JP2010267534A - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP2010267534A
JP2010267534A JP2009118801A JP2009118801A JP2010267534A JP 2010267534 A JP2010267534 A JP 2010267534A JP 2009118801 A JP2009118801 A JP 2009118801A JP 2009118801 A JP2009118801 A JP 2009118801A JP 2010267534 A JP2010267534 A JP 2010267534A
Authority
JP
Japan
Prior art keywords
transport layer
solar cell
thin film
light absorption
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009118801A
Other languages
Japanese (ja)
Other versions
JP5400470B2 (en
Inventor
Takashi Ikuno
孝 生野
Naohiko Kato
直彦 加藤
Kazuo Higuchi
和夫 樋口
Yasuhiko Takeda
康彦 竹田
Toshiyuki Sano
利行 佐野
Tatsuo Toyoda
竜生 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Central R&D Labs Inc filed Critical Aisin Seiki Co Ltd
Priority to JP2009118801A priority Critical patent/JP5400470B2/en
Publication of JP2010267534A publication Critical patent/JP2010267534A/en
Application granted granted Critical
Publication of JP5400470B2 publication Critical patent/JP5400470B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To aim at improvement in photoelectric conversion efficiency of a solid dye-sensitized solar cell. <P>SOLUTION: The dye-sensitized solar cell 100 is provided with an electron transport layer 3, a light absorption layer 5, and a hole transport layer 7. The electron transport layer 3 is structured of titanium oxide or zinc oxide, the light absorption layer 5 is structured of either oxide of metal selected from Co and Cu, or fluoride of metal selected from Bi, Sn, Cu and Mo, and the hole transport layer 7 is structured of nickel oxide doped with Li. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、色素増感型太陽電池及びその製造方法に関する。   The present invention relates to a dye-sensitized solar cell and a method for producing the same.

固体金属酸化物等から構成される固体型の色素増感型太陽電池について検討されている(例えば、特許文献1)。固体型の色素増感型太陽電池は、液状電解質の場合に問題となる液漏れを回避可能であるなどの利点を有する。   A solid-type dye-sensitized solar cell composed of a solid metal oxide or the like has been studied (for example, Patent Document 1). The solid-type dye-sensitized solar cell has advantages such as that it is possible to avoid liquid leakage that becomes a problem in the case of a liquid electrolyte.

特開2006−216958号公報JP 2006-216958 A

しかし、従来の固体型の色素増感型太陽電池は、液状電解質を用いたものと比較して、光電変換効率の点で必ずしも未だ十分なものではなかった。   However, conventional solid dye-sensitized solar cells have not always been sufficient in terms of photoelectric conversion efficiency as compared with those using a liquid electrolyte.

そこで、本発明の目的は、固体型の色素増感型太陽電池において、光電変換効率の更なる改善を図ることにある。   Accordingly, an object of the present invention is to further improve the photoelectric conversion efficiency in a solid dye-sensitized solar cell.

本発明は、電子輸送層と、光吸収層と、正孔輸送層と、を備え、電子輸送層、光吸収層及び正孔輸送層がこの順に積層されている色素増感型太陽電池に関する。本発明に係る色素増感型太陽電池において、電子輸送層は、酸化チタン又は酸化亜鉛から構成され、光吸収層は、Co及びCuから選ばれる金属の酸化物、又はBi、Sn、Cu及びMoから選ばれる金属の硫化物から構成され、正孔輸送層は、Liによってドープされた酸化ニッケルから構成される。   The present invention relates to a dye-sensitized solar cell including an electron transport layer, a light absorption layer, and a hole transport layer, and the electron transport layer, the light absorption layer, and the hole transport layer are stacked in this order. In the dye-sensitized solar cell according to the present invention, the electron transport layer is composed of titanium oxide or zinc oxide, and the light absorption layer is a metal oxide selected from Co and Cu, or Bi, Sn, Cu, and Mo. The hole transport layer is composed of nickel oxide doped with Li.

本発明に係る色素増感型太陽電池によれば、上記特定の構成を備えることにより、固体型の色素増感型太陽電池において、光電変換効率の更なる改善を図ることが可能である。正孔輸送層を構成する酸化ニッケルをLiによってドープすることにより、酸化ニッケルの抵抗率が低下して励起キャリアが取り出され易くなり、さらには、酸化ニッケルの可視光域の光吸収量が増加して量子収率が向上し、その結果、光電変換効率向上の効果が奏されると考えられる。   According to the dye-sensitized solar cell according to the present invention, it is possible to further improve the photoelectric conversion efficiency in the solid-state dye-sensitized solar cell by including the specific configuration. By doping the nickel oxide that constitutes the hole transport layer with Li, the resistivity of the nickel oxide is lowered and the excited carriers are easily extracted, and further, the light absorption amount of the nickel oxide in the visible light region is increased. Thus, it is considered that the quantum yield is improved, and as a result, the effect of improving the photoelectric conversion efficiency is exhibited.

本発明による効果をより一層顕著なものとするために、正孔輸送層が、当該正孔輸送層全体を基準として0.1〜10原子%のLiを含有することが好ましい。   In order to make the effect of the present invention more remarkable, it is preferable that the hole transport layer contains 0.1 to 10 atomic% Li based on the whole hole transport layer.

光吸収層が、電子輸送層、光吸収層及び正孔輸送層の積層方向に波打つ凹凸面に沿って形成されていることが好ましい。これによりキャリアが生成する面積が大きくなって、更なる光電変換率向上の効果が得られる。   The light absorption layer is preferably formed along an uneven surface that undulates in the stacking direction of the electron transport layer, the light absorption layer, and the hole transport layer. Thereby, the area which a carrier produces | generates becomes large and the effect of the further photoelectric conversion rate improvement is acquired.

本発明によれば、固体型の色素増感型太陽電池において、光電変換効率の更なる改善を図ることにある。   According to the present invention, in the solid dye-sensitized solar cell, the photoelectric conversion efficiency is further improved.

色素増感型太陽電池の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a dye-sensitized solar cell. 色素増感型太陽電池の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a dye-sensitized solar cell. 色素増感型太陽電池のIV特性を示すグラフである。It is a graph which shows the IV characteristic of a dye-sensitized solar cell. LiO薄膜の抵抗率とLi濃度との関係を示すグラフである。It is a graph which shows the relationship between the resistivity of a LiO thin film, and Li density | concentration. 吸光度と波長との関係を示すグラフである。It is a graph which shows the relationship between a light absorbency and a wavelength. Liによってドープされた酸化ニッケル薄膜のXRDパターンである。It is an XRD pattern of a nickel oxide thin film doped with Li.

以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

図1は、色素増感型太陽電池の一実施形態を示す断面図である。図1に示す色素増感型太陽電池100は、透明導電性基板1と、電子輸送層3と、光吸収層5と、正孔輸送層7と、Ag電極12とから主として構成される。透明導電性基板1は透明基板10及び透明基板10上に形成された透明導電膜11を有している。電子輸送層3、光吸収層5及び正孔輸送層7は、透明導電性基板1の透明導電膜11上にこの順で積層されている。色素増感型太陽電池100に対して照射された光は、主として光吸収層5によって吸収される。言い換えると、光吸収層5は増感色素として機能する。光の吸収によってキャリアが生成し、光吸収層5に接する電子輸送層3側に電子が移動し、光吸収層5に接する正孔輸送層7側に正孔が移動して、電流が発生する。   FIG. 1 is a cross-sectional view showing one embodiment of a dye-sensitized solar cell. A dye-sensitized solar cell 100 shown in FIG. 1 is mainly composed of a transparent conductive substrate 1, an electron transport layer 3, a light absorption layer 5, a hole transport layer 7, and an Ag electrode 12. The transparent conductive substrate 1 has a transparent substrate 10 and a transparent conductive film 11 formed on the transparent substrate 10. The electron transport layer 3, the light absorption layer 5, and the hole transport layer 7 are laminated on the transparent conductive film 11 of the transparent conductive substrate 1 in this order. The light irradiated to the dye-sensitized solar cell 100 is mainly absorbed by the light absorption layer 5. In other words, the light absorption layer 5 functions as a sensitizing dye. Carriers are generated by light absorption, electrons move to the electron transport layer 3 side in contact with the light absorption layer 5, holes move to the hole transport layer 7 side in contact with the light absorption layer 5, and current is generated. .

電子輸送層3は、酸化チタン又は酸化亜鉛を主成分として含む薄膜である。好ましくは、電子輸送層3はアナターゼ型の酸化チタンから構成される。   The electron transport layer 3 is a thin film containing titanium oxide or zinc oxide as a main component. Preferably, the electron transport layer 3 is made of anatase type titanium oxide.

光吸収層5は、Co及びCuから選ばれる金属の酸化物、又はBi、Sn、Cu及びMoから選ばれる金属の硫化物を主成分として含む薄膜である。好ましくは、光吸収層5は酸化コバルト(Co)の薄膜である。 The light absorption layer 5 is a thin film containing a metal oxide selected from Co and Cu, or a metal sulfide selected from Bi, Sn, Cu and Mo as a main component. Preferably, the light absorption layer 5 is a thin film of cobalt oxide (Co 3 O 4 ).

正孔輸送層7は、正孔輸送層7は、Liによってドープされた酸化ニッケルを主成分として含む薄膜である。光電変換効率向上の観点から、Liの含有量は、正孔輸送層7全体を基準として好ましくは0.1〜10原子%である。Liの含有量が小さく
なると、正孔輸送層7の抵抗率が低下する傾向があることから、Liの含有量はより好ましくは1原子%以上である。ただし、Liの含有量が大きくなると酸化ニッケルの結晶性が低下する傾向があることから、Liの含有量は3原子%以下がより好ましい。
The hole transport layer 7 is a thin film containing nickel oxide doped with Li as a main component. From the viewpoint of improving the photoelectric conversion efficiency, the Li content is preferably 0.1 to 10 atomic% based on the whole hole transport layer 7. Since the resistivity of the hole transport layer 7 tends to decrease as the Li content decreases, the Li content is more preferably 1 atomic% or more. However, since the crystallinity of nickel oxide tends to decrease as the Li content increases, the Li content is more preferably 3 atomic% or less.

図2の断面図に示されるように、光吸収層5が、電子輸送層3、光吸収層5及び正孔輸送層7の積層方向に波打つ凹凸面に沿って形成されていてもよい。この場合、電子輸送層3の光吸収層5側の面、及び正孔輸送層7の光吸収層5側の面は、光吸収層5に沿う凹凸形状を形成している。   As shown in the sectional view of FIG. 2, the light absorption layer 5 may be formed along an uneven surface that undulates in the stacking direction of the electron transport layer 3, the light absorption layer 5, and the hole transport layer 7. In this case, the surface on the light absorption layer 5 side of the electron transport layer 3 and the surface on the light absorption layer 5 side of the hole transport layer 7 form an uneven shape along the light absorption layer 5.

透明導電性基板1は、ガラス基板等の透明基板10と、これの受光面とは反対側の面上に設けられた透明導電膜11とを有する。透明導電性基板1として、通常の色素増感型太陽電池若しくは無機固体型太陽電池に搭載される透明電極、又は液晶パネル等に用いられる透明電極を使用できる。透明導電膜11は、例えばITO膜であり得る。   The transparent conductive substrate 1 includes a transparent substrate 10 such as a glass substrate and a transparent conductive film 11 provided on a surface opposite to the light receiving surface thereof. As the transparent conductive substrate 1, a transparent electrode mounted on a normal dye-sensitized solar cell or an inorganic solid solar cell, or a transparent electrode used for a liquid crystal panel or the like can be used. The transparent conductive film 11 can be, for example, an ITO film.

透明導電性基板1の具体例として、フッ素ドープSnOコートガラス、ITOコート
ガラス、ZnO:Alコートガラス、及びアンチモンドープ酸化スズ(SnO−Sb)
がある。
Specific examples of the transparent conductive substrate 1 include fluorine-doped SnO 2 coated glass, ITO coated glass, ZnO: Al coated glass, and antimony-doped tin oxide (SnO 2 —Sb).
There is.

Ag電極12はAgペーストを塗布する方法により形成され、その形状は特に限定されない。他の金属から構成される電極を接続端子として設けてもよい。   The Ag electrode 12 is formed by a method of applying an Ag paste, and the shape thereof is not particularly limited. You may provide the electrode comprised from another metal as a connection terminal.

色素増感型太陽電池100は、例えば、透明導電性基板1の透明導電膜11上に、酸化チタン又は酸化亜鉛から構成される薄膜、Co及びCuから選ばれる金属の酸化物、又はBi、Sn、Cu及びMoから選ばれる金属の硫化物から構成される薄膜と、Liによってドープされた酸化ニッケルから構成される薄膜をこの順に形成する工程と、形成された各薄膜を加熱する工程とを備える方法によって製造することができる。   The dye-sensitized solar cell 100 includes, for example, a thin film composed of titanium oxide or zinc oxide, a metal oxide selected from Co and Cu, or Bi, Sn on the transparent conductive film 11 of the transparent conductive substrate 1. And a step of forming a thin film composed of a sulfide of a metal selected from Cu and Mo, a thin film composed of nickel oxide doped with Li in this order, and a step of heating each formed thin film It can be manufactured by a method.

各薄膜は、スパッタ等の通常の薄膜の成膜方法を採用して形成することができる。各薄膜を形成する毎にその薄膜を加熱してもよいし、3つの薄膜を形成した後、それらをまとめて加熱してもよい。薄膜の加熱は、通常、400〜500℃、30分〜3時間行われる。   Each thin film can be formed by employing an ordinary thin film forming method such as sputtering. Each time a thin film is formed, the thin film may be heated, or after forming three thin films, they may be heated together. The thin film is usually heated at 400 to 500 ° C. for 30 minutes to 3 hours.

以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

透明導電膜FTOがコーティングされたガラス基板(TCOガラス基板)を準備し、その透明導電膜上に、TiO薄膜(厚さ200nm)、Co薄膜(厚さ10nm)、及びLiドープNiO(NiO:Li)薄膜(厚さ200nm)を、スパッタにより順に成膜した。スパッタはRFマグネトロンスパッタ装置を用い、室温で成膜を行った。各薄膜のスパッタ条件は下記の通りである。NiO:Li薄膜におけるLiの濃度は2原子%とした。 A glass substrate (TCO glass substrate) coated with a transparent conductive film FTO is prepared, and on the transparent conductive film, a TiO 2 thin film (thickness 200 nm), a Co 3 O 4 thin film (thickness 10 nm), and Li-doped NiO (NiO: Li) thin films (thickness: 200 nm) were sequentially formed by sputtering. Sputtering was performed at room temperature using an RF magnetron sputtering apparatus. The sputtering conditions for each thin film are as follows. The concentration of Li in the NiO: Li thin film was 2 atomic%.

TiO薄膜スパッタ条件
到達真空度:2×10−6(Torr)
ガス:Ar/O(8:2)
成膜真空度:4×10−3(Torr)
ターゲット:TiO
投入電力:600W
TiO 2 thin film sputtering condition reached vacuum: 2 × 10 −6 (Torr)
Gas: Ar / O 2 (8: 2)
Deposition vacuum: 4 × 10 −3 (Torr)
Target: TiO 2
Input power: 600W

Co薄膜スパッタ条件
到達真空度:2×10−5(Torr)
ガス:Ar/O(1:1)
成膜真空度:3×10−3(Torr)
ターゲット:Co
投入電力:150W
自己バイアス:−470W
成膜時間:5分
Co 3 O 4 thin film sputtering condition reached vacuum: 2 × 10 −5 (Torr)
Gas: Ar / O 2 (1: 1)
Deposition vacuum: 3 × 10 −3 (Torr)
Target: Co 3 O 4
Input power: 150W
Self bias: -470W
Deposition time: 5 minutes

ターゲット:NiO:Li薄膜スパッタ条件
到達真空度:2×10−5(Torr)
ガス:Ar/O(1:1)
NiO:Li(2%),undope−NiO
投入電力:150W
自己バイアス:−430W
成膜時間:2時間
Target: NiO: Li thin film sputtering condition reached vacuum: 2 × 10 −5 (Torr)
Gas: Ar / O 2 (1: 1)
NiO: Li (2%), undope-NiO
Input power: 150W
Self bias: -430W
Deposition time: 2 hours

成膜後、N/O(8:2)混合ガス中、大気圧下で、450℃、2時間の熱処理を行い、各薄膜の結晶化を進行させた。TiO薄膜はアナターゼ型TiOから構成されることが確認された。次いで、NiO:Li薄膜上にAgペーストを塗布して電極を形成させた。以上の手順により、TCOガラス基板上にTiO薄膜/Co薄膜/NiO:Li薄膜がこの順で積層された積層構成を有する太陽電池を作製した。 After the film formation, heat treatment was performed at 450 ° C. for 2 hours in an N 2 / O 2 (8: 2) mixed gas at atmospheric pressure to promote crystallization of each thin film. It was confirmed that the TiO 2 thin film is composed of anatase TiO 2 . Next, an Ag paste was applied on the NiO: Li thin film to form an electrode. By the above procedure, a solar cell having a laminated structure in which a TiO 2 thin film / Co 2 O 4 thin film / NiO: Li thin film was laminated in this order on a TCO glass substrate was produced.

さらに、光吸収層であるCo薄膜を有しない太陽電池のサンプルとして、NiO:Li薄膜/TiO薄膜をTCOガラス基板上に積層したもの、及びNiO薄膜(アンドープ)/TiO薄膜をTCOガラス基板上に積層したものを作製した。Co薄膜を成膜しなかったことの他は上記と同様の操作で太陽電池を作製した。 Furthermore, as a sample of a solar cell having no Co 3 O 4 thin film as a light absorption layer, a NiO: Li thin film / TiO 2 thin film laminated on a TCO glass substrate, and a NiO thin film (undoped) / TiO 2 thin film What was laminated | stacked on the TCO glass substrate was produced. A solar cell was fabricated in the same manner as described above except that no Co 3 O 4 thin film was formed.

作製した太陽電池に対して1sunの光を照射し、そのときのIV特性を測定した。図3は、各太陽電池のIV特性(電流密度(Current Density)と電圧(Applied Voltage)との関係)を示すグラフである。NiO:Li/TiOの開放電圧は0.21V、短絡電流密度は88μA/cmであり、これらはNiOがLiによってドープされていないNiO/TiOと比較して大きい値である。光吸収層としてCo薄膜を導入したNiO:Li/Co/TiOの開放電圧は0.39V、短絡電流密度は289μA/cmであり、NiO:Li/TiOと比較してさらに電池特性の向上が認められた。 The produced solar cell was irradiated with 1 sun of light, and the IV characteristics at that time were measured. FIG. 3 is a graph showing IV characteristics (relationship between current density and applied voltage) of each solar cell. The open-circuit voltage of NiO: Li / TiO 2 is 0.21 V, and the short-circuit current density is 88 μA / cm 2, which are higher values than NiO / TiO 2 in which NiO is not doped with Li. NiO: Li / Co 3 O 4 / TiO 2 introduced with a Co 3 O 4 thin film as a light absorption layer has an open-circuit voltage of 0.39 V and a short-circuit current density of 289 μA / cm 2. Compared with NiO: Li / TiO 2 Further improvement in battery characteristics was observed.

さらに、LiでドープされていないNiO薄膜、及び2原子%又は10原子%の濃度のLiでドープされたNiO薄膜を石英基板上に作製し、それらに可視光を照射したときの抵抗率を測定した。図4は、LiO薄膜の抵抗率(Resistivity)とLi濃度(原子%)との関係を示すグラフである。図4に示されるように、2原子%のLiをドープすることにより抵抗率が二桁減少し、10原子%のLiをドープすることにより抵抗率が四桁減少した。この抵抗率は太陽電池の等価回路における直列抵抗成分に一部に相当する。直列抵抗成分の増加は太陽電池の特性低下(電流低下、ファイルファクター低下)を招くことが知られている。   Furthermore, NiO thin film not doped with Li and NiO thin film doped with Li at a concentration of 2 atomic% or 10 atomic% are prepared on a quartz substrate, and the resistivity is measured when they are irradiated with visible light. did. FIG. 4 is a graph showing the relationship between the resistivity (Resitivity) of the LiO thin film and the Li concentration (atomic%). As shown in FIG. 4, the resistivity decreased by two orders of magnitude by doping 2 atomic% Li, and the resistivity decreased by four orders of magnitude by doping 10 atomic% Li. This resistivity corresponds to a part of the series resistance component in the equivalent circuit of the solar cell. It is known that an increase in the series resistance component causes a decrease in characteristics of the solar cell (current decrease, file factor decrease).

石英基板上に、LiでドープされていないNiO薄膜、及び2原子%のLiでドープされたNiO:Li薄膜を室温で石英基板上に成膜した。LiでドープされていないNiO薄膜は400℃又は700℃で、NiO:Li薄膜は400℃で熱処理した。熱処理後の薄膜の光吸収特性を測定した。図5は、各薄膜の吸光度(Absorption coefficient)と波長(Wavelength)との関係を示すグラフである。図5に示されるように、Liをドープすることにより、アンドープの場合と比較してNiO薄膜の可視光域の吸光度が大きく向上した。   A NiO thin film not doped with Li and a NiO: Li thin film doped with 2 atomic% Li were formed on a quartz substrate at room temperature. The NiO thin film not doped with Li was heat-treated at 400 ° C. or 700 ° C., and the NiO: Li thin film was heat-treated at 400 ° C. The light absorption characteristics of the thin film after heat treatment were measured. FIG. 5 is a graph showing the relationship between the absorbance (absorption coefficient) and wavelength (wavelength) of each thin film. As shown in FIG. 5, by doping with Li, the absorbance in the visible light region of the NiO thin film was greatly improved as compared with the undoped case.

図6は、2原子%のLiでドープされたNiO:Li薄膜のXRDパターンを示すグラフである。図6に示されるように、LiがドープされたときであってもNiO自体の結晶構造が維持されることが確認された。   FIG. 6 is a graph showing an XRD pattern of a NiO: Li thin film doped with 2 atomic% Li. As shown in FIG. 6, it was confirmed that the crystal structure of NiO itself was maintained even when Li was doped.

以上の実験結果から、LiでドープされたNiO薄膜を採用することにより、固体型の色素増感型太陽電池において優れた電池特性が得られることが確認された。係る電池特性の向上に対しては、Liのドープによって、NiO薄膜の抵抗率減少ばかりでなく、可視光域の吸光度向上が大きく寄与していることが示唆された。   From the above experimental results, it was confirmed that by using a NiO thin film doped with Li, excellent battery characteristics can be obtained in a solid dye-sensitized solar cell. It was suggested that for the improvement of the battery characteristics, not only the decrease in resistivity of the NiO thin film but also the increase in absorbance in the visible light region contributed greatly by doping with Li.

1…透明導電性基板、3…電子輸送層、5…光吸収層、7…正孔輸送層、10…透明基板、11…透明導電膜、12…Ag電極。   DESCRIPTION OF SYMBOLS 1 ... Transparent conductive substrate, 3 ... Electron transport layer, 5 ... Light absorption layer, 7 ... Hole transport layer, 10 ... Transparent substrate, 11 ... Transparent electrically conductive film, 12 ... Ag electrode.

Claims (3)

電子輸送層と、光吸収層と、正孔輸送層と、を備え、
前記電子輸送層、前記光吸収層及び前記正孔輸送層がこの順に積層されており、
前記電子輸送層が、酸化チタン又は酸化亜鉛から構成され、
前記光吸収層が、Co及びCuから選ばれる金属の酸化物、又はBi、Sn、Cu及びMoから選ばれる金属の硫化物から構成され、
前記正孔輸送層が、Liによってドープされた酸化ニッケルから構成される、
色素増感型太陽電池。
An electron transport layer, a light absorption layer, and a hole transport layer;
The electron transport layer, the light absorption layer and the hole transport layer are laminated in this order,
The electron transport layer is composed of titanium oxide or zinc oxide,
The light absorption layer is composed of a metal oxide selected from Co and Cu, or a metal sulfide selected from Bi, Sn, Cu and Mo,
The hole transport layer is composed of nickel oxide doped with Li;
Dye-sensitized solar cell.
前記正孔輸送層が、当該正孔輸送層全体を基準として0.1〜10原子%のLiを含有する、請求項1に記載の色素増感型太陽電池。   The dye-sensitized solar cell according to claim 1, wherein the hole transport layer contains 0.1 to 10 atomic% of Li based on the whole hole transport layer. 前記光吸収層が、前記電子輸送層、前記光吸収層及び前記正孔輸送層の積層方向に波打つ凹凸面に沿って形成されている、請求項1又は2に記載の色素増感型太陽電池。
3. The dye-sensitized solar cell according to claim 1, wherein the light absorption layer is formed along an uneven surface that undulates in the stacking direction of the electron transport layer, the light absorption layer, and the hole transport layer. .
JP2009118801A 2009-05-15 2009-05-15 Solar cell Expired - Fee Related JP5400470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009118801A JP5400470B2 (en) 2009-05-15 2009-05-15 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009118801A JP5400470B2 (en) 2009-05-15 2009-05-15 Solar cell

Publications (2)

Publication Number Publication Date
JP2010267534A true JP2010267534A (en) 2010-11-25
JP5400470B2 JP5400470B2 (en) 2014-01-29

Family

ID=43364324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009118801A Expired - Fee Related JP5400470B2 (en) 2009-05-15 2009-05-15 Solar cell

Country Status (1)

Country Link
JP (1) JP5400470B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129278A (en) * 2010-12-14 2012-07-05 Konica Minolta Holdings Inc Organic photoelectric conversion element, method for manufacturing the same, and solar cell
JP2014029923A (en) * 2012-07-31 2014-02-13 Kobe Steel Ltd Photoelectric conversion element, method of manufacturing the same, photoelectric conversion element array, and solar cell module
CN105280821A (en) * 2015-09-05 2016-01-27 苏州瑞晟纳米科技有限公司 Method for preparing copper-doped nickel oxide film under low temperature
KR20160043794A (en) * 2014-10-14 2016-04-22 울산과학기술원 Charge Selective Interfacial Transport Layer, And Organic Electronic Device Using The Same
CN109216551A (en) * 2017-06-30 2019-01-15 松下电器产业株式会社 solar battery
CN109216550A (en) * 2017-06-30 2019-01-15 松下电器产业株式会社 Solar battery and solar cell module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282906A (en) * 2002-03-27 2003-10-03 Canon Inc Photoelectric transducer and manufacturing method therefor
JP2003289151A (en) * 2002-03-28 2003-10-10 Canon Inc Manufacturing method of photoelectric conversion device
JP2004031316A (en) * 2000-07-28 2004-01-29 Japan Science & Technology Corp Solar cell composite thin film solid lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031316A (en) * 2000-07-28 2004-01-29 Japan Science & Technology Corp Solar cell composite thin film solid lithium ion secondary battery
JP2003282906A (en) * 2002-03-27 2003-10-03 Canon Inc Photoelectric transducer and manufacturing method therefor
JP2003289151A (en) * 2002-03-28 2003-10-10 Canon Inc Manufacturing method of photoelectric conversion device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129278A (en) * 2010-12-14 2012-07-05 Konica Minolta Holdings Inc Organic photoelectric conversion element, method for manufacturing the same, and solar cell
JP2014029923A (en) * 2012-07-31 2014-02-13 Kobe Steel Ltd Photoelectric conversion element, method of manufacturing the same, photoelectric conversion element array, and solar cell module
KR20160043794A (en) * 2014-10-14 2016-04-22 울산과학기술원 Charge Selective Interfacial Transport Layer, And Organic Electronic Device Using The Same
KR101636313B1 (en) 2014-10-14 2016-07-05 울산과학기술원 Charge Selective Interfacial Transport Layer, And Organic Electronic Device Using The Same
CN105280821A (en) * 2015-09-05 2016-01-27 苏州瑞晟纳米科技有限公司 Method for preparing copper-doped nickel oxide film under low temperature
CN109216551A (en) * 2017-06-30 2019-01-15 松下电器产业株式会社 solar battery
CN109216550A (en) * 2017-06-30 2019-01-15 松下电器产业株式会社 Solar battery and solar cell module
US10483411B2 (en) 2017-06-30 2019-11-19 Panasonic Corporation Solar cell and solar cell module
CN109216551B (en) * 2017-06-30 2023-08-29 松下控股株式会社 Solar cell
CN109216550B (en) * 2017-06-30 2023-09-01 松下控股株式会社 Solar cell and solar cell module

Also Published As

Publication number Publication date
JP5400470B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
Tan et al. Enhancing the optical, morphological and electronic properties of the solution-processed CsPbIBr2 films by Li doping for efficient carbon-based perovskite solar cells
JP7048785B2 (en) A transparent electrode, a manufacturing method thereof, and an electronic device using the transparent electrode.
US20230335344A1 (en) Perovskite solar cell configurations
Jeong et al. Thickness effect of RF sputtered TiO2 passivating layer on the performance of dye-sensitized solar cells
JP5400470B2 (en) Solar cell
JP5204079B2 (en) Dye-sensitized solar cell and method for producing the same
Gu et al. Efficient planar perovskite solar cells based on low-cost spin-coated ultrathin Nb2O5 films
CN209963073U (en) Novel high-efficiency double-sided incident light CdTe perovskite laminated photovoltaic cell
US8609981B2 (en) P-type transparent conductive oxide for solar cell comprising molybdenum trioxide doped with indium
JP2010267865A (en) Solar cell, and method of manufacturing the same
Lee et al. Fabrication of high transmittance and low sheet resistance dual ion doped tin oxide films and their application in dye-sensitized solar cells
KR102467639B1 (en) Semi-transparent perovskite solar cell having amorphous oxide top electrode with high transparency and Method for manufacturing the same
KR101903213B1 (en) Substrate having transparent conductive film and dye-sensitized solar cell
JP5621804B2 (en) Solar cell and manufacturing method thereof
JP7153166B2 (en) TRANSPARENT ELECTRODE, METHOD FOR PRODUCING TRANSPARENT ELECTRODE, AND ELECTRONIC DEVICE
Zhu et al. Antimony doped CsPbI2Br for high-stability all-inorganic perovskite solar cells
JP4851069B2 (en) Solar cell and manufacturing method thereof
JP2004281938A (en) Solar cell and its manufacturing method
Abrol et al. Selection of glass substrates to be used as electrodes in dye-sensitized solar cells
Okuya et al. TiO2/TNO homojunction introduced in a dye‐sensitized solar cell with a novel TNO transparent conductive oxide film
KR102337783B1 (en) Thin film solar cell having tin(ⅱ) sulfide light-absorber layer and method of manufacturing the thin film solar cell
WO2023048117A1 (en) Solar cell
US20230025098A1 (en) Transparent electrode, method for producing the same, and electronic device using transparent electrode
Maharjan Comparative study of characteristics of dye sensitized solar cells fabricated using substrates coated with fluorine doped tin oxide and titanium
KR101127910B1 (en) Electrode plate and dye-sensitized solar cell having the same and its fabrication method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

R150 Certificate of patent or registration of utility model

Ref document number: 5400470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees