JP2021014605A - Hot-dip galvanized steel sheet and method for manufacturing alloyed hot-dip galvanized steel sheet - Google Patents

Hot-dip galvanized steel sheet and method for manufacturing alloyed hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP2021014605A
JP2021014605A JP2019128698A JP2019128698A JP2021014605A JP 2021014605 A JP2021014605 A JP 2021014605A JP 2019128698 A JP2019128698 A JP 2019128698A JP 2019128698 A JP2019128698 A JP 2019128698A JP 2021014605 A JP2021014605 A JP 2021014605A
Authority
JP
Japan
Prior art keywords
steel sheet
hot
dip galvanized
galvanized steel
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019128698A
Other languages
Japanese (ja)
Inventor
崇之 前田
Takayuki Maeda
崇之 前田
広司 入江
Koji Irie
広司 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2019128698A priority Critical patent/JP2021014605A/en
Priority to CN202080042860.5A priority patent/CN113950539A/en
Priority to EP20836013.1A priority patent/EP3967780A4/en
Priority to PCT/JP2020/025750 priority patent/WO2021006131A1/en
Priority to KR1020217041614A priority patent/KR20220008911A/en
Priority to US17/625,209 priority patent/US20220364214A1/en
Priority to MX2022000380A priority patent/MX2022000380A/en
Publication of JP2021014605A publication Critical patent/JP2021014605A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Abstract

To provide a method for manufacturing a hot-dip galvanized steel sheet, capable of stably manufacturing the hot-dip galvanized steel sheet used as the material of an alloyed hot-dip galvanized steel sheet having beautiful appearance using high Si containing steel, and a method for manufacturing the alloyed hot-dip galvanized steel sheet, capable of stably manufacturing the alloyed hot-dip galvanized steel sheet having beautiful appearance.SOLUTION: The method for manufacturing a hot-dip galvanized steel sheet comprises: the annealing step of reducing and annealing a steel sheet having a Si content of 1.0 mass% or more and 3.0 mass% or less at a temperature equal to or more than the A3 point of the steel sheet in an atmosphere having a dew point of -20°C or more; and the hot-dip galvanized step of entering the annealed steel sheet into a galvanization bath to form a galvanized layer on the surface of the steel sheet. The temperature of the steel sheet entered into the galvanization bath is 390°C or less. The method for manufacturing an alloyed hot-dip galvanized steel sheet includes the alloying step of alloying the galvanized layer formed on the hot-dip galvanized steel sheet obtained by the described method.SELECTED DRAWING: None

Description

本発明は、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法に関する。 The present invention relates to a hot-dip galvanized steel sheet and a method for manufacturing an alloyed hot-dip galvanized steel sheet.

近年、自動車用部材には、軽量化による燃費向上や衝突安全性能の向上を目的として、高張力鋼板が用いられている。高張力鋼板を製造するためには、鋼中に各種強化元素を含有させることが多い。 In recent years, high-strength steel plates have been used for automobile members for the purpose of improving fuel efficiency and collision safety performance by reducing weight. In order to manufacture high-strength steel sheets, various reinforcing elements are often contained in the steel.

このような強化元素としては、特に、MnおよびSiが安価で効果的な元素として知られている。しかしながら、これらのうちSiは、還元焼鈍中に鋼板表面へと外方酸化することで酸化皮膜を形成し、めっき時に溶融亜鉛との濡れ性を阻害し、不めっきや合金化ムラといった外観不良を発生させる。そのため、Si含有鋼では、良好な外観を有する合金化溶融亜鉛めっき鋼板を製造することが困難である。 As such strengthening elements, Mn and Si are known as inexpensive and effective elements. However, of these, Si forms an oxide film by externally oxidizing to the surface of the steel sheet during reduction annealing, hinders wettability with hot-dip zinc during plating, and causes poor appearance such as non-plating and uneven alloying. generate. Therefore, it is difficult to produce an alloyed hot-dip galvanized steel sheet having a good appearance with Si-containing steel.

美麗な外観を有するSi含有鋼の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板の製造方法として、以下のような方法が提案されている。 The following methods have been proposed as a method for producing a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet of Si-containing steel having a beautiful appearance.

例えば、特許文献1では、めっき浴への侵入板温を制御する方法が提案されている。具体的には、Si含有量が0.05重量%以上の鋼板を、浴温が440℃以上で且つAlを0.05〜0.5%含有する溶融亜鉛めっき浴に、350+30/t≦T(℃)≦420+30/t(式中、t:板厚(mm))で、T(℃)≦460を満たす侵入板温Tで浸漬してめっきする溶融亜鉛めっき鋼板の製造方法が提案されている。しかしながら、この条件では、不めっきの発生は抑制できるものの、めっき厚みが不均一で外観が美麗とならない場合がある。 For example, Patent Document 1 proposes a method of controlling the temperature of the plate entering the plating bath. Specifically, 350 + 30 / t ≦ T in a hot-dip galvanized bath having a Si content of 0.05% by weight or more and a bath temperature of 440 ° C. or more and an Al content of 0.05 to 0.5%. A method for producing a hot-dip galvanized steel sheet has been proposed in which a hot-dip galvanized steel sheet is immersed and plated at an intrusion plate temperature T satisfying T (° C.) ≤460 at (° C.) ≤420 + 30 / t (in the formula, t: plate thickness (mm)). There is. However, under this condition, although the occurrence of non-plating can be suppressed, the plating thickness may be non-uniform and the appearance may not be beautiful.

特許文献2では、酸化還元めっき法において、Si含有量が0.8〜2.5質量%の素地鋼板を用い、Fe系酸化膜厚さ、めっき浴温度、めっき浴侵入板温および浴中有効Al濃度を制御することで、美麗な外観を有する合金化溶融亜鉛めっき鋼板の製造方法が提案されている。しかしながら、酸化還元めっき法では、鋼板を酸化処理する工程が必要であり、酸化膜厚さを安定して適切に制御すること、酸化膜厚さに応じた還元量を適切に制御することが難しく、安定して美麗な外観を有する合金化溶融亜鉛めっき鋼板を製造することは困難である。 In Patent Document 2, in the redox plating method, a base steel sheet having a Si content of 0.8 to 2.5% by mass is used, and the Fe-based oxide film thickness, plating bath temperature, plating bath penetration plate temperature and effective in the bath A method for producing an alloyed hot-dip zinc-plated steel sheet having a beautiful appearance by controlling the Al concentration has been proposed. However, the redox plating method requires a step of oxidizing the steel sheet, and it is difficult to stably and appropriately control the oxide film thickness and to appropriately control the reduction amount according to the oxide film thickness. It is difficult to produce an alloyed hot-dip galvanized steel sheet having a stable and beautiful appearance.

特許文献3では、Si含有量が0.5〜2.0%の鋼板に、T(Zn)+100℃≦T≦T(Zn)+180℃且つ440℃≦T(Zn)≦470℃(式中、T:めっき浴侵入板温(℃)、T(Zn):めっき浴の浴温度(℃))を満たす、非常に高い侵入板温条件でめっきすることで、不めっきのない溶融亜鉛めっき鋼板を製造する方法が提案されている。この方法では、不めっきの発生は抑制できるものの、めっき浴中で合金化が進行することにより、めっき後のワイピングによってめっき付着量を適切に制御することが難しくなり、合金化ムラが発生することがある。 In Patent Document 3, T (Zn) + 100 ° C. ≤ T ≤ T (Zn) + 180 ° C. and 440 ° C. ≤ T (Zn) ≤ 470 ° C. (in the formula) on a steel sheet having a Si content of 0.5 to 2.0%. , T: Plating bath penetration plate temperature (° C), T (Zn): Plating bath bath temperature (° C)), by plating under extremely high penetration plate temperature conditions, hot-dip galvanized steel sheet without non-plating A method of manufacturing has been proposed. With this method, although the occurrence of non-plating can be suppressed, the progress of alloying in the plating bath makes it difficult to appropriately control the amount of plating adhesion by wiping after plating, and uneven alloying occurs. There is.

以上の方法の他に、Si含有鋼へのめっき法の一つとして高露点めっき法が知られている。高露点めっき法は、焼鈍炉内の雰囲気露点を上昇させることによって、鋼中のSiを内部酸化させ、外方酸化を抑制してめっきする方法である。高露点めっき法によれば、Si含有量が1.0質量%以上の高Si含有鋼でもめっきが可能となる。しかしながら、高露点めっき法を用いた場合において鋼板の焼鈍温度がA3点以上であると、得られた合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっき浴に浮遊するアッシュが付着したような外観となり、外観が著しく劣化するという問題がある。 In addition to the above methods, a high dew point plating method is known as one of the plating methods for Si-containing steel. The high dew point plating method is a method in which Si in steel is internally oxidized by raising the atmospheric dew point in the annealing furnace, and external oxidation is suppressed for plating. According to the high dew point plating method, even high Si-containing steel having a Si content of 1.0% by mass or more can be plated. However, when the annealing temperature of the steel sheet is A3 or higher when the high dew point plating method is used, the obtained alloyed hot-dip galvanized steel sheet has an appearance as if floating ash adheres to the hot-dip galvanized bath. There is a problem that the appearance is significantly deteriorated.

なお、特許文献4では、Si含有量が0.1質量%以下と比較的少ない鋼板を用い、めっき浴への鋼板侵入温度を制御することで、美麗な外観を有する合金化溶融亜鉛めっき鋼板の製造方法が提案されている。この方法では、用いられる鋼板のSi含有量が少なく、焼鈍時に形成される外方酸化量が少ないことから、上記高露点めっき法を用いずともめっきが可能であり、かつ、得られためっき鋼板に外観不良は発生しない。しかし、特許文献4に記載の方法で得られためっき鋼板は、鋼中のSi含有量が少ないため、十分な強度が得られないという問題がある。 In Patent Document 4, a steel sheet having a relatively low Si content of 0.1% by mass or less is used, and by controlling the temperature at which the steel sheet penetrates into the plating bath, the alloyed hot-dip galvanized steel sheet has a beautiful appearance. A manufacturing method has been proposed. In this method, since the Si content of the steel sheet used is low and the amount of external oxidation formed during annealing is small, plating is possible without using the above-mentioned high dew point plating method, and the obtained plated steel sheet can be plated. No appearance defects occur. However, the plated steel sheet obtained by the method described in Patent Document 4 has a problem that sufficient strength cannot be obtained because the Si content in the steel is low.

特開2000−303158号公報Japanese Unexamined Patent Publication No. 2000-303158 特開2010−189734号公報JP-A-2010-189734 特開2010−156029号公報JP-A-2010-156029 特開平7−216526号公報Japanese Unexamined Patent Publication No. 7-216526

以上のように、Si含有量が1.0質量%以上である高Si含有鋼の鋼板を用いた場合、美麗な外観を有する合金化溶融亜鉛めっき鋼板を安定して製造するのが困難であるという問題がある。 As described above, when a steel sheet of high Si-containing steel having a Si content of 1.0% by mass or more is used, it is difficult to stably produce an alloyed hot-dip galvanized steel sheet having a beautiful appearance. There is a problem.

本発明は、上記事情に鑑みてなされたものであり、その目的は、高Si含有鋼を用い、美麗な外観を有する合金化溶融亜鉛めっき鋼板の素材として用いることができる溶融亜鉛めっき鋼板を安定して製造することができる溶融亜鉛めっき鋼板の製造方法、および美麗な外観を有する合金化溶融亜鉛めっき鋼板を安定して製造することができる合金化溶融亜鉛めっき鋼板の製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to stabilize a hot-dip galvanized steel sheet that can be used as a material for an alloyed hot-dip galvanized steel sheet that uses high Si-containing steel and has a beautiful appearance. To provide a method for producing a hot-dip galvanized steel sheet, and a method for manufacturing an alloyed hot-dip galvanized steel sheet, which can stably produce an alloyed hot-dip galvanized steel sheet having a beautiful appearance. is there.

本発明者らは、種々検討した結果、上記目的は、以下の発明により達成されることを見出した。 As a result of various studies, the present inventors have found that the above object can be achieved by the following inventions.

本発明の一局面に係る溶融亜鉛めっき鋼板の製造方法は、Si含有量が1.0質量%以上3.0質量%以下である鋼板を、露点−20℃以上の雰囲気で前記鋼板のA3点以上の温度で還元焼鈍する焼鈍工程と、焼鈍後の前記鋼板を亜鉛めっき浴に侵入させ、前記鋼板の表面に亜鉛めっき層を形成する溶融亜鉛めっき工程と、を備え、前記めっき浴に侵入する前記鋼板の温度を390℃以下とする。 The method for producing a hot-dip galvanized steel sheet according to one aspect of the present invention is to prepare a steel sheet having a Si content of 1.0% by mass or more and 3.0% by mass or less in an atmosphere of a dew point of −20 ° C. or higher at point A3 of the steel sheet. It is provided with an annealing step of reducing and annealing at the above temperature and a hot-dip galvanizing step of invading the annealed steel sheet into a zinc plating bath to form a hot-dip galvanizing layer on the surface of the steel sheet, and invades the plating bath. The temperature of the steel sheet is 390 ° C. or lower.

本発明の他の一局面に係る合金化溶融亜鉛めっき鋼板の製造方法は、前記溶融亜鉛めっき鋼板の製造方法で得られる溶融亜鉛めっき鋼板に形成された前記亜鉛めっき層を合金化する合金化工程を備える。 The method for producing an alloyed hot-dip galvanized steel sheet according to another aspect of the present invention is an alloying step for alloying the zinc-plated layer formed on the hot-dip galvanized steel sheet obtained by the method for manufacturing a hot-dip galvanized steel sheet. To be equipped.

本発明によれば、高Si含有鋼を用い、美麗な外観を有する合金化溶融亜鉛めっき鋼板の素材として用いることができる溶融亜鉛めっき鋼板を安定して製造することができる。 According to the present invention, it is possible to stably produce a hot-dip galvanized steel sheet that can be used as a material for an alloyed hot-dip galvanized steel sheet having a beautiful appearance by using a high Si-containing steel.

また、本発明によれば、高Si含有鋼を用い、美麗な外観を有する合金化溶融亜鉛めっき鋼板を安定して製造することができる。 Further, according to the present invention, an alloyed hot-dip galvanized steel sheet having a beautiful appearance can be stably produced by using a high Si-containing steel.

図1は、焼鈍後の鋼板の断面の光学顕微鏡写真であり、同図(A)は焼鈍温度がA3点以上、同図(B)は焼鈍温度がA3点未満の場合を示す。FIG. 1 is an optical micrograph of a cross section of a steel sheet after annealing. FIG. 1A shows a case where the annealing temperature is A3 points or more, and FIG. 1B shows a case where the annealing temperature is less than A3 points.

本発明者らは、Si含有量が1.0質量%以上である高Si含有鋼の鋼板を用いた、美麗な外観を有する合金化溶融亜鉛めっき鋼板の製造方法について、以下のように検討を重ねた。 The present inventors have examined a method for producing an alloyed hot-dip galvanized steel sheet having a beautiful appearance using a high-Si-containing steel sheet having a Si content of 1.0% by mass or more as follows. Stacked.

高Si含有鋼の鋼板に安定して美麗な外観をもつめっき層を形成する方法として、焼鈍時の雰囲気露点を上昇させる高露点めっき法が知られている。高露点めっき法では、焼鈍炉内で鋼板全体が均一な雰囲気に晒されるため、めっきの外観およびめっき層の厚さが均一となる。 A high dew point plating method that raises the atmospheric dew point during annealing is known as a method for forming a plating layer having a stable and beautiful appearance on a steel plate containing high Si. In the high dew point plating method, the entire steel sheet is exposed to a uniform atmosphere in the annealing furnace, so that the appearance of plating and the thickness of the plating layer become uniform.

しかし、高露点めっき法でも焼鈍温度が当該鋼のA3点以上である場合、得られた合金化溶融亜鉛めっき鋼板の外観不良が発生することがあった。 However, even in the high dew point plating method, when the annealing temperature is A3 point or higher of the steel, the appearance of the obtained alloyed hot-dip galvanized steel sheet may be poor.

まず、この合金化溶融亜鉛めっき鋼板の外観について調査したところ、鋼板を亜鉛めっき浴に導くスナウトにおいて、亜鉛めっき浴上に浮遊するアッシュがめっき層に付着して外観不良が発生していることが判明した。 First, when the appearance of this alloyed hot-dip galvanized steel sheet was investigated, it was found that in the snout leading the steel sheet to the galvanized bath, ash floating on the galvanized bath adhered to the plating layer and the appearance was poor. found.

次に、焼鈍温度の影響を確認するため、高Si含有鋼の鋼板を、焼鈍雰囲気の露点を0℃とし、焼鈍温度をA3点未満およびA3点以上として焼鈍した。焼鈍後の鋼板の断面を光学顕微鏡で観察したところ、焼鈍温度がA3点以上の場合は、図1(A)に示すように鋼板表面に生成する内部酸化層が粒界酸化主体の状態となっていた。それに対し、焼鈍温度がA3点未満の場合は、図1(B)に示すように鋼板表面に生成する内部酸化層が粒内酸化主体の状態となっていた。すなわち、焼鈍温度がA3点以上の場合は、粒界酸化が主体となることで、鋼板表面に生成する酸化物量が増加したことが判明した。 Next, in order to confirm the influence of the annealing temperature, the steel sheet of the high Si-containing steel was annealed with the dew point of the annealing atmosphere set to 0 ° C. and the annealing temperature set to less than A3 point and A3 point or more. When the cross section of the steel sheet after annealing was observed with an optical microscope, when the annealing temperature was A3 or higher, the internal oxide layer formed on the surface of the steel sheet became a state mainly of grain boundary oxidation as shown in FIG. 1 (A). Was there. On the other hand, when the annealing temperature was less than the A3 point, the internal oxide layer formed on the surface of the steel sheet was mainly in-grain oxidation as shown in FIG. 1 (B). That is, it was found that when the annealing temperature was at the A3 point or higher, the amount of oxide formed on the surface of the steel sheet increased because the intergranular oxidation was the main component.

A3点以上での高温焼鈍時に、高露点めっき法で得られためっき鋼板に外観不良が発生するメカニズムは明確ではない。しかし、鋼板の内部酸化層の形態がA3点以下での焼鈍時には粒内酸化が主体であったのに対して、高温焼鈍時には粒界酸化が主体であったことから、内部酸化の形態が影響してスナウト内での鋼板表面とアッシュとの反応性が向上したこと、さらに高温焼鈍により鋼板表面の酸化物量が増加したことで、アッシュが鋼板表面に付着しやすくなったためであると推定される。 The mechanism by which appearance defects occur in the plated steel sheet obtained by the high dew point plating method during high-temperature annealing at A3 points or higher is not clear. However, while the morphology of the internal oxide layer of the steel sheet was mainly intragranular oxidation during annealing at the A3 point or less, intergranular oxidation was the main morphology during high temperature annealing, so the morphology of internal oxidation has an effect. It is presumed that this is because the reactivity between the steel sheet surface and the ash in the snout was improved, and the amount of oxide on the steel sheet surface was increased by high-temperature annealing, which made it easier for the ash to adhere to the steel sheet surface. ..

これらの調査、検討結果を踏まえ、さらに鋭意検討を行ったところ、焼鈍温度をA3点以上とし、かつ、高露点めっき法でめっきを施す場合において、めっき浴への侵入板温を390℃以下とすることにより、高Si含有鋼を用いた場合であっても、美麗な外観を持つ合金化溶融亜鉛めっき鋼板を安定して得られることが明らかとなった。 Based on these investigations and examination results, further diligent examination revealed that the annealing temperature was A3 or higher, and when plating was performed by the high dew point plating method, the temperature of the plate entering the plating bath was 390 ° C or lower. As a result, it was clarified that an alloyed hot-dip galvanized steel sheet having a beautiful appearance can be stably obtained even when a high Si-containing steel is used.

本発明者らは、これらの知見に基づき本発明を完成させた。 The present inventors have completed the present invention based on these findings.

以下、本発明の実施形態について具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be specifically described, but the present invention is not limited thereto.

(溶融亜鉛めっき鋼板の製造方法)
本実施形態に係る溶融亜鉛めっき鋼板の製造方法は、Si含有量が1.0質量%以上3.0質量%以下である鋼板を、露点−20℃以上の雰囲気で前記鋼板のA3点以上の温度で還元焼鈍する焼鈍工程と、焼鈍後の前記鋼板を亜鉛めっき浴に侵入させ、前記鋼板の表面に亜鉛めっき層を形成する溶融亜鉛めっき工程と、を備え、前記めっき浴に侵入する前記鋼板の温度を390℃以下とする。これにより、合金化溶融亜鉛めっき鋼板の素材として用いることができる溶融亜鉛めっき鋼板が安定して得られる。
(Manufacturing method of hot-dip galvanized steel sheet)
The method for producing a hot-dip galvanized steel sheet according to the present embodiment is to prepare a steel sheet having a Si content of 1.0% by mass or more and 3.0% by mass or less in an atmosphere of a dew point of −20 ° C. or higher and having an A3 point or more of the steel sheet. The steel sheet is provided with an annealing step of reducing and annealing at a temperature and a hot-dip galvanizing step of invading the annealed steel sheet into a zinc plating bath to form a hot-dip galvanizing layer on the surface of the steel sheet. The temperature of is 390 ° C. or lower. As a result, a hot-dip galvanized steel sheet that can be used as a material for the alloyed hot-dip galvanized steel sheet can be stably obtained.

以下、本実施形態に係る溶融亜鉛めっき鋼板の製造方法をこのように規定した理由について説明する。 Hereinafter, the reason why the method for producing the hot-dip galvanized steel sheet according to the present embodiment is defined in this way will be described.

(焼鈍工程)
焼鈍工程では、Si含有量が1.0質量%以上3.0質量%以下である高Si含有鋼の鋼板を露点−20℃以上の雰囲気で前記鋼板のA3点以上の温度で還元焼鈍する。還元焼鈍には、例えばオールラジアント型の焼鈍炉のように、間接加熱方式の焼鈍炉を用いることができる。高Si含有鋼の鋼板は、通常の方法で製造されたものを使用することができ、例えば上記Si含有量を満たす鋼の鋳片を溶製し、当該鋳片を熱間圧延、酸洗および冷間圧延することにより得ることができる。
(Annealing process)
In the annealing step, a steel sheet of high Si-containing steel having a Si content of 1.0% by mass or more and 3.0% by mass or less is reduced and annealed at a temperature of A3 point or more of the steel sheet in an atmosphere of a dew point of −20 ° C. or more. For the reduction annealing, an indirect heating type annealing furnace such as an all-radiant type annealing furnace can be used. As the steel sheet of high Si-containing steel, one manufactured by a usual method can be used. For example, a steel slab satisfying the above Si content is melted, and the slab is hot-rolled, pickled and pickled. It can be obtained by cold rolling.

本実施形態に係る溶融亜鉛めっき鋼板の製造方法において、焼鈍は、高強度の鋼板を製造するために適切な温度で行うことが重要である。本実施形態では、所望の強度特性を有する鋼板を得るために、焼鈍温度をA3点以上とする。このとき、焼鈍温度は液相を生じない温度であれば上限は特に定めない。しかし、焼鈍炉の耐久性を考慮し、1000℃未満であることが望ましい。焼鈍温度での保持時間は、所望の強度特性を有する鋼板を得る観点から、1s以上が好ましく、600s以下が好ましい。 In the method for producing a hot-dip galvanized steel sheet according to the present embodiment, it is important that annealing is performed at an appropriate temperature for producing a high-strength steel sheet. In the present embodiment, the annealing temperature is set to A3 point or higher in order to obtain a steel sheet having desired strength characteristics. At this time, the upper limit of the annealing temperature is not particularly set as long as it does not generate a liquid phase. However, in consideration of the durability of the annealing furnace, it is desirable that the temperature is lower than 1000 ° C. The holding time at the annealing temperature is preferably 1 s or more, and preferably 600 s or less, from the viewpoint of obtaining a steel sheet having desired strength characteristics.

なお、A3点は、下式(i)により算出することができる(「レスリー鉄鋼材料学」(丸善株式会社発行、William C. Leslie著、p273))。式(i)中の[ ]で囲まれた元素記号は、当該元素の含有量(質量%)を表す。 The A3 point can be calculated by the following formula (i) ("Leslie Steel Materials Science" (published by Maruzen Co., Ltd., by William C. Leslie, p273)). The element symbol enclosed in [] in the formula (i) represents the content (mass%) of the element.

A3(℃)=910−203×[C]1/2−15.2×[Ni]+44.7×[Si]+104×[V]+31.5×[Mo]+13.1×[W]−{30×[Mn]+11×[Cr]+20×[Cu]−700×[P]−400×[Al]−120×[As]−400×[Ti]} …(i)
焼鈍雰囲気の露点は−20℃以上とする。これにより、次の溶融亜鉛めっき工程で、美麗な外観をもつ合金化溶融亜鉛めっき鋼板の素材としての溶融亜鉛めっき鋼板を、安定して製造することができる。焼鈍雰囲気の露点が高いことで、焼鈍雰囲気中の酸素ポテンシャルが高くなり、鋼板に固溶するSiと酸素が反応して内部酸化を形成し、めっき性に悪影響を与える固溶Siを無害化できるからである。また、この場合、焼鈍炉内で鋼板全体が均一な雰囲気に晒され、均一な状態となるため、溶融亜鉛めっき工程で形成されるめっきの外観およびめっき層の厚さが均一となる。鋼板の酸化を抑制するため、焼鈍雰囲気の露点の上限は、10℃が好ましい。焼鈍雰囲気は、例えばN−5体積%Hの還元雰囲気とすることができる。
A3 (° C.) = 910-203 x [C] 1 / 2-15.2 x [Ni] +44.7 x [Si] +104 x [V] +31.5 x [Mo] +13.1 x [W]- {30 x [Mn] + 11 x [Cr] + 20 x [Cu] -700 x [P] -400 x [Al] -120 x [As] -400 x [Ti]} ... (i)
The dew point in the annealed atmosphere shall be -20 ° C or higher. As a result, in the next hot-dip galvanized step, a hot-dip galvanized steel sheet as a material for an alloyed hot-dip galvanized steel sheet having a beautiful appearance can be stably manufactured. Since the dew point in the annealing atmosphere is high, the oxygen potential in the annealing atmosphere is high, and Si that dissolves in the steel sheet reacts with oxygen to form internal oxidation, which can detoxify the solid solution Si that adversely affects the plating property. Because. Further, in this case, since the entire steel sheet is exposed to a uniform atmosphere in the annealing furnace and becomes a uniform state, the appearance of the plating formed in the hot-dip galvanizing step and the thickness of the plating layer become uniform. In order to suppress the oxidation of the steel sheet, the upper limit of the dew point in the annealing atmosphere is preferably 10 ° C. Annealing atmosphere, for example, it is a reducing atmosphere of N 2 -5 vol% H 2.

(溶融亜鉛めっき工程)
溶融亜鉛めっき工程では、鋼板を亜鉛めっき浴に侵入させ、鋼板の表面に亜鉛めっき層を形成し、溶融亜鉛めっき鋼板を完成する。亜鉛めっき浴は、通常の溶融亜鉛めっき鋼板の製造に用いられるものを使用することができる。
(Hot-dip galvanizing process)
In the hot-dip galvanizing step, the steel sheet is allowed to penetrate into the galvanizing bath to form a zinc-plated layer on the surface of the steel sheet to complete the hot-dip galvanized steel sheet. As the galvanized bath, those used in the production of ordinary galvanized steel sheets can be used.

本実施形態では、亜鉛めっき浴に侵入する鋼板の温度(以下「侵入板温」ともいう。)を390℃以下とする。これにより、溶融亜鉛めっき鋼板およびこれを素材として得られる合金化溶融亜鉛めっき鋼板の外観不良が抑制される。侵入板温を390℃以下とすることによりこれらのめっき鋼板の外観不良が抑制されるのは、焼鈍工程で生じた鋼板の内部酸化の形態が粒界酸化を主体とするものであっても、鋼板表面とスナウト内のアッシュとの反応性が低下するためと考えられる。しかし、侵入板温が低すぎる場合には、鋼板によって冷却される亜鉛めっき浴の温度を維持するために必要なエネルギー原単位が増加する。そのため、侵入板温は350℃以上が好ましい。鋼板の亜鉛めっき浴への浸漬時間は、所望のめっき付着量に応じて調整することができる。 In the present embodiment, the temperature of the steel sheet that penetrates the zinc plating bath (hereinafter, also referred to as “penetration plate temperature”) is set to 390 ° C. or lower. As a result, poor appearance of the hot-dip galvanized steel sheet and the alloyed hot-dip galvanized steel sheet obtained from the hot-dip galvanized steel sheet is suppressed. By setting the penetration plate temperature to 390 ° C. or lower, the appearance deterioration of these plated steel sheets is suppressed even if the form of internal oxidation of the steel sheet generated in the annealing step is mainly intergranular oxidation. This is thought to be because the reactivity between the surface of the steel sheet and the ash in the snout is reduced. However, if the penetration plate temperature is too low, the energy intensity required to maintain the temperature of the galvanized bath cooled by the steel plate increases. Therefore, the penetration plate temperature is preferably 350 ° C. or higher. The immersion time of the steel sheet in the zinc plating bath can be adjusted according to the desired amount of plating adhesion.

(合金化溶融亜鉛めっき鋼板の製造方法)
本実施形態に係る合金化溶融亜鉛めっき鋼板の製造方法は、上記の方法で得られた溶融亜鉛めっき鋼板に形成された前記亜鉛めっき層を合金化する合金化工程を備える。すなわち、本実施形態に係る合金化溶融亜鉛めっき鋼板の製造方法は、Si含有量が1.0質量%以上3.0質量%以下である鋼板を、露点−20℃以上の雰囲気で前記鋼板のA3点以上の温度で還元焼鈍する焼鈍工程と、焼鈍後の前記鋼板を亜鉛めっき浴に侵入させ、前記鋼板の表面に亜鉛めっき層を形成する溶融亜鉛めっき工程と、前記亜鉛めっき層を合金化する合金化工程と、を備え、前記めっき浴に侵入する前記鋼板の温度を390℃以下とする。これにより、美麗な外観を有する合金化溶融亜鉛めっき鋼板が安定して得られる。
(Manufacturing method of alloyed hot-dip galvanized steel sheet)
The method for producing an alloyed hot-dip galvanized steel sheet according to the present embodiment includes an alloying step of alloying the galvanized layer formed on the hot-dip galvanized steel sheet obtained by the above method. That is, in the method for producing an alloyed hot-dip zinc-plated steel sheet according to the present embodiment, a steel sheet having a Si content of 1.0% by mass or more and 3.0% by mass or less is subjected to an atmosphere of a dew point of −20 ° C. or higher. An annealing step of reduction annealing at a temperature of A3 or higher, a hot-dip zinc plating step of infiltrating the annealed steel sheet into a zinc plating bath to form a zinc plating layer on the surface of the steel sheet, and alloying the zinc plating layer. The temperature of the steel sheet that penetrates the plating bath is set to 390 ° C. or lower. As a result, an alloyed hot-dip galvanized steel sheet having a beautiful appearance can be stably obtained.

(合金化工程)
合金化工程では、溶融亜鉛めっき鋼板を所定の合金化温度に加熱し、鋼板を構成する鉄原子をめっき層に拡散させ、めっき層を合金化する。合金化温度は、400℃以上が好ましく、600℃以下が好ましい。合金化温度に保持する時間(以下「合金化時間」ともいう。)は、合金化状態を適正化する観点から1s以上が好ましく、60s以下が好ましい。加熱雰囲気は大気とすることができる。
(Alloying process)
In the alloying step, the hot-dip galvanized steel sheet is heated to a predetermined alloying temperature, iron atoms constituting the steel sheet are diffused into the plating layer, and the plating layer is alloyed. The alloying temperature is preferably 400 ° C. or higher, preferably 600 ° C. or lower. The time for holding the alloying temperature (hereinafter, also referred to as “alloying time”) is preferably 1 s or more, and preferably 60 s or less from the viewpoint of optimizing the alloying state. The heating atmosphere can be the atmosphere.

本実施形態に係る合金化溶融亜鉛めっき鋼板の製造方法は、溶融亜鉛めっき工程および合金化工程を、連続式の溶融亜鉛めっきライン(Continuous Galvanizing Line;CGL)を用いて実施することが好ましい。これにより、溶融亜鉛めっき工程および合金化工程を一連の製造ラインで連続して行うことができ、合金化溶融亜鉛めっき鋼板の生産性を向上させることができる。 In the method for producing an alloyed hot-dip galvanized steel sheet according to the present embodiment, it is preferable that the hot-dip galvanizing step and the alloying step are carried out using a continuous hot-dip galvanizing line (CGL). As a result, the hot-dip galvanized step and the alloying step can be continuously performed on a series of production lines, and the productivity of the alloyed hot-dip galvanized steel sheet can be improved.

(鋼板の化学組成)
Si:1.0質量%〜3.0質量%
本実施形態に係る溶融亜鉛めっき鋼板の製造方法において、亜鉛めっき層を形成する前の鋼板のSi含有量は、1.0質量%以上3.0質量%以下とする。Siは、鋼板における固溶強化能が大きく、また鋼板の延性を低下させずに強度を高める元素である。鋼板の強度を確保する観点から、鋼板のSi含有量の下限は1.0質量%とする。しかし、Si含有量が過剰になると、鋼板の強度が高くなりすぎて圧延負荷が増大し、しかも熱間圧延の際にSiスケールを発生して鋼板の表面性状も悪化させる。また、溶融亜鉛めっき時に溶融亜鉛の濡れ性が低下し、溶融亜鉛めっきが著しく困難となる。そのため、Si含有量の上限は3.0質量%とする。Si含有量の下限は、好ましくは1.1質量%、より好ましくは1.2質量%である。Si含有量の上限は、好ましくは2.7質量%、より好ましくは2.5質量%である。
(Chemical composition of steel sheet)
Si: 1.0% by mass to 3.0% by mass
In the method for producing a hot-dip galvanized steel sheet according to the present embodiment, the Si content of the steel sheet before forming the galvanized layer is 1.0% by mass or more and 3.0% by mass or less. Si is an element that has a large solid solution strengthening ability in a steel sheet and increases the strength without lowering the ductility of the steel sheet. From the viewpoint of ensuring the strength of the steel sheet, the lower limit of the Si content of the steel sheet is 1.0% by mass. However, when the Si content becomes excessive, the strength of the steel sheet becomes too high and the rolling load increases, and Si scale is generated during hot rolling to deteriorate the surface properties of the steel sheet. In addition, the wettability of hot-dip zinc is reduced during hot-dip galvanizing, which makes hot-dip galvanizing extremely difficult. Therefore, the upper limit of the Si content is 3.0% by mass. The lower limit of the Si content is preferably 1.1% by mass, more preferably 1.2% by mass. The upper limit of the Si content is preferably 2.7% by mass, more preferably 2.5% by mass.

上記鋼板は、Si以外の残部は、Feを主成分として含有するとともに、不可避的不純物も含有する。 In the steel sheet, the balance other than Si contains Fe as a main component and also contains unavoidable impurities.

上記鋼板は、優れた機械的特性を確保する観点から、CおよびMnの含有量を次のようにしてもよい。 From the viewpoint of ensuring excellent mechanical properties, the steel sheet may have the following C and Mn contents.

C:0.05質量%〜0.5質量%
Cは、鋼板の強度を高める元素である。高強度鋼板として用いる場合には、C含有量は0.05質量%以上であることが好ましい。一方、C含有量が過剰になると溶接性が低下する。そのため、C含有量は0.5質量%以下であることが好ましい。
C: 0.05% by mass to 0.5% by mass
C is an element that enhances the strength of the steel sheet. When used as a high-strength steel sheet, the C content is preferably 0.05% by mass or more. On the other hand, if the C content is excessive, the weldability is lowered. Therefore, the C content is preferably 0.5% by mass or less.

Mn:1.6質量%〜4.0質量%
Mnは、鋼板の強度を高めるとともに、残留オーステナイトの生成を促進して加工性を高める元素である。高強度鋼板として用いる場合には、Mn含有量は1.6質量%以上であることが好ましい。一方、Mn含有量が過剰になると延性や溶接性が劣化する。そのため、Mn含有量は4.0質量%以下であることが好ましい。
Mn: 1.6% by mass to 4.0% by mass
Mn is an element that enhances the strength of the steel sheet and promotes the formation of retained austenite to enhance workability. When used as a high-strength steel sheet, the Mn content is preferably 1.6% by mass or more. On the other hand, if the Mn content is excessive, ductility and weldability deteriorate. Therefore, the Mn content is preferably 4.0% by mass or less.

また、上記鋼素材は、例えば、以下の1種以上の元素をさらに含有してもよい。 Further, the steel material may further contain, for example, one or more of the following elements.

Al:0.001質量%〜0.5質量%
Alは、鋼を溶製する際に脱酸剤として作用する元素である。Alで脱酸する場合には、その効果を有効に発揮させるために、Al含有量は0.001質量%以上であることが好ましい。一方、Al含有量が過剰になると鋼板中にアルミナなどの介在物が多く生成し、加工性を劣化させることがある。そのため、Al含有量は0.5質量%以下であることが好ましい。
Al: 0.001% by mass to 0.5% by mass
Al is an element that acts as a deoxidizer when melting steel. When deoxidizing with Al, the Al content is preferably 0.001% by mass or more in order to effectively exert the effect. On the other hand, if the Al content becomes excessive, a large amount of inclusions such as alumina are generated in the steel sheet, which may deteriorate the workability. Therefore, the Al content is preferably 0.5% by mass or less.

Cr:0.01質量%〜0.3質量%
Crは、酸化を抑制する元素である。鋼素材がCrを含有することによって、粒界に生成するSi酸化物量が低減して、固溶Si量が増加する。固溶SiとCrはともに酸化抑制元素として作用して、酸化工程において急速な酸化の進行を防止する。こうした効果を発揮させるために、Cr含有量は0.01質量%以上であることが好ましい。一方、鋼素材がCrを過剰に含有すると、酸化の進行が大幅に抑制されて酸化不足を引き起こす。そのため、Cr含有量は0.3質量%以下であることが好ましい。
Cr: 0.01% by mass to 0.3% by mass
Cr is an element that suppresses oxidation. When the steel material contains Cr, the amount of Si oxide generated at the grain boundaries is reduced, and the amount of solid solution Si is increased. Both solid solution Si and Cr act as oxidation-suppressing elements to prevent rapid oxidation progress in the oxidation step. In order to exert such an effect, the Cr content is preferably 0.01% by mass or more. On the other hand, when the steel material contains an excessive amount of Cr, the progress of oxidation is significantly suppressed, causing insufficient oxidation. Therefore, the Cr content is preferably 0.3% by mass or less.

Ti:0.0005質量%〜0.2質量%
Tiは、炭化物や窒化物を形成して鋼板の強度を向上させる元素である。また、Ti窒化物を形成することで、鋼中N含有量を低減させてB窒化物の形成を抑制し、固溶Bの焼入れ性を有効に活用するための元素でもある。このような効果を有効に発揮させるために、Ti含有量は0.0005質量%以上であることが好ましい。一方、Ti含有量が過剰になると、Ti炭化物やTi窒化物が過剰となり、延性、伸びフランジ性および伸び加工性を劣化させる。そのため、Ti含有量は0.2質量%以下であることが好ましい。
Ti: 0.0005% by mass to 0.2% by mass
Ti is an element that forms carbides and nitrides to improve the strength of steel sheets. Further, by forming Ti nitride, it is also an element for reducing the N content in steel, suppressing the formation of B nitride, and effectively utilizing the hardenability of solid solution B. In order to effectively exert such an effect, the Ti content is preferably 0.0005% by mass or more. On the other hand, when the Ti content becomes excessive, Ti carbides and Ti nitrides become excessive, which deteriorates ductility, stretch flangeability and stretchability. Therefore, the Ti content is preferably 0.2% by mass or less.

上記不可避的不純物とは、鋼中に原料、資材、製造設備などの状況によって持ち込まれる元素をいい、以下に示すPの他、例えば、S、N、O、Pb、Bi、Sb、Snなどが挙げられる。 The above-mentioned unavoidable impurities refer to elements brought into steel depending on the conditions of raw materials, materials, manufacturing equipment, etc. In addition to P shown below, for example, S, N, O, Pb, Bi, Sb, Sn, etc. Can be mentioned.

P:0.03質量%以下
Pは、鋼素材が不可避的不純物として含有する元素である。Pは、粒界に偏析して粒界脆化を助長するだけでなく、穴広げ性を劣化させる。そのため、P含有量はできるだけ低く、例えば0.03質量%以下であることが好ましい。
P: 0.03% by mass or less P is an element contained in the steel material as an unavoidable impurity. P not only segregates at the grain boundaries and promotes grain boundary embrittlement, but also deteriorates the hole expanding property. Therefore, the P content is as low as possible, preferably 0.03% by mass or less.

本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下にまとめる。 As described above, the present specification discloses various aspects of technology, of which the main technologies are summarized below.

上述したように、本発明の一局面に係る溶融亜鉛めっき鋼板の製造方法は、Si含有量が1.0質量%以上3.0質量%以下である鋼板を、露点−20℃以上の雰囲気で前記鋼板のA3点以上の温度で還元焼鈍する焼鈍工程と、焼鈍後の前記鋼板を亜鉛めっき浴に侵入させ、前記鋼板の表面に亜鉛めっき層を形成する溶融亜鉛めっき工程と、を備え、前記めっき浴に侵入する前記鋼板の温度を390℃以下とする。 As described above, the method for producing a hot-dip galvanized steel sheet according to one aspect of the present invention is to produce a steel sheet having a Si content of 1.0% by mass or more and 3.0% by mass or less in an atmosphere of a dew point of −20 ° C. or higher. A hot-dip galvanizing step of reducing and annealing the steel sheet at a temperature of A3 or higher, and a hot-dip galvanizing step of infiltrating the annealed steel sheet into a zinc plating bath to form a zinc plating layer on the surface of the steel sheet are provided. The temperature of the steel sheet that penetrates the plating bath is set to 390 ° C. or lower.

このような構成により、美麗な外観を有する合金化溶融亜鉛めっき鋼板の素材としての溶融亜鉛めっき鋼板を安定して製造することができる。 With such a configuration, a hot-dip galvanized steel sheet as a material for an alloyed hot-dip galvanized steel sheet having a beautiful appearance can be stably manufactured.

また、本発明の他の一局面に係る合金化溶融亜鉛めっき鋼板の製造方法は、前記溶融亜鉛めっき鋼板の製造方法で得られる溶融亜鉛めっき鋼板に形成された前記亜鉛めっき層を合金化する合金化工程を備える。 Further, the method for producing an alloyed hot-dip galvanized steel sheet according to another aspect of the present invention is an alloy for alloying the galvanized layer formed on the hot-dip galvanized steel sheet obtained by the above-mentioned method for manufacturing a hot-dip galvanized steel sheet. It has a galvanizing process.

このような構成により、美麗な外観を有する合金化溶融亜鉛めっき鋼板を安定して製造することができる。 With such a configuration, an alloyed hot-dip galvanized steel sheet having a beautiful appearance can be stably manufactured.

上記構成において、前記合金化溶融亜鉛めっき鋼板の製造方法は、前記溶融亜鉛めっき工程および前記合金化工程を、連続式の溶融亜鉛めっきラインを用いて行うこととしてもよい。 In the above configuration, in the method for producing the alloyed hot-dip galvanized steel sheet, the hot-dip galvanizing step and the alloying step may be performed using a continuous hot-dip galvanizing line.

これにより、鋼板への溶融亜鉛めっきの形成と形成された亜鉛めっき層の合金化とを連続して行うことができ、美麗な外観を有する合金化溶融亜鉛めっき鋼板を効率良く得ることができる。 As a result, the hot-dip galvanizing on the steel sheet and the alloying of the formed galvanized layer can be continuously performed, and an alloyed hot-dip galvanized steel sheet having a beautiful appearance can be efficiently obtained.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples, and it is possible to carry out the present invention with modifications to the extent that it can be adapted to the gist of the above and the following. Yes, they are all within the technical scope of the invention.

(試験条件)
(鋼の成分組成)
表1に記載の鋼種AおよびBに示す成分組成となるように製造した鋳片を溶製し、溶製された鋳片を熱間圧延、酸洗、冷間圧延することにより、高Si含有鋼の鋼板を得た。表1には、上記式(i)により算出した各鋼種のA3点も示す。
(Test condition)
(Component composition of steel)
The slabs produced so as to have the component compositions shown in the steel types A and B shown in Table 1 are melted, and the melted slabs are hot-rolled, pickled, and cold-rolled to contain high Si. A steel plate of steel was obtained. Table 1 also shows the A3 points of each steel type calculated by the above formula (i).

Figure 2021014605
Figure 2021014605

得られた鋼板について、オールラジアントチューブ型の焼鈍炉を備える連続式の溶融亜鉛めっき製造ライン(CGL)を用いて還元焼鈍、溶融亜鉛めっきを順に実施して溶融亜鉛めっき鋼板を得た。さらに、得られた溶融亜鉛めっき鋼板について、連続して合金化処理を実施し、合金化溶融亜鉛めっき鋼板を得た。 The obtained steel sheet was subjected to reduction annealing and hot-dip galvanizing in this order using a continuous hot-dip galvanizing production line (CGL) equipped with an all-radiant tube type annealing furnace to obtain a hot-dip galvanized steel sheet. Further, the obtained hot-dip galvanized steel sheet was continuously alloyed to obtain an alloyed hot-dip galvanized steel sheet.

(還元焼鈍条件および溶融亜鉛めっき条件)
表2に試験No.1〜6に用いた鋼板の鋼種、A3点、焼鈍雰囲気の露点、焼鈍温度および亜鉛めっき浴への鋼板の侵入板温を示す。
(Reduction annealing conditions and hot dip galvanizing conditions)
Table 2 shows the test numbers. The steel grades of the steel sheets used in 1 to 6, the A3 point, the dew point of the annealing atmosphere, the annealing temperature, and the temperature of the steel sheet entering the zinc plating bath are shown.

Figure 2021014605
Figure 2021014605

表2に示す条件以外の条件は各試験No.で共通とし、以下の通りとした。 Conditions other than the conditions shown in Table 2 are the conditions of each test No. It is common to the following.

(還元焼鈍条件)
焼鈍雰囲気:N−5体積%H
焼鈍温度:A3点以上
保持時間:200s
(溶融亜鉛めっき条件)
亜鉛めっき浴Al含有量:0.13質量%(残部はZnおよび不可避的不純物)
亜鉛めっき浴温度:460℃
亜鉛めっき浴への浸漬時間:4s
(合金化条件)
雰囲気:大気
合金化温度:460℃
合金化時間:27s
(評価条件および試験結果)
上記条件で得られた各試験No.の合金化溶融亜鉛めっき鋼板を目視観察し、外観について評価した。評価結果を表2に示す。表2には、美麗な外観の場合を○、外観不良がある場合を×として記載した。
(Reduction annealing conditions)
Annealing Atmosphere: N 2 -5 vol% H 2
Annealing temperature: A3 points or more Holding time: 200s
(Hot-dip galvanizing conditions)
Zinc plating bath Al content: 0.13% by mass (remaining Zn and unavoidable impurities)
Galvanizing bath temperature: 460 ° C
Immersion time in galvanized bath: 4s
(Alloying conditions)
Atmosphere: Atmosphere Alloying temperature: 460 ° C
Alloying time: 27s
(Evaluation conditions and test results)
Each test No. obtained under the above conditions. The alloyed hot-dip galvanized steel sheet was visually observed and its appearance was evaluated. The evaluation results are shown in Table 2. In Table 2, the case of beautiful appearance is shown as ◯, and the case of poor appearance is shown as x.

表2に示すように、本発明における条件を満たす試験No.1〜3では、合金化溶融亜鉛めっき鋼板の外観不良が抑制され、良好な外観を有していた。 As shown in Table 2, Test Nos. That satisfy the conditions in the present invention. In Nos. 1 to 3, poor appearance of the alloyed hot-dip galvanized steel sheet was suppressed, and the appearance was good.

一方、亜鉛めっき浴への鋼板の侵入板温が390℃よりも高かった試験No.4〜6では、外観が不良であった。 On the other hand, the temperature of the steel plate entering the zinc plating bath was higher than 390 ° C. In 4 to 6, the appearance was poor.

Claims (3)

溶融亜鉛めっき鋼板の製造方法であって、
Si含有量が1.0質量%以上3.0質量%以下である鋼板を、露点−20℃以上の雰囲気で前記鋼板のA3点以上の温度で還元焼鈍する焼鈍工程と、
焼鈍後の前記鋼板を亜鉛めっき浴に侵入させ、前記鋼板の表面に亜鉛めっき層を形成する溶融亜鉛めっき工程と、を備え、
前記めっき浴に侵入する前記鋼板の温度を390℃以下とする、溶融亜鉛めっき鋼板の製造方法。
A method for manufacturing hot-dip galvanized steel sheets.
An annealing step of reducing and annealing a steel sheet having a Si content of 1.0% by mass or more and 3.0% by mass or less at a temperature of A3 or higher of the steel sheet in an atmosphere with a dew point of -20 ° C or higher.
A hot-dip galvanizing step of infiltrating the annealed steel sheet into a galvanizing bath to form a galvanized layer on the surface of the steel sheet is provided.
A method for producing a hot-dip galvanized steel sheet, wherein the temperature of the steel sheet that penetrates the plating bath is 390 ° C. or lower.
合金化溶融亜鉛めっき鋼板の製造方法であって、
請求項1に記載の溶融亜鉛めっき鋼板の製造方法で得られる溶融亜鉛めっき鋼板に形成された前記亜鉛めっき層を合金化する合金化工程を備える、合金化溶融亜鉛めっき鋼板の製造方法。
A method for manufacturing alloyed hot-dip galvanized steel sheets.
A method for producing an alloyed hot-dip galvanized steel sheet, comprising an alloying step for alloying the galvanized layer formed on the hot-dip galvanized steel sheet obtained by the method for manufacturing a hot-dip galvanized steel sheet according to claim 1.
前記溶融亜鉛めっき工程および前記合金化工程を、連続式の溶融亜鉛めっきラインを用いて行う請求項2に記載の合金化溶融亜鉛めっき鋼板の製造方法。 The method for producing an alloyed hot-dip galvanized steel sheet according to claim 2, wherein the hot-dip galvanizing step and the alloying step are performed using a continuous hot-dip galvanizing line.
JP2019128698A 2019-07-10 2019-07-10 Hot-dip galvanized steel sheet and method for manufacturing alloyed hot-dip galvanized steel sheet Pending JP2021014605A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019128698A JP2021014605A (en) 2019-07-10 2019-07-10 Hot-dip galvanized steel sheet and method for manufacturing alloyed hot-dip galvanized steel sheet
CN202080042860.5A CN113950539A (en) 2019-07-10 2020-07-01 Method for producing hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
EP20836013.1A EP3967780A4 (en) 2019-07-10 2020-07-01 Methods respectively for manufacturing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
PCT/JP2020/025750 WO2021006131A1 (en) 2019-07-10 2020-07-01 Methods respectively for manufacturing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
KR1020217041614A KR20220008911A (en) 2019-07-10 2020-07-01 Method for manufacturing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
US17/625,209 US20220364214A1 (en) 2019-07-10 2020-07-01 Methods respectively for manufacturing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
MX2022000380A MX2022000380A (en) 2019-07-10 2020-07-01 Methods respectively for manufacturing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019128698A JP2021014605A (en) 2019-07-10 2019-07-10 Hot-dip galvanized steel sheet and method for manufacturing alloyed hot-dip galvanized steel sheet

Publications (1)

Publication Number Publication Date
JP2021014605A true JP2021014605A (en) 2021-02-12

Family

ID=74115165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019128698A Pending JP2021014605A (en) 2019-07-10 2019-07-10 Hot-dip galvanized steel sheet and method for manufacturing alloyed hot-dip galvanized steel sheet

Country Status (7)

Country Link
US (1) US20220364214A1 (en)
EP (1) EP3967780A4 (en)
JP (1) JP2021014605A (en)
KR (1) KR20220008911A (en)
CN (1) CN113950539A (en)
MX (1) MX2022000380A (en)
WO (1) WO2021006131A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116653A (en) * 1992-10-07 1994-04-26 Nippon Steel Corp Production of low cost type hot rolled and hot dip plated steel strip excellent in plating surface property and plating adhesion and device therefor
JPH06212383A (en) * 1993-01-18 1994-08-02 Sumitomo Metal Ind Ltd Hot dip galvanizing method for silicon-containing steel sheet
JP2009263752A (en) * 2008-04-28 2009-11-12 Nippon Steel Corp Manufacturing method of high-strength steel sheet excellent in balance of hole expandability and ductility, and manufacturing method of galvanized steel sheet
WO2011025042A1 (en) * 2009-08-31 2011-03-03 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet and process for producing same
JP2015175061A (en) * 2014-03-18 2015-10-05 新日鐵住金株式会社 HIGH STRENGTH STEEL SHEET, HIGH STRENGTH HOT-DIP GALVANIZED STEEL SHEET, AND HIGH STRENGTH HOT-DIP GALVANNEALED STEEL SHEET EACH HAVING MAXIMUM TENSILE STRENGTH OF 780 MPa AND EXCELLENT IN COLLISION CHARACTERISTIC, AND PRODUCTION METHODS OF THEM

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3382697B2 (en) 1994-02-01 2003-03-04 川崎製鉄株式会社 Manufacturing method of galvannealed steel sheet
JP2000204462A (en) * 1999-01-12 2000-07-25 Kawasaki Steel Corp Galvanized steel sheet and production of galvannealed steel sheet
JP3599594B2 (en) 1999-04-16 2004-12-08 株式会社神戸製鋼所 Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent plating appearance
JP5594559B2 (en) 2009-01-05 2014-09-24 新日鐵住金株式会社 Method for producing high-tensile hot-dip galvanized steel sheet
JP5594976B2 (en) 2009-02-19 2014-09-24 株式会社神戸製鋼所 Method for producing high-strength galvannealed steel sheet
WO2013047820A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 Hot-dip galvanized steel sheet and process for producing same
JP5884196B2 (en) * 2014-02-18 2016-03-15 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet
US10648054B2 (en) * 2014-09-08 2020-05-12 Jfe Steel Corporation Method and facility for producing high-strength galavanized steel sheets
JP6361606B2 (en) * 2015-04-21 2018-07-25 Jfeスチール株式会社 Continuous molten metal plating method and continuous molten metal plating equipment
JP2019128698A (en) 2018-01-23 2019-08-01 沖電気工業株式会社 Information processing device and information processing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116653A (en) * 1992-10-07 1994-04-26 Nippon Steel Corp Production of low cost type hot rolled and hot dip plated steel strip excellent in plating surface property and plating adhesion and device therefor
JPH06212383A (en) * 1993-01-18 1994-08-02 Sumitomo Metal Ind Ltd Hot dip galvanizing method for silicon-containing steel sheet
JP2009263752A (en) * 2008-04-28 2009-11-12 Nippon Steel Corp Manufacturing method of high-strength steel sheet excellent in balance of hole expandability and ductility, and manufacturing method of galvanized steel sheet
WO2011025042A1 (en) * 2009-08-31 2011-03-03 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet and process for producing same
JP2015175061A (en) * 2014-03-18 2015-10-05 新日鐵住金株式会社 HIGH STRENGTH STEEL SHEET, HIGH STRENGTH HOT-DIP GALVANIZED STEEL SHEET, AND HIGH STRENGTH HOT-DIP GALVANNEALED STEEL SHEET EACH HAVING MAXIMUM TENSILE STRENGTH OF 780 MPa AND EXCELLENT IN COLLISION CHARACTERISTIC, AND PRODUCTION METHODS OF THEM

Also Published As

Publication number Publication date
MX2022000380A (en) 2022-04-25
CN113950539A (en) 2022-01-18
KR20220008911A (en) 2022-01-21
EP3967780A1 (en) 2022-03-16
WO2021006131A1 (en) 2021-01-14
EP3967780A4 (en) 2022-05-11
US20220364214A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
CN108291283B (en) High-strength hot-dip galvanized steel sheet, hot-rolled steel sheet and cold-rolled steel sheet used for same, and method for producing high-strength hot-dip galvanized steel sheet
JP6388056B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
JP3459500B2 (en) High-strength galvannealed steel sheet excellent in formability and plating adhesion and method for producing the same
CN103597102A (en) Process for producing high-strength hot-dip galvanized steel sheet with excellent material-quality stability, processability, and deposit appearance
JP2006307327A (en) High ductility and high strength alloyed hot-dip galvanized steel sheet having excellent surface property and brittle resistance to secondary processing and method for producing same
JP4528135B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in hole expansibility and method for producing the same
CN109642280B (en) High-strength steel sheet and method for producing same
JP2010255109A (en) High strength hot dip galvanized steel sheet and method for producing the same
JP2006283071A (en) Method for producing galvannealed high strength steel sheet excellent in workability
KR101647225B1 (en) High-strength galvannealed sheet steels having excellent surface qualities and powdering resistance and method for manufacturing the same
JP5315795B2 (en) High-strength hot-dip galvanized steel sheet, high-strength alloyed hot-dip galvanized steel sheet, and a method for producing the same
JP2007254887A (en) High strength steel sheet having excellent formability
JP2013076139A (en) High-strength hot-dip galvanized steel sheet superior in plating adhesion and formability, and method for manufacturing the same
JP3882679B2 (en) Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance
JP5556033B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
KR101736640B1 (en) Hot dip zinc alloy coated steel sheet having excellent coatability and spot weldability and method for manufacturing same
WO2021006131A1 (en) Methods respectively for manufacturing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP4140962B2 (en) Manufacturing method of low yield ratio type high strength galvannealed steel sheet
JP4975406B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP2006307326A (en) High ductility and high strength alloyed hot-dip galvanized steel sheet having excellent surface property and method for producing same
KR102606996B1 (en) High strength cold rolled steel sheet having excellent bending workability, galva-annealed steel sheet and method of manufacturing the same
US20240133013A1 (en) Method for manufacturing hot-dip galvanized steel sheet and method for manufacturing alloyed hot-dip galvanized steel sheet
JP5354178B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
KR20230145441A (en) Manufacturing method of hot dip galvanized steel sheet and manufacturing method of alloyed hot dip galvanized steel sheet
KR20230145442A (en) Hot dip galvanized steel, hot dip galvanized steel and alloyed hot dip galvanized steel.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230511

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230526

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230623