JP2021017640A - Transparent conductor and organic device - Google Patents
Transparent conductor and organic device Download PDFInfo
- Publication number
- JP2021017640A JP2021017640A JP2019135439A JP2019135439A JP2021017640A JP 2021017640 A JP2021017640 A JP 2021017640A JP 2019135439 A JP2019135439 A JP 2019135439A JP 2019135439 A JP2019135439 A JP 2019135439A JP 2021017640 A JP2021017640 A JP 2021017640A
- Authority
- JP
- Japan
- Prior art keywords
- metal oxide
- oxide layer
- layer
- transparent conductor
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 105
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 184
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 184
- 229910052751 metal Inorganic materials 0.000 claims abstract description 63
- 239000002184 metal Substances 0.000 claims abstract description 63
- 229910001316 Ag alloy Inorganic materials 0.000 claims abstract description 13
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 52
- 239000000463 material Substances 0.000 claims description 35
- 239000011787 zinc oxide Substances 0.000 claims description 26
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 15
- 229910003437 indium oxide Inorganic materials 0.000 claims description 15
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 15
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 13
- 229910001887 tin oxide Inorganic materials 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 11
- 238000005530 etching Methods 0.000 abstract description 36
- 238000000034 method Methods 0.000 abstract description 21
- 239000000758 substrate Substances 0.000 abstract description 8
- 239000010410 layer Substances 0.000 description 255
- 239000002585 base Substances 0.000 description 26
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 24
- 239000010408 film Substances 0.000 description 21
- 238000001755 magnetron sputter deposition Methods 0.000 description 19
- 239000007789 gas Substances 0.000 description 14
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 13
- 229910001882 dioxygen Inorganic materials 0.000 description 13
- 229910010413 TiO 2 Inorganic materials 0.000 description 12
- 229910052786 argon Inorganic materials 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 238000004544 sputter deposition Methods 0.000 description 12
- 239000012044 organic layer Substances 0.000 description 11
- 230000005525 hole transport Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 239000010409 thin film Substances 0.000 description 9
- -1 polyethylene terephthalate Polymers 0.000 description 8
- 230000002378 acidificating effect Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- 238000000059 patterning Methods 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 6
- 229910006404 SnO 2 Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 239000013081 microcrystal Substances 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 238000000149 argon plasma sintering Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 239000011112 polyethylene naphthalate Substances 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000003513 alkali Substances 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical compound N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- 150000005045 1,10-phenanthrolines Chemical class 0.000 description 1
- FKNIDKXOANSRCS-UHFFFAOYSA-N 2,3,4-trinitrofluoren-1-one Chemical compound C1=CC=C2C3=C([N+](=O)[O-])C([N+]([O-])=O)=C([N+]([O-])=O)C(=O)C3=CC2=C1 FKNIDKXOANSRCS-UHFFFAOYSA-N 0.000 description 1
- CFNMUZCFSDMZPQ-GHXNOFRVSA-N 7-[(z)-3-methyl-4-(4-methyl-5-oxo-2h-furan-2-yl)but-2-enoxy]chromen-2-one Chemical compound C=1C=C2C=CC(=O)OC2=CC=1OC/C=C(/C)CC1OC(=O)C(C)=C1 CFNMUZCFSDMZPQ-GHXNOFRVSA-N 0.000 description 1
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 101100438378 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) fac-1 gene Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910002668 Pd-Cu Inorganic materials 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910020935 Sn-Sb Inorganic materials 0.000 description 1
- 229910008757 Sn—Sb Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910007541 Zn O Inorganic materials 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229920005994 diacetyl cellulose Polymers 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- VLUUZERMKSSBKW-UHFFFAOYSA-N hexacyclo[14.7.1.02,15.03,12.06,11.020,24]tetracosa-1(23),2(15),3(12),4,6,8,10,13,16,18,20(24),21-dodecaene Chemical class C1=CC(C2=C3C=CC=4C(C3=CC=C22)=CC=CC=4)=C3C2=CC=CC3=C1 VLUUZERMKSSBKW-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Electroluminescent Light Sources (AREA)
- Physical Vapour Deposition (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
本開示は、透明導電体及び有機デバイスに関する。 The present disclosure relates to transparent conductors and organic devices.
透明性と導電性を兼ね備える透明導電体は、種々の用途に用いられている。近年、有機ELディスプレイ、有機EL照明、及び有機薄膜太陽電池等の有機デバイスが実用化されつつある。有機ELディスプレイ及び有機EL照明は、例えば、ガラス等の透明基板上に、透明電極層(陽極)、有機層、反射電極層(陰極)が積層されて構成される。透明電極層と反射電極層の間に電圧を印加することで電極間に電流が流れ、有機層が発光する。有機層で生じた光は、電極を透過して外部に取り出される。このため、電極のうち少なくとも一方には透明電極が用いられている。 A transparent conductor having both transparency and conductivity is used for various purposes. In recent years, organic devices such as organic EL displays, organic EL lighting, and organic thin-film solar cells are being put into practical use. The organic EL display and the organic EL lighting are configured by laminating a transparent electrode layer (anode), an organic layer, and a reflective electrode layer (cathode) on a transparent substrate such as glass. By applying a voltage between the transparent electrode layer and the reflective electrode layer, a current flows between the electrodes and the organic layer emits light. The light generated in the organic layer passes through the electrodes and is taken out to the outside. Therefore, a transparent electrode is used for at least one of the electrodes.
特許文献1では、ガラス等の透明基体の上に、銀合金の金属薄膜層を一対の透明屈折率薄膜層で挟んで構成される積層構造を設けることが開示されている。透明屈折率薄膜層に用いられる材料として、ITO等が挙げられている。 Patent Document 1 discloses that a laminated structure formed by sandwiching a metal thin film layer of a silver alloy between a pair of transparent refractive index thin film layers is provided on a transparent substrate such as glass. As a material used for the transparent refractive index thin film layer, ITO and the like are mentioned.
特許文献2では、有機電界発光素子の陽極は、効率良く正孔を注入するために仕事関数が大きいものが用いられること、及び、ITOのような仕事関数が大きい透明電極材料層を設けることで電荷注入効率が高められることが開示されている。
In
透明導電体は、通常、エッチングによって回路が形成される。ここで、電極材料としてITO(酸化インジウムスズ)を用いる場合、その結晶構造によってエッチング速度が変化する。ITOの結晶性を低くするとエッチングし易くなるものの、エッチングの速度が速くなると、特に微細な電極を形成する場合に、加工精度を確保することが難しくなることが懸念される。このため、高い仕事関数を有しながら、加工の制御性に優れるような透明導電体は、種々の用途において有用であると考えられる。 Circuits of transparent conductors are usually formed by etching. Here, when ITO (indium tin oxide) is used as the electrode material, the etching rate changes depending on the crystal structure thereof. If the crystallinity of ITO is lowered, etching becomes easier, but if the etching speed is increased, there is a concern that it becomes difficult to secure processing accuracy, especially when forming fine electrodes. Therefore, a transparent conductor having a high work function and excellent processing controllability is considered to be useful in various applications.
そこで、本開示は、一つの側面において、高い仕事関数を有するとともに、エッチングによる加工精度に優れる透明導電体を提供する。本開示は、別の側面において、そのような透明導電体を用いて形成される有機デバイスを提供することを目的とする。 Therefore, the present disclosure provides a transparent conductor which has a high work function in one aspect and is excellent in processing accuracy by etching. It is an object of the present disclosure to provide an organic device formed with such a transparent conductor in another aspect.
本開示の一側面に係る透明導電体は、透明基材と、第1の金属酸化物層と、銀合金を含む金属層と、第2の金属酸化物層と、をこの順で備え、第2の金属酸化物層がITOを含み、第2の金属酸化物層の表面のX線回折で検出される、ITOの(440)面のピーク強度I2に対する、ITOの(222)面のピーク強度I1の比(I1/I2)が7.0以上である。 The transparent conductor according to one aspect of the present disclosure includes a transparent base material, a first metal oxide layer, a metal layer containing a silver alloy, and a second metal oxide layer in this order. The metal oxide layer of 2 contains ITO, and the peak of the (222) plane of ITO with respect to the peak intensity I 2 of the (440) plane of ITO detected by X-ray diffraction on the surface of the second metal oxide layer. The ratio of strength I 1 (I 1 / I 2 ) is 7.0 or more.
上記透明導電体の第2の金属酸化物層は、ピーク強度I1に対するピーク強度I2の比を7.0以上とすることによって、仕事関数とITOの結晶性を高くすることができる。高い結晶性を有するITOで構成される第2の金属酸化物層を備えることから、第2の金属酸化物層のエッチングに所要する時間を長くすることができる。すなわち、エッチングの時間を確保できることから、エッチング量を精密に制御することが可能となる。したがって、上記透明導電体は、高い仕事関数を有するとともに、エッチングによる加工精度に優れる。 In the second metal oxide layer of the transparent conductor, the work function and the crystallinity of ITO can be enhanced by setting the ratio of the peak intensity I 2 to the peak intensity I 1 to 7.0 or more. Since the second metal oxide layer composed of ITO having high crystallinity is provided, the time required for etching the second metal oxide layer can be lengthened. That is, since the etching time can be secured, the etching amount can be precisely controlled. Therefore, the transparent conductor has a high work function and is excellent in processing accuracy by etching.
上記透明導電体は、金属層と第2の金属酸化物層との間に、第2の金属酸化物層とは異なる組成を有する第3の金属酸化物層を備えてもよい。ITOは、熱膨張係数が大きいため、加熱したときに生じる圧縮応力が大きく透明導電体の反りが発生しやすい傾向にある。このため、第3の金属酸化物層を備えることによって、反りを低減することができる。 The transparent conductor may include a third metal oxide layer having a composition different from that of the second metal oxide layer between the metal layer and the second metal oxide layer. Since ITO has a large coefficient of thermal expansion, the compressive stress generated when heated is large, and the transparent conductor tends to warp easily. Therefore, the warp can be reduced by providing the third metal oxide layer.
第3の金属酸化物層は、酸化亜鉛、酸化インジウム、酸化スズ及び酸化チタンを含有してよい。酸化亜鉛、酸化インジウム、酸化スズ及び酸化チタンの4成分を含む化合物は、アモルファス安定な層を形成する傾向にある。このため、熱膨張係数が小さい。したがって、加熱による透明導電体の反りを一層低減することができる。 The third metal oxide layer may contain zinc oxide, indium oxide, tin oxide and titanium oxide. Compounds containing the four components of zinc oxide, indium oxide, tin oxide and titanium oxide tend to form amorphous stable layers. Therefore, the coefficient of thermal expansion is small. Therefore, the warp of the transparent conductor due to heating can be further reduced.
第3の金属酸化物層の厚みは、第2の金属酸化物層の厚み以上であってよい。これによって、加熱による透明導電体の反りをより一層低減することができる。 The thickness of the third metal oxide layer may be equal to or greater than the thickness of the second metal oxide layer. As a result, the warp of the transparent conductor due to heating can be further reduced.
上記第2の金属酸化物層の体積抵抗率は32Ω・cm以下であってよい。これによって、透明導電体の導電性を向上することができる。 The volume resistivity of the second metal oxide layer may be 32 Ω · cm or less. Thereby, the conductivity of the transparent conductor can be improved.
第2の金属酸化物層の表面における仕事関数は5.0eV以上であってよい。これによって、第2の金属酸化物層の表面上に有機層を設けて有機デバイスを作製した場合に、有機層への正孔の注入又は有機層からの正孔の受け入れを十分円滑に行うことができる。このため有機デバイスの性能を向上することができる。 The work function on the surface of the second metal oxide layer may be 5.0 eV or higher. As a result, when an organic layer is provided on the surface of the second metal oxide layer to produce an organic device, holes can be injected into the organic layer or holes can be received from the organic layer smoothly. Can be done. Therefore, the performance of the organic device can be improved.
第2の金属酸化物層に含まれるITOの(222)面のピークから求められるITOの結晶子のサイズは15nm以上であってよい。これによって、エッチングによる加工精度を一層高くすることができる。 The size of the ITO crystallite determined from the peak of the (222) plane of ITO contained in the second metal oxide layer may be 15 nm or more. As a result, the processing accuracy by etching can be further improved.
本開示の一側面に係る有機デバイスは、上述のいずれかの透明導電体を備える。上述の透明導電体は、高い仕事関数を有しつつ、エッチングによる回路形成を高い精度で行うことができる。したがって、信頼性が高く且つ高効率である有機デバイスを提供することができる。 The organic device according to one aspect of the present disclosure comprises any of the above transparent conductors. The above-mentioned transparent conductor has a high work function and can form a circuit by etching with high accuracy. Therefore, it is possible to provide an organic device having high reliability and high efficiency.
本開示によれば、高い仕事関数を有するとともに、エッチングによる加工精度に優れる透明導電体を提供することができる。また、そのような透明導電体を用いて形成される有機デバイスを提供することができる。 According to the present disclosure, it is possible to provide a transparent conductor having a high work function and excellent processing accuracy by etching. It is also possible to provide an organic device formed by using such a transparent conductor.
本開示の一実施形態を、図面を参照しながら以下に詳細に説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一構造又は同一機能を有する要素には同一符号を用い、場合により重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、各層の寸法比率は図示の比率に限られるものではない。 One embodiment of the present disclosure will be described in detail below with reference to the drawings. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents. In the description, the same reference numerals are used for elements having the same structure or the same function, and duplicate description may be omitted in some cases. Further, unless otherwise specified, the positional relationship such as up, down, left, and right shall be based on the positional relationship shown in the drawings. Further, the dimensional ratio of each layer is not limited to the ratio shown in the figure.
図1は、透明導電体の一実施形態を示す模式断面図である。透明導電体10は、透明基材11と、第1の金属酸化物層12と、金属層18と、第2の金属酸化物層14と、がこの順に配置された積層構造を有する。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a transparent conductor. The
本開示における「透明」とは、可視光が透過することを意味しており、光をある程度散乱してもよい。光の散乱度合いについては、透明導電体10の用途によって要求されるレベルが異なる。一般に半透明といわれるような光の散乱があるものも、本明細書における「透明」の概念に含まれる。光の散乱度合いは小さい方が好ましく、透明性は高い方が好ましい。透明導電体10全体の全光線透過率は、例えば60%以上であり、好ましくは65%以上であり、より好ましくは70%以上である。この全光線透過率は、積分球を用いて求められる、拡散透過光を含む透過率であり、市販のヘイズメーターを用いて測定される。
"Transparent" in the present disclosure means that visible light is transmitted, and light may be scattered to some extent. Regarding the degree of light scattering, the required level differs depending on the use of the
透明基材11は、特に限定されず、可撓性を有する透明樹脂基材であってもよい。透明樹脂基材は、例えば有機樹脂フィルムは有機樹脂シートであってもよい。透明基材11としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステルフィルム、ポリエチレン及びポリプロピレン等のポリオレフィンフィルム、ポリカーボネートフィルム、アクリルフィルム、ノルボルネンフィルム、ポリアリレートフィルム、ポリエーテルスルフォンフィルム、ジアセチルセルロースフィルム、ポリイミド、並びにトリアセチルセルロースフィルム等が挙げられる。これらのうち、ポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)等のポリエステルフィルムが好ましい。
The
透明基材11の厚みは、透明導電体10の屈曲性を一層高くする観点から、例えば200μm以下である。透明基材の屈折率は、光学特性に優れる透明導電体10とする観点から、例えば1.50〜1.70である。なお、本開示における屈折率は、λ=633nm、温度20℃の条件下で測定される値である。透明基材11は、コロナ放電処理、グロー放電処理、火炎処理、紫外線照射処理、電子線照射処理、及びオゾン処理からなる群より選ばれる少なくとも一つの表面処理が施されたものであってもよい。
The thickness of the
透明基材11が透明樹脂基材であることによって、透明導電体10を柔軟性に優れたものとすることができる。これによって、透明導電体10を、フレキシブルな有機デバイス用の透明導電体として好適に用いることできる。
Since the
第1の金属酸化物層12は、金属酸化物を含む透明の層である。第1の金属酸化物層12は、金属層18を保護する機能を有する。第1の金属酸化物層12は、ITO(酸化インジウムスズ)とは異なる金属酸化物で構成されてよい。
The first
透明性と耐食性を一層高い水準で両立する観点から、第1の金属酸化物層12は、酸化亜鉛、酸化インジウム及び酸化チタンの3成分を主成分として含有していてもよく、3成分と不可避的不純物から構成されていてもよい。
From the viewpoint of achieving both transparency and corrosion resistance at a higher level, the first
第1の金属酸化物層12に含まれる酸化亜鉛は例えばZnOであり、酸化インジウムは例えばIn2O3である。酸化チタンは例えばTiO2である。上記各金属酸化物における金属原子と酸素原子の比は、化学量論比からずれていてもよい。また、酸化数が異なる別の酸化物を含んでいてもよい。第1の金属酸化物層12は、酸化スズを含んでいてもよいが、金属層18に含まれる銀合金の腐食を低減する観点から、酸化スズ(SnO2)の含有量は少ない方が好ましく、酸化スズを含有しないことがより好ましい。第1の金属酸化物層12における3成分の合計の含有量は、それぞれ、ZnO、In2O3及びTiO2に換算して、90質量%以上であることが好ましく、95質量%以上であることがより好ましい。
The zinc oxide contained in the first
第1の金属酸化物層12の厚みは、透明性を一層向上する観点から、例えば60nm以下である。一方、耐食性を一層向上するとともに生産性向上の観点から、上記厚さは、例えば5nm以上である。
The thickness of the first
第1の金属酸化物層12は、酸化亜鉛、酸化インジウム及び酸化チタンを、それぞれZnO、In2O3及びTiO2に換算したときに、ZnO、In2O3及びTiO2の合計に対するZnOの含有量は、20〜85mol%であることが好ましく、30〜80mol%であることがより好ましい。同様に換算したときに、ZnO、In2O3及びTiO2の合計に対するIn2O3の含有量は、透明性向上の観点、並びに高い導電性及び高い耐食性を両立する観点から、10〜35mol%であることが好ましく、10〜25mol%であることがより好ましい。
The first
同様に換算したときに、ZnO、In2O3及びTiO2の合計に対するTiO2の含有量は、高い透明性と優れた耐食性を両立する観点から、5〜15mol%であることが好ましく、7〜13mol%であることがより好ましい。 When converted in the same manner, the content of TiO 2 with respect to the total of ZnO, In 2 O 3 and TiO 2 is preferably 5 to 15 mol% from the viewpoint of achieving both high transparency and excellent corrosion resistance. More preferably, it is ~ 13 mol%.
第1の金属酸化物層12は、導電性が低くてもよく、絶縁体であってもよい。この場合、透明導電体10の導電性は、金属層18及び第2の金属酸化物層14によって担われてもよい。第1の金属酸化物層12は、真空蒸着法、スパッタリング法、イオンプレーティング法、又はCVD法などの真空成膜法によって作製することができる。これらのうち、成膜室を小型化できる点、及び成膜速度が速い点で、スパッタリング法が好ましい。スパッタリング法としては、DCマグネトロンスパッタリングが挙げられる。ターゲットとしては、金属ターゲット又は金属酸化物ターゲットを用いることができる。第1の金属酸化物層12は、酸性エッチング液に溶解しない層であってもよい。
The first
金属層18は、主成分として銀合金を含むことが好ましい。金属層18は、酸性エッチング液に溶解する層であってもよい。これによって、容易にパターニングすることができる。金属層18が高い透明性と導電性を有することによって、透明導電体10の可視光透過率を十分高くしつつ表面抵抗を十分に低くすることができる。銀合金の構成元素としては、Agと、Pd、Cu、Nd、In、Sn、及びSbから選ばれる少なくとも1種と、が挙げられる。銀合金の例としては、Ag−Pd、Ag−Cu、Ag−Pd−Cu、Ag−Nd−Cu、Ag−In−Sn、及びAg−Sn−Sbが挙げられる。銀合金は、Agを主成分として含有し、副成分として上述の各金属を含むものが好ましい。金属層18は、金属のみからなる層であってもよい。
The
銀合金におけるAg以外の金属の含有量は、耐食性と透明性を一層向上させる観点から、例えば0.5〜5質量%である。銀合金はAg以外の金属としてPdを含有することが好ましい。これによって、高温高湿環境下における耐食性を一層向上することができる。 The content of the metal other than Ag in the silver alloy is, for example, 0.5 to 5% by mass from the viewpoint of further improving the corrosion resistance and transparency. The silver alloy preferably contains Pd as a metal other than Ag. Thereby, the corrosion resistance in a high temperature and high humidity environment can be further improved.
金属層18の厚さは、例えば5〜25nmであってもよい。金属層18の厚さが小さくなり過ぎると、金属層18の連続性が損なわれて透明導電体10の表面抵抗値が高くなる傾向にある。一方、金属層18の厚さが大きくなりすぎると、十分に優れた透明性が損なわれる傾向にある。
The thickness of the
金属層18は、透明導電体10の導電性及び表面抵抗を調整する機能を有している。金属層18は、真空蒸着法、スパッタリング法、イオンプレーティング法、又はCVD法などの真空成膜法によって作製することができる。これらのうち、成膜室を小型化できる点、及び成膜速度が速い点で、スパッタリング法が好ましい。スパッタリング法としては、DCマグネトロンスパッタリングが挙げられる。ターゲットとしては、金属ターゲットを用いることができる。
The
第2の金属酸化物層14は、ITOを含む透明の層である。第2の金属酸化物層14は、例えば、有機デバイスの有機層に隣接して配置されたときに、正孔の移動を円滑にする機能を有する。第2の金属酸化物層14は、ITOで構成されていてもよい。
The second
ITOは、インジウムとスズの酸化物である。当該酸化物は、構成元素としてIn、Sn及びO(酸素)を有する複合酸化物である。第2の金属酸化物層14は、ITO以外の成分として、不可避的な不純物を含んでいてもよい。このように不可避的な不純物を含む第2の金属酸化物層14も、「ITOで構成される第2の金属酸化物層14」に該当する。
ITO is an oxide of indium and tin. The oxide is a composite oxide having In, Sn and O (oxygen) as constituent elements. The second
第2の金属酸化物層14の金属層18側とは反対側の表面14aの仕事関数は、好ましくは5.0eV以上であり、より好ましくは5.1eV以上である。このような高い仕事関数を有する第2の金属酸化物層14の表面14a上に有機層を設けて有機デバイスを作製した場合に、有機層への正孔の注入又は有機層からの正孔の受け入れを十分円滑に行うことができる。このため有機デバイスの性能を向上することができる。第2の金属酸化物層14の表面14aの仕事関数は、市販の測定装置を用いて測定することができる。
The work function of the
第2の金属酸化物層14の表面14aの仕事関数は、表面14a近傍における組成に依存する傾向にある。例えば、ITOにおける酸素原子の割合を変えることによって調整することができる。具体的には、ITOの焼結体からなるターゲットを用いたDCマグネトロンスパッタリングによって第2の金属酸化物層14を形成する場合、スパッタリング時の不活性ガスに対する酸素ガスの割合を変えることで第2の金属酸化物層14を構成するITOの結晶性を制御することができる。
The work function of the
第2の金属酸化物層14を構成するITOは高い結晶性を有することが好ましい。高い結晶性を有することによって、エッチングの時間を確保することができる。これによって、エッチング量を高い制度で制御することが可能となり、エッチングによる加工精度を高くすることができる。高い結晶性を有するITOは、スパッタリング時の不活性ガスに対する酸素ガスの割合を調節するとともに、例えば、DCマグネトロンスパッタリング時のH2Oの分圧を低く維持することによって形成することができる。H2Oの分圧は、例えば、0.05Pa以下であってもよいし、0.01Pa以下であってもよい。なお、このときの全圧は、例えば0.1〜1.0Paであってよい。
The ITO constituting the second
第2の金属酸化物層14を構成するITOの結晶性は、X線回折測定によって確認することができる。CuKα線を用い、第2の金属酸化物層14の表面14aのX線回折測定を行うことによって、ITOをアモルファス、結晶、又はこれらの中間である微結晶に分類することができる。ITOが結晶又は微結晶である場合、通常、2θ=30°付近にITOの(222)面に由来する回折ピークが検出され、2θ=50°付近に(440)面に由来する回折ピークが検出される。
The crystallinity of ITO constituting the second
本開示では、ITOの(222)面に由来する回折ピークの高さをピーク強度I1、及び2θ=50°付近に検出される(440)面に由来する回折ピークの高さをピーク強度I2とする。そして、ピーク強度I1が500以上である場合、ITOは「結晶」に分類される。検出された回折ピークのピーク強度I1が500未満である場合、ITOは「微結晶」に分類される。ピークが全く検出されない場合、ITOは「アモルファス」に分類される。なお、ピーク強度は、実施例に記載のX線回折装置で測定した場合の強度である。 In the present disclosure, the height of the diffraction peak derived from the (222) plane of ITO is the peak intensity I 1 , and the height of the diffraction peak derived from the (440) plane detected near 2θ = 50 ° is the peak intensity I. Let it be 2 . When the peak intensity I 1 is 500 or more, ITO is classified as "crystal". If the peak intensity I 1 of the detected diffraction peak is less than 500, ITO is classified as a "microcrystal". If no peak is detected, ITO is classified as "amorphous". The peak intensity is the intensity measured by the X-ray diffractometer described in the examples.
第2の金属酸化物層を構成するITOの結晶子のサイズは、好ましくは12nm以上であり、より好ましくは15nm以上である。ITOの結晶子のサイズが大きい場合、エッチングの加工精度を一層高くすることができる。本開示におけるITOの結晶子の大きさは、X線回折測定で検出される(222)面のピークの半値幅から求められる値である。 The size of the ITO crystallites constituting the second metal oxide layer is preferably 12 nm or more, more preferably 15 nm or more. When the size of the crystallite of ITO is large, the processing accuracy of etching can be further improved. The size of the ITO crystallite in the present disclosure is a value obtained from the half width of the peak of the (222) plane detected by the X-ray diffraction measurement.
透明導電体10における第2の金属酸化物層14の上記比(I1/I2)は、7.0以上である。この比(I1/I2)を大きくすることによって、ITOの結晶性を高くしつつ、表面14aの仕事関数を高くすることができる。表面14aの仕事関数は、例えば、5.0ev以上であってよく、5.1eV以上であってよく、5.2eV以上であってもよい。
The ratio (I 1 / I 2 ) of the second
第2の金属酸化物層14の体積抵抗率は、例えば、32Ω・cm以下であってよく、1Ω・cm以下であってよい。高い結晶性と高い仕事関数と優れた導電性の全てを一層高水準とする観点から、上記比(I1/I2)は、8.0以上であってもよいし、9.0以上であってもよい。本開示における体積抵抗率は、4端子法によって測定されるITO単層の表面抵抗値にITO層の厚みを乗じて算出される。
The volume resistivity of the second
エッチングによる加工精度に優れ高い仕事関数を有する透明導電体10は、種々の用途に好適に用いることができる。例えば、有機EL素子に用いた場合、有機EL素子の発光効率を向上することができる。また例えば、有機薄膜太陽電池に用いた場合、有機薄膜太陽電池の発電効率を向上することができる。
The
第2の金属酸化物層14の厚みは、表面14aにおける仕事関数を安定的に大きくする観点から、2nm以上であってよく、5nm以上であってもよく、10nm以上であってもよい。一方、第2の金属酸化物層14の厚みは、透明導電体10の透明性と屈曲性を十分に高くする観点から、例えば100nm以下である。
The thickness of the second
透明導電体10を構成する各層の厚みは、以下の手順で測定することができる。集束イオンビーム装置(FIB,Focused Ion Beam)によって透明導電体10を切断して断面を得る。透過型電子顕微鏡(TEM)を用いて当該断面を観察し、各層の厚みを測定する。測定は、任意に選択された10箇所以上の位置で測定を行い、その平均値を求めることが好ましい。断面を得る方法として、集束イオンビーム装置以外の装置としてミクロトームを用いてもよい。厚みを測定する方法としては、走査型電子顕微鏡(SEM)を用いてもよい。また蛍光X線装置を用いても膜厚を測定することが可能である。
The thickness of each layer constituting the
透明導電体10の厚みは、210μm以下であってもよく、200μm以下であってもよい。このような厚みであれば、例えば、透明性と屈曲性の要求レベルを十分に満足することができる。
The thickness of the
第1の金属酸化物層12と第2の金属酸化物層14は、厚み、構造及び組成の点で同じであってもよいし、厚み、構造及び組成の少なくとも一つの点において互いに異なっていてもよい。第1の金属酸化物層12の組成と第2の金属酸化物層14の組成とを異なれば、一つの工程で、第2の金属酸化物層14及び金属層18のみを酸性のエッチング液を用いてエッチングにより除去し、第1の金属酸化物層12を残存させることができる。
The first
上述の構成を備える透明導電体10は、アルカリ耐性にも優れている。したがって、パターニングを効率よく行うことができる。第1の金属酸化物層12、金属層18、及び第2の金属酸化物層14は透明電極20を構成する。透明電極20を備える透明導電体10は、有機ELディスプレイ、有機EL照明、有機薄膜太陽電池等の有機デバイス用として好適に用いることができる。
The
図2は、透明導電体の別の実施形態を示す模式断面図である。透明導電体10Aは、透明基材11と、第1の金属酸化物層12と、金属層18、第3の金属酸化物層16と、第2の金属酸化物層14とがこの順に配置された積層構造を有する。すなわち、金属層18と第2の金属酸化物層14の間に第3の金属酸化物層16を備える点で、図1の透明導電体10と異なっている。第3の金属酸化物層16以外の構成は、透明導電体10と同様である。
FIG. 2 is a schematic cross-sectional view showing another embodiment of the transparent conductor. In the
第1の金属酸化物層12、金属層18、第3の金属酸化物層16及び第2の金属酸化物層14は透明電極25を構成する。例えば、透明電極25をアノードとして有機デバイスの有機層に隣接して配置したときに、第3の金属酸化物層16は、透明電極25における正孔の移動を一層円滑にする機能を有する。
The first
第3の金属酸化物層16は、第2の金属酸化物層14とは異なる組成を有する金属酸化物層である。例えば、ITOを含んでいなくてよく、酸化亜鉛、酸化インジウム、酸化スズ及び酸化チタンの4成分を主成分として含有していてもよい。また、当該4成分と不可避的不純物から構成されていてもよい。この4成分を含む第3の金属酸化物層16は、十分に高い導電性と透明性を兼ね備える。酸化亜鉛は例えばZnOであり、酸化インジウムは例えばIn2O3である。酸化チタンは例えばTiO2であり、酸化スズは、例えばSnO2である。上記各金属酸化物における金属原子と酸素原子の比は、化学量論比からずれていてもよい。
The third
上記4成分は、結晶よりも非晶質(アモルファス)である方が安定な相を形成する。すなわち、アモルファス安定な相を第3の金属酸化物層16に形成する。このため、ITOよりも熱膨張係数が小さく、加熱に伴って生じる圧縮応力を小さくすることができる。したがって、4成分を含む第3の金属酸化物層16を備えることによって、加熱に伴う透明導電体10Aの反りを低減することができる。第3の金属酸化物層16の含有成分は上述の4成分に限定されず、例えば、ITOよりも熱膨張係数が小さい種々の成分を含有してよい。
The above four components form a more stable phase when they are amorphous than when they are crystalline. That is, an amorphous stable phase is formed on the third
第3の金属酸化物層16が上記4成分を含有する場合、上記4成分の合計に対する酸化亜鉛の含有量は、高い透明性を維持しつつ導電性を十分に高くする観点から、例えば20mol%以上である。第3の金属酸化物層16において、上記4成分の合計に対する酸化亜鉛の含有量は、高温高湿度の環境下における保存安定性を十分に高くする観点から、例えば68mol%以下である。
When the third
第3の金属酸化物層16において、上記4成分の合計に対する酸化インジウムの含有量は、表面抵抗を十分に低くしつつ透過率を適切な範囲とする観点から、例えば35mol%以下である。第3の金属酸化物層16において、上記4成分の合計に対する酸化インジウムの含有量は、高温高湿度の環境下における保存安定性を十分に高くする観点から、例えば15mol%以上である。
In the third
第3の金属酸化物層16において、上記4成分の合計に対する酸化チタンの含有量は、可視光の透過率を確保する観点から、例えば20mol%以下である。第3の金属酸化物層16において、上記4成分の合計に対する酸化チタンの含有量は、アルカリ耐性を十分に高くする観点から、例えば5mol%以上である。
In the third
第3の金属酸化物層16において、上記4成分の合計に対する酸化スズの含有量は、高い透明性を確保する観点から、例えば40mol%以下である。第3の金属酸化物層16において、上記4成分の合計に対する酸化スズの含有量は、高温高湿度の環境下における保存安定性を十分に高くする観点から、例えば5mol%以上である。なお、上記4成分のそれぞれの含有量は、酸化亜鉛、酸化インジウム、酸化チタン及び酸化スズを、それぞれ、ZnO、In2O3、TiO2及びSnO2に換算して求められる値である。
In the third
第3の金属酸化物層16は、第1の金属酸化物層12とは異なる組成を有していてよい。これによって、エッチングによって図3のようなパターンを形成する場合に、第3の金属酸化物層16も、第2の金属酸化物層14及び金属層18とともに酸性エッチング液によって除去することができる。
The third
第3の金属酸化物層16の厚みは透明性と屈曲性を十分に高く維持しつつ、その機能を十分に発揮させる観点から、2〜200nmであってよいし、5〜100nmであってもよい。第3の金属酸化物層16の厚みは、加熱による透明導電体10Aの反りを十分に低減する観点から、第2の金属酸化物層14の厚み以上であってよく、第2の金属酸化物層14の厚みを超えていてもよい。
The thickness of the third
図3は、透明導電体のさらに別の実施形態を示す模式断面図である。透明導電体10Bは、フィルム状の透明基材11、第1の金属酸化物層12、金属層18、第3の金属酸化物層16、及び第2の金属酸化物層14をこの順に有する第1積層部21と、透明基材11及び第1の金属酸化物層12をこの順に有する第2積層部22とを備える。第1積層部21と第2積層部22は、これらの積層方向(図3の上下方向)とは垂直方向(図3の左右方向)に隣接して設けられている。第1積層部21と第2積層部22は、上記垂直方向に沿って、交互に並ぶように設けられていてもよい。
FIG. 3 is a schematic cross-sectional view showing still another embodiment of the transparent conductor. The
第1積層部21は、例えばパターニングプロセスによって形成される導電部分である。第2積層部22は、例えばパターニングプロセスによって形成される、導電体を有しない絶縁部分となる。透明導電体10Bは、図2の透明導電体10Aのパターニングを行うことによって製造することができる。この製造方法の一例を以下に説明する。
The first
図2の透明導電体10Aの第2の金属酸化物層14の表面14aにフォトレジストを塗布して加熱しレジスト膜を形成する。所定のパターンを有するフォトマスクを介して紫外線をレジスト膜に照射して一部を感光する。その後、現像液を用いて感光した部分を溶解して除去し、第2の金属酸化物層14の表面14aの一部を露出させる(ポジ型)。
A photoresist is applied to the
酸性エッチング液を用いて第2の金属酸化物層14の当該一部とその下側にある第3の金属酸化物層16及び金属層18を溶解して除去する。このときの溶解時間を確保することによって、パターニング(加工)の精度を十分に高くすることができる。また、第1の金属酸化物層12を酸性エッチング液に溶解しない組成にすれば、金属層18の下側にある第1の金属酸化物層12を残存させることができる。
The part of the second
第2の金属酸化物層14、第3の金属酸化物層16及び金属層18を溶解して第2積層部22を形成した後、レジスト膜を除去する。このようにして、透明導電体10Bを得ることができる。なお、上述の手順ではポジ型のフォトレジストを用いたときの例を説明したが、これに限定されず、ネガ型のフォトレジストを用いてもよい。なお、図1の透明導電体10を用いて同様のパターニングプロセスを行ってもよい。この場合、導電部分となる第1積層部は、透明基材11、第1の金属酸化物層12、金属層18、及び第2の金属酸化物層14で構成される。絶縁部分となる第2積層部は、透明基材11、及び第1の金属酸化物層12で構成される。
After melting the second
透明導電体10Bの製造方法は、上述のフォトレジストを用いた方法に限定されず、例えば印刷法であってもよい。印刷法の場合、図2の透明導電体10Aの第2の金属酸化物層14の表面14aの一部に、インクジェット印刷、スクリーン印刷、又はグラビア印刷等の方法によって、パターン形状に応じてインクを印刷する。印刷後、酸性エッチング液を用いてインクが印刷されていない部分のエッチングを行う。これによって、第2の金属酸化物層14、第3の金属酸化物層16及び金属層18を溶解して第2積層部22を形成する。その後、インクを除去することによって透明導電体10Bを得ることができる。
The method for producing the
図1の透明導電体10、図2の透明導電体10A及び図3の透明導電体10Bは、各層の間に任意の層を備えていてもよい。例えば、透明基材11と第1の金属酸化物層12の間にハードコート層を備えていてもよいし、金属層18と第1の金属酸化物層12の間に耐エッチング層を備えていてもよい。透明基材11と透明電極20,25との間に、水蒸気バリア層を備えてもよい。ハードコート層は、透明基材11を挟むように対をなして設けられてもよい。透明基材11と第1の金属酸化物層12との間に、第1の金属酸化物層12とは異なる組成を有する別の金属酸化物層、又は金属窒化物層を設けてもよい。
The
透明導電体10,10A,10Bは、高い仕事関数と導電性を有しつつ、エッチングによる加工精度に優れることから、有機ELディスプレイ、有機EL照明、及び有機薄膜太陽電池等の有機デバイスの電極として好適に用いられる。この場合、第1の金属酸化物層12、金属層18、及び第2の金属酸化物層14が透明電極20として機能する。或いは、第1の金属酸化物層12、金属層18、第3の金属酸化物層16及び第2の金属酸化物層14が透明電極25として機能する。透明電極20,25はアノードであってもよいし、カソードであってもよい。
The
図4は、有機デバイスの一実施形態を模式的に示す図である。有機デバイス100は、例えば有機EL照明であり、透明基材11、透明電極(アノード)25、正孔輸送層30、発光層40、電子輸送層50及び金属電極(カソード)60をこの順に有する積層体を備える。有機デバイス100における透明基材11及び透明電極25として、透明導電体10Aを用いることができる。
FIG. 4 is a diagram schematically showing an embodiment of an organic device. The
透明導電体10Aは、透明電極20の第2の金属酸化物層14の表面(図1の表面14a)が正孔輸送層30と接するように設けられる。アノードとして機能する透明電極25とカソードとして機能する金属電極60には電源80が接続されている。電源80による電界の印加によって、透明電極25から正孔輸送層30に正孔(ホール)が注入されるとともに、金属電極60から電子輸送層50に電子が注入される。
The
正孔輸送層30に注入された正孔と電子輸送層50に注入された電子は発光層40において再結合する。この再結合によって、発光層40中の有機化合物が発光する。この発光によって生じた光は、正孔輸送層30、透明電極25及び透明基材11を通過して、有機デバイス100の側面20aから放射される。
The holes injected into the
有機デバイス100は、透明基材11及び透明電極25として透明導電体10Aを用いている。したがって、透明電極25から正孔輸送層30に効率よく正孔を注入することができる。このため、有機デバイス100の発光効率を高くすることができる。透明電極25に含まれる第2の金属酸化物層14の仕事関数が十分に大きいことから、有機デバイス100の発光効率を十分に高くすることができる。
The
正孔輸送層30、発光層40、電子輸送層50及び金属電極(カソード)60は、通常の材料を用いて形成することができる。例えば、正孔輸送層30の材料としては、芳香族アミン化合物が挙げられる。発光層40としては、ホスト材料とドーパント材料を組み合わせた2成分系のものが挙げられる。ホスト材料としては、1,10−フェナントロリン誘導体、有機金属錯体化合物、ナフタレン、アントラセン、ナフタセン、ペリレン、ベンゾフルオランテン、ナフトフルオランテン等の芳香族炭化水素化合物及びそれらの誘導体、並びにスチリルアミン及びテトラアリールジアミン誘導体等が挙げられる。ドーパント材料としては、ベンゾジフルオランテン誘導体及びクマリン誘導体等が挙げられる。
The
電子輸送層50としては、トリニトロフルオレノン、オキサジアゾール又はトリアゾール構造を有する化合物等の有機材料を用いて形成されていてもよいし、リチウム等のアルカリ金属、フッ化リチウム、又は酸化リチウム等の無機材料を用いて形成されていてもよい。金属電極60としては、アルミニウム等の金属材料、有機金属錯体又は金属化合物で構成されたものを用いることができる。各層は、真空蒸着法、イオン化蒸着法、及び塗布法等の通常の方法によって形成することができる。
The
以上、幾つかの実施形態を説明したが、本開示は上述の実施形態に限定されるものではない。例えば、図4の有機デバイスは、透明導電体10Aの代わりに透明導電体10又は透明導電体10Bを有していてもよい。また、有機デバイスは図4に示すような有機EL照明に限定されず、有機ELディスプレイ又は有機薄膜太陽電池等であってもよい。
Although some embodiments have been described above, the present disclosure is not limited to the above-described embodiments. For example, the organic device of FIG. 4 may have the
以下に実施例及び比較例を挙げて本開示をさらに具体的に説明するが、本開示はこれらの実施例に限定されるものではない。 The present disclosure will be described in more detail with reference to Examples and Comparative Examples, but the present disclosure is not limited to these Examples.
[透明導電体の作製]
(実施例1)
図1に示すような積層構造を有する透明導電体を作製した。透明導電体は、透明基材、第1の金属酸化物層、金属層、及び第2の金属酸化物層が、この順で積層された積層構造を有していた。この透明導電体を以下の要領で作製した。
[Manufacturing of transparent conductor]
(Example 1)
A transparent conductor having a laminated structure as shown in FIG. 1 was produced. The transparent conductor had a laminated structure in which a transparent base material, a first metal oxide layer, a metal layer, and a second metal oxide layer were laminated in this order. This transparent conductor was produced in the following manner.
市販のポリエチレンナフタレートフィルム(厚さ:100μm)を準備した。このPENフィルムを透明基材として用いた。DCマグネトロンスパッタリングによって、透明基材の上に、第1の金属酸化物層、金属層、及び第2の金属酸化物層を順次形成した。 A commercially available polyethylene naphthalate film (thickness: 100 μm) was prepared. This PEN film was used as a transparent base material. A first metal oxide layer, a metal layer, and a second metal oxide layer were sequentially formed on the transparent substrate by DC magnetron sputtering.
酸化亜鉛、酸化インジウム、及び酸化チタンの3成分で構成されるターゲットを用いて、アルゴンガスと酸素ガスの混合ガス雰囲気の減圧下(0.5Pa)、DCマグネトロンスパッタリングによって、透明基材上に第1の金属酸化物層(厚さ:40nm)を形成した。第1の金属酸化物層において、酸化亜鉛、酸化インジウム、及び酸化チタンを、それぞれ、ZnO、In2O3、及びTiO2に換算したときに、上記3成分の合計に対し、ZnOの含有量は74mol%、In2O3の含有量は15mol%、及びTiO2の含有量は11mol%であった。 Using a target composed of three components of zinc oxide, indium oxide, and titanium oxide, the first layer was placed on a transparent substrate by DC magnetron sputtering under reduced pressure (0.5 Pa) in a mixed gas atmosphere of argon gas and oxygen gas. 1 metal oxide layer (thickness: 40 nm) was formed. In the first metal oxide layer, when zinc oxide, indium oxide, and titanium oxide are converted into ZnO, In 2 O 3 , and TiO 2 , respectively, the content of ZnO is relative to the total of the above three components. Was 74 mol%, the content of In 2 O 3 was 15 mol%, and the content of TiO 2 was 11 mol%.
Ag、Pd及びCuの銀合金で構成されるターゲットを用いて、アルゴンガス雰囲気の減圧下(0.5Pa)、DCマグネトロンスパッタリングによって、第1の金属酸化物層の上に金属層(厚さ:10nm)を形成した。金属層を構成する銀合金の各金属の質量比率は、Ag:Pd:Cu=99.0:0.7:0.3であった。 Using a target composed of a silver alloy of Ag, Pd and Cu, a metal layer (thickness:) is placed on the first metal oxide layer by DC magnetron sputtering under reduced pressure (0.5 Pa) in an argon gas atmosphere. 10 nm) was formed. The mass ratio of each metal of the silver alloy constituting the metal layer was Ag: Pd: Cu = 99.0: 0.7: 0.3.
ITOで構成されるターゲットをDCマグネトロンスパッタリング装置のチャンバー内にセットし、ターボポンプを用いてチャンバー内の排気を十分に行った。その後、チャンバー内へのアルゴンガスと酸素ガスの混合ガスの流通を開始した。チャンバー内の圧力を0.5Paとし、H2O分圧を0.01Pa以下に維持しながら、DCマグネトロンスパッタリングを行った。これによって、金属層の上にITOで構成される第2の金属酸化物層(厚さ:60nm)を形成した。DCマグネトロンスパッタリングの際のアルゴンガスに対する酸素ガスの流量比率は4.3体積%であった。なお、この流量比率は、標準状態(25℃、1bar)における比率であり、以下の実施例、比較例及び参考例においても同様である。このようにして、図1に示すような積層構造を有する透明導電体を作製した。 A target composed of ITO was set in the chamber of a DC magnetron sputtering apparatus, and a turbo pump was used to sufficiently exhaust the inside of the chamber. After that, the flow of a mixed gas of argon gas and oxygen gas into the chamber was started. DC magnetron sputtering was performed while maintaining the pressure in the chamber at 0.5 Pa and the H 2 O partial pressure at 0.01 Pa or less. As a result, a second metal oxide layer (thickness: 60 nm) composed of ITO was formed on the metal layer. The flow rate ratio of oxygen gas to argon gas during DC magnetron sputtering was 4.3% by volume. This flow rate ratio is a ratio in a standard state (25 ° C., 1 bar), and is the same in the following Examples, Comparative Examples, and Reference Examples. In this way, a transparent conductor having a laminated structure as shown in FIG. 1 was produced.
(実施例2)
第2の金属酸化物層をDCマグネトロンスパッタリングで形成する際のアルゴンガスに対する酸素ガスの流量比率を6.5体積%にしたこと以外は、実施例1と同じ条件で透明導電体を作製した。
(Example 2)
A transparent conductor was produced under the same conditions as in Example 1 except that the flow rate ratio of oxygen gas to argon gas when forming the second metal oxide layer by DC magnetron sputtering was 6.5% by volume.
(実施例3)
第2の金属酸化物層をDCマグネトロンスパッタリングで形成する際のアルゴンガスに対する酸素ガスの流量比率を8.7体積%にしたこと以外は、実施例1と同じ条件で透明導電体を作製した。
(Example 3)
A transparent conductor was produced under the same conditions as in Example 1 except that the flow rate ratio of oxygen gas to argon gas when the second metal oxide layer was formed by DC magnetron sputtering was set to 8.7% by volume.
(実施例4)
第2の金属酸化物層をDCマグネトロンスパッタリングで形成する際のアルゴンガスに対する酸素ガスの流量比率を10.9体積%にしたこと以外は、実施例1と同じ条件で透明導電体を作製した。
(Example 4)
A transparent conductor was produced under the same conditions as in Example 1 except that the flow rate ratio of oxygen gas to argon gas when forming the second metal oxide layer by DC magnetron sputtering was 10.9% by volume.
(実施例5)
第2の金属酸化物層をDCマグネトロンスパッタリングで形成する際のアルゴンガスに対する酸素ガスの流量比率を2.2体積%にしたこと以外は、実施例1と同じ条件で透明導電体を作製した。
(Example 5)
A transparent conductor was produced under the same conditions as in Example 1 except that the flow rate ratio of oxygen gas to argon gas when the second metal oxide layer was formed by DC magnetron sputtering was set to 2.2% by volume.
(実施例6)
図2に示すような積層構造を有する透明導電体を作製した。この透明導電体は、透明基材、第1の金属酸化物層、金属層、第3の金属酸化物層、及び第2の金属酸化物層が、この順で積層された積層構造を有していた。この透明導電体を以下の要領で作製した。
(Example 6)
A transparent conductor having a laminated structure as shown in FIG. 2 was produced. This transparent conductor has a laminated structure in which a transparent base material, a first metal oxide layer, a metal layer, a third metal oxide layer, and a second metal oxide layer are laminated in this order. Was there. This transparent conductor was produced in the following manner.
実施例1と同じ手順で、透明基材の上に、第1の金属酸化物層及び金属層を順次形成した。ZnO−In2O3−TiO2−SnO2ターゲットを用い、DCマグネトロンスパッタリングによって、金属層の上に、酸化亜鉛、酸化インジウム、酸化スズ及び酸化チタンの4成分で構成される第3の金属酸化物層(厚さ:30nm)を形成した。4成分の合計に対する、酸化亜鉛、酸化インジウム、酸化チタン及び酸化スズの含有量は、それぞれ、35mol%、29mol%、14mol%及び22mol%であった。このモル比率は、それぞれの成分をZnO、In2O3、TiO2及びSnO2に換算して求めた値である。 The first metal oxide layer and the metal layer were sequentially formed on the transparent substrate by the same procedure as in Example 1. A third metal oxidation composed of four components, zinc oxide, indium oxide, tin oxide and titanium oxide, on a metal layer by DC magnetron sputtering using a ZnO-In 2 O 3- TiO 2- SnO 2 target. A material layer (thickness: 30 nm) was formed. The contents of zinc oxide, indium oxide, titanium oxide and tin oxide with respect to the total of the four components were 35 mol%, 29 mol%, 14 mol% and 22 mol%, respectively. This molar ratio is a value obtained by converting each component into ZnO, In 2 O 3 , TiO 2 and SnO 2 .
ITOで構成されるターゲットを用い、実施例2と同じ条件でDCマグネトロンスパッタリングを行って、第3の金属酸化物層の上に第2の金属酸化物層(厚さ:30nm)を形成した。このようにして、実施例6の透明導電体を作製した。 Using a target composed of ITO, DC magnetron sputtering was performed under the same conditions as in Example 2 to form a second metal oxide layer (thickness: 30 nm) on the third metal oxide layer. In this way, the transparent conductor of Example 6 was produced.
(比較例1)
第2の金属酸化物層をDCマグネトロンスパッタリングで形成する際のアルゴンガスに対する酸素ガスの流量比率を1.1体積%にしたこと以外は、実施例1と同じ条件で透明導電体を作製した。
(Comparative Example 1)
A transparent conductor was produced under the same conditions as in Example 1 except that the flow rate ratio of oxygen gas to argon gas when forming the second metal oxide layer by DC magnetron sputtering was 1.1% by volume.
(比較例2)
第2の金属酸化物層をDCマグネトロンスパッタリングで形成する際、酸素ガスを混合せず、アルゴンガスのみを用いたこと以外は、実施例1と同じ条件で透明導電体を作製した。
(Comparative Example 2)
When the second metal oxide layer was formed by DC magnetron sputtering, a transparent conductor was produced under the same conditions as in Example 1 except that oxygen gas was not mixed and only argon gas was used.
(比較例3)
第2の金属酸化物層をDCマグネトロンスパッタリングで形成する際、チャンバー内の排気の時間を実施例1よりも短くしてスパッタリングの際のH2O分圧を高くしたこと以外は、実施例1と同じ条件で透明導電体を作製した。つまり、スパッタリングの際のチャンバー内の圧力は実施例1と同じ0.5Paであったが、H2O分圧は0.1Paを超えていた。
(Comparative Example 3)
When forming the second metal oxide layer by DC magnetron sputtering, except that shorter than Example 1 the time of the exhaust in the chamber was increased partial pressure of H 2 O during sputtering, Example 1 A transparent conductor was produced under the same conditions as above. That is, the pressure in the chamber during sputtering was 0.5 Pa, which was the same as in Example 1, but the H 2 O partial pressure exceeded 0.1 Pa.
[透明導電体の評価]
<仕事関数の測定>
作製した透明導電体の第2の金属酸化物層の表面における仕事関数を、光電子分光装置(理研計器株式会社製、商品名:FAC−1)を用いて測定した。測定結果を表1の「仕事関数」の欄に示す。
[Evaluation of transparent conductor]
<Measurement of work function>
The work function on the surface of the second metal oxide layer of the produced transparent conductor was measured using a photoelectron spectrometer (manufactured by RIKEN Keiki Co., Ltd., trade name: FAC-1). The measurement results are shown in the "work function" column of Table 1.
<X線回折の測定>
第2の金属酸化物層の表面のX線回折測定を行った。測定には、マルバーン・パナリティカル製のX線回折装置(装置名:EMPYREAN、CuKα線)を用いた。測定した回折角(2θ)の範囲は、20〜65°とした。2θ=30°付近に検出されるITOの(222)面に由来する回折ピークの高さを、ピーク強度I1とした。また、2θ=50°付近に検出されるITOの(440)面に由来する回折ピークの高さをピーク強度I2とした。また、2θ=35°付近に検出されるITOの(400)面に由来する回折ピークの高さをピーク強度I3とした。これらの結果を表1に示す。
<Measurement of X-ray diffraction>
X-ray diffraction measurement of the surface of the second metal oxide layer was performed. For the measurement, an X-ray diffractometer manufactured by Malvern PANalytical (device name: EMPYREAN, CuKα ray) was used. The range of the measured diffraction angle (2θ) was 20 to 65 °. The height of the diffraction peaks derived from (222) plane of the ITO, which is detected in the vicinity of 2θ = 30 °, and the peak intensity I 1. Further, the height of the diffraction peak derived from the (440) plane of ITO detected near 2θ = 50 ° was defined as the peak intensity I 2 . Also, the height of the diffraction peaks derived from (400) plane of the ITO, which is detected in the vicinity of 2 [Theta] = 35 ° and the peak intensity I 3. These results are shown in Table 1.
表1には、ピーク強度I2に対するピーク強度I1の比(I1/I2)を示した。また、ピーク強度I1が500以上であるものを「結晶」、回折ピークは存在するもののピーク強度I1が500未満のものを「微結晶」、ピークが全く検出されないものを「アモルファス」と分類した。これらの結果を表1の「結晶性」の欄に示す。また、「結晶」に分類されたものについて、ITOの結晶子のサイズを算出した。この結果も、表1における「結晶性」の欄の下段に示す(単位はnm)。ITOの結晶子のサイズは、ITOの(222)面に由来する回折ピークの半値幅から以下の計算式によって求めた。式中、Kはシェラー定数、λはX線波長、βは半値幅、θはブラック角である。ここで、K=0.9とした。
結晶子のサイズ(nm)=Kλ/βcosθ
Table 1 shows the ratio of peak intensity I 1 to peak intensity I 2 (I 1 / I 2 ). Furthermore, the "crystal" as the peak intensity I 1 is 500 or more, the "microcrystal" of less than the peak intensity I 1 of those diffraction peak is present 500, classified as "amorphous" and a peak is not detected at all did. These results are shown in the "Crystallinity" column of Table 1. In addition, the size of ITO crystallites was calculated for those classified as "crystals". This result is also shown at the bottom of the "Crystallinity" column in Table 1 (unit: nm). The size of the crystallite of ITO was calculated from the half width of the diffraction peak derived from the (222) plane of ITO by the following formula. In the equation, K is the Scheller constant, λ is the X-ray wavelength, β is the full width at half maximum, and θ is the black angle. Here, K = 0.9.
Crystallite size (nm) = Kλ / βcosθ
<エッチングの制御性の評価>
各実施例及び各比較例の透明導電体を塩鉄系エッチング液に浸漬させ、第2の金属酸化物層が完全に溶解する時間を測定した。第3の金属酸化物層を有する場合は、第2の金属酸化物層及び第3の金属酸化物層が完全に溶解する時間を測定した。この時間が10秒間以上の場合を「A」、5秒間から10秒間の場合を「B」、5秒間未満の場合を「C」と判定とした。評価結果を表1に示す。結晶性が低い場合、溶解に要する時間が短くなり、エッチング量を精密に制御することが難しくなる。
<Evaluation of etching controllability>
The transparent conductors of each Example and each Comparative Example were immersed in a salt-iron-based etching solution, and the time for the second metal oxide layer to completely dissolve was measured. When having a third metal oxide layer, the time for the second metal oxide layer and the third metal oxide layer to completely dissolve was measured. When this time was 10 seconds or more, it was judged as "A", when it was 5 to 10 seconds, it was judged as "B", and when it was less than 5 seconds, it was judged as "C". The evaluation results are shown in Table 1. When the crystallinity is low, the time required for dissolution becomes short, and it becomes difficult to precisely control the etching amount.
<体積抵抗率の評価>
各実施例及び各比較例において透明導電体の第2の金属酸化物層を作製したときと同じ方法で、市販のポリエチレンテレフタレートフィルム(厚さ:125μm)の表面上にITOで構成される金属酸化物層を形成した。このようにして得られた金属酸化物層の体積抵抗率を、4端子抵抗率計(商品名:ロレスタGP、三菱化学株式会社製)を用いて表面抵抗値を測定した。この表面抵抗値とITO層の厚みから体積抵抗率を算出した。結果を表1の「体積抵抗率」の欄に示す。
<Evaluation of volume resistivity>
Metal oxidation composed of ITO on the surface of a commercially available polyethylene terephthalate film (thickness: 125 μm) in the same manner as when the second metal oxide layer of the transparent conductor was prepared in each Example and each Comparative Example. A layer was formed. The volume resistivity of the metal oxide layer thus obtained was measured by using a 4-terminal resistivity meter (trade name: Loresta GP, manufactured by Mitsubishi Chemical Corporation). The volume resistivity was calculated from this surface resistance value and the thickness of the ITO layer. The results are shown in the "Volume resistivity" column of Table 1.
表1に示すとおり、比較例1〜3は、ピーク強度I1/I2が7.0未満であった。比較例1〜3のピーク強度I1はいずれも850以下であり、ITOの結晶性が低いことが確認された。ITOが微結晶である場合、エッチングの制御性の評価はCであった。 As shown in Table 1, in Comparative Examples 1 to 3, the peak intensities I 1 / I 2 were less than 7.0. The peak intensities I 1 of Comparative Examples 1 to 3 were all 850 or less, confirming that the crystallinity of ITO was low. When ITO was a microcrystal, the evaluation of etching controllability was C.
表1に示すとおり、各実施例の透明導電体における第2の金属酸化物層は、ピーク強度の比(I1/I2)が大きく、且つ、ITOの結晶性が高いことが確認された。このようなITOは、アルゴンガスに対する酸素ガスの流量比率を所定の範囲にしつつ、スパッタリングの際の雰囲気におけるH2O分圧を制御することによって得られることが確認された。一方、アルゴンガスに対する酸素ガスの流量比率が低すぎる場合(比較例1,2)、又はスパッタリングの際の雰囲気におけるH2O分圧が高い場合(比較例3)には、ITOの結晶性が低下することが確認された。 As shown in Table 1, it was confirmed that the second metal oxide layer in the transparent conductor of each example had a large peak intensity ratio (I 1 / I 2 ) and high ITO crystallinity. .. Such ITO, while the flow rate ratio of oxygen gas to the argon gas in a predetermined range, the obtained was confirmed by controlling of H 2 O partial pressure in the atmosphere during sputtering. On the other hand, when the flow rate ratio of oxygen gas to the argon gas is too low (Comparative Examples 1 and 2), or, if H 2 O partial pressure is high in the atmosphere during sputtering (Comparative Example 3), the crystallinity of ITO is It was confirmed that it decreased.
図5は、ピーク強度I2に対するピーク強度I1の比(I1/I2)を縦軸に、仕事関数を横軸にとったときの両者の関係を示すグラフである。図5には、H2O分圧が0.01Pa以下の条件で形成され、且つ、第2の金属酸化物層の厚みが共通する実施例1〜5及び比較例1〜2のデータをプロットした。
FIG. 5 is a graph showing the relationship between the two when the ratio of the peak intensity I 1 to the peak intensity I 2 (I 1 / I 2 ) is taken on the vertical axis and the work function is taken on the horizontal axis. FIG 5,
表1及び図5に示すとおり、上記比(I1/I2)を大きくすれば、高い結晶性を有し且つ高い仕事関数を有する第2の金属酸化物層が得られることが確認された。このような第2の金属酸化物層を備える透明導電体は、エッチングの制御性に優れる。このため、エッチングによる回路形成を高い精度で行うことができる。 As shown in Table 1 and FIG. 5, it was confirmed that by increasing the above ratio (I 1 / I 2 ), a second metal oxide layer having high crystallinity and high work function can be obtained. .. A transparent conductor provided with such a second metal oxide layer has excellent etching controllability. Therefore, the circuit can be formed by etching with high accuracy.
本開示によれば、高い仕事関数を有しつつ、エッチングによる回路形成を高い精度で行うことが可能な透明導電体を提供することができる。また、そのような透明導電体を用いて形成される有機デバイスを提供することができる。 According to the present disclosure, it is possible to provide a transparent conductor capable of forming a circuit by etching with high accuracy while having a high work function. It is also possible to provide an organic device formed by using such a transparent conductor.
10,10A,10B…透明導電体、11…透明基材、12…第1の金属酸化物層、14…第2の金属酸化物層、14a…表面、18…金属層、20,25…透明電極、21…第1積層部、22…第2積層部、30…正孔輸送層、40…発光層、50…電子輸送層、60…金属電極、80…電源、100…有機デバイス。
10, 10A, 10B ... Transparent conductor, 11 ... Transparent substrate, 12 ... First metal oxide layer, 14 ... Second metal oxide layer, 14a ... Surface, 18 ... Metal layer, 20, 25 ... Transparent Electrodes, 21 ... 1st laminated portion, 22 ... 2nd laminated portion, 30 ... hole transport layer, 40 ... light emitting layer, 50 ... electron transport layer, 60 ... metal electrode, 80 ... power supply, 100 ... organic device.
Claims (8)
前記第2の金属酸化物層がITOを含み、
前記第2の金属酸化物層の表面のX線回折で検出される、ITOの(440)面のピーク強度I2に対する、ITOの(222)面のピーク強度I1の比(I1/I2)が7.0以上である、透明導電体。 A transparent base material, a first metal oxide layer, a metal layer containing a silver alloy, and a second metal oxide layer are provided in this order.
The second metal oxide layer contains ITO and contains
The ratio of the peak intensity I 1 of the (222) plane of ITO to the peak intensity I 2 of the (440) plane of ITO detected by X-ray diffraction on the surface of the second metal oxide layer (I 1 / I). 2 ) is a transparent conductor of 7.0 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019135439A JP7383922B2 (en) | 2019-07-23 | 2019-07-23 | Transparent conductors and organic devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019135439A JP7383922B2 (en) | 2019-07-23 | 2019-07-23 | Transparent conductors and organic devices |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021017640A true JP2021017640A (en) | 2021-02-15 |
JP7383922B2 JP7383922B2 (en) | 2023-11-21 |
Family
ID=74564150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019135439A Active JP7383922B2 (en) | 2019-07-23 | 2019-07-23 | Transparent conductors and organic devices |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7383922B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113223753A (en) * | 2021-05-07 | 2021-08-06 | 江苏华微薄膜科技有限公司 | High-light-transmission low-resistance composite ITO film |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007141755A (en) * | 2005-11-22 | 2007-06-07 | Dainippon Printing Co Ltd | Conductive substrate |
WO2019044896A1 (en) * | 2017-08-29 | 2019-03-07 | Tdk株式会社 | Transparent conductor and organic device |
-
2019
- 2019-07-23 JP JP2019135439A patent/JP7383922B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007141755A (en) * | 2005-11-22 | 2007-06-07 | Dainippon Printing Co Ltd | Conductive substrate |
WO2019044896A1 (en) * | 2017-08-29 | 2019-03-07 | Tdk株式会社 | Transparent conductor and organic device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113223753A (en) * | 2021-05-07 | 2021-08-06 | 江苏华微薄膜科技有限公司 | High-light-transmission low-resistance composite ITO film |
Also Published As
Publication number | Publication date |
---|---|
JP7383922B2 (en) | 2023-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100968389B1 (en) | Method for forming transparent electrode | |
KR100606642B1 (en) | Target for transparent conductive thin film, Transparent conductive thin film and Manufacturing method thereof, Electrode material for display, and Organic electroluminescence element and solar Cell | |
JP4947051B2 (en) | Conductive film and method for producing conductive film | |
US11094909B2 (en) | Thin film of metal oxide, organic electroluminescent device including the thin film, photovoltaic cell including the thin film and organic photovoltaic cell including the thin film | |
JP4888119B2 (en) | Transparent conductive film and method for producing the same, transparent conductive substrate, and light-emitting device | |
JP6962376B2 (en) | Transparent conductors and organic devices | |
JP2005108467A (en) | Transparent conductive sheet, and photosensitive solar cell | |
TW201540137A (en) | Electrically conductive substrate and method for manufacturing electrically conductive substrate | |
KR20060043609A (en) | A method of producing organic light-emitting surface elements and an organic light-emitting surface element | |
KR101519888B1 (en) | Hybrid transparent electrode and the fabricating method thereof | |
JP2007101622A (en) | Display electrode film and manufacturing method of display electrode pattern | |
JP7505865B2 (en) | Transparent conductors and organic devices | |
KR20170007798A (en) | Transparent electrode, method for producing transparent electrode and electronic device | |
JP2005103768A (en) | Gas barrier transparent resin substrate, flexible display element using it and manufacturing method of gas barrier transparent resin substrate | |
JP7383922B2 (en) | Transparent conductors and organic devices | |
JP2010267534A (en) | Dye-sensitized solar cell | |
JPWO2013099084A1 (en) | Manufacturing method of organic EL element | |
US20120100774A1 (en) | Transparent substrate with thin film and method for manufacturing transparent substrate with circuit pattern wherein such transparent substrate with thin film is used | |
TW201719360A (en) | Conductive substrate, and method for producing conductive substrate | |
JP2005108468A (en) | Transparent conductive sheet, manufacturing method of the same, and photosensitive solar cell using the same | |
WO2019194010A1 (en) | Transparent conductor, method for manufacturing same, and organic device | |
JP4268161B2 (en) | Electrode substrate for organic electroluminescence device and organic EL light emitting device | |
JP4803726B2 (en) | Electronic circuit and manufacturing method thereof | |
JP6798219B2 (en) | Transparent conductor | |
KR20160143535A (en) | Electrically conductive substrate and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230307 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230501 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230705 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231010 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231023 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7383922 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |