to be stable and moist steam with a simple configuration, and the heating element can be uniformly cooled in the cooling device. Therefore, the temperature distribution of the heating element can be kept uniform.

本発明の実施形態の温度式膨張弁を用いた冷却装置の冷凍サイクルシステムの要部を示す図である。It is a figure which shows the main part of the refrigeration cycle system of the cooling apparatus using the temperature type expansion valve of the embodiment of this invention. 実施形態の温度式膨張弁における空気特性を示す図である。It is a figure which shows the air characteristic in the temperature type expansion valve of an embodiment. 従来の温度式膨張弁における空気特性を示す図である。It is a figure which shows the air characteristic in the conventional temperature type expansion valve.

次に、本発明の温度式膨張弁及び冷凍サイクルシステムの実施形態について図面を参照して説明する。図1は実施形態の温度式膨張弁を用いた冷却装置の冷凍サイクルシステムの要部を示す図である。図1において、10は温度式膨張弁、20は圧縮機、30は凝縮器、40は蒸発器、50はアキュムレータであり、これらは配管で環状に接続することにより冷凍サイクルシステムを構成している。温度式膨張弁10は、弁本体部1、ダイヤフラム装置2、例えば従来の感温筒と同様な感温部3、及びキャピラリチューブ4を有している。弁本体部1の一次側継手管1aは凝縮器30の出口側配管30aに接続され、二次側継手管1bは蒸発器40の入口側配管40aに接続されている。そして、蒸発器40は冷却対象である発熱体100に接触して併設され、この蒸発器40の出口側配管40bに感温部3(感温筒)が取り付けられている。なお、発熱体100は、例えばメモリやCPU等の発熱素子などであり、この発熱体100の発熱体熱負荷の挙動は既知である。なお、以下の説明で、「温度式膨張弁」を適宜「膨張弁」とも表現する。 Next, an embodiment of the temperature expansion valve and the refrigeration cycle system of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a main part of a refrigeration cycle system of a cooling device using the temperature type expansion valve of the embodiment. In FIG. 1, 10 is a temperature expansion valve, 20 is a compressor, 30 is a condenser, 40 is an evaporator, and 50 is an accumulator, which are connected in a ring shape by piping to form a refrigeration cycle system. .. The temperature expansion valve 10 has a valve body 1, a diaphragm device 2, for example, a temperature sensing portion 3 similar to a conventional temperature sensing cylinder, and a capillary tube 4. The primary side joint pipe 1a of the valve body 1 is connected to the outlet side pipe 30a of the condenser 30, and the secondary side joint pipe 1b is connected to the inlet side pipe 40a of the evaporator 40. The evaporator 40 is placed in contact with the heating element 100 to be cooled, and the temperature sensitive portion 3 (temperature sensitive cylinder) is attached to the outlet side pipe 40b of the evaporator 40. The heating element 100 is, for example, a heating element such as a memory or a CPU, and the behavior of the heating element heat load of the heating element 100 is known. In the following description, the "temperature type expansion valve" is also appropriately referred to as an "expansion valve".

圧縮機20は冷凍サイクルシステムを流れる冷媒を圧縮し、圧縮された冷媒は凝縮器30で凝縮液化され、一次側継手管1aを通して弁本体部1に流入される。弁本体部1は流入される冷媒を減圧(膨張)して二次側継手管1bから蒸発器40に流入させる。蒸発器40は冷媒の一部を蒸発気化し、気液混合状態の冷媒がアキュムレータ50に流入し、このアキュムレータ50から気相冷媒が圧縮機20に循環される。そして、蒸発器40は、冷媒の一部を蒸発気化することで、発熱体100から熱を吸収する。これにより発熱体100が冷却される。また、感温部3には、吸着チャージによりガスが封入されており、この感温部3はキャピラリチューブ4によりダイヤフラム装置2に連結されている。 The compressor 20 compresses the refrigerant flowing through the refrigeration cycle system, and the compressed refrigerant is condensed and liquefied by the condenser 30 and flows into the valve body 1 through the primary side joint pipe 1a. The valve body 1 decompresses (expands) the inflowing refrigerant and causes it to flow into the evaporator 40 from the secondary side joint pipe 1b. The evaporator 40 evaporates and vaporizes a part of the refrigerant, the refrigerant in the gas-liquid mixed state flows into the accumulator 50, and the vapor phase refrigerant is circulated from the accumulator 50 to the compressor 20. Then, the evaporator 40 absorbs heat from the heating element 100 by evaporating and vaporizing a part of the refrigerant. This cools the heating element 100. Further, a gas is sealed in the temperature sensitive portion 3 by an adsorption charge, and the temperature sensitive portion 3 is connected to the diaphragm device 2 by a capillary tube 4.

温度式膨張弁10の機械的な構成としては、広く知られている一般的なものを採用することができる。例えば、ダイヤフラム装置2は、キャピラリチューブ4によって感温部3に接続された受圧室と均圧室とを、ダイヤフラムにより区画するよう構成されている。なお、この実施形態の温度式膨張弁10は内部均圧式であるが、外部均圧式の場合は均圧室は蒸発器40の出口側配管40bに導通される。弁本体部1は、ダイヤフラムに連結された弁体により、一次側継手管1aと二次側継手管1bとの間に形成された弁ポートの弁開度を調整するよう構成されている。そして、感温部3による感知温度に応じて変化する受圧室の内圧に応じて冷媒を流す弁ポートの弁開度を変化させ、蒸発器40へ供給する冷媒の流量制御を行う。 As the mechanical configuration of the temperature type expansion valve 10, a widely known general one can be adopted. For example, the diaphragm device 2 is configured to partition the pressure receiving chamber and the pressure equalizing chamber connected to the temperature sensing portion 3 by the capillary tube 4 by a diaphragm. The temperature type expansion valve 10 of this embodiment is an internal pressure equalizing type, but in the case of the external pressure equalizing type, the pressure equalizing chamber is conducted to the outlet side pipe 40b of the evaporator 40. The valve body 1 is configured to adjust the valve opening degree of the valve port formed between the primary side joint pipe 1a and the secondary side joint pipe 1b by the valve body connected to the diaphragm. Then, the valve opening degree of the valve port through which the refrigerant flows is changed according to the internal pressure of the pressure receiving chamber that changes according to the temperature sensed by the temperature sensing unit 3, and the flow rate of the refrigerant supplied to the evaporator 40 is controlled.

また、実施形態の温度式膨張弁10は以下のように設定されている。図2は実施形態の温度式膨張弁10における空気特性の概略図、図3は従来の温度式膨張弁における空気特性の概略図の一例であり、これらの空気特性は、感温部3で検知される感温部温度「T」と二次側継手管1bの圧力である二次圧力「P」に対して、弁が全開となる「全開特性」のライン、「公称能力弁開特性」のライン、弁の開き始めを示す「静止過熱度(SSH)」のラインを図示したものである。 Further, the temperature type expansion valve 10 of the embodiment is set as follows. FIG. 2 is a schematic diagram of the air characteristics of the temperature type expansion valve 10 of the embodiment, and FIG. 3 is an example of a schematic diagram of the air characteristics of the conventional temperature type expansion valve, and these air characteristics are detected by the temperature sensing unit 3. With respect to the temperature sensitive part temperature "T" and the secondary pressure "P" which is the pressure of the secondary side joint pipe 1b, the line of "fully open characteristic" where the valve is fully opened, "nominal capacity valve opening characteristic" The line and the line of "static superheat degree (SSH)" indicating the start of opening of the valve are illustrated.

図2に示すように、実施形態の温度式膨張弁10においては、発熱体100における使用温度範囲は予め決められている。そして、この使用温度範囲において、「静止過熱度」(SSH)が、冷媒飽和線よりも左側(液相側)に設定されている。すなわち、この使用温度範囲において、二次圧力に対する弁開き始め温度が冷媒飽和温度(冷媒飽和線上の温度)より低く設定されている。また、「公称能力弁開特性」のラインと「全開特性」のラインも、同様に、使用温度範囲において冷媒飽和線よりも左側(液相側)に設定されている。したがって、蒸発器40の出口の冷媒状態が安定して湿り蒸気となるため、発熱体100の温度分布を均一に保つことができ、発熱体100の部分劣化が回避できる。 As shown in FIG. 2, in the temperature type expansion valve 10 of the embodiment, the operating temperature range of the heating element 100 is predetermined. Then, in this operating temperature range, the "static superheat degree" (SSH) is set to the left side (liquid phase side) of the refrigerant saturation line. That is, in this operating temperature range, the valve opening start temperature with respect to the secondary pressure is set lower than the refrigerant saturation temperature (temperature on the refrigerant saturation line). Similarly, the "nominal capacity valve opening characteristic" line and the "fully opening characteristic" line are also set to the left side (liquid phase side) of the refrigerant saturation line in the operating temperature range. Therefore, since the refrigerant state at the outlet of the evaporator 40 is stable and becomes moist steam, the temperature distribution of the heating element 100 can be kept uniform, and partial deterioration of the heating element 100 can be avoided.

実施形態の温度式膨張弁10は内部均圧式であるが、外部均圧式の温度式膨張弁や、蒸発器の圧力損失が殆どない場合の内部均圧式の温度式膨張弁では、上記のように、二次圧力に対する弁開き始め温度を冷媒飽和温度より低く設定する、という構成でよい。なお、蒸発器(膨張弁から蒸発器出口までの間)の圧力損失が大きい場合の内部均圧式の温度式膨張弁では、二次圧力に対する弁開き始め温度を冷媒飽和温度よりも圧力損失分の冷媒飽和相当温度だけ低く設定する、という構成をさらに備えていればよい。これは、蒸発器の圧力損失が大きい場合、圧力損失分だけ、蒸発器40の出口配管の内圧が二次圧力(膨張弁出口圧力)より下がるため、蒸発器40の出口配管内の冷媒状態が、過熱蒸気となる可能性があるため、これを回避するためである。 The temperature type expansion valve 10 of the embodiment is an internal pressure equalizing type, but the external pressure equalizing type temperature type expansion valve and the internal pressure equalizing type temperature type expansion valve when there is almost no pressure loss of the evaporator are as described above. , The valve opening start temperature with respect to the secondary pressure may be set lower than the refrigerant saturation temperature. In the case of an internal pressure equalizing type thermal expansion valve when the pressure loss of the evaporator (between the expansion valve and the evaporator outlet) is large, the valve opening start temperature with respect to the secondary pressure is set to the pressure loss amount rather than the refrigerant saturation temperature. It suffices to further provide a configuration in which the temperature corresponding to the saturation of the refrigerant is set lower. This is because when the pressure loss of the evaporator is large, the internal pressure of the outlet pipe of the evaporator 40 is lower than the secondary pressure (expansion valve outlet pressure) by the amount of the pressure loss, so that the state of the refrigerant in the outlet pipe of the evaporator 40 is changed. This is to avoid this because it may become overheated steam.

したがって、このように弁開き始め温度を設定することで、圧力損失の大きい蒸発器40で内部均圧式の温度式膨張弁であっても、蒸発器40の出口の冷媒状態が安定して湿り蒸気となるため、発熱体100の温度分布を均一に保つことができ、発熱体100の部分劣化が回避できる。圧力損失の大きい蒸発器40であっても、上述の様に、外部均圧方式の温度式膨張弁では圧力損失の影響を受けない為、内部均圧式の温度式膨張弁のように圧力損失分の冷媒飽和相当温度分だけ弁開き始め温度をさらに低く設定すること(SSHラインの左側へのシフト)は不要である。 Therefore, by setting the valve opening start temperature in this way, even if the evaporator 40 has a large pressure loss and is an internal pressure equalizing type temperature expansion valve, the refrigerant state at the outlet of the evaporator 40 is stable and wet steam. Therefore, the temperature distribution of the heating element 100 can be kept uniform, and partial deterioration of the heating element 100 can be avoided. Even if the evaporator 40 has a large pressure loss, as described above, the external pressure equalizing type temperature expansion valve is not affected by the pressure loss, so the pressure loss amount is the same as the internal pressure equalizing type temperature expansion valve. It is not necessary to set the valve opening start temperature further lower (shift to the left side of the SSH line) by the temperature equivalent to the saturation of the refrigerant.

なお、従来の温度式膨張弁では過熱度制御を行うため、図3に示すように、「静止過熱度(SSH)」のラインを冷媒飽和線より右側(気相側)に設定している。「公称能力弁開特性」のラインと「全開特性」のラインも、同様に冷媒飽和線より右側(気相側)に設定している。このため、蒸発器の出口の冷媒状態を湿り蒸気とすることができず、発熱体の温度分布を均一に保つことができない。これに対して、本発明では、温度式膨張弁が前記のように設定されているので、発熱体の温度分布を均一に保つことができる。 In addition, in order to control the degree of superheat in the conventional temperature type expansion valve, as shown in FIG. 3, the line of "static superheat (SSH)" is set on the right side (gas phase side) of the refrigerant saturation line. The "nominal capacity valve open characteristic" line and the "fully open characteristic" line are also set to the right side (gas phase side) of the refrigerant saturation line. Therefore, the refrigerant state at the outlet of the evaporator cannot be changed to wet steam, and the temperature distribution of the heating element cannot be kept uniform. On the other hand, in the present invention, since the temperature type expansion valve is set as described above, the temperature distribution of the heating element can be kept uniform.

また、感温部3は吸着チャージにより構成されているので、前記のようなSSHライン等を冷媒飽和線よりも左側(液相側)にする設定が容易にできる。 Further, since the temperature sensitive portion 3 is composed of an adsorption charge, it is possible to easily set the SSH line or the like as described above to the left side (liquid phase side) of the refrigerant saturation line.

以上、本発明の実施の形態について図面を参照して詳述し、その他の実施形態についても詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings and other embodiments have also been described in detail, the specific configuration is not limited to these embodiments, and the present invention is not limited to these embodiments. It is included in the present invention even if there is a design change or the like within a range that does not deviate from the gist.

1 弁本体部
2 ダイヤフラム装置
3 感温部
4 キャピラリチューブ
10 温度式膨張弁
20 圧縮機
30 凝縮器
40 蒸発器
40a 入口側配管
40b 出口側配管
50 アキュムレータ
100 発熱体
1 Valve body 2 Diaphragm device 3 Temperature sensitive part 4 Capillary tube 10 Temperature type expansion valve 20 Compressor 30 Condenser 40 Evaporator 40a Inlet side piping 40b Outlet side piping 50 Accumulator 100 Heating element

Claims (7)

感温部を備えた温度式膨張弁において、冷却対象である発熱体の使用温度範囲にて、蒸発器出口冷媒が湿り蒸気となるように、二次圧力に対する弁開き始め温度が冷媒飽和温度より低く設定されていることを特徴とする温度式膨張弁。 In a temperature-type expansion valve equipped with a temperature-sensitive part, the valve opening temperature with respect to the secondary pressure is higher than the refrigerant saturation temperature so that the evaporator outlet refrigerant becomes moist steam within the operating temperature range of the heating element to be cooled. A temperature expansion valve characterized by being set low. 前記発熱体の熱負荷変動時に弁が公称能力時の開度となった場合でも、前記蒸発器出口における冷媒が常に湿り蒸気となるように、弁が公称能力時の開度となる温度を、冷媒飽和温度よりも低く設定されていることを特徴とする請求項1に記載の温度式膨張弁。 Even if the valve opens at the nominal capacity when the heat load of the heating element fluctuates, the temperature at which the valve opens at the nominal capacity is set so that the refrigerant at the evaporator outlet always becomes moist steam. The temperature type expansion valve according to claim 1, wherein the temperature is set lower than the refrigerant saturation temperature. 前記発熱体の熱負荷変動時に弁が全開になった場合でも、前記蒸発器出口における冷媒が常に湿り蒸気となるように、弁全開となる温度が、冷媒飽和温度よりも低く設定されていることを特徴とする請求項1に記載の温度式膨張弁。 The temperature at which the valve is fully opened is set lower than the refrigerant saturation temperature so that the refrigerant at the evaporator outlet is always moist steam even when the valve is fully opened when the heat load of the heating element fluctuates. The temperature type expansion valve according to claim 1. 内部均圧式であることを特徴とする請求項1乃至3のいずれか一項に記載の温度式膨張弁。 The temperature type expansion valve according to any one of claims 1 to 3, wherein the temperature type expansion valve is of an internal pressure equalizing type. 前記蒸発器出口における冷媒が常に湿り蒸気となるように、二次圧力に対する弁開き始め温度が、冷媒飽和温度よりも前記蒸発器の圧力損失分の冷媒飽和相当温度だけ低く設定されていることを特徴とする請求項4に記載の温度式膨張弁。 The valve opening start temperature with respect to the secondary pressure is set lower than the refrigerant saturation temperature by the temperature corresponding to the refrigerant saturation corresponding to the pressure loss of the evaporator so that the refrigerant at the evaporator outlet is always moist steam. The temperature type expansion valve according to claim 4, which is characterized. 前記感温部のチャージ方式が吸着チャージ方式であることを特徴とする請求項1乃至5のいずれか一項に記載の温度式膨張弁。 The temperature-type expansion valve according to any one of claims 1 to 5, wherein the charge method of the temperature-sensitive portion is an adsorption charge method. 圧縮機と、凝縮器と、蒸発器と、前記凝縮器と前記蒸発器との間に設けられた絞り装置とを含む冷凍サイクルシステムであって、請求項1乃至6のいずれか一項に記載の温度式膨張弁が、前記絞り装置として用いられていることを特徴とする冷凍サイクルシステム。 The refrigerating cycle system including a compressor, a condenser, an evaporator, and a drawing device provided between the condenser and the evaporator, wherein the refrigerating cycle system includes any one of claims 1 to 6. A refrigeration cycle system characterized in that the temperature type expansion valve of the above is used as the throttle device.
JP2019137825A 2019-07-26 2019-07-26 Thermostatic expansion valve and refrigeration cycle system Active JP7347984B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019137825A JP7347984B2 (en) 2019-07-26 2019-07-26 Thermostatic expansion valve and refrigeration cycle system
CN202010648592.3A CN112303966B (en) 2019-07-26 2020-07-07 Temperature type expansion valve and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019137825A JP7347984B2 (en) 2019-07-26 2019-07-26 Thermostatic expansion valve and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2021021527A true JP2021021527A (en) 2021-02-18
JP7347984B2 JP7347984B2 (en) 2023-09-20

Family

ID=74483511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019137825A Active JP7347984B2 (en) 2019-07-26 2019-07-26 Thermostatic expansion valve and refrigeration cycle system

Country Status (2)

Country Link
JP (1) JP7347984B2 (en)
CN (1) CN112303966B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172275A (en) * 1991-12-20 1993-07-09 Daikin Ind Ltd Thermosensitive expansion valve with internally uniform pressure
JP2002134664A (en) * 2000-10-20 2002-05-10 Hitachi Ltd Semiconductor cooling device and its control method
JP3758074B2 (en) * 1999-12-08 2006-03-22 富士電機リテイルシステムズ株式会社 Electronic equipment cooling system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516986B2 (en) * 1987-07-06 1996-07-24 株式会社豊田自動織機製作所 Vehicle air conditioning refrigeration circuit
JPH01230966A (en) * 1988-03-10 1989-09-14 Fuji Koki Seisakusho:Kk Control of refrigerating system and thermostatic expansion valve
AU2361899A (en) * 1998-04-09 1999-10-21 Eaton Corporation Controlling refrigerant in a closed loop recirculating system
JP2000180013A (en) * 1998-12-15 2000-06-30 Hoshizaki Electric Co Ltd Refrigerating apparatus for refrigerator
US6938432B2 (en) * 2002-01-10 2005-09-06 Espec Corp. Cooling apparatus and a thermostat with the apparatus installed therein
JP5172275B2 (en) 2007-10-26 2013-03-27 パナソニック株式会社 Component built-in printed wiring board and method for manufacturing component built-in printed wiring board
CN100507400C (en) * 2007-11-30 2009-07-01 清华大学 Capacity adjustable vortex compressor refrigeration system with main return loop installed with ejector
JP2009133572A (en) * 2007-11-30 2009-06-18 Daikin Ind Ltd Refrigerating device
DE102013226341A1 (en) * 2013-12-18 2015-06-18 BSH Hausgeräte GmbH Refrigerating appliance with several cold compartments

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172275A (en) * 1991-12-20 1993-07-09 Daikin Ind Ltd Thermosensitive expansion valve with internally uniform pressure
JP3758074B2 (en) * 1999-12-08 2006-03-22 富士電機リテイルシステムズ株式会社 Electronic equipment cooling system
JP2002134664A (en) * 2000-10-20 2002-05-10 Hitachi Ltd Semiconductor cooling device and its control method

Also Published As

Publication number Publication date
CN112303966B (en) 2022-04-15
CN112303966A (en) 2021-02-02
JP7347984B2 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
JP5581300B2 (en) Thermal control method and system
EP2196745B1 (en) Refrigeration cycle device
US8459051B2 (en) Air conditioner and method of controlling the same
KR20060019582A (en) Supercritical pressure regulation of economized refrigeration system
JP7454918B2 (en) Fluid preparation method and test chamber
NO170781B (en) CLOSED COOLING SYSTEM
JP2005076933A (en) Refrigeration cycle system
JP2018189350A (en) Climatic test chamber with stable cascading direct expansion refrigeration system
US7987681B2 (en) Refrigerant fluid flow control device and method
JP3662238B2 (en) Cooling device and thermostatic device
JP5174084B2 (en) Refrigerator and refrigeration cycle apparatus
JP2021021527A (en) Thermostatic expansion valve and refrigeration cycle system
US3803864A (en) Air conditioning control system
JP2007046808A (en) Expansion device
JP7403984B2 (en) Cooling system
JPH09133436A (en) Temperature type expansion valve and air-conditioning device for vehicle using the valve
WO2019111771A1 (en) Expansion valve control sensor, and refrigeration system employing same
JPH09210480A (en) Two-stage compression type refrigerating apparatus
JP2001174078A (en) Controlling device of outlet-side refrigerant of evaporator
JP2001263865A (en) Supercritical vapor compression refrigeration cycle and pressure control valve
JP2004162998A (en) Refrigeration unit for vehicle and its control method
US20200348061A1 (en) Very low temperature single stage refrigeration system
JP6840992B2 (en) Freezing system and freezing method
JPH01102255A (en) Heat pump
JP2005265385A (en) Decompression device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221026

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221026

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221104

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221115

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20221125

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20221129

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230124

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230907

R150 Certificate of patent or registration of utility model

Ref document number: 7347984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150