JP2021016787A - 非接触非侵襲治療装置 - Google Patents

非接触非侵襲治療装置 Download PDF

Info

Publication number
JP2021016787A
JP2021016787A JP2020120466A JP2020120466A JP2021016787A JP 2021016787 A JP2021016787 A JP 2021016787A JP 2020120466 A JP2020120466 A JP 2020120466A JP 2020120466 A JP2020120466 A JP 2020120466A JP 2021016787 A JP2021016787 A JP 2021016787A
Authority
JP
Japan
Prior art keywords
frequency voltage
electrode
low
application circuit
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020120466A
Other languages
English (en)
Inventor
アンドチ ガボール
Gabor Andocs
アンドチ ガボール
道雄 竹内
Michio Takeuchi
道雄 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateyama Kagaku Kogyo Co Ltd
Original Assignee
Tateyama Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateyama Kagaku Kogyo Co Ltd filed Critical Tateyama Kagaku Kogyo Co Ltd
Publication of JP2021016787A publication Critical patent/JP2021016787A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Electrotherapy Devices (AREA)

Abstract

【課題】患部全体に均一にプラズマを照射して非接触で治療するための非接触非侵襲治療装置を提供する。【解決手段】プラズマを含むガス流を生成し、ガス流を出口開口部104Aから患部P1に向かって噴射する非接触非侵襲治療装置1は、プラズマ原料ガス供給空間にプラズマ原料ガスを供給し、出口開口部104Aに向かうガス流を発生させるガス供給装置4と、プラズマ原料ガス供給空間に対して低周波電圧を印加する低周波電圧印加回路2、及び、高周波電圧を印加する高周波電圧印加回路3と、を有する。【選択図】図1

Description

本発明は、非接触非侵襲治療装置に関し、特に、患部にプラズマを照射して治療するための非接触非侵襲治療装置に関する。
従来より、生体の患部に対する治療方法として、患部にプラズマを照射する方法や、患部に電磁波を照射する方法が知られている。これに対して、例えば、特許文献1には、標的組織の表面又は内部に絶縁電極を配置し、この絶縁電極と対向するように電極を設けて、電極間に電圧を付加し局所プラズマ放電を発生させ、標的組織に電界治療を適用する装置が開示されている。さらに、同文献には、電極に伝導性円盤電極を用いたとき、組織内の電界の大きさは、電極の半径に反比例することが示されており、高い電界を発生させるためには、電極の半径を小さくする必要がある。
特開2017−504404号公報
例えば、癌が進行して皮膚を破って創傷を形成し、腫瘤が壊死・自壊して形成した癌性皮膚潰瘍においては創に細菌が感染し不快な臭気を生じる。癌性皮膚潰瘍では主な臨床症状として出血、滲出液、痛みがあるため患部に接触式の治療装置を適用することが出来ず、ケア治療が難しく患者のクオリティ・オブ・ライフ(QOL)が著しく低下する。このような出血、滲出液、痛みを伴う細菌感染した難治性皮膚潰瘍においては創傷の治療と殺菌を非接触で行える治療装置が必要である。また、潰瘍が広範囲に広がる場合には、患部全体を確実に治療する治療装置が求められるが、治療範囲が広がるほど、均一な治療を安定的に行うことは、困難である。
本発明は、上記の課題に鑑みなされたものであり、患部全体に均一に低温大気圧プラズマを照射して非接触且つ非侵襲で治療するための非接触非侵襲治療装置を提供することである。
本発明の非接触非侵襲治療装置は、低温大気圧プラズマを含むガス流を生成し、当該ガス流を出口開口部から患部に向かって噴射する非接触非侵襲治療装置であって、プラズマ原料ガス供給空間にプラズマ原料ガスを供給し、出口開口部に向かうガス流を発生させるガス供給装置と、プラズマ原料ガス供給空間に対して、低周波電圧を印加する低周波電圧印加回路、及び、高周波電圧を印加する高周波電圧印加回路と、を有することを特徴とする。
上記構成の本発明によれば、プラズマ原料ガスが供給されたプラズマ原料ガス供給空間内に対して、低周波電圧印加回路で低周波電圧を、高周波電圧印加回路で高周波電圧を印加することにより患部表面に広範囲に均一な低温大気圧プラズマを照射することができる。低温大気圧プラズマの照射により、患部表面の癌細胞や感染症の原因である細菌を死滅させることや、患部表面上の血液の凝固、皮膚創傷の治癒ができる。更に、発明者らは、高周波電圧を印加して発生させた低温大気圧プラズマは、癌細胞の死滅において、更に効果的であることを確認した。
本発明において、好ましくは、さらに、プラズマ原料ガス供給空間を挟んで出口開口部の反対側に設けられた第1の電極を有し、低周波電圧印加回路は、第1の電極に前記低周波電圧を印加し、高周波電圧印加回路は、第1の電極に前記高周波電圧を印加する。
上記構成の本発明によれば、高周波と低周波とを混合して、プラズマ原料ガス供給空間に電圧を印加するため、第1の電極で均一な放電が起こり、プラズマ原料ガス供給空間内で均一な低温大気圧プラズマが発生する。これにより、患部表面に広範囲に均一な低温大気圧プラズマを照射することができ、低温大気圧プラズマにより、患部表面の癌細胞や感染症の原因である細菌を死滅させることや、患部表面上の血液の凝固、皮膚創傷の治癒ができる。
本発明において、好ましくは、さらに、高周波電圧印加回路と第1の電極に接続したインピーダンス整合回路を有し、高周波電圧印加回路が第1の電極に高周波電圧を印加することにより、ガス流を介して患部に流れる高周波電流を発生させる。
上記構成の本発明によれば、高周波電圧印加回路と、第1の電極とに接続されたインピーダンス整合回路を有することにより、高周波電圧印加回路と低温大気プラズマのインピーダンスを整合させることができる。高周波電圧印加回路と低温大気プラズマのインピーダンスが整合することにより、プラズマ原料ガス供給空間内の低温大気圧プラズマに高周波電流(RF電流)を流すことが可能であるため、患部に低温大気圧プラズマを照射させながら、患部にRF電流を流すことができる。患部に低温大気圧プラズマを介してRF電流を流すことにより、患部に対して非接触且つ非侵襲な方法で、患部表面及び患部の内部にRF電流による治療ができる。これにより、患部内部にRFエネルギーを蓄積させることによる血行の促進や、患部表面及び患部内部の癌細胞をアポトーシス誘導ができる。
本発明において、好ましくは、さらに、出口開口部を画成し、内部にプラズマ原料ガス供給空間が形成されたガイド部材を有し、プラズマ原料ガス供給空間は、下流に向かって内部空間の断面積が縮小するように構成されている。
上記構成の本発明によれば、ガイド部材により発生した低温大気圧プラズマが集束されて、出口開口部から患部に噴射されるため、高密度かつ均一な低温大気圧プラズマを含むガスを患部に照射することができる。
本発明において、好ましくは、さらに、プラズマ原料ガス供給空間を挟んで出口開口部の反対側に設けられた第1の電極と、プラズマ原料ガス供給空間、又は、ガス流の流路の周囲に設けられた第2の電極と、を有し、低周波電圧印加回路は、第1の電極に低周波電圧を印加し、高周波電圧印加回路は、第2の電極に高周波電圧を印加する。
上記構成の本発明によれば、第1の電極に低周波電圧を印加することで低温大気圧プラズマを発生させることができ、プラズマ原料ガス供給空間内の第1の電極で発生した低温大気圧プラズマを含むにガス流に対して、第2の電極により高周波電圧を印加することで、患部表面に広範囲に均一な低温大気圧プラズマを照射することができる。加えて、プラズマ原料ガス供給空間、又は、ガス流の流路の周囲に高周波の電場が形成されるため、発生したプラズマの維持やプラズマの発生を行うことができる。また、低周波電圧を印加する電極と高周波電圧を印加する電極が分かれているため、プラズマ原料ガス供給空間の大きさに関して、低温大気圧プラズマの維持できる時間や維持できる距離やインピーダンスの高さを考慮した設計上の制限を低減することができ、患部の治療に適用可能な汎用性の高い治療装置が実現できる。
本発明において、好ましくは、さらに、第2の電極は、前記第1の電極よりも下流側に配置され、高周波電圧印加回路が第2の電極に高周波電圧を印加することにより、ガス流を介して患部に流れる高周波電流を発生させる。
上記構成の本発明によれば、第2の電極が第1の電極よりも出口開口部近傍に配置されるため、第1の電極の近傍で高周波電圧を印加する場合と比較して、プラズマ原料ガス供給空間内の低温大気圧プラズマのインピーダンスが低い位置で、高周波電圧を印加することができる。これにより、高周波電圧印加回路とプラズマ原料ガス供給空間内の低温大気圧プラズマのインピーダンスの整合が容易となるため、患部にプラズマを照射させながら、患部にRF電流を流すことができる。患部に低温大気圧プラズマを介してRF電流を流すことにより、患部に対して非接触且つ非侵襲な方法で、患部表面及び患部の内部にRF電流による治療が可能となる。これにより、患部内部にRFエネルギーを蓄積させることによる血行の促進や、患部表面及び患部内部の癌細胞をアポトーシス誘導させることができる。
本発明において、好ましくは、さらに、高周波電圧印加回路と第2の電極とに接続された変圧器を有し、変圧器は、高周波電圧印加回路によって印加された電圧を増大させて第2の電極に印加する。
上記構成の本発明によれば、変圧器により高周波電圧印加回路で印加する電圧を増大させて第2の電極に印加できるため、プラズマ原料ガス供給空間内の低温大気圧プラズマのインピーダンスが比較的高い場合でも、低温大気圧プラズマにRF電流を流すことができる。これにより、患部に低温大気圧プラズマを介してRF電流を流すことができ、患部に対して非接触且つ非侵襲な方法で、患部表面及び患部の内部にRF電流による治療ができる。
本発明において、好ましくは、変圧器は、第1のコイルと第2のコイルにより構成される共振変圧器であり、第1のコイルは高周波電圧印加回路に接続され、第2のコイルは第2の電極に接続されている。
上記構成の本発明によれば、変圧器を第1のコイルと第2のコイルで構成することで、比較的簡単な構造で第2の電極に高い電圧を印加することができる。
本発明において、好ましくは、さらに、出口開口部を画成し、内部にプラズマ原料ガス供給空間が形成されたガイド部材を有し、プラズマ原料ガス供給空間は、下流に向かって内部空間の断面積が縮小するように構成された集束部と、集束部及び出口開口部を連通する延伸部とを有し、第1のコイル及び第2のコイルは延伸部を取り囲むように設けられている。
上記構成の本発明によれば、延伸部の低温大気圧プラズマと高周波電圧印加回路のインピーダンスが整合される。さらには、発生した低温大気圧プラズマにRFエネルギーを誘導的に結合させることができる。
また、ガイド部材により発生した低温大気圧プラズマが集束されて、出口開口部から患部に噴射されるため、高密度かつ均一な低温大気圧プラズマを含むガスを患部に照射することができる。
本発明において、好ましくは、ガイド部材内のガスの流れを横切るように磁場を発生させる磁場発生機構をさらに有する。
プラズマ中に流れる電流が大きくなると、ピンチ効果によりプラズマが中心部に集中してしまう。これに対して、上記構成の本発明によれば、磁場発生機構により発生された磁場がピンチ効果を乱し、低温大気圧プラズマを均一化させることができる。
本発明において、好ましくは、患部に向けて噴出されるガス流の温度を測定する温度センサ、及び、温度センサにより測定された温度に基づき、患部に向けて噴出されるガス流の温度を制御するガス温度制御装置を含む、ガス温度制御機構をさらに有する。
治療装置を作動し続けると低温大気圧プラズマの温度が上昇し、この低温大気圧プラズマが患部に照射されるとやけど等の原因となる。これに対して、上記構成の本発明によれば、ガス温度制御機構により、患部に照射される低温大気圧プラズマの温度が一定に保たれ、やけど等を防止できる。
本発明によれば、患部全体に均一に低温大気圧プラズマを照射して非接触且つ非侵襲で治療するための非接触非侵襲治療装置を提供することができる。
本発明の第1実施形態による非接触非侵襲治療装置の構成を示す図である。 図1に示す非接触非侵襲治療装置における第1の電極を構成するアルミナセラミックス誘電体及び銅電極の形状を示す水平断面図である。 本発明の第1実施形態による非接触非侵襲治療装置における第1の電極を構成する別のアルミナセラミックス誘電体及び銅電極の形状を示す水平断面図である。 本発明の第2実施形態による非接触非侵襲治療装置の構成を示す図である。
<第1実施形態>
以下、本発明の非接触非侵襲治療装置の実施形態を、図面を参照しながら詳細に説明する。なお、本発明の治療装置は、低温大気圧プラズマを発生させて、難治性皮膚潰瘍やがん性皮膚潰瘍などの患部を非接触且つ非侵襲でプラズマ治療及びRF治療するためのものである。なお、治療の対象は人間に限られず、動物にも適用できる。また、適用可能な疾病も癌などに限られず、プラズマ治療及びRF治療により治療可能な疾病に対して適用できる。
図1は、本発明の第1実施形態による非接触非侵襲治療装置の構成を示す図である。図1に示すように、本実施形態の非接触非侵襲治療装置1は、ガス供給装置4と、低周波電圧印加回路2と、高周波電圧印加回路3と、周波数混合インピーダンス整合回路28と、ガス供給装置4と、第1の電極6と、接地電極8と、ガイド部材10と、磁場発生機構12と、ガス温度制御機構14と、を備える。
第1の電極6は、平板状のアルミナセラミックス誘電体60と、アルミナセラミックス誘電体60の上面に形成された銅電極62と、これらアルミナセラミックス誘電体60及び銅電極62の上面を覆うように形成されたエポキシ樹脂絶縁体64と、を有する。なお、誘電体60はアルミナセラミックスに限らず、石英ガラス、チタン酸バリウムを用いてもよい。また、第1の電極6は銅に限らずアルミニウム、金、チタニウム、グラフェンなどの他の良導体(電気抵抗率ρが10nΩ・m〜100nΩ・mの値にある金属)を用いてもよい。図2は、図1に示す非接触非侵襲治療装置における第1の電極を構成するアルミナセラミックス誘電体及び銅電極の形状を示す水平断面図である。図2に示すように、アルミナセラミックス誘電体60は円形状である。これに対して、銅電極62は先端が鋭角な三角形が中心部から等角度間隔で放射状に延びる形状を有している。プラズマを発生するための電極は電極に鋭角な外縁があるほど、電界強度が増加し、プラズマを発生しやすい。このため、本実施形態では、図2に示すように、銅電極62が、先端が鋭角な三角形が中心部から等角度間隔で放射状に延びる形状であるため、電界強度が増加してプラズマの発生を促進できる。なお、銅電極の形状は図2に示す形状に限定されず、例えば、図3に示すように銅電極162を複数の直線を直交させて形成する網目状電極としてもよい。また、より均一な放電をするため、銅電極162の網目の形は正方形が望ましい。なお、銅電極の形状はこれに限定されない。後述するように、銅電極62には周波数混合インピーダンス整合回路28が接続されている。周波数混合インピーダンス整合回路28によって低周波電圧及び高周波電圧が混合された混合電圧が銅電極62に印加される。
接地電極8は板状の電極であり、患者Pの下方に配置されている。第1の電極6は患者Pの上方に配置されており、これにより第1の電極6と接地電極8との間に患者Pが挟み込まれた状態となっている。また、第1の電極6と患者Pとの間にはガイド部材10が配置されている。また、接地電極8と患者Pの間は、患者の固定や冷却などを目的としてウォーターボーラスのような第1の電極6と接地電極8の放電を阻害しない軟性材料を備えてもよい。接地電極8を第1の電極6に対して出口開口部104A側に配置することで、安定的に低温大気圧プラズマを発生させることができる。
低周波電圧印加回路2は、第1の電源20と、第1の電源20に接続された低周波電圧源22と、を備える。低周波電圧源22は第1の電源20から電力が供給され、低周波高電圧の電圧を発生させる。具体的には、本実施形態では、10〜25kHz、10〜20kVの電圧を発生させる。
高周波電圧印加回路3は、第2の電源24と、第2の電源24に接続された高周波電圧源26と、を備える。高周波電圧源26は第2の電源24から電力が供給され、高周波の電圧を発生させる。具体的には、本実施形態では、13.56MHz、5kVの電圧を発生させる。
なお、本実施形態でいう低周波とは、周波数が10k〜100kHzのことをいい、高周波とは、周波数が13.56MHzのことをいう。また、低周波の電圧は、10k〜20kVが好ましく、高周波の電圧の上限値としては10kVが好ましい。
周波数混合インピーダンス整合回路28は、高周波電圧源26で発生された高周波と、低周波電圧源22で発生された低周波を混合させる回路である。周波数混合インピーダンス整合回路28は、低周波電圧源22及び高周波電圧源26に接続されている。周波数混合インピーダンス整合回路28は、低周波電圧源22で発生された低周波電圧が高周波電圧源26まで到達し、高周波電圧源26が破壊されること、及び、高周波電圧源26で発生された高周波電圧が低周波電圧源22まで到達することを防止するように構成されている。更に、周波数混合インピーダンス整合回路28は、低周波電圧印加回路2と高周波電圧印加回路3による出力側のインピーダンスと発生した低温大気圧プラズマによる入力側のインピーダンスを整合させるように構成され、これにより低温大気圧プラズマを介してRF電流を患部P1まで到達させることができる。
ガイド部材10は、漏斗状のガラス管により構成されている。ガイド部材10内には、逆円錐状の空間からなる集束部102と、集束部102の下方に連続する円柱状の空間からなる延伸部104とが形成され、プラズマ原料ガス供給空間として機能している。延伸部104の直径は5〜100mmが好ましく、本実施形態では100mmである。
ガイド部材10の集束部102の側部に当たる位置には、供給口106が形成されている。供給口106には、ガス供給装置4から延びる配管4Aが接続されている。集束部102は逆円錐状であり、延伸部104に向かって内部空間の水平方向の断面積が縮小するように構成されている。集束部102には、ガス供給装置4からプラズマ原料ガスが供給されるとともに、低周波電圧印加回路2及び高周波電圧印加回路3によりプラズマ原料ガスに電圧が印加される。延伸部104の下部には下方に向かって開口する出口開口部104Aが形成されている。ガイド部材10は、出口開口部104Aが患者Pの患部P1に対向するように患者Pの上方に配置されている。出口開口部104Aの反対側には、第1の電極6が設けられ、ガイド部材10の上部を塞ぐように第1の電極のアルミナセラミックス誘電体60が配置されている。
磁場発生機構12は、本実施形態では、一対のネオジウム磁石120、122により構成されている。これら一対のネオジウム磁石120、122は、ガイド部材10内の延伸部104を水平方向に挟むように配置されている。これら一対のネオジウム磁石120、122は、一方のネオジウム磁石120のN極が、他方のネオジウム磁石122のS極と対向するように配置されている。これにより、一対のネオジウム磁石120、122の間には、延伸部104内のガスの流れを横切るような磁場が発生する。一対のネオジウム磁石120、122により発生する磁場は、ガスの流れに対して垂直であることが好ましい。磁場発生機構12はネオジウム磁石に限られないことは言うまでもなく、ネオジウム磁石の配列は一対ではなくハルバッハ配列してもよいし、四重極に配列してもよいし、マグネットリングを使用してもよい。
ガス供給装置4は、ガス源40と、ガス源40に接続された流量制御装置42とを備える。ガス源40は、ヘリウム、アルゴンなどのプラズマ原料ガスのガス源である。流量制御装置42は、ガス供給装置4から配管4Aに供給されるプラズマ原料ガスの流量を制御する。
ガス温度制御機構14は、温度センサ140と、ガス温度制御装置142とを含む。温度センサ140は、例えば、患者Pの患部P1近傍、又は、ガイド部材10の出口開口部104Aの近傍に設けられており、患者Pの患部P1に向けて噴出されるガスの温度を測定する。ガス温度制御装置142は、配管4Aに設けられており、温度センサ140で検出されたガスの温度に基づき、ガス源40から配管4Aを流れるガスを冷却する。具体的には、患者Pの正常な組織を傷つけないように、患者Pの患部P1に向かって噴出されるプラズマガスの温度が20〜40℃となるようにガスの温度をフィードバック制御する。
なお、本実施形態では、ガス源40から配管4Aを流れるガスの温度を調整しているが、患部P1に向けて噴出されるガスの温度を制御する方法はこれに限られない。例えば、熱源となる周波数混合インピーダンス整合回路28内のコイルに冷却装置を設け、コイルを冷却してもよいし、第1の電極6のガイド部材10の反対側に冷却装置を設け、第1の電極を冷却してもよい。冷却装置は、空気循環による空気冷却を用いた装置でもよいし、冷却水や冷却オイルを用いた装置でもよい。また、ガイド部材10に冷却機構を設け、ガイド部材10内のガスを調整してもよい。さらに、ガイド部材10に供給するガスに冷却用ガスを混合することによりガスの温度を調整してもよい。
次に、本実施形態の非接触非侵襲治療装置1の動作について説明する。
非接触非侵襲治療装置1を起動すると、ガス供給装置4におけるガス源40からプラズマ原料ガスが配管4Aを介してガイド部材10の集束部102へ供給される。この際、ガス供給装置4から供給されるプラズマ原料ガスの流量は流量制御装置42により制御される。
また、非接触非侵襲治療装置1を起動すると、低周波電圧印加回路2の低周波電圧源22が低周波高電圧を発生し、また、高周波電圧印加回路3の高周波電圧源26において高周波低電圧を発生させる。高周波電圧源26において発生した高周波低電圧は、低周波電圧源22において発生した低周波高電圧と周波数混合インピーダンス整合回路28において混合される。そして、周波数混合インピーダンス整合回路28において低周波高電圧と高周波低電圧が混合された混合電圧が第1の電極6に印加される。第1の電極6に電荷が蓄積され正、負に分極する。これにより、第1の電極6の周辺に生じた電場によってプラズマ原料ガス中の原子はイオン化され低温大気圧プラズマが発生する。この際、第1の電極6に印加される電圧が低周波高電圧と高周波低電圧が混合された混合電圧であるため、第1の電極6において均一な放電が起こり、均一に低温大気圧プラズマが発生する。
このようにして発生した低温大気圧プラズマはプラズマ原料ガスとともに混合ガスとして、延伸部104を通り、出口開口部104Aから噴射される。ここで、磁場発生機構12により延伸部104内の混合ガスの流れを横切るような磁場が発生しており、磁場によりピンチ効果が乱されるため、混合ガスが延伸部104を流れる際に混合ガス内の低温大気圧プラズマが均一化される。
出口開口部104Aから噴射された混合ガスは、患者Pの患部P1の表面に照射される。この際、上記の通り、混合ガスにおいて低温大気圧プラズマが均一化されているため、患者Pの患部P1の表面に対して低温大気圧プラズマを均一な状態で存在させることができる。低温大気圧プラズマには、癌細胞を死滅させる効果があるため、体表面の癌細胞を死滅させることができる。また、低温大気圧プラズマには殺菌効果があるため、患部P1の感染症の原因である細菌を死滅させることもできる。また、低温大気圧プラズマには血液中の成分を凝固させる効果があるため、患部P1における出血を止めることもできる。
さらに、患部P1の表面に存在する混合ガスは、電離によって荷電粒子を含むガスであるため、電気伝導性に優れる。周波数混合インピーダンス整合回路28により、出力側である低周波電圧印加回路2と高周波電圧印加回路3のインピーダンスと入力側である発生した低温大気圧プラズマのインピーダンスを整合させると、第1の電極6から患部P1の表面の低温大気圧プラズマまでRF電流が流れ、患部の内部にRFエネルギーを蓄積させ血行を促進や、癌細胞をアポトーシス誘導ができる。加えて、患者Pの下方に配置された接地電極8と第1の電極6により患者Pの患部P1を垂直に挟むことで、患部P1の内部に安定的にRF電流を流すことができる。
このようにして非接触非侵襲治療装置1を作動させると、時間の経過とともに低周波電圧印加回路2や第1の電極6の温度が上昇し、噴射される混合ガスの温度が上昇するおそれがある。これに対して、本実施形態では、温度センサ140により噴射される混合ガスの温度を測定し、これに基づき、ガス温度制御装置142によりプラズマ原料ガスを冷却するため、混合ガスの温度が一定に保たれる。
本実施形態によれば、以下の効果が奏される。
本実施形態では、低周波電圧印加回路2と高周波電圧印加回路3により低周波電圧及び高周波電圧を集束部102のプラズマ原料ガスに印加することにより低温大気圧プラズマが発生し、患部P1に広範囲に均一な低温大気圧プラズマを照射することが可能になる。このため、低温大気圧プラズマにより患部P1の表面の癌細胞や、感染症の原因である細菌の死滅や患部P1の表面上の血液の凝固、皮膚創傷の治癒ができる。
本実施形態では、高周波電圧印加回路3が第1の電極6に高周波電圧を印加することで、RF電流を発生させている。低温大気圧プラズマを含むガス(混合ガス)は荷電粒子を含み電気伝導性に優れるため、周波数混合インピーダンス整合回路28によって低周波電圧印加回路2と高周波電圧印加回路3のインピーダンスと混合ガスのインピーダンスが整合されることで、第1の電極6から患部P1の表面のプラズマまでRF電流が流れる。このRF電流により、患部P1の内部にRFエネルギーが蓄積され、血行の促進や、患部P1の表面及び内部の癌細胞に対してアポトーシス誘導ができる。
また、本実施形態では、下流に向かって内部空間の断面積が縮小するように構成された集束部102が内部に形成されたガイド部材10を有し、ガイド部材10の出口開口部104Aが患部P1に対向するように配置されている。これにより、集束部102及び延伸部104に発生した低温大気圧プラズマが集束されて、出口開口部104Aから患部P1に噴射されるため、高密度かつ均一な低温大気圧プラズマを含むガスを患部P1に照射することができる。
低温大気圧プラズマ中に流れる電流が大きくなると、電流が発生する磁場により低温大気圧プラズマが集束する(ピンチ効果)。これに対して、本実施形態では、ガイド部材10の延伸部104内のガスの流れを横切るように磁場を発生させる磁場発生機構12を有する。これにより、磁場発生機構12により発生された磁場がピンチ効果を乱し、低温大気圧プラズマを均一化させることができる。
非接触非侵襲治療装置を作動し続けると低温大気圧プラズマの温度が上昇し、この低温大気圧プラズマが患部に照射されるとやけど等の原因となる。これに対して、本実施形態では、患部P1に向けて噴出されるガスの温度を測定する温度センサ140と、温度センサ140により測定された温度に基づき、患部P1に向けて噴出されるガスの温度を制御するガス温度制御装置142を含む、ガス温度制御機構14を有する。これにより、患部P1に照射される低温大気圧プラズマの温度が一定に保たれ、やけど等を防止できる。
<第2実施形態>
第1実施形態では、プラズマ原料ガス供給空間に低周波電圧と高周波電圧とを混合した混合電圧を印加する場合について説明したが、本発明はこれに限らず、低周波電圧と高周波電圧とをプラズマ原料ガス供給空間に別々に印加する場合にも本発明を適用可能である。以下、本発明の第2実施形態について説明する。以下の説明において、第1実施形態と同様又は対応する構成については同じ符号を付して詳細な説明を省略する。
図4は、本発明の第2実施形態による非接触非侵襲治療装置の構成を示す図である。図4に示すように、本実施形態の非接触非侵襲治療装置500は、低周波電圧印加回路510と、高周波電圧印加回路520と、ガス供給装置4と、第1の電極6と、接地電極8と、第2の電極機構540と、ガイド部材10と、可変コンデンサ550と、磁場発生機構12と、ガス温度制御機構14と、を備える。
低周波電圧印加回路510は、第1の電源20と、第1の電源20に接続された低周波電圧源22と、低周波電圧源22と第1の電極6の銅電極62に接続されている高周波遮断フィルタ512と、を備える。
低周波電圧源22は、第1の電源20から電力が供給され、低周波高電圧の電圧を発生させる。具体的には、本実施形態では、10〜25kHz、10〜20kVの電圧を発生させるが、低周波の電圧は、10k〜20kVが好ましい。なお、本実施形態でいう低周波とは、周波数が10k〜100kHzのことをいう。
高周波遮断フィルタ512は、低周波の電流は通過するものの、RF電流を減衰させるようなフィルタである。高周波遮断フィルタ512は、後述する第2の電極機構540で生じたRF電流が第1の電極6に接続された回路に流れ、第1の電源20を破壊するのを防ぐ。なお、本実施形態では、13.56MHzの周波数を遮断できるフィルタを使用する。
ガイド部材10には、第1実施形態同様、逆円錐状の空間からなる集束部102と、集束部102の下方に連続する円柱状の空間からなる延伸部104とが形成されている。また、ガイド部材10の上部を塞ぐように第1の電極6のアルミナセラミックス誘電体60が配置されている。
第1の電極6は、アルミナセラミックス誘電体及び銅電極で構成され、図3に示すように、アルミナセラミックス誘電体60は円形状である。これに対して、銅電極162は、複数の直線を直交させて形成する網目状電極である。プラズマを発生するための電極は電極に鋭角な外縁があるほど、電界強度が増加し、プラズマを発生しやすいことから、本形状であれば、電界強度が増加してプラズマの発生を促進できる。更に、銅電極162全体で均一な放電をするために、網目の形状が正方形であることが望ましい。なお、銅電極の形状はこれに限定されない。
ガイド部材10の形状は、第1実施形態に類似しており、ガイド部材10内には、逆円錐状の空間からなる集束部102と、集束部102の下方に連続する円柱状の空間からなる延伸部104とが形成され、プラズマ原料ガス供給空間として機能している。集束部102の供給口106には、ガス供給装置4から延びる配管4Aを介して、ガス供給装置4からプラズマ原料ガスが供給される。ガイド部材10は、出口開口部104Aが患者Pの患部P1に対向するように患者Pの上方に配置されている。出口開口部104Aの反対側には、第1の電極6が設けられ、ガイド部材10の上部を塞ぐように第1の電極のアルミナセラミックス誘電体60が配置されている。
第2の電極機構540は、高周波電圧印加回路520に接続された第1のコイル542と、第1のコイル542とともに共振変圧器を構成する第2のコイル544と、容量電極(第2の電極)546と、を備える。第1のコイル542の半径は、第2のコイル544の半径よりも大きく、第1のコイル542の巻き数は、第2のコイル544の巻き数より少ない。第1のコイル542及び第2のコイル544は、ガイド部材10の延伸部104を包囲し、同軸上に配置されている。第1のコイル542は、ガイド部材10の延伸部104の上端部近傍に配置されており、第2のコイル544は第1のコイル542の下方に第1のコイル542と間隔をあけて配置されている。第1のコイル542は、第2のコイル544に近接して配置されているが、電気的に接続されていない。
容量電極546は、銅箔のハーフリング容量電極であり、ガイド部材10の延伸部104を包囲するように、第2のコイル544よりも下方に配置されている。容量電極546は、第2のコイル544の一方の端子に接続されている。第2のコイル544の他方の端子は接地されている。なお、容量電極546の形状はこれに限定されず、薄い板状の銅箔を延伸部に重ねて巻き付けてもよい。
可変コンデンサ550は、第1のコイル542と第2のコイル544が13.56MHzで共振させるために調整を行うコンデンサである。可変コンデンサ550は第2のコイルに並列に接続される。
高周波電圧印加回路520は、第2の電源24と、第2の電源24に接続された高周波電圧源26と、を備える。高周波電圧印加回路520は、第2の電極機構540の第1のコイル542に接続されている。高周波電圧源26は第2の電源24から電力が供給され、高周波高電圧の電圧を発生させる。具体的には、本実施形態では、13.56MHz、5kVの電圧を発生させる。なお、本実施形態では、高周波とは、周波数が13.56MHzのことをいう。高周波の電圧の上限値としては10kVが好ましい。
磁場発生機構12は、第1実施形態と同様の構成であるが、ガイド部材10内のガス流を横切るような磁場を発生させるように、容量電極546を挟んで一対のネオジウム磁石が配置されている。
次に、本実施形態の非接触非侵襲治療装置500の動作について説明する。
非接触非侵襲治療装置500を起動すると、ガス供給装置4におけるガス源40からプラズマ原料ガスが配管4Aを介してガイド部材10の集束部102へ供給される。この際、ガス供給装置4から供給されるプラズマ原料ガスの流量は流量制御装置42により制御される。
また、非接触非侵襲治療装置500を起動すると、低周波電圧印加回路510において低周波電圧源22が低周波高電圧の電圧を発生させ、その電圧が第1の電極6に印加される。第1の電極6に電圧が印加されると、第1の電極6に電荷が蓄積され正、負に分極する。これにより、第1の電極6の周辺に生じた電場によってプラズマ原料ガス中の原子はイオン化され低温大気圧プラズマが発生する。このようにして発生した低温大気圧プラズマはプラズマ原料ガスとともに混合ガスとして、延伸部104に到達する。
また、非接触非侵襲治療装置500を起動すると、同時に高周波電圧印加回路520においても高周波電圧源26が高周波高電圧を発生させる。その電圧が、第2の電極機構540の第1のコイル542に印加されると、第2のコイル544が共振し、印加された電圧が、第2のコイル544の巻き数に比例して増大される。第2のコイル544は、容量電極546に増大された高周波高電圧の電圧を印加する。
容量電極546は、高周波高電圧の電圧によって、電荷が蓄積され正、負に分極する。このとき、容量電極546の周辺には電場が生じる。延伸部104に到達したプラズマ原料ガス中の原子は、この電場によってイオン化され低温大気圧プラズマが発生する。また、第1の電極6の周辺で発生した低温大気圧プラズマに高周波電圧が印加されることで、低温大気圧プラズマが均一化される。更に、容量電極546が、第1の電極6よりも出口開口部104Aの近傍、すなわち、延伸部104に配置されることで、低温大気圧プラズマのインピーダンスが低い位置で高周波電圧印加回路520から高周波電圧が印加されるため、低温大気圧プラズマを介してRF電流を患部P1まで到達させることができる。
このようにして発生したプラズマはプラズマ原料ガスとともに混合ガスとして、延伸部104を通り、出口開口部104Aから噴射される。ここで、磁場発生機構12により延伸部104内の混合ガスの流れを横切るような磁場が発生しており、磁場によりピンチ効果が乱されるため、混合ガスが延伸部104を流れる際に混合ガス内の低温大気圧プラズマが均一化される。
出口開口部104Aから噴射された混合ガスは、患者Pの患部P1の表面に照射される。この際、上記の通り、混合ガスにおいて低温大気圧プラズマが均一化されているため、患者Pの患部P1の表面に対して低温大気圧プラズマを均一な状態で存在させることができる。また、プラズマを含むガス(混合ガス)は荷電粒子を含み電気伝導性に優れるため、患部P1に照射される低温大気圧プラズマを介してRF電流が患部P1の表面及び内部に流れる。低温大気圧プラズマには、癌細胞を死滅させる効果があるため、体表面の癌細胞を死滅させることができる。また、低温大気圧プラズマには殺菌効果があるため、患部P1の感染症の原因である細菌を死滅させることもできる。また、低温大気圧プラズマには血液中の成分を凝固させる効果があるため、患部P1における出血を止めることもできる。
また、本実施形態では、第1実施形態同様、患部P1を挟むように第1の電極6及び容量電極546と、接地電極8とが配置されている。両者間に電圧を印加すると、第1の電極6及び容量電極546から患部P1の表面のプラズマまでRF電流が到達し、RF電流が患部P1に安定的に流れる。
本実施形態によれば、以下の効果が奏される。
上記構成の本発明によれば、第1の電極6に低周波電圧を、第2の電極機構540の容量電極546に高周波電圧を印加し、広範囲に均一な低温大気圧プラズマを発生させている。低周波電圧を印加する第1の電極6と高周波電圧を印加する第2の電極機構540とが分かれているため、プラズマ原料ガス供給空間の大きさに関して、低温大気圧プラズマの維持できる時間や維持できる距離やインピーダンスの高さを考慮した設計上の制限を低減でき、患部の治療に適用可能な汎用性の高い治療装置にすることができる。加えて、ガイド部材の出口開口部104A近傍に高周波の電場が形成されるため、発生したプラズマの維持やプラズマの発生を活性化させることができる。
また、本実施形態では、第1の電極6よりも第2の電極機構540の容量電極546が出口開口部104Aに近い延伸部104に配置されている。プラズマ原料ガス供給空間内の低温大気圧プラズマのインピーダンスが低い位置で、高周波電圧を印加することができるため、出力側である高周波電圧印加回路520のインピーダンスと、入力側であるガイド部材10内の低温大気圧プラズマのインピーダンスの整合が容易となり、患部P1に低温大気圧プラズマを照射させながら、患部P1にRF電流を流すことができる。これにより患部内部にRFエネルギーを蓄積させることによる血行の促進や、患部表面及び患部内部の癌細胞をアポトーシス誘導ができる。
また、本実施形態では、第1のコイル542及び第1のコイル542と共振変圧器を構成する第2のコイル544とを有し、容量電極546が第2のコイル544に接続されている。このような構成により、第1のコイル542及び第2のコイル544により、容量電極546に印加する高周波電圧を比較的簡単な構造で増大させることができるため、ガイド部材10内の低温大気圧プラズマのインピーダンスが比較的高い状態でも、RF電流を発生した低温大気圧プラズマに流すことができる。そして、RF電流は、低温大気圧プラズマを介して患部P1まで到達するため、患部P1の表面及び内部の治療が可能となる。
また、第2の電極機構540の第1のコイル542および第2のコイル544は、延伸部104を取り囲むように設けられている。
本実施形態によれば、入力側であるガイド部材10の延伸部104に発生した低温大気圧プラズマのインピーダンスと出力側である高周波電圧印加回路3のインピーダンスを整合させ、さらには、低温大気圧プラズマにRFエネルギーを誘導的に結合させることができる。これにより、患部P1の血行を促進や、癌細胞のアポトーシス誘導を行うことができる。
さらに、本実施形態の上記構成によれば、ガイド部材10の延伸部104に、高周波の電場が形成され、延伸部104でイオン化された原子や電子が加速する。このため、第1の電極で発生した低温大気圧プラズマが維持されやすく、更には、延伸部104内で発生した電子がプラズマ原料ガスに衝突することでも低温大気圧プラズマを発生させることができる。
加えて、集束部102により発生した低温大気圧プラズマが集束されて、出口開口部104Aから患部P1に噴射されるため、高密度かつ均一な低温大気圧プラズマを含むガスを患部P1に照射することができる。
プラズマ中に流れる電流が大きくなると、電流が発生する磁場によりプラズマが集束する(ピンチ効果)。これに対して、本実施形態では、ガイド部材10の延伸部104内のガスの流れを横切るように磁場を発生させる磁場発生機構12を有する。これにより、磁場発生機構12により発生された磁場がピンチ効果を乱し、低温大気圧プラズマを均一化させることができる。
非接触非侵襲治療装置を作動し続けると低温大気圧プラズマの温度が上昇し、この低温大気圧プラズマが患部に照射されるとやけど等の原因となる。これに対して、本実施形態では、患部P1に向けて噴出されるガスの温度を測定する温度センサ140と、温度センサ140により測定された温度に基づき、患部P1に向けて噴出されるガスの温度を制御するガス温度制御装置142を含む、ガス温度制御機構14を有する。これにより、患部P1に照射される低温大気圧プラズマの温度が一定に保たれ、やけど等を防止できる。
なお、本実施形態では、ガイド部材10の上方を覆うように第1の電極6を配置し、患者Pの下方に接地電極8を配置しているが、本発明はこれに限られず、ガス供給装置から供給されたプラズマ原料ガスに電圧を印加できれば、その配置は問わない。
また、本実施形態では、第2の電極機構540をガイド部材10の延伸部104を包囲するように設けているが、集束部102を包囲するように設けてもよい。
1 :非接触非侵襲治療装置
2 :低周波電圧印加回路
3 :高周波電圧印加回路
4 :ガス供給装置
4A :配管
6 :第1の電極
8 :接地電極
10 :ガイド部材
12 :磁場発生機構
14 :ガス温度制御機構
20 :第1の電源
22 :低周波電圧源
24 :第2の電源
26 :高周波電圧源
28 :周波数混合インピーダンス整合回路
40 :ガス源
42 :流量制御装置
60 :アルミナセラミックス誘電体
62 :銅電極
64 :エポキシ樹脂絶縁体
102 :集束部
104 :延伸部
104A :出口開口部
106 :供給口
120 :ネオジウム磁石
122 :ネオジウム磁石
140 :温度センサ
142 :ガス温度制御装置
162 :銅電極
500 :非接触非侵襲治療装置
510 :低周波電圧印加回路
512 :高周波遮断フィルタ
520 :高周波電圧印加回路
540 :第2の電極機構
542 :第1のコイル
544 :第2のコイル
546 :容量電極
550 :可変コンデンサ
P :患者
P1 :患部
ρ :電気抵抗率

Claims (11)

  1. 低温大気圧プラズマを含むガス流を生成し、当該ガス流を出口開口部から患部に向かって噴射する非接触非侵襲治療装置であって、
    プラズマ原料ガス供給空間にプラズマ原料ガスを供給し、前記出口開口部に向かう前記ガス流を発生させるガス供給装置と、
    前記プラズマ原料ガス供給空間に対して、低周波電圧を印加する低周波電圧印加回路、及び、高周波電圧を印加する高周波電圧印加回路と、
    を有することを特徴とする非接触非侵襲治療装置。
  2. さらに、前記プラズマ原料ガス供給空間を挟んで前記出口開口部の反対側に設けられた第1の電極を有し、
    前記低周波電圧印加回路は、前記第1の電極に前記低周波電圧を印加し、
    前記高周波電圧印加回路は、前記第1の電極に前記高周波電圧を印加する、
    請求項1に記載の非接触非侵襲治療装置。
  3. さらに、前記高周波電圧印加回路と前記第1の電極に接続したインピーダンス整合回路を有し、
    前記高周波電圧印加回路が前記第1の電極に高周波電圧を印加することにより、前記ガス流を介して前記患部に流れる高周波電流を発生させる、
    請求項2に記載の非接触非侵襲治療装置。
  4. さらに、前記出口開口部を画成し、内部に前記プラズマ原料ガス供給空間が形成されたガイド部材を有し、
    前記プラズマ原料ガス供給空間は、下流に向かって内部空間の断面積が縮小するように構成されている、
    請求項2又は3に記載の非接触非侵襲治療装置。
  5. さらに、前記プラズマ原料ガス供給空間を挟んで前記出口開口部の反対側に設けられた第1の電極と、
    前記プラズマ原料ガス供給空間、又は、前記ガス流の流路の周囲に設けられた第2の電極と、を有し、
    前記低周波電圧印加回路は、前記第1の電極に前記低周波電圧を印加し、
    前記高周波電圧印加回路は、前記第2の電極に前記高周波電圧を印加する、
    請求項1に記載の非接触非侵襲治療装置。
  6. さらに、前記第2の電極は、前記第1の電極よりも下流側に配置され、
    前記高周波電圧印加回路が前記第2の電極に高周波電圧を印加することにより、前記ガス流を介して患部に流れる高周波電流を発生させる、
    請求項5に記載の非接触非侵襲治療装置。
  7. さらに、前記高周波電圧印加回路と前記第2の電極とに接続された変圧器を有し、
    前記変圧器は、前記高周波電圧印加回路によって印加された電圧を増大させて前記第2の電極に印加する、
    請求項5又は6に記載の非接触非侵襲治療装置。
  8. 前記変圧器は、第1のコイルと第2のコイルにより構成される共振変圧器であり、
    前記第1のコイルは前記高周波電圧印加回路に接続され、
    前記第2のコイルは前記第2の電極に接続されている、
    請求項7に記載の非接触非侵襲治療装置。
  9. さらに、前記出口開口部を画成し、内部に前記プラズマ原料ガス供給空間が形成されたガイド部材を有し、
    前記プラズマ原料ガス供給空間は、下流に向かって内部空間の断面積が縮小するように構成された集束部と、前記集束部及び前記出口開口部を連通する延伸部とを有し、
    前記第1のコイル及び前記第2のコイルは前記延伸部を取り囲むように設けられている、
    請求項8に記載の非接触非侵襲治療装置。
  10. 前記ガイド部材内のガス流を横切るように磁場を発生させる磁場発生機構をさらに有する、
    請求項4又は9に記載の非接触非侵襲治療装置。
  11. 前記患部に向けて噴出されるガス流の温度を測定する温度センサ、及び、前記温度センサにより測定された温度に基づき、前記患部に向けて噴出されるガス流の温度を制御するガス温度制御装置を含む、ガス温度制御機構をさらに有する、
    請求項1〜10の何れか1項に記載の非接触非侵襲治療装置。
JP2020120466A 2019-07-19 2020-07-14 非接触非侵襲治療装置 Pending JP2021016787A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019133577 2019-07-19
JP2019133577 2019-07-19

Publications (1)

Publication Number Publication Date
JP2021016787A true JP2021016787A (ja) 2021-02-15

Family

ID=74563373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020120466A Pending JP2021016787A (ja) 2019-07-19 2020-07-14 非接触非侵襲治療装置

Country Status (1)

Country Link
JP (1) JP2021016787A (ja)

Similar Documents

Publication Publication Date Title
US10039927B2 (en) Cold plasma treatment devices and associated methods
US10170281B2 (en) System and method for plasma treatment using directional dielectric barrier discharge energy system
US9418820B2 (en) Cold plasma treatment devices and associated methods
RU2656333C1 (ru) Плазменный прибор со сменной разрядной трубкой
JP5828464B2 (ja) プラズマ照射処理装置の作動方法及び物質にプラズマ照射する方法
NL2017822B1 (en) Non-Thermal Plasma Device with electromagnetic compatibility control
WO2013040542A1 (en) Systems methods and machine readable programs for electric field and/or plasma-assisted onychomycosis treatment
WO2020219517A3 (en) Electrical stimulation for cancer treatment with internal and external electrodes
US11558953B2 (en) EMC control for pulsed high voltage source of a plasma device for medical treatment
KR101662160B1 (ko) 플라즈마를 이용한 피부 치료 장치
KR101813558B1 (ko) 프락셔널 플라즈마를 이용한 피부 치료장치
RU2314769C2 (ru) Способ бесконтактной дискретно-когерентной холодноплазменной коагуляции и устройство для его осуществления
JP7026226B2 (ja) フラクショナルプラズマを用いた皮膚治療裝置
CN107926106A (zh) 用于体的表面处理的电极装置和等离子处理设备
CN110996488A (zh) 一种医用等离子体射流装置
US20150273231A1 (en) Plasma system
KR101662156B1 (ko) 볼 타입 플라즈마 발생기를 이용한 피부 치료 장치
JP2021016787A (ja) 非接触非侵襲治療装置
JP2021525111A (ja) エバネッセント波によって腫瘍を治療するための装置
WO2014039647A1 (en) Plasma treatment system
US8478410B2 (en) Electronic neural resonator
KR20160139892A (ko) 브러시 타입 플라즈마 발생기를 이용한 두피 치료 장치
US20220125510A1 (en) Apparatus for application of evanescent waves to biological tissues
CN104582227B (zh) 一种可触式等离子体处理系统
KR102039358B1 (ko) 플라즈마 피부 처리 장치

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20200824