JP2021019169A - Electronic component built-in substrate and method for manufacturing the same - Google Patents

Electronic component built-in substrate and method for manufacturing the same Download PDF

Info

Publication number
JP2021019169A
JP2021019169A JP2019135918A JP2019135918A JP2021019169A JP 2021019169 A JP2021019169 A JP 2021019169A JP 2019135918 A JP2019135918 A JP 2019135918A JP 2019135918 A JP2019135918 A JP 2019135918A JP 2021019169 A JP2021019169 A JP 2021019169A
Authority
JP
Japan
Prior art keywords
metal film
metal
electronic component
film
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019135918A
Other languages
Japanese (ja)
Other versions
JP7363158B2 (en
Inventor
横山 健
Takeshi Yokoyama
健 横山
阿部 敏之
Toshiyuki Abe
敏之 阿部
義弘 鈴木
Yoshihiro Suzuki
義弘 鈴木
和俊 露谷
Kazutoshi Tsuyutani
和俊 露谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2019135918A priority Critical patent/JP7363158B2/en
Publication of JP2021019169A publication Critical patent/JP2021019169A/en
Application granted granted Critical
Publication of JP7363158B2 publication Critical patent/JP7363158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

To prevent separation of a via conductor for heat discharge in an electronic component built-in substrate with an electronic component such as a semiconductor IC buried therein.SOLUTION: An electronic component built-in substrate 1 includes: a substrate having wire layers L1 to L4 and insulating layers 11 to 14; an electronic component 40 buried in the substrate, the electronic component having a back surface 44 covered with a metal laminate film 50; a via conductor 35 connecting the wire layer L4 and the metal laminate film 50 to each other. The metal laminate film 50 has a laminate structure including highly adhesive metal films 51 and 52 and a metal film 53 between the metal films. The via conductor 35 penetrates the metal film 52 and extends into the metal film 53. Since the highly adhesive metal films 51, 52 are formed on both sides of the metal laminate film 50 and the back surface 44 of the electronic component 40 is covered by the metal laminate film and the via conductor 35 extends into the metal film 53, the via conductor 35 can be prevented from separating due to temperature change.SELECTED DRAWING: Figure 2

Description

本発明は電子部品内蔵基板及びその製造方法に関し、特に、半導体ICなどの電子部品が埋め込まれた電子部品内蔵基板及びその製造方法に関する。 The present invention relates to an electronic component-embedded substrate and a method for manufacturing the same, and more particularly to an electronic component-embedded substrate in which electronic components such as a semiconductor IC are embedded and a method for manufacturing the same.

半導体ICなどの電子部品が埋め込まれた電子部品内蔵基板としては、特許文献1及び2に記載された電子部品内蔵基板が知られている。特許文献1及び2に記載された電子部品内蔵基板は、半導体ICの裏面と接する放熱用のビア導体を備えているため、半導体ICの動作によって生じる熱を効率よく放熱することができる。 As an electronic component-embedded substrate in which an electronic component such as a semiconductor IC is embedded, the electronic component-embedded substrate described in Patent Documents 1 and 2 is known. Since the electronic component-embedded substrates described in Patent Documents 1 and 2 include a via conductor for heat dissipation in contact with the back surface of the semiconductor IC, heat generated by the operation of the semiconductor IC can be efficiently dissipated.

しかしながら、半導体ICを構成するシリコンとビア導体を構成する金属材料は、熱膨張係数が大きく異なるため、温度変化によって半導体ICの裏面とビア導体の界面が剥離しやすいという問題がある。ここで、特許文献2には、半導体ICの裏面に金属膜を形成した例が挙げられている。このように、半導体ICの裏面に金属膜を形成しておき、この金属膜と接するようビア導体を形成すれば、剥離は生じにくくなる。 However, since the silicon constituting the semiconductor IC and the metal material constituting the via conductor have significantly different coefficients of thermal expansion, there is a problem that the interface between the back surface of the semiconductor IC and the via conductor is easily peeled off due to a temperature change. Here, Patent Document 2 gives an example in which a metal film is formed on the back surface of a semiconductor IC. In this way, if a metal film is formed on the back surface of the semiconductor IC and a via conductor is formed so as to be in contact with the metal film, peeling is less likely to occur.

国際公開第2008/075629号パンフレットInternational Publication No. 2008/07569 Pamphlet 特開2013−229548号公報Japanese Unexamined Patent Publication No. 2013-229548

しかしながら、金属膜の材料として主に使用される銅(Cu)は、シリコンなど電子部品の素体を構成する材料に対する密着性が必ずしも十分ではないことから、半導体ICの裏面に単に金属膜を形成するだけでは、温度変化に起因する剥離を確実に防止することは困難であった。 However, copper (Cu), which is mainly used as a material for a metal film, does not always have sufficient adhesion to a material constituting an element body of an electronic component such as silicon, and therefore simply forms a metal film on the back surface of a semiconductor IC. It was difficult to reliably prevent peeling due to temperature changes simply by doing so.

したがって、本発明は、半導体ICなどの電子部品が埋め込まれた電子部品内蔵基板及びその製造方法において、放熱用のビア導体の剥離をより効果的に防止することを目的とする。 Therefore, an object of the present invention is to more effectively prevent peeling of a via conductor for heat dissipation in an electronic component-embedded substrate in which an electronic component such as a semiconductor IC is embedded and a method for manufacturing the same.

本発明による電子部品内蔵基板は、第1の配線層を含む複数の配線層と第1及び第2の絶縁層を含む複数の絶縁層が積層されてなる基板と、端子電極が形成された主面と、主面の反対側に位置し、金属積層膜で覆われた裏面とを有し、主面が第1の絶縁層で覆われ、裏面が第2の絶縁層で覆われるよう、基板に埋め込まれた電子部品と、第2の絶縁層を貫通して設けられ、第1の配線層と金属積層膜とを接続するビア導体とを備え、金属積層膜は、電子部品の裏面と接する第1の金属膜と、第2の絶縁層と接する第2の金属膜と、第1の金属膜と第2の金属膜の間に位置する第3の金属膜とを含み、第1の金属膜は、電子部品に対する密着性が第3の金属膜よりも高い金属材料からなり、第2の金属膜は、第2の絶縁層に対する密着性が第3の金属膜よりも高い金属材料からなり、ビア導体は、第2の金属膜を貫通し、第3の金属膜に食い込んでいることを特徴とする。 The substrate with built-in electronic components according to the present invention is mainly composed of a substrate in which a plurality of wiring layers including a first wiring layer and a plurality of insulating layers including first and second insulating layers are laminated, and a terminal electrode is formed. A substrate having a surface and a back surface located on the opposite side of the main surface and covered with a metal laminate, so that the main surface is covered with a first insulating layer and the back surface is covered with a second insulating layer. It is provided with an electronic component embedded in the metal and a via conductor provided through a second insulating layer and connecting the first wiring layer and the metal laminated film, and the metal laminated film is in contact with the back surface of the electronic component. A first metal including a first metal film, a second metal film in contact with a second insulating layer, and a third metal film located between the first metal film and the second metal film. The film is made of a metal material having a higher adhesion to electronic parts than the third metal film, and the second metal film is made of a metal material having a higher adhesion to the second insulating layer than the third metal film. The via conductor is characterized in that it penetrates the second metal film and bites into the third metal film.

本発明によれば、密着性の高い第1及び第2の金属膜が両面に位置する金属積層膜によって電子部品の裏面が覆われているとともに、第3の金属膜に食い込むようにビア導体が設けられていることから、温度変化に起因するビア導体の剥離を防止することが可能となる。 According to the present invention, the back surface of the electronic component is covered with the metal laminated film in which the first and second metal films having high adhesion are located on both sides, and the via conductor is formed so as to bite into the third metal film. Since it is provided, it is possible to prevent peeling of the via conductor due to a temperature change.

本発明において、ビア導体の端部は、第1の金属膜と接することなく、第3の金属膜内に位置するものであっても構わない。これによれば、ビア導体を形成するビアホールを形成する際に、電子部品にダメージが加わることがない。 In the present invention, the end portion of the via conductor may be located in the third metal film without being in contact with the first metal film. According to this, when the via hole forming the via conductor is formed, the electronic component is not damaged.

本発明において、第3の金属膜内におけるビア導体の径は、第2の金属膜の開口径よりも大きくても構わない。これによれば、ビア導体と第3の金属膜の接触面積の増大により、両者の界面における剥離が生じにくくなる。 In the present invention, the diameter of the via conductor in the third metal film may be larger than the opening diameter of the second metal film. According to this, the increase in the contact area between the via conductor and the third metal film makes it difficult for peeling to occur at the interface between the two.

本発明において、第3の金属膜とビア導体が互いに同じ金属材料からなるものであっても構わない。これによれば、ビア導体と第3の金属膜の密着性が高められることから、両者の界面における剥離が生じにくくなる。この場合、第3の金属膜とビア導体がいずれも銅(Cu)からなるものであっても構わない。これによれば、高い熱伝導性と低コストを両立することが可能となる。 In the present invention, the third metal film and the via conductor may be made of the same metal material. According to this, since the adhesion between the via conductor and the third metal film is enhanced, peeling at the interface between the two is less likely to occur. In this case, both the third metal film and the via conductor may be made of copper (Cu). According to this, it is possible to achieve both high thermal conductivity and low cost.

本発明において、第1及び第2の金属膜は、チタン(Ti)、ニッケル(Ni)又はパラジウム(Pd)からなるものであっても構わない。これによれば、電子部品や第2の絶縁層に対する高い密着性を確保することが可能となる。 In the present invention, the first and second metal films may be made of titanium (Ti), nickel (Ni) or palladium (Pd). According to this, it is possible to secure high adhesion to electronic parts and the second insulating layer.

本発明において、第3の金属膜の厚みは、第1及び第2の金属膜の合計厚みよりも厚くても構わない。これによれば、第3の金属膜の材料として熱伝導性が高く安価な材料を選択することにより、高い熱伝導性と低コストを両立することが可能となる。この場合、第3の金属膜の厚みは3μm以上であっても構わない。これによれば、ビアホールの形成マージンを十分に確保することが可能となる。 In the present invention, the thickness of the third metal film may be thicker than the total thickness of the first and second metal films. According to this, by selecting a material having high thermal conductivity and low cost as the material of the third metal film, it is possible to achieve both high thermal conductivity and low cost. In this case, the thickness of the third metal film may be 3 μm or more. According to this, it is possible to secure a sufficient margin for forming the via hole.

本発明による電子部品内蔵基板の製造方法は、端子電極が形成された主面と、主面の反対側に位置する裏面とを有し、裏面が金属積層膜で覆われた電子部品を用意する工程と、第1の配線層を含む複数の配線層と第1及び第2の絶縁層を含む複数の絶縁層が積層されてなる基板に、主面が第1の絶縁層で覆われ、裏面が第2の絶縁層で覆われるよう、電子部品を埋め込む工程と、第2の絶縁層を貫通するビアホールを形成することにより、金属積層膜を露出させる工程と、ビアホール内にビア導体を形成することにより、第1の配線層と金属積層膜とを接続する工程とを備え、金属積層膜は、電子部品の裏面と接する第1の金属膜と、第2の絶縁層と接する第2の金属膜と、第1の金属膜と第2の金属膜の間に位置する第3の金属膜とを含み、第1の金属膜は、電子部品に対する密着性が第3の金属膜よりも高い金属材料からなり、第2の金属膜は、第2の絶縁層に対する密着性が第3の金属膜よりも高い金属材料からなり、金属積層膜を露出させる工程は、第2の金属膜を貫通するようビアホールを形成し、これにより第3の金属膜を露出させることを特徴とする。 The method for manufacturing an electronic component-embedded substrate according to the present invention prepares an electronic component having a main surface on which terminal electrodes are formed and a back surface located on the opposite side of the main surface, and the back surface is covered with a metal laminate film. The main surface is covered with the first insulating layer on the substrate in which the process and the plurality of wiring layers including the first wiring layer and the plurality of insulating layers including the first and second insulating layers are laminated, and the back surface is covered with the first insulating layer. A step of embedding an electronic component so that the metal is covered with a second insulating layer, a step of exposing a metal laminated film by forming a via hole penetrating the second insulating layer, and a via conductor being formed in the via hole. Thereby, the step of connecting the first wiring layer and the metal laminated film is provided, and the metal laminated film includes a first metal film in contact with the back surface of the electronic component and a second metal in contact with the second insulating layer. The first metal film includes a film and a third metal film located between the first metal film and the second metal film, and the first metal film is a metal having higher adhesion to electronic parts than the third metal film. The second metal film is made of a metal material having a higher adhesion to the second insulating layer than the third metal film, and the step of exposing the metal laminated film penetrates the second metal film. It is characterized in that a via hole is formed, thereby exposing a third metal film.

本発明によれば、第2の金属膜を貫通するようビアホールを形成していることから、第3の金属膜に食い込むようにビア導体を形成することが可能となる。これにより、温度変化に起因するビア導体の剥離を防止することが可能となる。 According to the present invention, since the via hole is formed so as to penetrate the second metal film, it is possible to form the via conductor so as to bite into the third metal film. This makes it possible to prevent the via conductor from peeling due to a temperature change.

本発明による電子部品内蔵基板の製造方法は、洗浄液を用いてビアホール内を洗浄する工程をさらに備え、第3の金属膜は、第2の金属膜よりも洗浄液によるエッチングレートが高くても構わない。これによれば、第3の金属膜内におけるビア導体の径を第2の金属膜の開口径よりも大きくすることができることから、ビア導体と第3の金属膜の接触面積が増大し、両者の界面における剥離が生じにくくなる。 The method for manufacturing a substrate with built-in electronic components according to the present invention further includes a step of cleaning the inside of the via hole with a cleaning liquid, and the third metal film may have a higher etching rate with the cleaning liquid than the second metal film. .. According to this, since the diameter of the via conductor in the third metal film can be made larger than the opening diameter of the second metal film, the contact area between the via conductor and the third metal film increases, and both Peeling at the interface of the above is less likely to occur.

このように、本発明によれば、半導体ICなどの電子部品が埋め込まれた電子部品内蔵基板及びその製造方法において、放熱用のビア導体の剥離をより効果的に防止することが可能となる。 As described above, according to the present invention, it is possible to more effectively prevent peeling of the via conductor for heat dissipation in the electronic component built-in substrate in which electronic components such as semiconductor ICs are embedded and the manufacturing method thereof.

図1は、本発明の好ましい実施形態による電子部品内蔵基板1の構造を説明するための模式的な断面図である。FIG. 1 is a schematic cross-sectional view for explaining the structure of the electronic component built-in substrate 1 according to the preferred embodiment of the present invention. 図2は、金属積層膜50とビア導体35の接合部分の模式的な拡大図である。FIG. 2 is a schematic enlarged view of a joint portion between the metal laminated film 50 and the via conductor 35. 図3は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 3 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図4は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 4 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図5は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 5 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図6は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 6 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図7は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 7 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図8は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 8 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図9は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 9 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図10は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 10 is a process diagram for explaining a method of manufacturing the electronic component built-in substrate 1. 図11は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 11 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図12は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 12 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図13は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 13 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図14は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 14 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図15は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 15 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図16は、ビアホール85の形成直後における形状を説明するための模式図である。FIG. 16 is a schematic view for explaining the shape of the via hole 85 immediately after the formation. 図17は、デスミア処理を行った後におけるビアホール85の形状を説明するための模式図である。FIG. 17 is a schematic view for explaining the shape of the via hole 85 after the desmear treatment is performed.

以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の好ましい実施形態による電子部品内蔵基板1の構造を説明するための模式的な断面図である。 FIG. 1 is a schematic cross-sectional view for explaining the structure of the electronic component built-in substrate 1 according to the preferred embodiment of the present invention.

図1に示すように、本実施形態による電子部品内蔵基板1は、4層の絶縁層11〜14と、絶縁層11〜14の表面にそれぞれ形成された配線層L1〜L4と、配線層L2と配線層L3の間に埋め込まれた電子部品40を備える。特に限定されるものではないが、最上層に位置する絶縁層11及び最下層に位置する絶縁層14は、ガラス繊維などの芯材にガラスエポキシなどの樹脂材料を含浸させたコア層であっても構わない。これに対し、絶縁層12,13は、ガラスクロスなどの芯材を含まない樹脂材料からなるものであっても構わない。特に、絶縁層11,14の熱膨張係数は、絶縁層12,13の熱膨張係数よりも小さいことが好ましい。 As shown in FIG. 1, the electronic component-embedded substrate 1 according to the present embodiment has four insulating layers 11 to 14, wiring layers L1 to L4 formed on the surfaces of the insulating layers 11 to 14, and wiring layers L2, respectively. An electronic component 40 embedded between the wiring layer L3 and the wiring layer L3 is provided. Although not particularly limited, the insulating layer 11 located at the top layer and the insulating layer 14 located at the bottom layer are core layers in which a core material such as glass fiber is impregnated with a resin material such as glass epoxy. It doesn't matter. On the other hand, the insulating layers 12 and 13 may be made of a resin material that does not contain a core material such as glass cloth. In particular, the coefficient of thermal expansion of the insulating layers 11 and 14 is preferably smaller than the coefficient of thermal expansion of the insulating layers 12 and 13.

電子部品40の種類については特に限定されないが、例えばベアチップ状態の半導体ICであっても構わない。図1に示す例では、端子電極41が形成された主面42が上側を向くよう、フェースアップ方式で電子部品40が埋め込まれている。このため、電子部品40の主面42及び側面43は絶縁層12で覆われ、電子部品40の裏面44は金属積層膜50を介して絶縁層13で覆われる。 The type of the electronic component 40 is not particularly limited, but may be, for example, a semiconductor IC in a bare chip state. In the example shown in FIG. 1, the electronic component 40 is embedded in a face-up manner so that the main surface 42 on which the terminal electrode 41 is formed faces upward. Therefore, the main surface 42 and the side surface 43 of the electronic component 40 are covered with the insulating layer 12, and the back surface 44 of the electronic component 40 is covered with the insulating layer 13 via the metal laminated film 50.

配線層L1は最上層に位置する配線層であり、その大部分はソルダーレジスト21によって覆われている。配線層L1のうち、ソルダーレジスト21によって覆われていない領域は、チップ部品などが搭載される外部端子E1を構成する。配線層L4は最下層に位置する配線層であり、その大部分はソルダーレジスト22によって覆われている。配線層L4のうち、ソルダーレジスト22によって覆われていない領域は、ハンダを介してマザーボードに接続される外部端子E2を構成する。これに対し、配線層L2,L3は内層に位置する。このうち、配線層L2は絶縁層11と絶縁層12の間に位置し、配線層L3は絶縁層13と絶縁層14の間に位置する。そして、配線層L1と配線層L2はビア導体31を介して接続され、配線層L2と電子部品40の端子電極41はビア導体32を介して接続され、配線層L2と配線層L3はビア導体33を介して接続され、配線層L3と配線層L4はビア導体34を介して接続される。さらに、配線層L4と金属積層膜50は、ビア導体35を介して接続される。ビア導体35は、電子部品40の動作によって発生する熱を効率よく放熱するための放熱ルートを構成し、通常はグランド電位が与えられる。放熱効率を高めるためには、ビア導体35を多数設けることが好ましい。 The wiring layer L1 is a wiring layer located at the uppermost layer, and most of the wiring layer L1 is covered with the solder resist 21. A region of the wiring layer L1 that is not covered by the solder resist 21 constitutes an external terminal E1 on which chip components and the like are mounted. The wiring layer L4 is a wiring layer located at the lowest layer, and most of the wiring layer L4 is covered with the solder resist 22. A region of the wiring layer L4 that is not covered by the solder resist 22 constitutes an external terminal E2 that is connected to the motherboard via solder. On the other hand, the wiring layers L2 and L3 are located in the inner layer. Of these, the wiring layer L2 is located between the insulating layer 11 and the insulating layer 12, and the wiring layer L3 is located between the insulating layer 13 and the insulating layer 14. The wiring layer L1 and the wiring layer L2 are connected via the via conductor 31, the wiring layer L2 and the terminal electrode 41 of the electronic component 40 are connected via the via conductor 32, and the wiring layer L2 and the wiring layer L3 are connected via the via conductor. It is connected via 33, and the wiring layer L3 and the wiring layer L4 are connected via the via conductor 34. Further, the wiring layer L4 and the metal laminated film 50 are connected via the via conductor 35. The via conductor 35 constitutes a heat dissipation route for efficiently dissipating heat generated by the operation of the electronic component 40, and is usually given a ground potential. In order to improve heat dissipation efficiency, it is preferable to provide a large number of via conductors 35.

図2は、金属積層膜50とビア導体35の接合部分の模式的な拡大図である。 FIG. 2 is a schematic enlarged view of a joint portion between the metal laminated film 50 and the via conductor 35.

図2に示すように、金属積層膜50は3層構造を有しており、電子部品40側の表面を構成する第1の金属膜51、絶縁層13側の表面を構成する第2の金属膜52、第1及び第2の金属膜51,52間に位置する第3の金属膜53からなる。第1及び第2の金属膜51,52は、チタン(Ti)、ニッケル(Ni)、パラジウム(Pd)など密着性の高い金属材料からなり、第3の金属膜53は、銅(Cu)など熱伝導性が高く安価な金属材料からなる。これら金属膜51〜53を構成する具体的な金属材料が上記の金属材料に限定されるものではないが、少なくとも、第1の金属膜51は、電子部品40に対する密着性が第3の金属膜53よりも高い金属材料からなる必要があり、第2の金属膜52は、絶縁層13に対する密着性が第3の金属膜53よりも高い金属材料からなる必要がある。これにより、金属積層膜50と電子部品40及び絶縁層13の密着性が高められる。 As shown in FIG. 2, the metal laminated film 50 has a three-layer structure, and the first metal film 51 forming the surface on the electronic component 40 side and the second metal forming the surface on the insulating layer 13 side. It is composed of a third metal film 53 located between the film 52 and the first and second metal films 51 and 52. The first and second metal films 51 and 52 are made of a metal material having high adhesion such as titanium (Ti), nickel (Ni) and palladium (Pd), and the third metal film 53 is copper (Cu) or the like. It is made of an inexpensive metal material with high thermal conductivity. The specific metal materials constituting these metal films 51 to 53 are not limited to the above-mentioned metal materials, but at least the first metal film 51 has a third metal film having adhesion to the electronic component 40. It needs to be made of a metal material higher than 53, and the second metal film 52 needs to be made of a metal material having a higher adhesion to the insulating layer 13 than the third metal film 53. As a result, the adhesion between the metal laminated film 50 and the electronic component 40 and the insulating layer 13 is enhanced.

ここで、金属膜51〜53の厚さをそれぞれH1〜H3とした場合、第3の金属膜53の厚さH3は、第1の金属膜51の厚さH1及び第2の金属膜52の厚さH2よりも十分に厚いことが好ましく、第1及び第2の金属膜51,52の合計厚みH1+H2よりも厚いことがより好ましい。つまり、
H1+H2<H3
であることが好ましい。これは、第1及び第2の金属膜51,52の役割が電子部品40及び絶縁層13に対する密着性の向上であることから表層にのみ位置すれば足り、また比較的高価な材料からなるのに対し、第3の金属膜53の役割は放熱性の向上と、ビア導体35に対する密着性の向上であり、ある程度の厚さが必要だからである。
Here, when the thicknesses of the metal films 51 to 53 are H1 to H3, respectively, the thickness H3 of the third metal film 53 is the thickness H1 of the first metal film 51 and the thickness H1 of the second metal film 52. It is preferably sufficiently thicker than the thickness H2, and more preferably thicker than the total thickness H1 + H2 of the first and second metal films 51 and 52. In other words
H1 + H2 <H3
Is preferable. This is because the roles of the first and second metal films 51 and 52 are to improve the adhesion to the electronic component 40 and the insulating layer 13, so that it is sufficient to be located only on the surface layer, and it is made of a relatively expensive material. On the other hand, the role of the third metal film 53 is to improve heat dissipation and adhesion to the via conductor 35, and a certain thickness is required.

図2に示すように、ビア導体35は、第2の金属膜52を貫通し、第3の金属膜53に食い込むように設けられている。ビア導体35は、第3の金属膜53と同じ金属材料、例えば銅(Cu)からなることが好ましく、ビア導体35を第3の金属膜53に食い込むように設けることによって、両者の界面の面積が拡大している。ビア導体35と第3の金属膜53が同じ金属材料からなる場合、両者の界面は高い密着性を有するため、この界面の面積を拡大することにより、ビア導体35と第3の金属膜53の界面における剥離が生じにくくなる。 As shown in FIG. 2, the via conductor 35 is provided so as to penetrate the second metal film 52 and bite into the third metal film 53. The via conductor 35 is preferably made of the same metal material as the third metal film 53, for example, copper (Cu), and the area of the interface between the via conductor 35 is provided so as to bite into the third metal film 53. Is expanding. When the via conductor 35 and the third metal film 53 are made of the same metal material, the interface between the two has high adhesion. Therefore, by expanding the area of this interface, the via conductor 35 and the third metal film 53 can be formed. Peeling at the interface is less likely to occur.

しかも、本実施形態においては、第3の金属膜53に食い込んだ部分におけるビア導体35の径W1は、第2の金属膜52の開口径W2よりも大きく、ビア導体の端部がアンカー形状を有している。これにより、ビア導体35と第3の金属膜53の界面の面積がより拡大することから、よりいっそう剥離が生じにくくなる。ここで、ビア導体35の先端と第1の金属膜51の距離、つまり、ビア導体35が食い込んだ部分における第3の金属膜53の厚さをH3aとした場合、
H3a≧H3×0.1
であることが好ましい。つまり、ビア導体35は第3の金属膜53を貫通せず、その先端が第1の金属膜51と接することなく第3の金属膜53内に位置することが好ましく、そのマージンとして第3の金属膜53の厚さH3の10%以上であることが好ましい。これは、ビア導体35が第3の金属膜53を貫通すると、ビアホールを形成する際に電子部品40にダメージが加わるそれがあるからである。また、このようなマージンを十分に確保するためには、第3の金属膜53の厚みを3μm以上とすることが好ましい。
Moreover, in the present embodiment, the diameter W1 of the via conductor 35 in the portion biting into the third metal film 53 is larger than the opening diameter W2 of the second metal film 52, and the end portion of the via conductor has an anchor shape. Have. As a result, the area of the interface between the via conductor 35 and the third metal film 53 is further expanded, so that peeling is less likely to occur. Here, when the distance between the tip of the via conductor 35 and the first metal film 51, that is, the thickness of the third metal film 53 at the portion where the via conductor 35 bites is H3a,
H3a ≧ H3 × 0.1
Is preferable. That is, it is preferable that the via conductor 35 does not penetrate the third metal film 53 and its tip is located in the third metal film 53 without contacting the first metal film 51, and the third metal film 53 is used as a margin thereof. It is preferably 10% or more of the thickness H3 of the metal film 53. This is because if the via conductor 35 penetrates the third metal film 53, the electronic component 40 may be damaged when forming the via hole. Further, in order to sufficiently secure such a margin, it is preferable that the thickness of the third metal film 53 is 3 μm or more.

このように、本実施形態による電子部品内蔵基板1は、電子部品40の裏面44を覆う金属積層膜50が3層構造を有し、両面が密着性の高い金属材料によって構成されていることから、金属積層膜50と電子部品40及び絶縁層13の密着性を高めることが可能となる。しかも、ビア導体35が第2の金属膜52を貫通し、第3の金属膜53に食い込むように設けられていることから、ビア導体35と金属積層膜50の密着性も高められ、温度変化による両者の界面の剥離を防止することが可能となる。 As described above, in the electronic component built-in substrate 1 according to the present embodiment, the metal laminated film 50 covering the back surface 44 of the electronic component 40 has a three-layer structure, and both sides are made of a metal material having high adhesion. , It is possible to improve the adhesion between the metal laminated film 50 and the electronic component 40 and the insulating layer 13. Moreover, since the via conductor 35 is provided so as to penetrate the second metal film 52 and bite into the third metal film 53, the adhesion between the via conductor 35 and the metal laminated film 50 is also enhanced, and the temperature changes. It is possible to prevent peeling of the interface between the two.

図3〜図15は、本実施形態による電子部品内蔵基板1の製造方法を説明するための工程図である。 3 to 15 are process diagrams for explaining the manufacturing method of the electronic component built-in substrate 1 according to the present embodiment.

まず、図3に示すように、ガラス繊維などの芯材を含む絶縁層14の一方の表面に金属膜L3aが形成され、他方の表面に金属膜L4a,L4bの積層膜が形成された基材(ワークボード)を用意し、剥離層71を介してステンレスなどからなる支持体70に貼り合わせる。 First, as shown in FIG. 3, a base material in which a metal film L3a is formed on one surface of an insulating layer 14 containing a core material such as glass fiber, and a laminated film of metal films L4a and L4b is formed on the other surface. (Workboard) is prepared and attached to a support 70 made of stainless steel or the like via a release layer 71.

次に、図4に示すように、フォトリソグラフィー法などを用いて金属膜L3aをパターニングすることによって、配線層L3を形成する。次に、図5に示すように、配線層L3を埋め込むよう、絶縁層14の表面に例えば未硬化(Bステージ状態)の樹脂シート等を真空圧着等によって積層することにより、絶縁層13を形成する。 Next, as shown in FIG. 4, the wiring layer L3 is formed by patterning the metal film L3a using a photolithography method or the like. Next, as shown in FIG. 5, the insulating layer 13 is formed by laminating, for example, an uncured (B stage state) resin sheet or the like on the surface of the insulating layer 14 by vacuum pressure bonding or the like so as to embed the wiring layer L3. To do.

次に、図6に示すように、絶縁層13の表面に、金属積層膜50が形成された電子部品40を載置する。電子部品40は、例えばベアチップ状態の半導体ICであり、端子電極41が形成された主面42が上側を向くよう、フェースアップ方式で搭載される。このため、電子部品40の裏面44と絶縁層13の間には、金属積層膜50が介在する。 Next, as shown in FIG. 6, the electronic component 40 on which the metal laminated film 50 is formed is placed on the surface of the insulating layer 13. The electronic component 40 is, for example, a semiconductor IC in a bare chip state, and is mounted in a face-up manner so that the main surface 42 on which the terminal electrode 41 is formed faces upward. Therefore, the metal laminated film 50 is interposed between the back surface 44 of the electronic component 40 and the insulating layer 13.

次に、図7に示すように、電子部品40を覆うように絶縁層12及び金属膜L2aを形成する。これにより、電子部品40の主面42及び側面43は絶縁層12で覆われる。絶縁層12の形成は、例えば、未硬化又は半硬化状態の熱硬化性樹脂を塗布した後、未硬化樹脂の場合それを加熱して半硬化させ、さらに、プレス手段を用いて金属膜L2aとともに硬化成形することが好ましい。絶縁層12としては、電子部品40の埋め込みを妨げる繊維が含まれない樹脂シートが望ましい。 Next, as shown in FIG. 7, the insulating layer 12 and the metal film L2a are formed so as to cover the electronic component 40. As a result, the main surface 42 and the side surface 43 of the electronic component 40 are covered with the insulating layer 12. The insulating layer 12 is formed, for example, by applying a thermosetting resin in an uncured or semi-cured state, heating the uncured resin to semi-cure it, and further using a pressing means together with the metal film L2a. Curing molding is preferable. As the insulating layer 12, a resin sheet that does not contain fibers that hinder the embedding of the electronic component 40 is desirable.

次に、図8に示すように、例えばフォトリソグラフィー法など公知の手法を用いて金属膜L2aの一部をエッチングにより除去した後に、金属膜L2aが除去された所定の箇所に対して公知のレーザー加工やブラスト加工を行うことにより、ビアホール82,83を形成する。このうち、ビアホール83は絶縁層12,13を貫通して設けられ、ビアホール83の底部には配線層L3が露出する。また、ビアホール82は、電子部品40の端子電極41を露出させる。 Next, as shown in FIG. 8, after removing a part of the metal film L2a by etching using a known method such as a photolithography method, a known laser is applied to a predetermined portion from which the metal film L2a has been removed. Via holes 82 and 83 are formed by processing and blasting. Of these, the via hole 83 is provided so as to penetrate the insulating layers 12 and 13, and the wiring layer L3 is exposed at the bottom of the via hole 83. Further, the via hole 82 exposes the terminal electrode 41 of the electronic component 40.

次に、図9に示すように、無電解メッキ及び電解メッキを施すことによって、絶縁層12の表面に金属膜L2bを形成するとともに、ビアホール82,83の内部にそれぞれビア導体32,33を形成する。その後、図10に示すように、フォトリソグラフィー法などを用いて金属膜L2bをパターニングすることによって、配線層L2を形成する。 Next, as shown in FIG. 9, by performing electroless plating and electrolytic plating, a metal film L2b is formed on the surface of the insulating layer 12, and via conductors 32 and 33 are formed inside the via holes 82 and 83, respectively. To do. Then, as shown in FIG. 10, the wiring layer L2 is formed by patterning the metal film L2b using a photolithography method or the like.

次に、図11に示すように、配線層L2を埋め込むよう、絶縁層11と金属膜L1a,L1bが積層されたシートを真空熱プレスする。絶縁層11に用いる材料及び厚みは、絶縁層14と同じであっても構わない。次に、図12に示すように、金属膜L1a,L1bの界面を剥離するとともに、金属膜L4a,L4bの界面を剥離することによって、基板を支持体70から分離する。 Next, as shown in FIG. 11, a sheet in which the insulating layer 11 and the metal films L1a and L1b are laminated is vacuum-heat pressed so as to embed the wiring layer L2. The material and thickness used for the insulating layer 11 may be the same as that of the insulating layer 14. Next, as shown in FIG. 12, the substrate is separated from the support 70 by peeling off the interface between the metal films L1a and L1b and peeling off the interface between the metal films L4a and L4b.

次に、図13に示すように、例えばフォトリソグラフィー法など公知の手法を用いて金属膜L1a,L4aの一部をエッチングにより除去した後に、金属膜L1a,L4aが除去された所定の箇所に対して公知のレーザー加工やブラスト加工を行うことにより、絶縁層11にビアホール81を形成し、絶縁層14にビアホール84を形成し、絶縁層14,13にビアホール85を形成する。ビアホール81は絶縁層11を貫通して設けられ、ビアホール81の底部には配線層L2が露出する。また、ビアホール84は絶縁層14を貫通して設けられ、ビアホール84の底部には配線層L3が露出する。さらに、ビアホール85は絶縁層14,13を貫通して設けられ、ビアホール85の底部には金属積層膜50が露出する。 Next, as shown in FIG. 13, after a part of the metal films L1a and L4a is removed by etching using a known method such as a photolithography method, the metal films L1a and L4a are removed from the predetermined portion. By performing the known laser processing and blast processing, the via hole 81 is formed in the insulating layer 11, the via hole 84 is formed in the insulating layer 14, and the via hole 85 is formed in the insulating layers 14 and 13. The via hole 81 is provided so as to penetrate the insulating layer 11, and the wiring layer L2 is exposed at the bottom of the via hole 81. Further, the via hole 84 is provided so as to penetrate the insulating layer 14, and the wiring layer L3 is exposed at the bottom of the via hole 84. Further, the via hole 85 is provided so as to penetrate the insulating layers 14 and 13, and the metal laminated film 50 is exposed at the bottom of the via hole 85.

ビアホール85の形成においては、その底部に金属積層膜50が確実に露出するよう、若干のオーバーエッチングを行う。ここで、金属積層膜50の表層を構成する第2の金属膜52はその膜厚が薄いため、図16に示すように、ビアホール85は第2の金属膜52を貫通し、その底部には第3の金属膜53が露出する。この時点では、オーバーエッチングされた領域の径は、第2及び第3の金属膜52,53ともにW2である。 In the formation of the via hole 85, a slight overetching is performed so that the metal laminated film 50 is surely exposed on the bottom thereof. Here, since the thickness of the second metal film 52 constituting the surface layer of the metal laminated film 50 is thin, the via hole 85 penetrates the second metal film 52 and is formed at the bottom thereof, as shown in FIG. The third metal film 53 is exposed. At this point, the diameter of the overetched region is W2 for both the second and third metal films 52 and 53.

ビアホール85を形成した後は、洗浄液を用いてビアホール85内を洗浄するデスミア処理を行う。デスミア処理に用いられる洗浄液には酸が含まれているため、デスミア処理を行うと、ビアホール85の底部に露出する金属積層膜50が若干エッチングされる。ここで、第1及び第2の金属膜51,52に用いる密着性の高い金属材料は、第3の金属膜53に用いる銅(Cu)などの金属材料と比べて酸に対するエッチングレートが低いことから、エッチングレートが高い第3の金属膜53がより速く浸食され、図17に示すように、ビアホール85の底部がマッシュルーム状に拡大する。つまり、デスミア処理を行うと、ビアホール85の径は、第2の金属膜52を貫通する部分においてはほぼW2のままであるが、第3の金属膜53に食い込んだ部分においてはW1に拡大する。 After the via hole 85 is formed, a desmear treatment is performed to clean the inside of the via hole 85 with a cleaning liquid. Since the cleaning liquid used for the desmear treatment contains an acid, the metal laminated film 50 exposed at the bottom of the via hole 85 is slightly etched when the desmear treatment is performed. Here, the metal material having high adhesion used for the first and second metal films 51 and 52 has a lower etching rate with respect to acid than the metal material such as copper (Cu) used for the third metal film 53. Therefore, the third metal film 53 having a high etching rate is eroded more quickly, and the bottom of the via hole 85 expands like a mushroom, as shown in FIG. That is, when the desmear treatment is performed, the diameter of the via hole 85 remains almost W2 at the portion penetrating the second metal film 52, but expands to W1 at the portion biting into the third metal film 53. ..

次に、図14に示すように、無電解メッキ及び電解メッキを施すことによって、絶縁層11,14の表面にそれぞれ金属膜L1c,L4cを形成するとともに、ビアホール81,84,85の内部にそれぞれビア導体31,34,35を形成する。これにより、ビア導体31は配線層L2と接し、ビア導体34は配線層L3と接し、ビア導体35は金属積層膜50と接する。ビア導体35の先端部の形状は図2を用いて説明した通りであり、第3の金属膜53にアンカー状に食い込む形状となる。その後、図15に示すように、フォトリソグラフィー法などを用いて金属膜L1c,L4cをパターニングすることによって、配線層L1,L4を形成する。 Next, as shown in FIG. 14, by performing electroless plating and electrolytic plating, metal films L1c and L4c are formed on the surfaces of the insulating layers 11 and 14, respectively, and the insides of the via holes 81, 84 and 85, respectively. Via conductors 31, 34, 35 are formed. As a result, the via conductor 31 is in contact with the wiring layer L2, the via conductor 34 is in contact with the wiring layer L3, and the via conductor 35 is in contact with the metal laminated film 50. The shape of the tip of the via conductor 35 is as described with reference to FIG. 2, and has a shape that bites into the third metal film 53 in an anchor shape. Then, as shown in FIG. 15, the wiring layers L1 and L4 are formed by patterning the metal films L1c and L4c by using a photolithography method or the like.

そして、絶縁層11,14の表面にそれぞれソルダーレジスト21,22を形成すれば、図1に示す電子部品内蔵基板1が完成する。 Then, if solder resists 21 and 22 are formed on the surfaces of the insulating layers 11 and 14, respectively, the electronic component-embedded substrate 1 shown in FIG. 1 is completed.

このように、本実施形態においては、ビアホール85を形成する際にオーバーエッチングを行うことによって第2の金属膜52に開口を形成した後、デスミア処理に用いる酸によって第3の金属膜53をマッシュルーム状にエッチングしていることから、ビア導体35の先端を第3の金属膜53にアンカー状に食い込ませることが可能となる。 As described above, in the present embodiment, after the opening is formed in the second metal film 52 by overetching when forming the via hole 85, the third metal film 53 is mushroomed with the acid used for the desmear treatment. Since it is etched in a shape, the tip of the via conductor 35 can be made to bite into the third metal film 53 in an anchor shape.

以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention, and these are also the present invention. It goes without saying that it is included in the range.

1 電子部品内蔵基板
11〜14 絶縁層
21,22 ソルダーレジスト
31〜35 ビア導体
40 電子部品
41 端子電極
42 主面
43 側面
44 裏面
50 金属積層膜
51 第1の金属膜
52 第2の金属膜
53 第3の金属膜
70 支持体
71 剥離層
81〜85 ビアホール
E1,E2 外部端子
L1〜L4 配線層
L1a〜L1c,L2a,L2b,L3a,L4a〜L4c 金属膜
1 Substrate with built-in electronic components 11-14 Insulation layer 21,22 Solder resist 31-35 Via conductor 40 Electronic component 41 Terminal electrode 42 Main surface 43 Side surface 44 Back surface 50 Metal laminated film 51 First metal film 52 Second metal film 53 Third metal film 70 Support 71 Peeling layer 81-85 Via holes E1, E2 External terminals L1 to L4 Wiring layers L1a to L1c, L2a, L2b, L3a, L4a to L4c Metal film

Claims (10)

第1の配線層を含む複数の配線層と、第1及び第2の絶縁層を含む複数の絶縁層が積層されてなる基板と、
端子電極が形成された主面と、前記主面の反対側に位置し、金属積層膜で覆われた裏面とを有し、前記主面が前記第1の絶縁層で覆われ、前記裏面が前記第2の絶縁層で覆われるよう、前記基板に埋め込まれた電子部品と、
前記第2の絶縁層を貫通して設けられ、前記第1の配線層と前記金属積層膜とを接続するビア導体と、を備え、
前記金属積層膜は、前記電子部品の前記裏面と接する第1の金属膜と、前記第2の絶縁層と接する第2の金属膜と、前記第1の金属膜と前記第2の金属膜の間に位置する第3の金属膜とを含み、
前記第1の金属膜は、前記電子部品に対する密着性が前記第3の金属膜よりも高い金属材料からなり、
前記第2の金属膜は、前記第2の絶縁層に対する密着性が前記第3の金属膜よりも高い金属材料からなり、
前記ビア導体は、前記第2の金属膜を貫通し、前記第3の金属膜に食い込んでいることを特徴とする電子部品内蔵基板。
A substrate formed by laminating a plurality of wiring layers including a first wiring layer and a plurality of insulating layers including the first and second insulating layers.
It has a main surface on which terminal electrodes are formed and a back surface located on the opposite side of the main surface and covered with a metal laminated film. The main surface is covered with the first insulating layer, and the back surface is covered with the first insulating layer. An electronic component embedded in the substrate so as to be covered with the second insulating layer,
A via conductor provided so as to penetrate the second insulating layer and connecting the first wiring layer and the metal laminated film is provided.
The metal laminated film includes a first metal film in contact with the back surface of the electronic component, a second metal film in contact with the second insulating layer, the first metal film, and the second metal film. Including a third metal film located between
The first metal film is made of a metal material having a higher adhesion to the electronic component than the third metal film.
The second metal film is made of a metal material having a higher adhesion to the second insulating layer than the third metal film.
The via conductor is a substrate with built-in electronic components, which penetrates the second metal film and bites into the third metal film.
前記ビア導体の端部は、前記第1の金属膜と接することなく、前記第3の金属膜内に位置することを特徴とする請求項1に記載の電子部品内蔵基板。 The electronic component built-in substrate according to claim 1, wherein the end portion of the via conductor is located in the third metal film without being in contact with the first metal film. 前記第3の金属膜内における前記ビア導体の径は、前記第2の金属膜の開口径よりも大きいことを特徴とする請求項1又は2に記載の電子部品内蔵基板。 The electronic component-embedded substrate according to claim 1 or 2, wherein the diameter of the via conductor in the third metal film is larger than the opening diameter of the second metal film. 前記第3の金属膜と前記ビア導体が互いに同じ金属材料からなることを特徴とする請求項1乃至3のいずれか一項に記載の電子部品内蔵基板。 The electronic component-embedded substrate according to any one of claims 1 to 3, wherein the third metal film and the via conductor are made of the same metal material. 前記第3の金属膜と前記ビア導体がいずれも銅(Cu)からなることを特徴とする請求項4に記載の電子部品内蔵基板。 The electronic component built-in substrate according to claim 4, wherein both the third metal film and the via conductor are made of copper (Cu). 前記第1及び第2の金属膜は、チタン(Ti)、ニッケル(Ni)又はパラジウム(Pd)からなることを特徴とする請求項1乃至5のいずれか一項に記載の電子部品内蔵基板。 The electronic component built-in substrate according to any one of claims 1 to 5, wherein the first and second metal films are made of titanium (Ti), nickel (Ni) or palladium (Pd). 前記第3の金属膜の厚みは、前記第1及び第2の金属膜の合計厚みよりも厚いことを特徴とする請求項1乃至6のいずれか一項に記載の電子部品内蔵基板。 The electronic component-embedded substrate according to any one of claims 1 to 6, wherein the thickness of the third metal film is thicker than the total thickness of the first and second metal films. 前記第3の金属膜の厚みは3μm以上であることを特徴とする請求項7に記載の電子部品内蔵基板。 The substrate for incorporating electronic components according to claim 7, wherein the thickness of the third metal film is 3 μm or more. 端子電極が形成された主面と、前記主面の反対側に位置する裏面とを有し、前記裏面が金属積層膜で覆われた電子部品を用意する工程と、
第1の配線層を含む複数の配線層と、第1及び第2の絶縁層を含む複数の絶縁層が積層されてなる基板に、前記主面が前記第1の絶縁層で覆われ、前記裏面が前記第2の絶縁層で覆われるよう、前記電子部品を埋め込む工程と、
前記第2の絶縁層を貫通するビアホールを形成することにより、前記金属積層膜を露出させる工程と、
前記ビアホール内にビア導体を形成することにより、前記第1の配線層と前記金属積層膜とを接続する工程と、を備え、
前記金属積層膜は、前記電子部品の前記裏面と接する第1の金属膜と、前記第2の絶縁層と接する第2の金属膜と、前記第1の金属膜と前記第2の金属膜の間に位置する第3の金属膜とを含み、
前記第1の金属膜は、前記電子部品に対する密着性が前記第3の金属膜よりも高い金属材料からなり、
前記第2の金属膜は、前記第2の絶縁層に対する密着性が前記第3の金属膜よりも高い金属材料からなり、
前記金属積層膜を露出させる工程は、前記第2の金属膜を貫通するよう前記ビアホールを形成し、これにより前記第3の金属膜を露出させることを特徴とする電子部品内蔵基板の製造方法。
A step of preparing an electronic component having a main surface on which a terminal electrode is formed and a back surface located on the opposite side of the main surface and the back surface of which is covered with a metal laminated film.
The main surface is covered with the first insulating layer on a substrate in which a plurality of wiring layers including the first wiring layer and a plurality of insulating layers including the first and second insulating layers are laminated. The step of embedding the electronic component so that the back surface is covered with the second insulating layer,
A step of exposing the metal laminated film by forming a via hole penetrating the second insulating layer, and
A step of connecting the first wiring layer and the metal laminated film by forming a via conductor in the via hole is provided.
The metal laminated film includes a first metal film in contact with the back surface of the electronic component, a second metal film in contact with the second insulating layer, the first metal film, and the second metal film. Including a third metal film located between
The first metal film is made of a metal material having a higher adhesion to the electronic component than the third metal film.
The second metal film is made of a metal material having a higher adhesion to the second insulating layer than the third metal film.
The step of exposing the metal laminated film is a method for manufacturing an electronic component-embedded substrate, which comprises forming the via hole so as to penetrate the second metal film, thereby exposing the third metal film.
洗浄液を用いて前記ビアホール内を洗浄する工程をさらに備え、
前記第3の金属膜は、前記第2の金属膜よりも前記洗浄液によるエッチングレートが高いことを特徴とする請求項9に記載の電子部品内蔵基板の製造方法。
A step of cleaning the inside of the via hole with a cleaning liquid is further provided.
The method for manufacturing an electronic component-embedded substrate according to claim 9, wherein the third metal film has a higher etching rate by the cleaning liquid than the second metal film.
JP2019135918A 2019-07-24 2019-07-24 Electronic component built-in board and manufacturing method thereof Active JP7363158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019135918A JP7363158B2 (en) 2019-07-24 2019-07-24 Electronic component built-in board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019135918A JP7363158B2 (en) 2019-07-24 2019-07-24 Electronic component built-in board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2021019169A true JP2021019169A (en) 2021-02-15
JP7363158B2 JP7363158B2 (en) 2023-10-18

Family

ID=74564391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135918A Active JP7363158B2 (en) 2019-07-24 2019-07-24 Electronic component built-in board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7363158B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339354A (en) * 2005-06-01 2006-12-14 Tdk Corp Semiconductor ic and its manufacturing method, module with built-in semiconductor ic and its manufacturing method
JP2007150002A (en) * 2005-11-29 2007-06-14 Tdk Corp Substrate with built-in semiconductor ic and its manufacturing method
JP2013219247A (en) * 2012-04-10 2013-10-24 Tdk Corp Wiring board and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339354A (en) * 2005-06-01 2006-12-14 Tdk Corp Semiconductor ic and its manufacturing method, module with built-in semiconductor ic and its manufacturing method
JP2007150002A (en) * 2005-11-29 2007-06-14 Tdk Corp Substrate with built-in semiconductor ic and its manufacturing method
JP2013219247A (en) * 2012-04-10 2013-10-24 Tdk Corp Wiring board and method for manufacturing the same

Also Published As

Publication number Publication date
JP7363158B2 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
JP5109662B2 (en) Method for manufacturing laminated circuit board and method for manufacturing circuit board
US9691698B2 (en) Method of transferring and electrically joining a high density multilevel thin film to a circuitized and flexible organic substrate and associated devices
JP2012191204A (en) Manufacturing method of printed wiring board
JP2012212818A (en) Electronic component built-in substrate and manufacturing method thereof
JP2004193497A (en) Chip-size package and manufacturing method thereof
JP2004193549A (en) Package substrate plated without plated lead-in wire and its manufacturing method
TWI588912B (en) Electronic package, package carrier, and methods of manufacturing electronic package and package carrier
JP2004296690A (en) Manufacturing method of multilayer circuit board with built-in semiconductor device
JP2017038044A (en) Wiring board and manufacturing method of the same, and electronic component device
TW201232683A (en) Method of making an electronic device having a liquid crystal polymer solder mask laminated to an interconnect layer stack and related devices
JP2008124077A (en) Method for manufacturing semiconductor device
JP2008311592A (en) Method of manufacturing electronic device
JP2007165513A (en) Method of manufacturing multilayered wiring board for semiconductor device, and method of manufacturing semiconductor device
TW201246486A (en) Method of making an electronic device having a liquid crystal polymer solder mask and related devices
TW200941604A (en) Method of manufacturing semiconductor device
JP5982760B2 (en) Electronic device and manufacturing method thereof
JP7363158B2 (en) Electronic component built-in board and manufacturing method thereof
JP2008108849A (en) Semiconductor device, and manufacturing method of semiconductor device
TW201244561A (en) Multilayer wiring board
JP2005317901A (en) Circuit component module and its manufacturing method
JP2005045187A (en) Circuit board, method for manufacturing the same, and multi-layered circuit board
JP4549693B2 (en) Wiring board manufacturing method
JP2005303260A (en) Method of manufacture of printed wiring board
JP2016092034A (en) Manufacturing method of metal ceramic circuit board, metal ceramic circuit board, substrate for circuit board, and laminate for circuit board
JP2011035182A (en) Manufacturing method of wiring substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230918

R150 Certificate of patent or registration of utility model

Ref document number: 7363158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150