JP2021017579A - Ethylene-vinyl acetate copolymer resin and film - Google Patents

Ethylene-vinyl acetate copolymer resin and film Download PDF

Info

Publication number
JP2021017579A
JP2021017579A JP2020101515A JP2020101515A JP2021017579A JP 2021017579 A JP2021017579 A JP 2021017579A JP 2020101515 A JP2020101515 A JP 2020101515A JP 2020101515 A JP2020101515 A JP 2020101515A JP 2021017579 A JP2021017579 A JP 2021017579A
Authority
JP
Japan
Prior art keywords
vinyl acetate
ethylene
film
acetate copolymer
copolymer resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020101515A
Other languages
Japanese (ja)
Other versions
JP6933755B2 (en
Inventor
那須 秀樹
Hideki Nasu
秀樹 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JP2021017579A publication Critical patent/JP2021017579A/en
Priority to JP2021087646A priority Critical patent/JP2021143337A/en
Application granted granted Critical
Publication of JP6933755B2 publication Critical patent/JP6933755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide an ethylene-vinyl acetate copolymer resin excellent in film-forming workability and excellent in exterior appearance when used as a film, and to provide the film using the same.SOLUTION: An ethylene-vinyl acetate copolymer resin comprises 3 mass% or more and 30 mass% or less of a vinyl acetate unit, wherein a ratio (AIR/BIR) between a ratio AIR of absorbance and a ratio BIR of absorbance is 0.80 or more and 1.40 or less. The ethylene-vinyl acetate copolymer resin can be obtained by a test method having the following steps (1) to (4): a step (1) of producing a test film under a predetermined production condition by using the ethylene-vinyl acetate copolymer resin; a step (2) of detecting a part A to be detected and a part B not to be detected, in the test film by using a film-testing apparatus under such conditions that a measurement interval is 0.1 mm and the longest diameter of an irregularity size to be detected is 0.2 mm or more and 1.0 mm or less; a step (3) of obtaining a ratio AIR between absorbance at 965 cm-1 and absorbance at 720 cm-1 through a microscopic infrared absorption measurement (a transmission method) to a core part in the part A; and a step (4) of obtaining a ratio BIR between absorbance at 965 cm-1 and absorbance at 720 cm-1 through the microscopic infrared absorption measurement (the transmission method) to the part B.SELECTED DRAWING: None

Description

本発明は、エチレン−酢酸ビニル共重合体樹脂及びこれを用いたフィルムに関する。 The present invention relates to an ethylene-vinyl acetate copolymer resin and a film using the same.

エチレン−酢酸ビニル共重合体樹脂は、透明性、柔軟性、機械強度、電気絶縁性、耐久性等の性能に優れることから、広範な産業分野で使用されており、単層又は積層フィルムに加工され、農業用ポリオレフィンフィルム、食品包装用ラップ、シーラント用途などに広く用いられている。 Ethylene-vinyl acetate copolymer resin is used in a wide range of industrial fields because it has excellent performance such as transparency, flexibility, mechanical strength, electrical insulation, and durability, and is processed into a single layer or laminated film. It is widely used in agricultural polyolefin films, food packaging wraps, sealants, etc.

各種フィルムの品質に対する要求特性は年々厳しくなってきており、特に外観を損ねるフィッシュアイの低減が求められている。例えば、食品包装用ラップなどでは、同時に複数個の製品を迅速かつタイトに包装するために使用されているが、フィッシュアイが存在すると得られた包装物の外観が損なわれ製品の価値が低下するなどの問題が起こる。ここで、フィッシュアイとはフィルム中にゲル状物があるとその周辺部位が凹凸部となり、肉眼、偏光板、又は顕微鏡で見ると魚の目のようにみえることに由来する樹脂フィルムの欠点の一つである。 The required characteristics for the quality of various films are becoming stricter year by year, and in particular, reduction of fish eyes that impair the appearance is required. For example, in food packaging wraps and the like, it is used to quickly and tightly wrap a plurality of products at the same time, but the presence of fish eyes impairs the appearance of the obtained package and reduces the value of the product. Problems such as occur. Here, fisheye is one of the drawbacks of resin film, which is derived from the fact that if there is a gel-like substance in the film, the peripheral part becomes an uneven part and looks like a fisheye when viewed with the naked eye, a polarizing plate, or a microscope. Is.

エチレン−酢酸ビニル共重合体樹脂がこのようなフィッシュアイを生成するか検査する方法としては、試験的にフィルム状に製膜し検査する方法が挙げられる。製膜した試験フィルムにフィッシュアイが確認された場合、樹脂の混練条件等を種々検討しフィッシュアイの低減を試みるが、それによって消失するフィッシュアイと消失しないフィッシュアイが存在する。 As a method of inspecting whether the ethylene-vinyl acetate copolymer resin produces such a fish eye, there is a method of forming a film in a test form and inspecting it. When fish eyes are confirmed on the formed test film, various examinations such as resin kneading conditions are made to try to reduce the fish eyes, but there are fish eyes that disappear and fish eyes that do not disappear.

フィッシュアイを低減する方法としては、ラジカル重合禁止剤の存在下で、特定の重合条件でエチレンを重合するに際し、反応系内にラジカル重合禁止剤を共存させることが提案されている(例えば、特許文献1を参照)。 As a method for reducing fish eyes, it has been proposed that a radical polymerization inhibitor coexists in the reaction system when ethylene is polymerized under specific polymerization conditions in the presence of a radical polymerization inhibitor (for example, a patent). See Document 1).

特開2003−342307公報JP-A-2003-342307

特許文献1に示されるように、フィッシュアイの低減がされたとしても、エチレン−酢酸ビニル共重合体樹脂のフィルムを製膜し、これらを巻き取るとエアーだまりが観測され外観上の課題を有していた。また、外観が向上したとしても製膜時の加工性が悪化する問題(例えば、押出機の昇圧等)が生じることがあり、製膜加工性を有するエチレン−酢酸ビニル共重合体樹脂が求められる。 As shown in Patent Document 1, even if the fish eye is reduced, when a film of ethylene-vinyl acetate copolymer resin is formed and these are wound up, air pools are observed and there is a problem in appearance. Was. Further, even if the appearance is improved, there may be a problem that the processability at the time of film forming deteriorates (for example, stepping up of an extruder), and an ethylene-vinyl acetate copolymer resin having film forming processability is required. ..

そこで、本発明は、製膜加工性に優れ、フィルムとしたときに外観に優れるエチレン−酢酸ビニル共重合体樹脂、及びこれを用いたフィルムを提供することを目的とするものである。 Therefore, an object of the present invention is to provide an ethylene-vinyl acetate copolymer resin having excellent film-forming processability and an excellent appearance when made into a film, and a film using the same.

本発明者らは、上記課題を解決すべく鋭意検討した結果、酢酸ビニル単位の含有量が特定の範囲であり、所定の測定方法による吸光度の比AIRと吸光度の比BIRとの比率(AIR/BIR)が所定範囲であるエチレン酢酸ビニル共重合体樹脂が、上記の課題を解決することができることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have found that the content of vinyl acetate unit is in a specific range, and the ratio of the absorbance ratio A IR to the absorbance ratio B IR according to a predetermined measurement method ( We have found that an ethylene-vinyl acetate copolymer resin having an A IR / B IR ) in a predetermined range can solve the above-mentioned problems, and have completed the present invention.

すなわち、本発明は以下のとおりである。
[1]
3質量%以上30質量%以下の酢酸ビニル単位を含むエチレン−酢酸ビニル共重合体樹脂であって、
前記エチレン−酢酸ビニル共重合体樹脂は、下記工程(1)〜(4)を有する試験方法により得られる、吸光度の比AIRと吸光度の比BIRとの比率(AIR/BIR)が0.80以上1.40以下である、エチレン−酢酸ビニル共重合体樹脂。
工程(1):前記エチレン−酢酸ビニル共重合体樹脂を用いて下記作製条件にて試験フィルムを作成する工程
工程(2):前記試験フィルムを、フィルム検査装置を用いて、測定間隔を0.1mm、凹凸検出サイズを最長径0.2mm以上1.0mm以下とする条件により、検出される部分A及び検出されない部分Bを検知する工程
工程(3):前記部分Aの核部分の顕微赤外吸収測定(透過法)により965cm-1の吸光度と、720cm-1の吸光度の比AIRを求める工程
工程(4):前記部分Bの顕微赤外吸収測定(透過法)により965cm-1の吸光度と、720cm-1の吸光度の比BIRを求める工程
<作製条件>
単軸縦型押出機を用いて、シリンダー温度140℃、ダイス温度140℃で混練し、Tダイ法によって引き取り速度4m/minで、厚さ50μm、幅100mmの試験フィルムを得る。なお、前記単軸縦型押出機のスクリュー出口にはフィルターは使用せず、ブレーカープレートのみを挟んで試験フィルムを作成する。
[2]
前記部分Aが、前記試験フィルム中、1個/5m2以上100個/5m2以下である、前記[1]に記載のエチレン−酢酸ビニル共重合体樹脂。
[3]
前記部分Aのうち、最大長径が0.4mm以上1.0mm以下の凹凸を有する部分Abが、前記試験フィルム中、1個/5m2以上40個/5m2以下である、前記[1]又は[2]に記載のエチレン−酢酸ビニル共重合体樹脂。
[4]
前記エチレン−酢酸ビニル共重合体樹脂が、0.5g/10min以上4.0g/10min以下のメルトフローレイトを有する、前記[1]〜[3]のいずれか1項に記載のエチレン−酢酸ビニル共重合体樹脂。
[5]
前記エチレン−酢酸ビニル共重合体樹脂が、8.0以下の分子量分布(Mw/Mn)を有する、前記[1]〜[4]のいずれか1項に記載のエチレン酢酸ビニル共重合体樹脂。
[6]
前記[1]〜[5]のいずれか1項に記載のエチレン−酢酸ビニル共重合体を含むフィルム。
[7]
前記[1]〜[5]のいずれか1項に記載のエチレン−酢酸ビニル共重合体を含む包装用フィルム。
[8]
前記[1]〜[5]のいずれか1項に記載のエチレン−酢酸ビニル共重合体を含む積層フィルム。
[9]
3質量%以上30質量%以下の酢酸ビニル単位を含むエチレン−酢酸ビニル共重合体樹脂を含むフィルムであって、
前記フィルムは、下記工程(2’)〜(4’)を有する試験方法により得られる、吸光度の比A’IRと吸光度の比B’IRとの比率(A’IR/B’IR)が0.80以上1.40以下である、フィルム。
工程(2’):前記フィルムを、フィルム検査装置を用いて、測定間隔を0.1mm、凹凸検出サイズを最長径0.2mm以上1.0mm以下とする条件により、検出される部分A及び検出されない部分Bを検知する工程
工程(3’):前記部分Aの核部分の顕微赤外吸収測定(透過法)により965cm-1の吸光度と、720cm-1の吸光度の比A’IRを求める工程
工程(4’):前記部分Bの顕微赤外吸収測定(透過法)により965cm-1の吸光度と、720cm-1の吸光度の比B’IRを求める工程
That is, the present invention is as follows.
[1]
An ethylene-vinyl acetate copolymer resin containing 3% by mass or more and 30% by mass or less of vinyl acetate units.
The ethylene-vinyl acetate copolymer resin has a ratio (A IR / B IR ) of the absorbance ratio A IR to the absorbance ratio B IR obtained by the test method having the following steps (1) to (4). An ethylene-vinyl acetate copolymer resin having a ratio of 0.80 or more and 1.40 or less.
Step (1): A step of preparing a test film using the ethylene-vinyl acetate copolymer resin under the following production conditions. Step (2): The test film is measured at intervals of 0 using a film inspection device. Step of detecting the detected portion A and the undetected portion B under the condition of 1 mm and the maximum unevenness detection size of 0.2 mm or more and 1.0 mm or less Step (3): Microinfrared of the core portion of the portion A absorption measurement and the absorbance of the (transmission method) by 965 cm -1, step step (4) determining the ratio a IR absorbance of 720 cm -1: absorbance of the partial microscopic infrared absorption measurement of B (transmission method) by 965 cm -1 and a step of determining the ratio B IR absorbance of 720 cm -1 <Preparation conditions>
A test film having a cylinder temperature of 140 ° C. and a die temperature of 140 ° C. is kneaded using a single-screw vertical extruder, and a test film having a thickness of 50 μm and a width of 100 mm is obtained by a T-die method at a take-up speed of 4 m / min. A filter is not used at the screw outlet of the single-screw vertical extruder, and a test film is prepared by sandwiching only the breaker plate.
[2]
The ethylene-vinyl acetate copolymer resin according to the above [1], wherein the portion A is 1 piece / 5 m 2 or more and 100 pieces / 5 m 2 or less in the test film.
[3]
Among the parts A, the portion A b having irregularities having a maximum major axis of 0.4 mm or more and 1.0 mm or less is 1 piece / 5 m 2 or more and 40 pieces / 5 m 2 or less in the test film. Alternatively, the ethylene-vinyl acetate copolymer resin according to [2].
[4]
The ethylene-vinyl acetate copolymer resin according to any one of [1] to [3] above, wherein the ethylene-vinyl acetate copolymer resin has a melt flow rate of 0.5 g / 10 min or more and 4.0 g / 10 min or less. Copolymer resin.
[5]
The ethylene-vinyl acetate copolymer resin according to any one of [1] to [4] above, wherein the ethylene-vinyl acetate copolymer resin has a molecular weight distribution (Mw / Mn) of 8.0 or less.
[6]
A film containing the ethylene-vinyl acetate copolymer according to any one of the above [1] to [5].
[7]
A packaging film containing the ethylene-vinyl acetate copolymer according to any one of [1] to [5].
[8]
A laminated film containing the ethylene-vinyl acetate copolymer according to any one of [1] to [5].
[9]
A film containing an ethylene-vinyl acetate copolymer resin containing 3% by mass or more and 30% by mass or less of vinyl acetate units.
The film is obtained by the test method having the following steps (2 ') - (4'), the ratio of IR 'ratio B of IR and absorbance' ratio A absorbance (A 'IR / B' IR) is 0 A film that is .80 or more and 1.40 or less.
Step (2'): A portion A and detection of the film using a film inspection device under the conditions that the measurement interval is 0.1 mm and the unevenness detection size is 0.2 mm or more and 1.0 mm or less in the longest diameter. step step (3 ') for detecting a portion B which are not: the absorbance of the 965 cm -1 by microscopic infrared absorption measurement of the nuclear portion (transmission method) of the portion a, the ratio a of the absorbance at 720 cm -1' obtaining a IR step (4 '): and the absorbance of 965 cm -1 by microscopic infrared absorption measurement (transmission method) of the portion B, the ratio B of the absorbance at 720 cm -1' obtaining a IR

本発明によれば、製膜加工性に優れ、フィルムとしたときに外観に優れるエチレン−酢酸ビニル共重合体樹脂、及びこれを用いたフィルムを提供することができる。 According to the present invention, it is possible to provide an ethylene-vinyl acetate copolymer resin having excellent film-forming processability and excellent appearance when made into a film, and a film using the same.

図1は、顕微赤外吸収測定により得られるスペクトルの一例である。FIG. 1 is an example of a spectrum obtained by microinfrared absorption measurement.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について、詳細に説明する。なお、本発明は以下の記載に限定されるものでなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following description, and can be implemented with various modifications within the scope of the gist thereof.

[エチレン−酢酸ビニル共重合体樹脂]
本実施形態のエチレン−酢酸ビニル共重合体樹脂は、3質量%以上30質量%以下の酢酸ビニル単位を含む。
本実施形態のエチレン−酢酸ビニル共重合体樹脂は、下記工程(1)〜(4)を有する試験方法により得られる、吸光度の比AIRと吸光度の比BIRとの比率(AIR/BIR)(以下、単に「比率(AIR/BIR)」ともいう。)が0.80以上1.40以下である。
工程(1):前記エチレン−酢酸ビニル共重合体樹脂を用いて下記作製条件にて試験フィルムを作成する工程
工程(2):前記試験フィルムを、フィルム検査装置を用いて、測定間隔を0.1mm、凹凸検出サイズを最長径0.2mm以上1.0mm以下とする条件により、検出される部分A及び検出されない部分Bを検知する工程
工程(3):前記部分Aの核部分の顕微赤外吸収測定(透過法)により965cm-1の吸光度と、720cm-1の吸光度の比AIRを求める工程
工程(4):前記部分Bの顕微赤外吸収測定(透過法)により965cm-1の吸光度と、720cm-1の吸光度の比BIRを求める工程
<作製条件>
単軸縦型押出機を用いて、シリンダー温度140℃、ダイス温度140℃で混練し、Tダイ法によって引き取り速度4m/minで、厚さ50μm、幅100mmの試験フィルムを得る。なお、前記単軸縦型押出機のスクリュー出口にはフィルターは使用せず、ブレーカープレートのみを挟んで試験フィルムを作成する。
[Ethylene-vinyl acetate copolymer resin]
The ethylene-vinyl acetate copolymer resin of the present embodiment contains 3% by mass or more and 30% by mass or less of vinyl acetate units.
The ethylene-vinyl acetate copolymer resin of the present embodiment is obtained by the test method having the following steps (1) to (4), and is the ratio of the absorbance ratio A IR to the absorbance ratio B IR (A IR / B). IR ) (hereinafter, also simply referred to as “ratio (A IR / B IR )”) is 0.80 or more and 1.40 or less.
Step (1): A step of preparing a test film using the ethylene-vinyl acetate copolymer resin under the following production conditions. Step (2): The test film is measured at intervals of 0 using a film inspection device. Step of detecting the detected portion A and the undetected portion B under the condition of 1 mm and the maximum unevenness detection size of 0.2 mm or more and 1.0 mm or less Step (3): Microinfrared of the core portion of the portion A absorption measurement and the absorbance of the (transmission method) by 965 cm -1, step step (4) determining the ratio a IR absorbance of 720 cm -1: absorbance of the partial microscopic infrared absorption measurement of B (transmission method) by 965 cm -1 and a step of determining the ratio B IR absorbance of 720 cm -1 <Preparation conditions>
A test film having a cylinder temperature of 140 ° C. and a die temperature of 140 ° C. is kneaded using a single-screw vertical extruder, and a test film having a thickness of 50 μm and a width of 100 mm is obtained by a T-die method at a take-up speed of 4 m / min. A filter is not used at the screw outlet of the single-screw vertical extruder, and a test film is prepared by sandwiching only the breaker plate.

以上のエチレン−酢酸ビニル共重合体樹脂は、製膜加工性に優れ、フィルムとしたときに外観に優れる。製膜加工性関して、より詳細には、溶融伸度に優れ、押出機による樹脂圧力の上昇を抑え、さらに、フィッシュアイ等の凹凸を起因とするフィルム巾の低下、膜切れを抑制することができる。 The above ethylene-vinyl acetate copolymer resin is excellent in film forming processability and excellent in appearance when made into a film. Regarding the film-forming processability, more specifically, it is excellent in melt elongation, suppresses an increase in resin pressure due to an extruder, and further suppresses a decrease in film width and film breakage due to unevenness such as fish eyes. Can be done.

本実施形態のエチレン−酢酸ビニル共重合体樹脂は、エチレン単位及び酢酸ビニル単位を含む共重合体である。 The ethylene-vinyl acetate copolymer resin of the present embodiment is a copolymer containing an ethylene unit and a vinyl acetate unit.

(VA含有量)
本実施形態のエチレン−酢酸ビニル共重合体樹脂は、酢酸ビニル単位の含有量(以下、「VA含有量」ともいう。)が、製膜加工性と、フィルムとしたときの外観の観点から、エチレン−酢酸ビニル共重合体樹脂の全量に対して、3.0質量%以上30.0質量%以下であり、好ましくは4.0質量%以上25.0質量%以下であり、より好ましくは4.8質量%以上20.0質量%以下である。
(VA content)
The ethylene-vinyl acetate copolymer resin of the present embodiment has a vinyl acetate unit content (hereinafter, also referred to as “VA content”) from the viewpoint of film-forming processability and appearance when formed into a film. 3.0% by mass or more and 30.0% by mass or less, preferably 4.0% by mass or more and 25.0% by mass or less, more preferably 4 with respect to the total amount of the ethylene-vinyl acetate copolymer resin. It is 8.8% by mass or more and 20.0% by mass or less.

VA含有量を3.0質量%以上30.0質量%以下に調整する方法としては、エチレン−酢酸ビニル共重合体樹脂を重合する工程における酢酸ビニルモノマーの添加量や、重合温度、重合圧力を適宜調整すること等が挙げられる。 As a method of adjusting the VA content to 3.0% by mass or more and 30.0% by mass or less, the amount of vinyl acetate monomer added in the step of polymerizing the ethylene-vinyl acetate copolymer resin, the polymerization temperature, and the polymerization pressure are adjusted. It is possible to make appropriate adjustments.

なお、VA含有量は、JIS K7192:1999に準拠し、基準試験法としてけん化と電位差滴定により検量線を作成し、対照試験法として赤外分光法により酢酸ビニル換算することで測定することができる。具体的には、後述する実施例に記載の方法により測定することができる。 The VA content can be measured in accordance with JIS K7192: 1999 by preparing a calibration curve by saponification and potentiometric titration as a reference test method and converting it into vinyl acetate by infrared spectroscopy as a control test method. .. Specifically, it can be measured by the method described in Examples described later.

本実施形態のエチレン−酢酸ビニル共重合体樹脂は、エチレン単位の含有量は、製膜加工性と、フィルムとしたときの外観の観点から、エチレン−酢酸ビニル共重合体樹脂の全量に対して、好ましくは70.0質量%以上97.0質量%以下であり、より好ましくは75.0質量%以上96.0質量%以下であり、さらに好ましくは80.0質量%以上95.2質量%以下である。 In the ethylene-vinyl acetate copolymer resin of the present embodiment, the content of the ethylene unit is based on the total amount of the ethylene-vinyl acetate copolymer resin from the viewpoint of film-forming processability and appearance when formed into a film. It is preferably 70.0% by mass or more and 97.0% by mass or less, more preferably 75.0% by mass or more and 96.0% by mass or less, and further preferably 80.0% by mass or more and 95.2% by mass or less. It is as follows.

本実施形態のエチレン−酢酸ビニル共重合体樹脂は、エチレン、酢酸ビニル以外のモノマー単位を含んでいてもよい。その他のモノマーとしては、特に限定されないが、例えば、プロピレン等が挙げられる。その他のモノマー単位の含有量は、好ましくは30質量%以下であり、より好ましくは15質量%以下であり、さらに好ましくは5質量%以下である。 The ethylene-vinyl acetate copolymer resin of the present embodiment may contain a monomer unit other than ethylene and vinyl acetate. The other monomer is not particularly limited, and examples thereof include propylene and the like. The content of the other monomer unit is preferably 30% by mass or less, more preferably 15% by mass or less, and further preferably 5% by mass or less.

本実施形態のエチレン−酢酸ビニル共重合体樹脂は、2種類以上のエチレン−酢酸ビニル共重合体樹脂を任意の比率でドライブレンド、又はメルトブレンドしたものを使用することもできる。2種類以上のエチレン−酢酸ビニル共重合体樹脂を用いる場合、これら樹脂全体における、VA含有量などが上述の範囲であることが好ましい。 As the ethylene-vinyl acetate copolymer resin of the present embodiment, two or more kinds of ethylene-vinyl acetate copolymer resins can be dry-blended or melt-blended at an arbitrary ratio. When two or more kinds of ethylene-vinyl acetate copolymer resins are used, it is preferable that the VA content and the like in the whole of these resins are in the above range.

<比率(AIR/BIR)>
本実施形態のエチレン−酢酸ビニル共重合体樹脂は、比率(AIR/BIR)が0.80以上1.40以下である。比率(AIR/BIR)が当該範囲に含まれることで、エチレン−酢酸ビニル共重合体樹脂は、製膜加工性に優れ、フィルムとしたときに外観に優れる。比率(AIR/BIR)は、製膜加工性及びフィルムとしたときの外観をより向上させる観点から、好ましくは0.82以上1.30以下であり、より好ましくは0.84以上1.20以下である。
<Ratio (A IR / B IR )>
The ethylene-vinyl acetate copolymer resin of the present embodiment has a ratio (A IR / B IR ) of 0.80 or more and 1.40 or less. By including the ratio (A IR / B IR ) in the above range, the ethylene-vinyl acetate copolymer resin is excellent in film-forming processability and excellent in appearance when made into a film. The ratio (A IR / B IR ) is preferably 0.82 or more and 1.30 or less, more preferably 0.84 or more, from the viewpoint of further improving the film-forming processability and the appearance of the film. It is 20 or less.

一般的に、エチレン−酢酸ビニル共重合体樹脂を実際に製膜した際に生じるフィッシュアイは、樹脂の混練条件等の最適化により消失させることができるものと、当該最適化により消失させることができないものの2種類に分けられる。本発明者は、樹脂の混練条件等の最適化により消失させることができないタイプのフィッシュアイの生成を抑制することを目的として鋭意検討した結果、エチレン−酢酸ビニル共重合体樹脂において、部分Aの吸光度比AIR(965cm-1/720cm-1)及び部分Bの吸光度比BIR(965cm-1/720cm-1)はいずれも、VA含有量が大きくなると大きくなる傾向にあるものの、それらの比率(AIR/BIR)は主にVA含有量以外の後述する要因に依存することを見出した。そして、更に、本発明者は、当該比率(AIR/BIR)を制御することにより、フィルムとしたときの外観を十分良好に維持したまま、樹脂の混練条件等を最適化しても消失させることができないタイプのフィッシュアイの生成を抑制できることを見出した。すなわち、本発明者は、吸光度比の比率(AIR/BIR)を所定の範囲内に制御することにより、フィルムとしたときの外観を十分良好に維持したまま、樹脂の混練条件等を最適化しても消失させることができないタイプのフィッシュアイの生成を抑制できることを見出した。本発明者は、従来のエチレン−酢酸ビニル共重合体樹脂では、部分Aの吸光度比AIR(965cm-1/720cm-1)が部分Bの吸光度比BIR(965cm-1/720cm-1)に比べて大きくなる、すなわち、吸光度比の比率(AIR/BIR)が大きくなる傾向にあるため、樹脂の混練条件等の最適化によっても消失しないフィッシュアイが多く生成し、製膜加工性及びフィルムにしたときの外観が劣る傾向にあると推測している。 In general, the fish eye generated when the ethylene-vinyl acetate copolymer resin is actually formed can be eliminated by optimizing the kneading conditions of the resin, and can be eliminated by the optimization. There are two types of things that cannot be done. As a result of diligent studies for the purpose of suppressing the formation of fish eyes of a type that cannot be eliminated by optimizing the kneading conditions of the resin, the present inventor of the ethylene-vinyl acetate copolymer resin of the portion A. Absorbance ratio A IR (965 cm -1 / 720 cm -1 ) and partial B absorbance ratio B IR (965 cm -1 / 720 cm -1 ) both tend to increase as the VA content increases, but their ratios It was found that (A IR / B IR ) mainly depends on factors other than the VA content, which will be described later. Further, the present inventor controls the ratio (A IR / B IR ) to eliminate the resin even if the kneading conditions of the resin are optimized while maintaining a sufficiently good appearance as a film. We have found that it is possible to suppress the production of types of fish eyes that cannot be achieved. That is, by controlling the absorbance ratio ratio (A IR / B IR ) within a predetermined range, the present inventor optimizes the kneading conditions of the resin while maintaining a sufficiently good appearance as a film. It was found that the formation of fish eyes of a type that cannot be eliminated even if they are converted can be suppressed. The present inventor has conventional ethylene - In vinyl acetate copolymer resin, part A absorbance ratio A IR of (965cm -1 / 720cm -1) is part B of the absorbance ratio B IR (965cm -1 / 720cm -1 ) That is, the absorbance ratio ratio (A IR / B IR ) tends to be larger than that of the above, so that many fish eyes that do not disappear even by optimizing the kneading conditions of the resin are generated, and the film forming processability is easy. And it is presumed that the appearance when made into a film tends to be inferior.

吸光度比の比率(AIR/BIR)が1.40以下であることにより、上記フィッシュアイの形成が低減されて混練時の押出機の昇圧やインフレーション成型時のパンクが起きにくくなり、さらにエチレン−酢酸ビニル共重合体樹脂の溶融伸度(ME)も向上し、薄膜に加工しやすくなるため、製膜加工性に優れる。また、比率(AIR/BIR)が0.80以上であることにより、溶融樹脂に適切に熱やシェア等がかかることで混練時に均質となるため、フィルムとしたときの外観に優れる。 When the absorbance ratio ratio (A IR / B IR ) is 1.40 or less, the formation of the fish eye is reduced, the pressure of the extruder during kneading and the puncture during inflation molding are less likely to occur, and ethylene is further produced. -The melt elongation (ME) of the vinyl acetate copolymer resin is also improved, and it becomes easier to process into a thin film, so that the film forming processability is excellent. Further, when the ratio (A IR / B IR ) is 0.80 or more, the molten resin is appropriately heated or sheared to be homogeneous during kneading, so that the appearance of the film is excellent.

赤外吸収スペクトルにおいて965cm-1のピークはトランスアルケンの吸収によるものであるが、トランスアルケンの生成過程としては、エチレン−酢酸ビニル共重合体樹脂の製造工程において、低圧分離器等への長期滞留等によって生じた熱劣化(脱酢酸反応)によるものであると推察される。生成したトランスアルケンがさらに高温に曝されることにより架橋反応が起き、混練条件等の最適化によっても消失しないフィッシュアイの原因となるゲルになると考えられる。したがって、比率(AIR/BIR)を調整する、すなわち、エチレン−酢酸ビニル共重合体樹脂における部分Aのトランスアルケン量を相対的に低減し、部分Aの吸光度比AIRを部分Bの吸光度比BIRと同等程度にすることで、上記ゲルの生成を抑制することができる。その結果、混練条件等の最適化によっても消失しないフィッシュアイの生成を抑制することができると考えられる。ただし、要因はこれに限られない。 The peak of 965 cm -1 in the infrared absorption spectrum is due to the absorption of transalkenes, but as a process of producing transalkenes, long-term retention in a low-pressure separator or the like in the production process of ethylene-vinyl acetate copolymer resin It is presumed that this is due to thermal deterioration (deacetic acid reaction) caused by such factors. It is considered that the produced transalkene undergoes a cross-linking reaction when exposed to a higher temperature, and becomes a gel that causes fish eyes that does not disappear even when the kneading conditions are optimized. Therefore, the ratio (A IR / B IR ) is adjusted, that is, the amount of transalkene of the portion A in the ethylene-vinyl acetate copolymer resin is relatively reduced, and the absorbance ratio A IR of the portion A is changed to the absorbance of the portion B. By setting the ratio to the same level as B IR , the formation of the above gel can be suppressed. As a result, it is considered that the formation of fish eyes that do not disappear even by optimizing the kneading conditions and the like can be suppressed. However, the factors are not limited to this.

吸光度比の比率(AIR/BIR)を制御する方法としては、エチレン−酢酸ビニル共重合体樹脂を重合する工程において低圧分離器内での溶融樹脂の状態を一定に保つことが重要である。溶融樹脂の状態を一定に保つとは、溶融樹脂の粘度や液面レベル、液面の状態等を変動させず一定に保つことを指す。具体的な方法としては、以下に限定されないが、低圧分離器壁面にテフロン(登録商標)コーティングを施すこと、低圧分離器の入り口配管に傘型のノズルを設けること、低圧分離器の放出口に向けて配管サイズを徐々に大きくすること、低圧分離器内に攪拌機を設けること等が挙げられる。 As a method of controlling the absorbance ratio ratio (A IR / B IR ), it is important to keep the state of the molten resin constant in the low pressure separator in the step of polymerizing the ethylene-vinyl acetate copolymer resin. .. Keeping the state of the molten resin constant means keeping the viscosity, liquid level, liquid level, etc. of the molten resin constant without changing. Specific methods include, but are not limited to, applying a Teflon (registered trademark) coating to the wall surface of the low-pressure separator, providing an umbrella-shaped nozzle in the inlet pipe of the low-pressure separator, and providing an outlet of the low-pressure separator. The pipe size should be gradually increased, and a stirrer should be installed in the low-pressure separator.

比率(AIR/BIR)は、下記工程(1)〜(4)を有する試験方法により得られる、吸光度の比AIRと吸光度の比BIRとから算出される。 The ratio (A IR / B IR ) is calculated from the absorbance ratio A IR and the absorbance ratio B IR obtained by the test method having the following steps (1) to (4).

(工程(1):試験フィルムの作成)
工程(1)では、エチレン−酢酸ビニル共重合体樹脂を用いて所定の作製条件にて試験フィルムを作成する。
<作製条件>
単軸縦型押出機を用いて、シリンダー温度140℃、ダイス温度140℃で混練し、Tダイ法によって引き取り速度4m/minで、厚さ50μm、幅100mmの試験フィルムを得る。なお、前記単軸縦型押出機のスクリュー出口にはフィルターは使用せず、ブレーカープレートのみを挟んで試験フィルムを作成する。
(Step (1): Preparation of test film)
In the step (1), a test film is prepared using an ethylene-vinyl acetate copolymer resin under predetermined production conditions.
<Production conditions>
A test film having a cylinder temperature of 140 ° C. and a die temperature of 140 ° C. is kneaded using a single-screw vertical extruder, and a test film having a thickness of 50 μm and a width of 100 mm is obtained by a T-die method at a take-up speed of 4 m / min. A filter is not used at the screw outlet of the single-screw vertical extruder, and a test film is prepared by sandwiching only the breaker plate.

単軸縦型押出機の具体例としては、例えば、ランドキャッスル社製、単軸縦型押出機(フルフライトスクリュー、スクリュー径20mm、ダイス100mm幅)が挙げられる。
なお、ダイスの表面にはメヤニやコゲ付着防止のためハードクロムコートを施したものを用いる。また、エチレン−酢酸ビニル共重合体樹脂中に発生したゲルをフィルターで除去しないように、スクリュー出口にはフィルターは使用せず、ブレーカープレートのみを挟んで使用する。
Specific examples of the single-screw vertical extruder include a single-screw vertical extruder (full flight screw, screw diameter 20 mm, die 100 mm width) manufactured by Landcastle.
The surface of the die is coated with hard chrome to prevent sticking of shavings and kogation. Further, in order not to remove the gel generated in the ethylene-vinyl acetate copolymer resin with a filter, a filter is not used at the screw outlet, and only the breaker plate is sandwiched between the screws.

(工程(2):部分Aと部分Bの検知)
工程(2)では、工程(1)により得られた試験フィルムを、フィルム検査装置を用いて、測定間隔を0.1mm、凹凸検出サイズを最長径0.2mm以上1.0mm以下とする条件により、検出される部分A及び検出されない部分Bを検知する。
本実施形態において「部分A」とは、ポリエチレン又はエチレン−酢酸ビニル共重合体樹脂由来で発生したフィッシュアイを指し、異物やキズ等は除く。
「部分B」とは、フィルム検査装置で検出されず、異物やキズ等を含まない部分を指す。
(Step (2): Detection of part A and part B)
In the step (2), the test film obtained in the step (1) is subjected to the conditions that the measurement interval is 0.1 mm and the unevenness detection size is 0.2 mm or more and 1.0 mm or less by using a film inspection device. , The detected part A and the undetected part B are detected.
In the present embodiment, "part A" refers to fish eyes generated from polyethylene or ethylene-vinyl acetate copolymer resin, and excludes foreign substances and scratches.
“Part B” refers to a portion that is not detected by the film inspection device and does not contain foreign matter or scratches.

試験フィルムは、フィルム検査装置を用いて0.1mm間隔で測定し、凹凸が検出されたものの中から最長径が0.2mm以上1.0mm以下のものを検出された部分Aとして検出する。より具体的には、試験フィルムの中心から各25mm(計50mm)幅、長さ100mを0.1mm間隔で当該フィルム検査装置により測定し、検出された凹凸の中から最長径が0.2mm以上1.0mm以下のものを部分Aとして検出する。
フィルム検査装置の具体例としては、例えば、株式会社ニレコ製、無地表面品質検査装置(MUJIKEN)が挙げられる。
The test film is measured at intervals of 0.1 mm using a film inspection device, and the one having the longest diameter of 0.2 mm or more and 1.0 mm or less is detected as the detected portion A from those in which unevenness is detected. More specifically, 25 mm (50 mm in total) width and 100 m in length from the center of the test film were measured by the film inspection device at 0.1 mm intervals, and the longest diameter was 0.2 mm or more from the detected irregularities. Those having a thickness of 1.0 mm or less are detected as part A.
Specific examples of the film inspection device include a plain surface quality inspection device (MUJIKEN) manufactured by Nireco Corporation.

(工程(3):吸光度の比AIR
工程(3)では、工程(2)で検出された各部分Aについて、部分Aの核部分の顕微赤外吸収測定(透過法)により、965cm-1の吸光度と、720cm-1の吸光度の比AIRを求める。
部分Aの核部分とは、フィッシュアイの核を形成する部分を指す。試験フィルムの部分Aを厚み方向に切り出し、さらに切り出し方向に厚み10μmに切削して試験片A’を作成し、光学顕微鏡にて、明視野による透過観察(明視野観察)や、位相差フィルターを挿入した観察(位相差観察)、微分干渉フィルターを挿入させた観察(微分干渉観察)、UVの蛍光照明による蛍光発光を観察(蛍光観察)等により、周囲の部分と異なる形状等から核部分を同定することができる。
(Step (3): Absorbance ratio A IR )
In step (3), for each part A detected in step (2), the ratio of the absorbance of 965 cm -1 to the absorbance of 720 cm -1 by microinfrared absorption measurement (transmission method) of the core part of part A. Ask for A IR .
The core portion of the portion A refers to the portion forming the core of the fish eye. A part A of the test film is cut out in the thickness direction and further cut to a thickness of 10 μm in the cutout direction to prepare a test piece A', and a transmission observation (bright field observation) in a bright field or a phase contrast filter is performed with an optical microscope. By inserting observation (phase contrast observation), observing with a differential interference filter inserted (differential interference contrast observation), observing fluorescence emission by UV fluorescence illumination (fluorescence observation), etc., the core part can be seen from a shape different from the surrounding part. Can be identified.

顕微赤外吸収測定は、上述の試験片A’の核部分で、透過法により965cm-1と720cm-1での吸光度を測定する。なお、測定範囲が試験片A’の核部分で覆われるようにアパーチャーサイズを設定する。 Microscopic infrared absorption measurements, nuclear portion of the above test piece A ', to measure the absorbance at 965 cm -1 and 720 cm -1 by a transmission method. The aperture size is set so that the measurement range is covered with the core portion of the test piece A'.

赤外吸収スペクトルにおける吸収ピークは、「新版、高分子分析ハンドブック」日本分析化学会高分子分析研究懇談会編、590頁、591ページにも記載のとおり、965cm-1:C−H面外変角振動(トランスC=C)、720cm-1:メチレン横ゆれ振動に帰属する吸収である。なお、965cm-1と720cm-1のピークは、VA含有量に応じてわずかに数値が変化することがあるが、その場合、965cm-1付近又は720cm-1付近の上記振動に帰属されるピークのピークトップの値から算出する。 The absorption peak in the infrared absorption spectrum is 965 cm -1 : CH out-of-plane change, as described in "New Edition, Polymer Analysis Handbook", edited by the Japan Society for Analytical Chemistry, Polymer Analysis Research Council, pages 590 and 591. Angular vibration (trans C = C), 720 cm -1 : Absorption attributed to methylene lateral vibration. The values of the peaks of 965 cm -1 and 720 cm -1 may change slightly depending on the VA content. In that case, the peaks attributed to the above vibrations near 965 cm -1 or 720 cm -1. Calculated from the peak top value of.

部分Aの顕微赤外吸収測定は、最大20点の測定を行う。ただし、試験フィルム中のフィルム検査装置で検出される部分Aが20個未満の場合は、検出された部分全てについて測定を行う。部分Aの各点において測定された965cm-1と720cm-1での吸光度のピークトップの高さから吸光度比(965cm-1/720cm-1)を算出し、最大値となる点での吸光度比をAIRとする。図1は、顕微赤外吸収測定により得られるスペクトルの一例である。ピークトップの高さは、JIS K7192:1999 4.1.3.2.5に記載の方法に準拠して設定したベースラインとピークトップの差から算出する。 The microinfrared absorption measurement of the part A measures up to 20 points. However, if the number of parts A detected by the film inspection device in the test film is less than 20, measurement is performed on all the detected parts. Calculating the absorbance ratio from the height of the peak top of the absorbance at 965 cm -1 and 720 cm -1 measured at each point of the portion A (965cm -1 / 720cm -1) , the absorbance ratio at the point of maximum value Let be A IR . FIG. 1 is an example of a spectrum obtained by microinfrared absorption measurement. The height of the peak top is calculated from the difference between the baseline and the peak top set according to the method described in JIS K7192: 1999 4.1.3.2.5.

(工程(4):吸光度の比BIR
工程(4)では、部分Bの顕微赤外吸収測定(透過法)により965cm-1の吸光度と、720cm-1の吸光度の比BIRを求める。
試験フィルムの部分Bも、部分Aと同様に試験フィルムの厚み方向に切り出し、さらにその断面と平行に厚み10μmにスライスして試験片を作成して顕微赤外吸収測定(透過法)を行い、965cm-1と720cm-1での吸光度を測定する。なお、測定範囲は検出された部分Aを測定したときと同じアパーチャーサイズに設定する。
(Step (4): Absorbance ratio B IR )
In step (4), and the absorbance of 965 cm -1 by microscopic infrared absorption measurement (transmission method) part B, determining the ratio B IR absorbance of 720 cm -1.
Similar to the part A, the part B of the test film is also cut out in the thickness direction of the test film, sliced parallel to the cross section to a thickness of 10 μm to prepare a test piece, and microinfrared absorption measurement (transmission method) is performed. Measure the absorbance at 965 cm -1 and 720 cm -1 . The measurement range is set to the same aperture size as when the detected portion A is measured.

部分Bの赤外吸収測定は、最大20点の測定を行う。部分Bの各点において測定された965cm-1と720cm-1での吸光度から吸光度比(965cm-1/720cm-1)を算出し、最大値となる点での吸光度比をBIRとする。 Infrared absorption measurement of part B measures up to 20 points. Calculating the absorbance ratio (965cm -1 / 720cm -1) from the absorbance at 965 cm -1 and 720 cm -1 measured at each point of the portion B, and the absorbance ratio at the point where the maximum value and B IR.

(部分Aの数)
本実施形態のエチレン−酢酸ビニル共重合体樹脂の上述の工程(1)の条件にて作製した試験フィルムにおいて検出される、部分Aの数は、好ましくは1個以上100個以下であり、より好ましくは1個以上90個以下であり、さらに好ましくは2個以上80個以下である。部分Aの数が1個以上100個以下であると、フィルム外観が良く、製膜加工性に優れる傾向にある。部分Aの数を制御する方法としては、重合温度、重合圧力及び分離器温度、分離器圧力を適宜調整すること等が挙げられる。
(Number of parts A)
The number of portions A detected in the test film prepared under the conditions of the above step (1) of the ethylene-vinyl acetate copolymer resin of the present embodiment is preferably 1 or more and 100 or less, and more. The number is preferably 1 or more and 90 or less, and more preferably 2 or more and 80 or less. When the number of the portions A is 1 or more and 100 or less, the film appearance tends to be good and the film forming processability tends to be excellent. Examples of the method for controlling the number of portions A include appropriately adjusting the polymerization temperature, the polymerization pressure and the separator temperature, and the separator pressure.

(部分Abの数)
また、部分Aのうち、最長径が0.4mm以上1.0mm以下の凹凸を有する部分Abの数は、好ましくは1個以上30個以下、より好ましくは1個以上25個以下、さらに好ましくは1個以上20個以下である。部分Abの数が1個以上30個以下であると、製膜時の膜切れが少なく、薄膜加工性に優れる傾向にある。部分Abは、部分Aとして検出された凹凸のうち、その最長径が0.4mm以上1.0mm以下であるものを意味する。部分Abの数を制御する方法としては、重合温度、重合圧力及び分離器温度、分離器圧力を適宜調整すること等が挙げられる。
(Number of parts A b )
Further, among the portions A, the number of portions A b having irregularities having a maximum diameter of 0.4 mm or more and 1.0 mm or less is preferably 1 or more and 30 or less, more preferably 1 or more and 25 or less, and further preferably. Is 1 or more and 20 or less. When the number of portions A b is 1 or more and 30 or less, the film breakage during film formation is small, and the thin film processability tends to be excellent. The portion A b means that the longest diameter of the unevenness detected as the portion A is 0.4 mm or more and 1.0 mm or less. Examples of the method for controlling the number of portions Ab include adjusting the polymerization temperature, the polymerization pressure and the separator temperature, and the separator pressure as appropriate.

上述の方法にて測定される、吸光度の比AIR(965cm-1/720cm-1)は、好ましくは0.19以下であり、より好ましくは0.14以下であり、さらに好ましくは0.11以下である。吸光度の比AIR(965cm-1/720cm-1)が0.19以下であることで、トランスアルケンの濃度が低くなり、フィッシュアイの生成を一層抑制することができる傾向にある。吸光度の比AIR(965cm-1/720cm-1)は、その下限値は特に限定されないが、好ましくは0.004以上であり、より好ましくは0.008以上であり、さらに好ましくは0.010以上である。 The absorbance ratio A IR (965 cm -1 / 720 cm -1 ) measured by the method described above is preferably 0.19 or less, more preferably 0.14 or less, still more preferably 0.11. It is as follows. When the absorbance ratio A IR (965 cm -1 / 720 cm -1 ) is 0.19 or less, the concentration of transalkenes tends to be low, and the formation of fish eyes tends to be further suppressed. The lower limit of the absorbance ratio A IR (965 cm -1 / 720 cm -1 ) is not particularly limited, but is preferably 0.004 or more, more preferably 0.008 or more, and further preferably 0.010. That is all.

上述の方法にて測定される、吸光度の比BIR(965cm-1/720cm-1)は、好ましくは0.13以下であり、より好ましくは0.10以下であり、さらに好ましくは0.080以下である。吸光度の比BIR(965cm-1/720cm-1)が0.13以下であることで、トランスアルケンの濃度が低くなり、フィッシュアイの生成を一層抑制することができる傾向にある。吸光度の比BIR(965cm-1/720cm-1)は、その下限値は特に限定されないが、好ましくは0.005以上であり、より好ましくは0.010以上であり、さらに好ましくは0.013以上である。 The absorbance ratio B IR (965 cm -1 / 720 cm -1 ) measured by the method described above is preferably 0.13 or less, more preferably 0.10 or less, still more preferably 0.080. It is as follows. When the absorbance ratio B IR (965 cm -1 / 720 cm -1 ) is 0.13 or less, the concentration of transalkenes tends to be low, and the formation of fish eyes tends to be further suppressed. The lower limit of the absorbance ratio B IR (965 cm -1 / 720 cm -1 ) is not particularly limited, but is preferably 0.005 or more, more preferably 0.010 or more, and further preferably 0.013. That is all.

ただし、吸光度の比AIR及び吸光度の比BIRの好ましい範囲はあくまで例示であり、例えば、樹脂におけるVA含有量が大きくなると吸光度の比AIR及び吸光度の比BIRは大きくなる傾向にある。しかしながら、吸光度比の比率(AIR/BIR)を上記の範囲内に制御することにより、吸光度の比AIR及び吸光度の比BIRが大きい場合でもフィッシュアイの生成を抑制することができる。 However, the preferable ranges of the absorbance ratio A IR and the absorbance ratio B IR are merely examples. For example, as the VA content in the resin increases, the absorbance ratio A IR and the absorbance ratio B IR tend to increase. However, by controlling the absorbance ratio ratio (A IR / B IR ) within the above range, it is possible to suppress the formation of fish eyes even when the absorbance ratio A IR and the absorbance ratio B IR are large.

(分子量分布(Mw/Mn))
本実施形態のエチレン−酢酸ビニル共重合体樹脂は、ゲルパーミエーションクロマトグラフィー(以下「GPC」ともいう。)から求められる数平均分子量に対する重量平均分子量の比で表される分子量分布Mw/Mnは、形成されるフィルム強度及び外観の観点から、好ましくは8.0以下であり、より好ましくは7.0以下であり、さらに好ましくは6.0以下である。
(Molecular weight distribution (Mw / Mn))
The ethylene-vinyl acetate copolymer resin of the present embodiment has a molecular weight distribution Mw / Mn represented by the ratio of the weight average molecular weight to the number average molecular weight obtained by gel permeation chromatography (hereinafter, also referred to as “GPC”). From the viewpoint of the strength and appearance of the formed film, it is preferably 8.0 or less, more preferably 7.0 or less, and further preferably 6.0 or less.

本実施形態のエチレン−酢酸ビニル共重合体樹脂の重量平均分子量は、好ましくは20,000以上200,000以下であり、より好ましくは30,000以上100,000以下であり、さらに好ましくは40,000以上80,000以下である。 The weight average molecular weight of the ethylene-vinyl acetate copolymer resin of the present embodiment is preferably 20,000 or more and 200,000 or less, more preferably 30,000 or more and 100,000 or less, and further preferably 40, It is 000 or more and 80,000 or less.

本実施形態のエチレン−酢酸ビニル共重合体樹脂の数平均分子量は、好ましくは8,000以上50,000以下であり、より好ましくは10,000以上40,000以下であり、さらに好ましくは12,000以上30,000以下である。 The number average molecular weight of the ethylene-vinyl acetate copolymer resin of the present embodiment is preferably 8,000 or more and 50,000 or less, more preferably 10,000 or more and 40,000 or less, and further preferably 12. It is 000 or more and 30,000 or less.

分子量分布、数平均分子量及び重量平均分子量を制御する方法としては、重合温度、重合圧力を適宜調整すること等が挙げられる。なお、分子量分布、数平均分子量及び重量平均分子量は、実施例に記載の方法で測定することができる。 Examples of the method for controlling the molecular weight distribution, the number average molecular weight and the weight average molecular weight include appropriately adjusting the polymerization temperature and the polymerization pressure. The molecular weight distribution, the number average molecular weight, and the weight average molecular weight can be measured by the methods described in Examples.

(MFR)
本実施形態のエチレン−酢酸ビニル共重合体樹脂は、メルトフローレイト(JIS K7210:1999 コードD、温度190℃、荷重2.16kg;以下、MFRという。)が、フィルム強度と製膜加工性の観点から、好ましくは0.5g/10min以上4.0g/10min以下であり、より好ましくは0.8g/10min以上3.5g/10min以下であり、さらに好ましくは1.0g/10min以上3.0g/10min以下である。MFRを制御する方法としては、重合温度、重合圧力を適宜調整すること、適宜、連鎖移動剤を添加すること等が挙げられる。なお、MFRは実施例に記載の方法で測定することができる。
(MFR)
The ethylene-vinyl acetate copolymer resin of the present embodiment has a melt flow rate (JIS K7210: 1999 code D, temperature 190 ° C., load 2.16 kg; hereinafter referred to as MFR), which has film strength and film-forming processability. From the viewpoint, it is preferably 0.5 g / 10 min or more and 4.0 g / 10 min or less, more preferably 0.8 g / 10 min or more and 3.5 g / 10 min or less, and further preferably 1.0 g / 10 min or more and 3.0 g. It is / 10 min or less. Examples of the method for controlling the MFR include appropriately adjusting the polymerization temperature and the polymerization pressure, and appropriately adding a chain transfer agent. The MFR can be measured by the method described in Examples.

[エチレン−酢酸ビニル共重合体樹脂の製造方法]
本実施形態のエチレン−酢酸ビニル共重合体樹脂は、多段圧縮機を用いて100〜350MPaの超高圧下とし、重合開始剤の存在下で重合して得られる。本実施形態のエチレン−酢酸ビニル共重合体樹脂の重合方式は、以下に限定されないが、例えば、オートクレーブ方式、チューブラー方式が挙げられるが、チューブラー方式で重合されることが好ましい。
[Manufacturing method of ethylene-vinyl acetate copolymer resin]
The ethylene-vinyl acetate copolymer resin of the present embodiment is obtained by polymerizing in the presence of a polymerization initiator at an ultrahigh pressure of 100 to 350 MPa using a multi-stage compressor. The polymerization method of the ethylene-vinyl acetate copolymer resin of the present embodiment is not limited to the following, and examples thereof include an autoclave method and a tubular method, and the polymerization method is preferably a tubular method.

チューブラー方式で重合する場合、平均重合反応温度を150℃以上280℃以下、重合圧力を120MPa以上270MPa以下で重合し、エチレン−酢酸ビニル共重合体樹脂を製造することが好ましい。より好ましくは、平均重合反応温度が180℃以上240℃以下で、重合圧力が180MPa以上260MPa以下である。また、エチレン−酢酸ビニル共重合体樹脂の分子量分布を狭くするために、重合容器中の重合温度分布を均一に近づけることが好ましい。 When polymerizing by the tubular method, it is preferable to polymerize at an average polymerization reaction temperature of 150 ° C. or higher and 280 ° C. or lower and a polymerization pressure of 120 MPa or higher and 270 MPa or lower to produce an ethylene-vinyl acetate copolymer resin. More preferably, the average polymerization reaction temperature is 180 ° C. or higher and 240 ° C. or lower, and the polymerization pressure is 180 MPa or higher and 260 MPa or lower. Further, in order to narrow the molecular weight distribution of the ethylene-vinyl acetate copolymer resin, it is preferable that the polymerization temperature distribution in the polymerization vessel is made uniform.

なお、チューブラー方式では、リアクターにエチレン、酢酸ビニル及び重合開始剤をフィードする箇所が通常複数箇所あり、各フィード部分近傍では原料等投入により一旦温度が下がるが、その後重合熱により温度が上昇する。次のフィード部分では、同様に原料等投入により温度が下がるが、また重合熱により温度が上昇する。リアクター内ではこのように原料投入箇所によって温度が不均一になりうるが、本実施形態ではフィード後の各高温ピークの差を15℃以下、またピーク温度とボトム温度の差を60℃以下にすることが好ましい。 In the tubular method, there are usually a plurality of places where ethylene, vinyl acetate and the polymerization initiator are fed to the reactor, and the temperature drops once by adding raw materials or the like in the vicinity of each feed part, but then rises due to the heat of polymerization. .. In the next feed portion, the temperature is similarly lowered by adding raw materials and the like, but the temperature is also raised by the heat of polymerization. In the reactor, the temperature can be non-uniform depending on the raw material input location, but in this embodiment, the difference between the high temperature peaks after feeding is 15 ° C or less, and the difference between the peak temperature and the bottom temperature is 60 ° C or less. Is preferable.

本実施形態のエチレン−酢酸ビニル共重合体樹脂の重合に用いる、重合開始剤としては、例えば、空気、パーオキサイドなどの遊離基発生剤等が挙げられる。パーオキサイドなどの遊離基発生剤としては、特に限定されないが、例えば、t−ブチル−ペルオキシ−2−エチルヘキサノアート、t−ブチルペルオキシアセテート、t−ブチルペルオキシピバレート、ジ−t−ブチルペルオキシド等が挙げられる。なお、分子量分布を狭くするためには、重合開始剤として空気を用いないことが好ましい。 Examples of the polymerization initiator used for the polymerization of the ethylene-vinyl acetate copolymer resin of the present embodiment include air, a free radical generator such as peroxide, and the like. The free radical generator such as peroxide is not particularly limited, and for example, t-butyl-peroxy-2-ethylhexanoate, t-butyl peroxyacetate, t-butyl peroxypivalate, di-t-butyl peroxide. And so on. In order to narrow the molecular weight distribution, it is preferable not to use air as the polymerization initiator.

本実施形態のエチレン−酢酸ビニル共重合体樹脂を重合する際は、必要に応じて、分子量を低下させるために、アルコール類、アルカン類、アルケン類、ケトン類、アルデヒド類等の連鎖移動剤を用いてもよい。 When polymerizing the ethylene-vinyl acetate copolymer resin of the present embodiment, if necessary, a chain transfer agent such as alcohols, alkanes, alkenes, ketones, aldehydes, etc. is used in order to reduce the molecular weight. You may use it.

アルコール類としては、特に限定されないが、例えば、メタノール、エタノール、ノルマルプロピルアルコール、イソプロピルアルコール、ノルマルブチルアルコール、イソブチルアルコール等が挙げられる。 The alcohols are not particularly limited, and examples thereof include methanol, ethanol, normal propyl alcohol, isopropyl alcohol, normal butyl alcohol, isobutyl alcohol and the like.

アルカン類又はアルケン類としては、特に限定されないが、例えば、エタン、プロパン、プロピレン、ブタン、1−ブテン、2−ブテン等が挙げられる。 The alkanes or alkenes are not particularly limited, and examples thereof include ethane, propane, propylene, butane, 1-butene, and 2-butene.

ケトン類又はアルデヒド類としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、2−ペンタノン、3−ペンタノン、2−ヘキサノン、3−ヘキサノン、ジイソブチルケトン、メチルイソプロピルケトン、ホルムアルデヒド、アセトアルデヒド、ノルマルブチルアルデヒド、イソブチルアルデヒド、ノルマルバレルアルデヒド、イソバレルアルデヒド等が挙げられる。 The ketones or aldehydes are not particularly limited, but for example, acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, diisobutyl ketone, methyl isopropyl ketone, formaldehyde, acetaldehyde, normal butyl aldehyde, etc. Examples thereof include isobutyl aldehyde, normal barrel aldehyde, and isovaleraldehyde.

重合されたエチレン−酢酸ビニル共重合体樹脂は、原料エチレンガスと分離され、押出機にてペレット状に造粒されることが好ましい。 It is preferable that the polymerized ethylene-vinyl acetate copolymer resin is separated from the raw material ethylene gas and granulated into pellets by an extruder.

例えば、チューブラー方式を用いた場合では、高圧分離器及び低圧分離器にて圧力を下げつつ原料エチレンガスとエチレン−酢酸ビニル共重合体樹脂を分離し、溶融状態のエチレン−酢酸ビニル共重合体樹脂を押出機にてペレット状に造粒することが好ましい。高圧分離器及び低圧分離器内では、溶融状態のエチレン−酢酸ビニル共重合体樹脂と原料エチレンガスが気液混合流体として存在するが、分離器の容器の上部から未反応ガスを回収し、多段圧縮機入り口へ送られ重合で再利用される。 For example, when the tubular method is used, the raw material ethylene gas and the ethylene-vinyl acetate copolymer resin are separated while reducing the pressure with a high-pressure separator and a low-pressure separator, and the molten ethylene-vinyl acetate copolymer is separated. It is preferable to granulate the resin into pellets with an extruder. In the high-pressure separator and the low-pressure separator, the molten ethylene-vinyl acetate copolymer resin and the raw material ethylene gas exist as a gas-liquid mixed fluid, but the unreacted gas is recovered from the upper part of the container of the separator, and the multi-stage It is sent to the compressor entrance and reused for polymerization.

反応器を出たエチレン−酢酸ビニル共重合体樹脂は溶融状態であり、未反応のガスと共に気液混合流体として温度150℃以上260℃以下で高圧分離器へ導かれ、圧力を15MPa以上30MPa以下に降圧されることが好ましい。さらに、高圧分離器内の気液混合流体は、低圧分離器に導かれ、温度110℃以上250℃以下、好ましくは120℃以上230℃以下で大気圧以上0.1MPa以下に降圧され、押出機に導入されペレット状に造粒されることが好ましい。 The ethylene-vinyl acetate copolymer resin that has left the reactor is in a molten state and is guided to a high-pressure separator at a temperature of 150 ° C. or higher and 260 ° C. or lower as a gas-liquid mixed fluid together with unreacted gas, and the pressure is 15 MPa or higher and 30 MPa or lower. It is preferable that the pressure is lowered to. Further, the gas-liquid mixture fluid in the high-pressure separator is guided to the low-pressure separator and is stepped down to atmospheric pressure or more and 0.1 MPa or less at a temperature of 110 ° C. or higher and 250 ° C. or lower, preferably 120 ° C. or higher and 230 ° C. or lower. It is preferable that the mixture is introduced into a pellet and granulated into pellets.

本実施形態においては、前記低圧分離器の金属容器壁面にテフロンコーティングを施すことが好ましい。また、低圧分離器の入り口配管に傘型のノズルを設ける、又は、放出口に向けて配管サイズ徐々に大きくすることが好ましい。低圧分離器内に攪拌機を設けることが好ましく、低圧分離器の容器温度を110℃以上250℃以下とすることが好ましい。例えば、低圧分離器の容器温度を110℃以上250℃以下とすることにより、樹脂粘度をコントロールすることができ、低圧分離器内での溶融樹脂の状態、すなわち、溶融樹脂の粘度や液面レベル、液面の状態等を一定に保つことができる。 In the present embodiment, it is preferable to apply a Teflon coating to the metal container wall surface of the low pressure separator. Further, it is preferable to provide an umbrella-shaped nozzle in the inlet pipe of the low-pressure separator or gradually increase the pipe size toward the discharge port. It is preferable to provide a stirrer in the low pressure separator, and the container temperature of the low pressure separator is preferably 110 ° C. or higher and 250 ° C. or lower. For example, the resin viscosity can be controlled by setting the container temperature of the low-pressure separator to 110 ° C. or higher and 250 ° C. or lower, and the state of the molten resin in the low-pressure separator, that is, the viscosity or liquid level of the molten resin. , The state of the liquid level can be kept constant.

エチレン−酢酸ビニル共重合体樹脂を押出機でペレット化した後、ペレットを貯蔵するサイロ内で30℃以上50℃未満の乾燥空気を5時間以上吹き付けることが好ましい。乾燥空気の温度は、低分子量成分の除去の観点から30℃以上50℃未満であることが好ましく、33℃以上47℃以下であることがより好ましく、35℃以上45℃以下であることがさらに好ましい。 After pelletizing the ethylene-vinyl acetate copolymer resin with an extruder, it is preferable to blow dry air at 30 ° C. or higher and lower than 50 ° C. for 5 hours or more in a silo in which the pellets are stored. The temperature of the dry air is preferably 30 ° C. or higher and lower than 50 ° C., more preferably 33 ° C. or higher and 47 ° C. or lower, and further preferably 35 ° C. or higher and 45 ° C. or lower from the viewpoint of removing low molecular weight components. preferable.

(添加剤)
本実施形態のエチレン−酢酸ビニル共重合体樹脂は、酸化防止剤、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料などの公知の添加剤を、必要に応じて含んでもよい。
(Additive)
The ethylene-vinyl acetate copolymer resin of the present embodiment may contain known additives such as an antioxidant, an ultraviolet absorber, a light stabilizer, an antistatic agent, an antifogging agent, and a coloring pigment, if necessary. Good.

酸化防止剤としては、1次酸化防止剤であるフェノール系酸化防止剤が好ましく、特に限定されないが、例えば、2,6−ジ−t−ブチル−4−メチルフェノール、ペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート等が挙げられる。なお、2次酸化防止剤も併用して使用可能であり、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4−ビフェニレン−ジフォスフォナイト等のリン系酸化防止剤が挙げられる。また、リン/フェノール系酸化防止剤として、6−tert−ブチル−4−[3−(2,4,8,10−テトラ−t−ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン−6−イルオキシ)プロピル]−o−クレゾール等が挙げられる。また、イオウ系酸化防止剤としては、ジラウリル−チオ−ジプロピオネート等が挙げられる。 As the antioxidant, a phenolic antioxidant which is a primary antioxidant is preferable, and is not particularly limited, but for example, 2,6-di-t-butyl-4-methylphenol, pentaerythrityl-tetrakis- [. 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate and the like can be mentioned. A secondary antioxidant can also be used in combination with tris (2,4-di-t-butylphenyl) phosphite and tetrakis (2,4-di-t-butylphenyl) -4,4-. Phosphorus-based antioxidants such as biphenylene-diphosphonite can be mentioned. In addition, as a phosphorus / phenol-based antioxidant, 6-tert-butyl-4- [3- (2,4,8,10-tetra-t-butyldibenzo [d, f] [1,3,2] dibenzo] Oxaphosfepine-6-yloxy) propyl] -o-cresol and the like can be mentioned. Further, examples of the sulfur-based antioxidant include dilauryl-thio-dipropionate and the like.

[フィルム]
本実施形態のエチレン−酢酸ビニル共重合体樹脂は、以下に限定されないが、フィルム用途に好適に用いることができる。つまり、本実施形態のフィルムは、本実施形態のエチレン−酢酸ビニル共重合体樹脂を含む。また、本実施形態のフィルムは、本実施形態のエチレン−酢酸ビニル共重合体樹脂からなる。本実施形態に係るフィルムの用途としては、農業用ポリオレフィンフィルム、後述の包装用フィルム、フレキシブルコンテナー外装用フィルム等が挙げられる。フィルムの製造方法としては、例えば、Tダイ成型、インフレーション成型、カレンダー成型、スカイフ成型などが挙げられる。特に、インフレーション成形又はTダイ押出成形が好ましい。
[the film]
The ethylene-vinyl acetate copolymer resin of the present embodiment is not limited to the following, but can be suitably used for film applications. That is, the film of the present embodiment contains the ethylene-vinyl acetate copolymer resin of the present embodiment. The film of the present embodiment is made of the ethylene-vinyl acetate copolymer resin of the present embodiment. Examples of the use of the film according to the present embodiment include an agricultural polyolefin film, a packaging film described later, a flexible container exterior film, and the like. Examples of the film manufacturing method include T-die molding, inflation molding, calender molding, and skyf molding. Inflation molding or T-die extrusion molding is particularly preferable.

(フィルムのVA含有量)
本実施形態のフィルムは、外観の観点からVA含有量が、エチレン−酢酸ビニル共重合体樹脂の全量に対して、3.0質量%以上30.0質量%以下であり、好ましくは4.0質量%以上25.0質量%以下であり、より好ましくは5.0質量%以上20.0である。本実施形態のフィルムのVA含有量は、JIS K7192:1999に準拠し、基準試験法としてけん化と電位差滴定により検量線を作成し、対照試験法として赤外分光法により酢酸ビニル換算することで測定することができる。具体的には、実施例に記載の方法で測定することができる。
(VA content of film)
From the viewpoint of appearance, the film of the present embodiment has a VA content of 3.0% by mass or more and 30.0% by mass or less, preferably 4.0, based on the total amount of the ethylene-vinyl acetate copolymer resin. It is mass% or more and 25.0 mass% or less, and more preferably 5.0 mass% or more and 20.0. The VA content of the film of this embodiment is measured in accordance with JIS K7192: 1999 by preparing a calibration curve by saponification and potentiometric titration as a reference test method and converting it into vinyl acetate by infrared spectroscopy as a control test method. can do. Specifically, it can be measured by the method described in Examples.

(フィルムにおける比率(A’IR/B’IR
本実施形態のフィルムは、3質量%以上30質量%以下の酢酸ビニル単位を含むエチレン−酢酸ビニル共重合体樹脂を含有する。そして、本実施形態のフィルムは、下記工程(2’)〜(4’)を有する試験方法により得られる、吸光度の比A’IRと吸光度の比B’IRとの比率(A’IR/B’IR)が0.80以上1.40以下である。比率(A’IR/B’IR)が0.80以上1.40以下であることにより、外観に優れたフィルムとなる。
工程(2’):本実施形態のフィルムを、フィルム検査装置を用いて、測定間隔を0.1mm、凹凸検出サイズを最長径0.2mm以上1.0mm以下とする条件により、検出される部分A及び検出されない部分Bを検知する工程
工程(3’):前記部分Aの核部分の顕微赤外吸収測定(透過法)により965cm-1の吸光度と、720cm-1の吸光度の比A’IRを求める工程
工程(4’):前記部分Bの顕微赤外吸収測定(透過法)により965cm-1の吸光度と、720cm-1の吸光度の比B’IRを求める工程
(Ratio in film ( A'IR / B'IR )
The film of the present embodiment contains an ethylene-vinyl acetate copolymer resin containing 3% by mass or more and 30% by mass or less of vinyl acetate units. The film of this embodiment is obtained by the test method having the following steps (2 ') - (4'), the ratio of IR 'ratio B of IR and absorbance' ratio A absorbance (A 'IR / B ' IR ) is 0.80 or more and 1.40 or less. When the ratio ( A'IR / B'IR ) is 0.80 or more and 1.40 or less, the film has an excellent appearance.
Step (2'): A portion of the film of the present embodiment that is detected by using a film inspection device under the conditions that the measurement interval is 0.1 mm and the unevenness detection size is 0.2 mm or more and 1.0 mm or less in the maximum diameter. step process to detect the a and not detected part B (3 '): and the absorbance of 965 cm -1 by microscopic infrared absorption measurement of the nuclear portion of the portion a (transmission method), the ratio a of the absorbance at 720 cm -1' IR the obtaining process step (4 '): and the absorbance of 965 cm -1 by microscopic infrared absorption measurement (transmission method) of the portion B, the ratio B of the absorbance at 720 cm -1' obtaining a IR

工程(2’)においては本実施形態のフィルムを測定する以外は、工程(2’)〜(4’)と、上述の工程(2)〜(4)とは、同じ方法である。 In the step (2'), the steps (2') to (4') and the above-mentioned steps (2) to (4) are the same method except that the film of the present embodiment is measured.

[包装用フィルム]
本実施形態のエチレン−酢酸ビニル共重合体樹脂を含むフィルムは、包装用フィルムに好適に用いることができる。具体的には、以下に限定されないが、例えば、食品包装用フィルム、食品用ラップフィルム、オバーラップフィルム、収縮性オバーラップフィルム、シーラントフィルム等が挙げられる。
[Packaging film]
The film containing the ethylene-vinyl acetate copolymer resin of the present embodiment can be suitably used as a packaging film. Specific examples thereof include, but are not limited to, a food packaging film, a food wrap film, an overwrap film, a shrinkable overwrap film, and a sealant film.

[積層フィルム]
本実施形態のエチレン−酢酸ビニル共重合体樹脂を含むフィルムは、単層体であっても、積層体であってもよい。積層フィルムは、本実施形態のエチレン−酢酸ビニル共重合体樹脂からなる層を1層以上有するもの、又は本実施形態のエチレン−酢酸ビニル共重合体樹脂を全ての層で有するものとすることができる。積層フィルムの製造方法としては、特に限定されないが、例えば、ラミネーションプロセスによって貼りあわせて製造すること、又は積層押出し工程によって製造することができる。さらに、積層フィルムは同じ材料の層又は異なる材料の層からなることができる。
[Laminated film]
The film containing the ethylene-vinyl acetate copolymer resin of the present embodiment may be a monolayer or a laminate. The laminated film may have one or more layers made of the ethylene-vinyl acetate copolymer resin of the present embodiment, or may have the ethylene-vinyl acetate copolymer resin of the present embodiment in all layers. it can. The method for producing the laminated film is not particularly limited, and for example, it can be produced by laminating by a lamination process or by a laminated extrusion step. In addition, the laminated film can consist of layers of the same material or layers of different materials.

本発明について、以下実施例を用いて具体的に説明する。なお、本発明はこれら実施例に限定されるものではない。実施例及び比較例における物性測定方法、評価方法は以下のとおりである。 The present invention will be specifically described below with reference to Examples. The present invention is not limited to these examples. The physical property measurement method and evaluation method in Examples and Comparative Examples are as follows.

(1)メルトフローレイト(MFR)測定
JIS K7210:1999 コードD(温度=190℃、荷重=2.16kg)に準拠し、測定した。
(1) Melt flow rate (MFR) measurement The measurement was performed in accordance with JIS K7210: 1999 Code D (temperature = 190 ° C., load = 2.16 kg).

(2)VA含有量測定
JIS K7192:1999に準拠し、基準試験法として、ケン化と電位差滴定により酢酸ビニル含有量既知のEVAC基準試料を用いて検量線を作成し、対照試験法として、赤外分光法によりエチレン−酢酸ビニル共重合体樹脂の酢酸ビニル単位の含有量(VA含有量)を測定した。
(2) Measurement of VA content Based on JIS K7192: 1999, a calibration curve was prepared using an EVAC reference sample with a known vinyl acetate content by saponification and potential differential titration as a reference test method, and red as a control test method. The content (VA content) of the ethylene-vinyl acetate copolymer resin in vinyl acetate units was measured by external spectroscopy.

(3)分子量及び、分子量分布測定
GPCから求められる重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)を分子量分布とした。GPC測定は、ウォーターズ社製GPCV2000を用い、カラムは昭和電工株式会社製UT−807(1本)と東ソー株式会社製GMHHR−H(S)HT(2本)を直列に接続して使用し、移動相オルト−ジクロロベンゼン(ODCB)、カラム温度140℃、流量1.0ml/分、試料濃度20mg/15ml(ODCB)、試料溶解温度140℃、試料溶解時間2時間の条件で行った。分子量の校正は、Mwが1050〜206万の範囲の東ソー株式会社製標準ポリスチレンの12点で行い、それぞれの標準ポリスチレンのMwに係数0.43を乗じてポリエチレン換算分子量とし、溶出時間とポリエチレン換算分子量のプロットから一次校正直線を作成し、分子量を決定した。
(3) Measurement of Molecular Weight and Molecular Weight Distribution The ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) obtained from GPC was defined as the molecular weight distribution. For GPC measurement, GPCV2000 manufactured by Waters Co., Ltd. was used, and the column used was UT-807 (1 piece) manufactured by Showa Denko Co., Ltd. and GMHHR-H (S) HT (2 pieces) manufactured by Tosoh Co., Ltd. connected in series. The procedure was carried out under the conditions of mobile phase ortho-dichlorobenzene (ODCB), column temperature 140 ° C., flow rate 1.0 ml / min, sample concentration 20 mg / 15 ml (ODCB), sample dissolution temperature 140 ° C., and sample dissolution time 2 hours. The molecular weight is calibrated at 12 points of standard polystyrene manufactured by Tosoh Corporation in the range of Mw of 105 to 2.06 million, and the Mw of each standard polystyrene is multiplied by a coefficient of 0.43 to obtain the polyethylene equivalent molecular weight, and the elution time and polyethylene conversion are obtained. A primary calibration line was created from the molecular weight plot to determine the molecular weight.

(4)比率(AIR/BIR
(4−1)試験フィルムの作製(工程(1))
ランドキャッスル社製、単軸縦型押出機(フルフライトスクリュー、スクリュー径20mm、ダイス100mm幅)を用いて、シリンダー温度140℃、ダイス温度140℃で混練し、Tダイ法によって引き取り速度4m/minで、厚さ50μm、幅100mmの試験フィルムを得た。なお、ダイス表面にはメヤニやコゲ付着防止のためハードクロムコートを実施したものを用いた。また、スクリュー出口にはフィルターは使用せず、ブレーカープレートのみを挟んで製膜した。
(4) Ratio (A IR / B IR )
(4-1) Preparation of test film (step (1))
Using a single-screw vertical extruder (full flight screw, screw diameter 20 mm, die 100 mm width) manufactured by Landcastle, knead at a cylinder temperature of 140 ° C and a die temperature of 140 ° C, and a take-up speed of 4 m / min by the T-die method. A test film having a thickness of 50 μm and a width of 100 mm was obtained. The surface of the die was coated with hard chrome to prevent adhesion of shavings and kogation. In addition, no filter was used at the screw outlet, and only the breaker plate was sandwiched to form a film.

(4−2)部分Aの検出(工程(2))
フィルム検査装置として、株式会社ニレコ製、無地表面品質検査装置(MUJIKEN)を用いて、前記試験フィルムの中心から各25mm(計50mm)幅、長さ100mを、最長径0.2mm以上1.0mm以下の凹凸を0.1mm間隔で測定し個数を求めた。当該凹凸が形成されている部分を、部分Aとした。
カメラの仕様は、モノクロライン;センサーカメラユニット8000画素以上、160MHz、レンズ35mm、照明装置;LED400mm長を使用した。
(4-2) Detection of part A (step (2))
As a film inspection device, a plain surface quality inspection device (MUJIKEN) manufactured by Nireco Corporation is used, and each 25 mm (50 mm in total) width and 100 m from the center of the test film has a maximum diameter of 0.2 mm or more and 1.0 mm. The following irregularities were measured at 0.1 mm intervals to determine the number. The portion where the unevenness is formed is designated as portion A.
The camera specifications used were a monochrome line; a sensor camera unit of 8000 pixels or more, 160 MHz, a lens of 35 mm, and a lighting device; an LED of 400 mm in length.

(4−3)赤外吸収スペクトル測定
つぎに、日本ミクロトーム研究所製、ロータリーミクロトーム、及び電子式試料凍結装置を用いて、部分Aと部分Bをフィルムの厚み方向に切り出し、さらにその断面と平行に厚み10μmにスライスして試験片を作成した。続いて、オリンパス株式会社製、顕微鏡装置BX51TRF−6(D)、落射蛍光システム装置HGLGPS−SET−Dにて、明視野観察、位相差観察、蛍光観察、微分干渉観察など各種観察方法で部分Aの前記試験片を観察し、部分Aの核部分を特定した。
前記試験片の赤外吸収スペクトル(IR)を日本分光株式会社製FT/IR−6600装置、及びIRT−5200赤外顕微鏡装置を用いて、分解能:4cm-1、積算回数:250回、測定波長:4000〜600cm-1とし、顕微赤外吸収測定(透過法)により、965cm-1と720cm-1での吸光度を測定した。ここで、吸光度は、965cm-1、720cm-1のピークトップの高さの値とした。ピークトップの高さは、JIS K7192:1999 4.1.3.2.5に記載の方法に準拠して設定したベースラインとピークトップの差から算出した(図1参照)。
前記部分Aの核部分と、前記部分Bの赤外吸収測定は、それぞれ20点の測定を行った。ただし、前記部分Aが20個未満の場合は、部分Aの核部分全てについて測定を行った。前記部分Aの核部分の各点において測定された965cm-1と720cm-1での吸光度から吸光度比(965cm-1/720cm-1)を算出し、最大値となる点での吸光度比をAIRとした。前記部分Bについても同様の操作を行い、最大値をBIRとした。
以上の方法により得られた吸光度比AIRと吸光度比BIRとから、比率(AIR/BIR)を算出した。
(4-3) Infrared absorption spectrum measurement Next, using a rotary microtome manufactured by Japan Microtome Research Institute and an electronic sample freezer, parts A and B are cut out in the thickness direction of the film, and further parallel to the cross section. A test piece was prepared by slicing to a thickness of 10 μm. Subsequently, with the microscope device BX51TRF-6 (D) manufactured by Olympus Corporation and the epi-illumination system device HGLGPS-SET-D, part A is performed by various observation methods such as bright field observation, phase difference observation, fluorescence observation, and differential interference contrast observation. The test piece of the above was observed, and the core portion of the portion A was identified.
The infrared absorption spectrum (IR) of the test piece was measured using an FT / IR-6600 device manufactured by Nippon Spectroscopy Co., Ltd. and an IRT-5200 infrared microscope device with a resolution of 4 cm -1 and an integration frequency of 250 times. : a 4000~600Cm -1, by microscopic infrared absorption measurement (transmission method), the absorbance was measured at 965 cm -1 and 720 cm -1. Here, the absorbance was set to the value of the height of the peak top of 965 cm -1 and 720 cm -1 . The height of the peak top was calculated from the difference between the baseline and the peak top set according to the method described in JIS K7192: 1999 4.1.3.2.5 (see FIG. 1).
The core portion of the portion A and the infrared absorption measurement of the portion B were measured at 20 points each. However, when the number of the parts A was less than 20, all the core parts of the part A were measured. The calculated absorbance ratios from the absorbance at 965 cm -1 and 720 cm -1 measured at each point of the core portion of the portion A of (965cm -1 / 720cm -1), the absorbance ratio at the point where the maximum value A It was IR . The same operation was performed for the part B, and the maximum value was set to B IR .
The ratio (A IR / B IR ) was calculated from the absorbance ratio A IR and the absorbance ratio B IR obtained by the above method.

(5)溶融伸度(ME)測定
2.095mm径、長さ8.0mmのキャピラリーを備えた東洋精機株式会社製キャピログラフ1Dを用い、6mm/minでエチレン−酢酸ビニル共重合体樹脂を190℃及び230℃で押し出し、2m/minで引き取り開始し1分間経過後から10m/minで引き取り速度を上げ、ストランドが切れたときの伸度を溶融伸度(ME)として測定した。
(5) Measurement of melt elongation (ME) Using a Capillary Graph 1D manufactured by Toyo Seiki Co., Ltd. equipped with a capillary having a diameter of 2.095 mm and a length of 8.0 mm, an ethylene-vinyl acetate copolymer resin was prepared at 190 ° C. at 6 mm / min. And extruded at 230 ° C., pick-up was started at 2 m / min, and after 1 minute, the pick-up speed was increased at 10 m / min, and the elongation when the strand was cut was measured as the melt elongation (ME).

(6)押出機の樹脂圧力上昇
住友重機械モダン株式会社製インフレーションフィルム製造装置E−50(スクリュー径50mm、スクリュー:L(押出しスクリュー長)/D(押出しスクリュー直径)=28)、ダイス(リップ径、100mm、リップ間隙、1.0mm、)を用いて、シリンダー温度230℃、ダイス温度230℃、押出し量10kg/時間、ブロー比2.0、スクリューの先端に、石川金網製、特殊綾畳織金属フィルターBMT50、目開き平均50ミクロンメートルを取り付け、スクリュー先端部の樹脂圧力を測定し、エチレン−酢酸ビニル共重合体樹脂をフィルム厚み15ミクロンメーターで、8hrインフレーション成型によりフィルムを製膜した時の押出機の昇圧を以下の基準によって評価した。ここで、押出機の圧力は、スクリュー先端部分の圧力を測定した。
◎(優):押出機の樹脂圧力上昇 1%未満
○(良):押出機の樹脂圧力上昇 1%以上2%未満
×(不可):押出機の樹脂圧力上昇 2%以上
(6) Increase in resin pressure of extruder E-50 (screw diameter 50 mm, screw: L (extruded screw length) / D (extruded screw diameter) = 28), die (lip), inflation film manufacturing equipment manufactured by Sumitomo Heavy Industries Modern Co., Ltd. Using diameter, 100 mm, lip gap, 1.0 mm,), cylinder temperature 230 ° C, die temperature 230 ° C, extrusion rate 10 kg / hour, blow ratio 2.0, screw tip made of Ishikawa wire mesh, special twill tatami mat When a woven metal filter BMT50 and an average opening of 50 microns are attached, the resin pressure at the tip of the screw is measured, and an ethylene-vinyl acetate copolymer resin is formed by 8 hr extrusion molding with a film thickness of 15 microns. The boosting of the extruder was evaluated according to the following criteria. Here, the pressure of the extruder was measured by measuring the pressure at the tip of the screw.
◎ (Excellent): Extruder resin pressure increase less than 1% ○ (Good): Extruder resin pressure increase 1% or more and less than 2% × (No): Extruder resin pressure increase 2% or more

(7)フィルム巾低下、膜切れ評価
前記(6)に記載のインフレーション成型によりフィルムを製膜したときのフィッシュアイ基点でパンクによるフィルム巾低下又はフィルムの膜切れを以下の基準により評価した。
◎(優):8hr連続製膜したときのフィッシュアイ基点でのフィルム巾低下又は膜の切断:0回
○(良):8hr連続製膜したときのフィッシュアイ基点でのフィルム巾低下又は膜の切断:1回以下
×(不可):8hr連続製膜したときのフィッシュアイ基点でのフィルム巾低下又は膜の切断:2回以上
(7) Evaluation of film width reduction and film breakage The film width reduction or film breakage due to puncture at the fish eye base point when the film was formed by the inflation molding described in (6) above was evaluated according to the following criteria.
◎ (Excellent): Film width reduction or film cutting at the fish eye base point when 8 hours continuous film formation: 0 times ○ (Good): Film width reduction or film width reduction at the fish eye base point when 8 hours continuous film formation Cutting: 1 time or less × (impossible): Film width reduction at the fish eye base point or film cutting when 8 hours continuous film formation: 2 times or more

(8)フィルムの外観評価
前記(6)に記載のインフレーション成型によりフィルムを製膜し、紙管にフィルムを100m巻取り、全周方向を目視検査しエアー溜りなどによる紙管巻きフィルムの凹凸を以下の基準で評価した。
◎(優):全周方向でエアー溜り 1箇所以下
○(良):全周方向でエアー溜り 2箇所以上4箇所以下
×(不可):全周方向でエアー溜り 5箇所以上
(8) Appearance evaluation of the film The film is formed by the inflation molding described in (6) above, the film is wound 100 m around the paper tube, and the entire circumference direction is visually inspected to check the unevenness of the paper tube wound film due to air accumulation or the like. It was evaluated according to the following criteria.
◎ (Excellent): 1 or less air pool in the entire circumference direction ○ (Good): 2 or more and 4 or less air pools in the entire circumference direction × (No): 5 or more air pools in the entire circumference direction

[実施例1]
チューブラーリアクターにて、エチレン及びエチレンに対して7mol%の酢酸ビニルを導入し、平均重合反応温度を220℃、重合圧力を235MPaとし、重合開始剤としてt−ブチル−ペルオキシ−2−エチルヘキサノアートを用いて重合した。重合後は、温度220℃、圧力20MPaの高圧分離器に導入し、未反応ガスを分離した。続いて、温度180℃、圧力0.04MPaの低圧分離器に導入し、残った未反応ガスを分離した。なお、低圧分離器の入り口配管には傘型のノズルを設置し、低圧分離器内には攪拌機を設置して攪拌を行った。得られた溶融樹脂を押出機にフィードし、ペレタイズを行うことでエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。
[Example 1]
In a tubular reactor, ethylene and 7 mol% vinyl acetate were introduced with respect to ethylene, the average polymerization reaction temperature was 220 ° C., the polymerization pressure was 235 MPa, and t-butyl-peroxy-2-ethylhexano as a polymerization initiator. Polymerized using art. After the polymerization, the gas was introduced into a high-pressure separator having a temperature of 220 ° C. and a pressure of 20 MPa to separate unreacted gas. Subsequently, the gas was introduced into a low-pressure separator having a temperature of 180 ° C. and a pressure of 0.04 MPa, and the remaining unreacted gas was separated. An umbrella-shaped nozzle was installed in the inlet pipe of the low-pressure separator, and a stirrer was installed in the low-pressure separator to perform stirring. The obtained molten resin was fed to an extruder and pelletized to obtain an ethylene-vinyl acetate copolymer resin. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1.

[実施例2]
低圧分離器の温度を130℃とし、低圧分離器内の攪拌機を無しとした以外は、実施例1と同様の操作により、実施例2のエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。
[Example 2]
The ethylene-vinyl acetate copolymer resin of Example 2 was obtained by the same operation as in Example 1 except that the temperature of the low-pressure separator was set to 130 ° C. and the stirrer in the low-pressure separator was eliminated. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1.

[実施例3]
低圧分離器内の入り口形状を直管とした以外は、実施例1と同様の操作により、実施例3のエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。
[Example 3]
The ethylene-vinyl acetate copolymer resin of Example 3 was obtained by the same operation as in Example 1 except that the inlet shape in the low-pressure separator was a straight pipe. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1.

[比較例1]
低圧分離器の入り口配管は傘型ノズルを設置せずに直管とし、低圧分離器内の攪拌機を無しとした以外は、実施例1と同様の操作により、比較例1のエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。
[Comparative Example 1]
The inlet pipe of the low-pressure separator was a straight pipe without an umbrella-shaped nozzle, and the same operation as in Example 1 was performed except that the stirrer in the low-pressure separator was eliminated, for both ethylene-vinyl acetate of Comparative Example 1. A polymer resin was obtained. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1.

[実施例4]
チューブラーリアクターにて、エチレン及びエチレンに対して7mol%の酢酸ビニルを導入し、平均重合反応温度を226℃、重合圧力を264MPaとし、重合開始剤としてt−ブチル−ペルオキシ−2−エチルヘキサノアートとジ−t−ブチルペルオキシドを用いて重合した。重合後は、温度230℃、圧力20MPaの高圧分離器に導入し、未反応ガスを分離した。続いて、温度190℃、圧力0.04MPaの低圧分離器に導入し、残った未反応ガスを分離した。なお、低圧分離器の入り口配管には傘型のノズルを設置した。得られた溶融樹脂を押出機にフィードし、ペレタイズを行うことでエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。
[Example 4]
In a tubular reactor, ethylene and 7 mol% vinyl acetate were introduced with respect to ethylene, the average polymerization reaction temperature was 226 ° C., the polymerization pressure was 264 MPa, and t-butyl-peroxy-2-ethylhexano as a polymerization initiator. Polymerization was carried out using art and di-t-butyl peroxide. After the polymerization, the gas was introduced into a high-pressure separator having a temperature of 230 ° C. and a pressure of 20 MPa to separate unreacted gas. Subsequently, the gas was introduced into a low-pressure separator having a temperature of 190 ° C. and a pressure of 0.04 MPa to separate the remaining unreacted gas. An umbrella-shaped nozzle was installed in the inlet pipe of the low-pressure separator. The obtained molten resin was fed to an extruder and pelletized to obtain an ethylene-vinyl acetate copolymer resin. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1.

[実施例5]
低圧分離器内の入り口形状を直管とし、低圧分離器内には攪拌機を設置して攪拌を行った以外は、実施例4と同様の操作により、実施例5のエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。
[Example 5]
The ethylene-vinyl acetate copolymer of Example 5 was operated in the same manner as in Example 4 except that the inlet shape in the low-pressure separator was a straight pipe and a stirrer was installed in the low-pressure separator for stirring. A resin was obtained. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1.

[比較例2]
低圧分離器の温度を260℃とし、低圧分離器の入り口配管は傘型ノズルを設置せずに直管とし、低圧分離器内の攪拌機を無しとした以外は、実施例4と同様の操作により、比較例2のエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。
[Comparative Example 2]
The temperature of the low-pressure separator was set to 260 ° C., the inlet pipe of the low-pressure separator was a straight pipe without an umbrella nozzle, and the stirrer in the low-pressure separator was eliminated. , The ethylene-vinyl acetate copolymer resin of Comparative Example 2 was obtained. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1.

[実施例6]
チューブラーリアクターにて、エチレン及びエチレンに対して7mol%の酢酸ビニルを導入し、平均重合反応温度を226℃、重合圧力を264MPaとし、重合開始剤としてt−ブチル−ペルオキシ−2−エチルヘキサノアートとジ−t−ブチルペルオキシドを用いて重合した。重合後は、温度200℃、圧力22MPaの高圧分離器に導入し、未反応ガスを分離した。続いて、温度180℃、圧力0.04MPaの低圧分離器に導入し、残った未反応ガスを分離した。なお、低圧分離器の入り口配管には傘型のノズルを設置し、低圧分離器内には攪拌機を設置して攪拌を行った。得られた溶融樹脂を押出機にフィードし、ペレタイズを行うことでエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。
[Example 6]
In a tubular reactor, ethylene and 7 mol% vinyl acetate were introduced with respect to ethylene, the average polymerization reaction temperature was 226 ° C., the polymerization pressure was 264 MPa, and t-butyl-peroxy-2-ethylhexano as a polymerization initiator. Polymerization was carried out using art and di-t-butyl peroxide. After the polymerization, the gas was introduced into a high-pressure separator having a temperature of 200 ° C. and a pressure of 22 MPa to separate unreacted gas. Subsequently, the gas was introduced into a low-pressure separator having a temperature of 180 ° C. and a pressure of 0.04 MPa, and the remaining unreacted gas was separated. An umbrella-shaped nozzle was installed in the inlet pipe of the low-pressure separator, and a stirrer was installed in the low-pressure separator to perform stirring. The obtained molten resin was fed to an extruder and pelletized to obtain an ethylene-vinyl acetate copolymer resin. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1.

[実施例7]
低圧分離器の入り口配管は傘型ノズルを設置せずに直管とした以外は、実施例6と同様の操作により、実施例7のエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。
[Example 7]
The ethylene-vinyl acetate copolymer resin of Example 7 was obtained by the same operation as in Example 6 except that the inlet pipe of the low-pressure separator was a straight pipe without installing an umbrella nozzle. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1.

[実施例8]
チューブラーリアクターにて、エチレン及びエチレンに対して8mol%の酢酸ビニルを導入し、平均重合反応温度を216℃、重合圧力を264MPaとし、重合開始剤としてt−ブチル−ペルオキシ−2−エチルヘキサノアートを用いて重合した。重合後は、温度220℃、圧力20MPaの高圧分離器に導入し、未反応ガスを分離した。続いて、温度180℃、圧力0.04MPaの低圧分離器に導入し、残った未反応ガスを分離した。なお、低圧分離器の入り口配管には傘型のノズルを設置し、低圧分離器内には攪拌機を設置して攪拌を行った。得られた溶融樹脂を押出機にフィードし、ペレタイズを行うことで実施例8のエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。
[Example 8]
In a tubular reactor, ethylene and 8 mol% vinyl acetate with respect to ethylene were introduced, the average polymerization reaction temperature was 216 ° C., the polymerization pressure was 264 MPa, and t-butyl-peroxy-2-ethylhexano as a polymerization initiator. Polymerized using art. After the polymerization, the gas was introduced into a high-pressure separator having a temperature of 220 ° C. and a pressure of 20 MPa to separate unreacted gas. Subsequently, the gas was introduced into a low-pressure separator having a temperature of 180 ° C. and a pressure of 0.04 MPa, and the remaining unreacted gas was separated. An umbrella-shaped nozzle was installed in the inlet pipe of the low-pressure separator, and a stirrer was installed in the low-pressure separator to perform stirring. The obtained molten resin was fed to an extruder and pelletized to obtain an ethylene-vinyl acetate copolymer resin of Example 8. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1.

[比較例3]
低圧分離器の温度を100℃とし、低圧分離器の入り口配管は傘型ノズルを設置せずに直管とし、低圧分離器内の攪拌機を無しとした以外は、実施例8と同様の操作により、比較例3のエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。
[Comparative Example 3]
The operation was the same as in Example 8 except that the temperature of the low-pressure separator was set to 100 ° C., the inlet pipe of the low-pressure separator was a straight pipe without an umbrella nozzle, and the stirrer in the low-pressure separator was eliminated. , The ethylene-vinyl acetate copolymer resin of Comparative Example 3 was obtained. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1.

[比較例4]
高圧分離器の温度を280℃とし、低圧分離器の温度を280℃とし、低圧分離器の入り口配管は傘型ノズルを設置せずに直管とし、低圧分離器内の攪拌機を無しとした以外は、実施例8と同様の操作により、比較例4のエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。
[Comparative Example 4]
Except that the temperature of the high-pressure separator was set to 280 ° C, the temperature of the low-pressure separator was set to 280 ° C, the inlet pipe of the low-pressure separator was a straight pipe without an umbrella-shaped nozzle, and the stirrer in the low-pressure separator was eliminated. Obtained the ethylene-vinyl acetate copolymer resin of Comparative Example 4 by the same operation as in Example 8. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1.

[実施例9]
チューブラーリアクターにて、エチレン及びエチレンに対して4mol%の酢酸ビニルと0.8mol%のプロピレンを導入し、平均重合反応温度を229℃、重合圧力を240MPaとし、重合開始剤としてt−ブチル−ペルオキシ−2−エチルヘキサノアートとジ−t−ブチルペルオキシドを用いて重合した。重合後は、温度230℃、圧力22MPaの高圧分離器に導入し、未反応ガスを分離した。続いて、温度130℃、圧力0.04MPaの低圧分離器に導入し、残った未反応ガスを分離した。なお、低圧分離器の入り口配管には傘型のノズルを設置し、低圧分離器内には攪拌機を設置して攪拌を行った。得られた溶融樹脂を押出機にフィードし、ペレタイズを行うことで実施例9のエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。
[Example 9]
In a tubular reactor, 4 mol% vinyl acetate and 0.8 mol% propylene were introduced with respect to ethylene and ethylene, the average polymerization reaction temperature was 229 ° C., the polymerization pressure was 240 MPa, and t-butyl- was used as a polymerization initiator. Polymerization was carried out using peroxy-2-ethylhexanoate and di-t-butyl peroxide. After the polymerization, the gas was introduced into a high-pressure separator having a temperature of 230 ° C. and a pressure of 22 MPa to separate unreacted gas. Subsequently, the gas was introduced into a low-pressure separator having a temperature of 130 ° C. and a pressure of 0.04 MPa to separate the remaining unreacted gas. An umbrella-shaped nozzle was installed in the inlet pipe of the low-pressure separator, and a stirrer was installed in the low-pressure separator to perform stirring. The obtained molten resin was fed to an extruder and pelletized to obtain an ethylene-vinyl acetate copolymer resin of Example 9. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1.

[実施例10]
チューブラーリアクターにて、エチレン及びエチレンに対して2mol%の酢酸ビニルと1.2mol%のプロピレンを導入し、平均重合反応温度を230℃、重合圧力を240MPaとし、重合開始剤としてt−ブチル−ペルオキシ−2−エチルヘキサノアートとジ−t−ブチルペルオキシドを用いて重合した。重合後は、温度190℃、圧力24MPaの高圧分離器に導入し、未反応ガスを分離した。続いて、温度180℃、圧力0.04MPaの低圧分離器に導入し、残った未反応ガスを分離した。なお、低圧分離器の入り口配管には傘型のノズルを設置し、低圧分離器内には攪拌機を設置して攪拌を行った。得られた溶融樹脂を押出機にフィードし、ペレタイズを行うことで実施例10のエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。
[Example 10]
In a tubular reactor, 2 mol% vinyl acetate and 1.2 mol% propylene were introduced with respect to ethylene and ethylene, the average polymerization reaction temperature was 230 ° C., the polymerization pressure was 240 MPa, and t-butyl- was used as a polymerization initiator. Polymerization was carried out using peroxy-2-ethylhexanoate and di-t-butyl peroxide. After the polymerization, the gas was introduced into a high-pressure separator having a temperature of 190 ° C. and a pressure of 24 MPa to separate unreacted gas. Subsequently, the gas was introduced into a low-pressure separator having a temperature of 180 ° C. and a pressure of 0.04 MPa, and the remaining unreacted gas was separated. An umbrella-shaped nozzle was installed in the inlet pipe of the low-pressure separator, and a stirrer was installed in the low-pressure separator to perform stirring. The obtained molten resin was fed to an extruder and pelletized to obtain an ethylene-vinyl acetate copolymer resin of Example 10. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1.

[比較例5]
エチレン及びエチレンに対して15mol%の酢酸ビニルを導入し、平均重合反応温度を210℃、重合圧力を265MPaとし、低圧分離器の温度を100℃とし、低圧分離器の入り口配管は傘型ノズルを設置せずに直管とし、低圧分離器内の攪拌機を無しとした以外は、実施例8と同様の操作により、比較例5のエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。なお、溶融伸度は、溶融後の樹脂が自重により垂れ下がり測定不可であった。また、インフレーション成形は、バブルが垂れ下がりエアーリングに接触するため、製膜不可であった。
[Comparative Example 5]
15 mol% vinyl acetate was introduced with respect to ethylene and ethylene, the average polymerization reaction temperature was 210 ° C., the polymerization pressure was 265 MPa, the temperature of the low pressure separator was 100 ° C, and the inlet piping of the low pressure separator was an umbrella nozzle. The ethylene-vinyl acetate copolymer resin of Comparative Example 5 was obtained by the same operation as in Example 8 except that the straight pipe was used without installation and the stirrer in the low-pressure separator was eliminated. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1. The melt elongation could not be measured because the melted resin hung down due to its own weight. Inflation molding was not possible because the bubbles hung down and came into contact with the air ring.

[比較例6]
エチレン及びエチレンに対して1mol%の酢酸ビニルと0.5mol%のプロピレンを導入し、平均重合反応温度を240℃、重合圧力を210MPaとし、低圧分離器の温度を260℃とし、低圧分離器の入り口配管は傘型ノズルを設置せずに直管とし、低圧分離器内の攪拌機を無しとした以外は、実施例10と同様の操作により、比較例6のエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。なお、インフレーション成形は、バブルが輪切れするため製膜不可であった。
[Comparative Example 6]
1 mol% vinyl acetate and 0.5 mol% propylene were introduced with respect to ethylene and ethylene, the average polymerization reaction temperature was 240 ° C., the polymerization pressure was 210 MPa, the temperature of the low pressure separator was 260 ° C., and the low pressure separator The ethylene-vinyl acetate copolymer resin of Comparative Example 6 was used in the same operation as in Example 10 except that the inlet pipe was a straight pipe without installing an umbrella-shaped nozzle and the stirrer in the low-pressure separator was eliminated. Obtained. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1. Inflation molding was not possible because the bubbles were broken.

[比較例7]
エチレン及びエチレンに対して1mol%の酢酸ビニルと1.4mol%のプロピレンを導入し、重合圧力を210MPaとし、低圧分離器の温度を260℃とし、低圧分離器の入り口配管は傘型ノズルを設置せずに直管とし、低圧分離器内の攪拌機を無しとした以外は、実施例10と同様の操作により、比較例7のエチレン−酢酸ビニル共重合体樹脂を得た。得られたエチレン−酢酸ビニル共重合体樹脂の物性及び特性を上記に示す方法で測定した。測定結果を表1に示す。なお、インフレーション成形は、バブルが輪切れするため製膜不可であった。
[Comparative Example 7]
1 mol% vinyl acetate and 1.4 mol% propylene were introduced with respect to ethylene and ethylene, the polymerization pressure was 210 MPa, the temperature of the low pressure separator was 260 ° C, and the inlet pipe of the low pressure separator was equipped with an umbrella type nozzle. The ethylene-vinyl acetate copolymer resin of Comparative Example 7 was obtained by the same operation as in Example 10 except that the straight pipe was used instead of the straight pipe and the stirrer in the low pressure separator was eliminated. The physical characteristics and characteristics of the obtained ethylene-vinyl acetate copolymer resin were measured by the method shown above. The measurement results are shown in Table 1. Inflation molding was not possible because the bubbles were broken.

本発明のエチレン−酢酸ビニル共重合体樹脂は、製膜加工性に優れ、フィルムとしたときに外観に優れるため、農業用ポリオレフィンフィルム、包装用フィルム、シーラント用途などに好適に用いられる。 The ethylene-vinyl acetate copolymer resin of the present invention has excellent film-forming processability and excellent appearance when made into a film, and is therefore suitably used for agricultural polyolefin films, packaging films, sealant applications and the like.

Claims (9)

3質量%以上30質量%以下の酢酸ビニル単位を含むエチレン−酢酸ビニル共重合体樹脂であって、
前記エチレン−酢酸ビニル共重合体樹脂は、下記工程(1)〜(4)を有する試験方法により得られる、吸光度の比AIRと吸光度の比BIRとの比率(AIR/BIR)が0.80以上1.40以下である、エチレン−酢酸ビニル共重合体樹脂。
工程(1):前記エチレン−酢酸ビニル共重合体樹脂を用いて下記作製条件にて試験フィルムを作成する工程
工程(2):前記試験フィルムを、フィルム検査装置を用いて、測定間隔を0.1mm、凹凸検出サイズを最長径0.2mm以上1.0mm以下とする条件により、検出される部分A及び検出されない部分Bを検知する工程
工程(3):前記部分Aの核部分の顕微赤外吸収測定(透過法)により965cm-1の吸光度と、720cm-1の吸光度の比AIRを求める工程
工程(4):前記部分Bの顕微赤外吸収測定(透過法)により965cm-1の吸光度と、720cm-1の吸光度の比BIRを求める工程
<作製条件>
単軸縦型押出機を用いて、シリンダー温度140℃、ダイス温度140℃で混練し、Tダイ法によって引き取り速度4m/minで、厚さ50μm、幅100mmの試験フィルムを得る。なお、前記単軸縦型押出機のスクリュー出口にはフィルターは使用せず、ブレーカープレートのみを挟んで試験フィルムを作成する。
An ethylene-vinyl acetate copolymer resin containing 3% by mass or more and 30% by mass or less of vinyl acetate units.
The ethylene-vinyl acetate copolymer resin has a ratio (A IR / B IR ) of the absorbance ratio A IR to the absorbance ratio B IR obtained by the test method having the following steps (1) to (4). An ethylene-vinyl acetate copolymer resin having a ratio of 0.80 or more and 1.40 or less.
Step (1): A step of preparing a test film using the ethylene-vinyl acetate copolymer resin under the following production conditions. Step (2): The test film is measured at intervals of 0 using a film inspection device. Step of detecting the detected portion A and the undetected portion B under the condition of 1 mm and the maximum unevenness detection size of 0.2 mm or more and 1.0 mm or less Step (3): Microinfrared of the core portion of the portion A absorption measurement and the absorbance of the (transmission method) by 965 cm -1, step step (4) determining the ratio a IR absorbance of 720 cm -1: absorbance of the partial microscopic infrared absorption measurement of B (transmission method) by 965 cm -1 and a step of determining the ratio B IR absorbance of 720 cm -1 <Preparation conditions>
A test film having a cylinder temperature of 140 ° C. and a die temperature of 140 ° C. is kneaded using a single-screw vertical extruder, and a test film having a thickness of 50 μm and a width of 100 mm is obtained by a T-die method at a take-up speed of 4 m / min. A filter is not used at the screw outlet of the single-screw vertical extruder, and a test film is prepared by sandwiching only the breaker plate.
前記部分Aが、前記試験フィルム中、1個/5m2以上100個/5m2以下である、請求項1に記載のエチレン−酢酸ビニル共重合体樹脂。 The ethylene-vinyl acetate copolymer resin according to claim 1, wherein the portion A is 1 piece / 5 m 2 or more and 100 pieces / 5 m 2 or less in the test film. 前記部分Aのうち、最大長径が0.4mm以上1.0mm以下の凹凸を有する部分Abが、前記試験フィルム中、1個/5m2以上40個/5m2以下である、請求項1又は2に記載のエチレン−酢酸ビニル共重合体樹脂。 Claim 1 or claim 1, wherein the portion A b having irregularities having a maximum major axis of 0.4 mm or more and 1.0 mm or less is 1 piece / 5 m 2 or more and 40 pieces / 5 m 2 or less in the test film. The ethylene-vinyl acetate copolymer resin according to 2. 前記エチレン−酢酸ビニル共重合体樹脂が、0.5g/10min以上4.0g/10min以下のメルトフローレイトを有する、請求項1〜3のいずれか1項に記載のエチレン−酢酸ビニル共重合体樹脂。 The ethylene-vinyl acetate copolymer according to any one of claims 1 to 3, wherein the ethylene-vinyl acetate copolymer resin has a melt flow rate of 0.5 g / 10 min or more and 4.0 g / 10 min or less. resin. 前記エチレン−酢酸ビニル共重合体樹脂が、8.0以下の分子量分布(Mw/Mn)を有する、請求項1〜4のいずれか1項に記載のエチレン酢酸ビニル共重合体樹脂。 The ethylene-vinyl acetate copolymer resin according to any one of claims 1 to 4, wherein the ethylene-vinyl acetate copolymer resin has a molecular weight distribution (Mw / Mn) of 8.0 or less. 請求項1〜5のいずれか1項に記載のエチレン−酢酸ビニル共重合体を含むフィルム。 A film containing the ethylene-vinyl acetate copolymer according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載のエチレン−酢酸ビニル共重合体を含む包装用フィルム。 A packaging film containing the ethylene-vinyl acetate copolymer according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載のエチレン−酢酸ビニル共重合体を含む積層フィルム。 A laminated film containing the ethylene-vinyl acetate copolymer according to any one of claims 1 to 5. 3質量%以上30質量%以下の酢酸ビニル単位を含むエチレン−酢酸ビニル共重合体樹脂を含有するフィルムであって、
前記フィルムは、下記工程(2’)〜(4’)を有する試験方法により得られる、吸光度の比A’IRと吸光度の比B’IRとの比率(A’IR/B’IR)が0.80以上1.40以下である、フィルム。
工程(2’):前記フィルムを、フィルム検査装置を用いて、測定間隔を0.1mm、凹凸検出サイズを最長径0.2mm以上1.0mm以下とする条件により、検出される部分A及び検出されない部分Bを検知する工程
工程(3’):前記部分Aの核部分の顕微赤外吸収測定(透過法)により965cm-1の吸光度と、720cm-1の吸光度の比A’IRを求める工程
工程(4’):前記部分Bの顕微赤外吸収測定(透過法)により965cm-1の吸光度と、720cm-1の吸光度の比B’IRを求める工程
A film containing an ethylene-vinyl acetate copolymer resin containing 3% by mass or more and 30% by mass or less of vinyl acetate units.
The film is obtained by the test method having the following steps (2 ') - (4'), the ratio of IR 'ratio B of IR and absorbance' ratio A absorbance (A 'IR / B' IR) is 0 A film that is .80 or more and 1.40 or less.
Step (2'): A portion A and detection of the film using a film inspection device under the conditions that the measurement interval is 0.1 mm and the unevenness detection size is 0.2 mm or more and 1.0 mm or less in the longest diameter. step step (3 ') for detecting a portion B which are not: the absorbance of the 965 cm -1 by microscopic infrared absorption measurement of the nuclear portion (transmission method) of the portion a, the ratio a of the absorbance at 720 cm -1' obtaining a IR step (4 '): and the absorbance of 965 cm -1 by microscopic infrared absorption measurement (transmission method) of the portion B, the ratio B of the absorbance at 720 cm -1' obtaining a IR
JP2020101515A 2019-07-19 2020-06-11 Ethylene-vinyl acetate copolymer resin and film Active JP6933755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021087646A JP2021143337A (en) 2019-07-19 2021-05-25 Ethylene-vinyl acetate copolymer resin and film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019133500 2019-07-19
JP2019133500 2019-07-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021087646A Division JP2021143337A (en) 2019-07-19 2021-05-25 Ethylene-vinyl acetate copolymer resin and film

Publications (2)

Publication Number Publication Date
JP2021017579A true JP2021017579A (en) 2021-02-15
JP6933755B2 JP6933755B2 (en) 2021-09-08

Family

ID=74171426

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020101515A Active JP6933755B2 (en) 2019-07-19 2020-06-11 Ethylene-vinyl acetate copolymer resin and film
JP2021087646A Pending JP2021143337A (en) 2019-07-19 2021-05-25 Ethylene-vinyl acetate copolymer resin and film

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021087646A Pending JP2021143337A (en) 2019-07-19 2021-05-25 Ethylene-vinyl acetate copolymer resin and film

Country Status (3)

Country Link
JP (2) JP6933755B2 (en)
KR (1) KR102289608B1 (en)
CN (1) CN112239517B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115043972A (en) * 2021-03-08 2022-09-13 旭化成株式会社 Ethylene-vinyl acetate copolymer, and molded body, sheet and foam containing the ethylene-vinyl acetate copolymer
CN115043971A (en) * 2021-03-08 2022-09-13 旭化成株式会社 Ethylene-vinyl acetate copolymer, and molded body, sheet and foam containing the ethylene-vinyl acetate copolymer
JP7445032B2 (en) 2022-02-02 2024-03-06 旭化成株式会社 Ethylene-vinyl acetate copolymer resin, film, molded product, foam, and sheet
JP7451662B2 (en) 2021-12-23 2024-03-18 旭化成株式会社 Ethylene-vinyl acetate copolymer resins, molded bodies, and foamed bodies

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022035988A (en) * 2020-08-21 2022-03-04 旭化成株式会社 Ethylene-vinyl acetate copolymer resin, and molding and film including the same
CN114522637A (en) * 2022-01-06 2022-05-24 浙江大学 Method and device for separating vinyl acetate by heat pump extractive distillation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289191A (en) * 1976-01-21 1977-07-26 Sumitomo Chem Co Ltd Production of improved ethylene polymer
WO1999062987A1 (en) * 1998-05-29 1999-12-09 Mitsubishi Plastics, Inc. Polyolefin film for stretch packaging
JP2004161881A (en) * 2002-11-13 2004-06-10 Tosoh Corp Ethylene-vinyl acetate copolymer film
JP2017078136A (en) * 2015-10-21 2017-04-27 旭化成株式会社 Ethylene-vinyl acetate copolymer resin, sheet molding prepared therewith, solar cell sealing material, solar cell module, and method for producing ethylene-vinyl acetate copolymer resin
JP2017119816A (en) * 2015-12-29 2017-07-06 ハンファ トータル ペトロケミカル カンパニー リミテッド Method for producing polyethylene or polyethylene-vinyl acetate copolymer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3936922B2 (en) 2003-04-10 2007-06-27 日本ポリオレフィン株式会社 Protective film and manufacturing method thereof
KR20160080453A (en) * 2014-12-29 2016-07-08 한화토탈 주식회사 Method for manufacturing ethylene vinyl acetate copolymer for solar cell encapsulant and the resin obtained by the same
KR101748971B1 (en) * 2015-12-24 2017-06-20 한화토탈 주식회사 Method for manufacturing ethylene vinyl acetate copolymer for solar cell encapsulant and the resin obtained by the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289191A (en) * 1976-01-21 1977-07-26 Sumitomo Chem Co Ltd Production of improved ethylene polymer
WO1999062987A1 (en) * 1998-05-29 1999-12-09 Mitsubishi Plastics, Inc. Polyolefin film for stretch packaging
JP2004161881A (en) * 2002-11-13 2004-06-10 Tosoh Corp Ethylene-vinyl acetate copolymer film
JP2017078136A (en) * 2015-10-21 2017-04-27 旭化成株式会社 Ethylene-vinyl acetate copolymer resin, sheet molding prepared therewith, solar cell sealing material, solar cell module, and method for producing ethylene-vinyl acetate copolymer resin
JP2017119816A (en) * 2015-12-29 2017-07-06 ハンファ トータル ペトロケミカル カンパニー リミテッド Method for producing polyethylene or polyethylene-vinyl acetate copolymer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115043972A (en) * 2021-03-08 2022-09-13 旭化成株式会社 Ethylene-vinyl acetate copolymer, and molded body, sheet and foam containing the ethylene-vinyl acetate copolymer
CN115043971A (en) * 2021-03-08 2022-09-13 旭化成株式会社 Ethylene-vinyl acetate copolymer, and molded body, sheet and foam containing the ethylene-vinyl acetate copolymer
JP7451662B2 (en) 2021-12-23 2024-03-18 旭化成株式会社 Ethylene-vinyl acetate copolymer resins, molded bodies, and foamed bodies
JP7445032B2 (en) 2022-02-02 2024-03-06 旭化成株式会社 Ethylene-vinyl acetate copolymer resin, film, molded product, foam, and sheet

Also Published As

Publication number Publication date
CN112239517B (en) 2024-01-09
KR20210010375A (en) 2021-01-27
CN112239517A (en) 2021-01-19
JP2021143337A (en) 2021-09-24
JP6933755B2 (en) 2021-09-08
KR102289608B1 (en) 2021-08-17

Similar Documents

Publication Publication Date Title
JP6933755B2 (en) Ethylene-vinyl acetate copolymer resin and film
KR101737140B1 (en) Novel ldpe enabling high output and good optics when blended with other polymers
KR101769633B1 (en) Ldpe for use as a blend component in shrinkage film applications
JP6138927B2 (en) Ethylene polymer for extrusion coating
US10889697B2 (en) Polyethylene composition for pipe applications with improved sagging and extrusion properties
US8916667B2 (en) Ethylene-based polymers and processes to make the same
EP2894195B1 (en) Polyethylene composition for pipe applications with improved sagging properties
RU2667528C2 (en) Polyethylene-based composition and articles made therefrom
KR20150065750A (en) Ethylene-based polymers and processes to make the same
WO2013083285A1 (en) A new polyethylene
AU2014372845A1 (en) Polyethylene composition for pipe applications with improved sagging properties
WO2012170526A1 (en) Improved resin compositions for extrusion coating
EP3088458B1 (en) Polyethylene composition suitable for pipe applications
KR20190043152A (en) Novel compositions and methods
CN111065659A (en) High pressure polymerization process for preparing ethylene copolymers
CN107810224A (en) Radical initiator composition is used for the purposes for reducing the gel in polythene material
JP6780922B2 (en) Resin compositions, films, multilayer structures and packaging materials
WO2016014281A1 (en) A polyethylene blend composition and film made therefrom
WO2017055336A1 (en) Polypropylene pipes with improved pressure resistance
EP4063408B1 (en) Method for producing ethylene-acrylic acid copolymer
JP2022136971A (en) Ethylene-vinyl acetate copolymer, and film comprising the same
WO2023222658A1 (en) Multilayer polyethylene film
JP2022035988A (en) Ethylene-vinyl acetate copolymer resin, and molding and film including the same
JP2013227460A (en) Crosslinked polyethylene resin article, and polyethylene resin and polyethylene resin composition thereof, used for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200925

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200925

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210525

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210525

C876 Explanation why request for accelerated appeal examination is justified

Free format text: JAPANESE INTERMEDIATE CODE: C876

Effective date: 20210527

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210601

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210602

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210618

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210622

C305 Report on accelerated appeal examination

Free format text: JAPANESE INTERMEDIATE CODE: C305

Effective date: 20210624

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210625

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210709

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210805

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210819

R150 Certificate of patent or registration of utility model

Ref document number: 6933755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150