JP2021011736A - Girder reinforcement structure - Google Patents

Girder reinforcement structure Download PDF

Info

Publication number
JP2021011736A
JP2021011736A JP2019126325A JP2019126325A JP2021011736A JP 2021011736 A JP2021011736 A JP 2021011736A JP 2019126325 A JP2019126325 A JP 2019126325A JP 2019126325 A JP2019126325 A JP 2019126325A JP 2021011736 A JP2021011736 A JP 2021011736A
Authority
JP
Japan
Prior art keywords
girder
pier
bridge
mooring
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019126325A
Other languages
Japanese (ja)
Other versions
JP7123870B2 (en
Inventor
宗正 徳永
Munemasa Tokunaga
宗正 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2019126325A priority Critical patent/JP7123870B2/en
Publication of JP2021011736A publication Critical patent/JP2021011736A/en
Application granted granted Critical
Publication of JP7123870B2 publication Critical patent/JP7123870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

To provide a girder reinforcement structure capable of efficiently suppressing the dynamic response of a girder without interfering with the use of an existing girder.SOLUTION: A girder reinforcement structure to suppress the dynamic response of a girder 2 over a bridge pier 3, comprises a frame structure 4 in which a mooring part 41 arranged so as to surround a leg head 31 of the bridge pier, a bearing part 42 that comes into contact with a lower face 21 of the girder at a position protruding from the mooring part toward the center of the girder, and an inclined part 43 extending diagonally from the bearing part toward a bridge axial face 32 of the bridge pier are integrally formed from a frame material. Here, the load acting on the bearing part is transmitted to the leg head via the mooring part and to the bridge axial face 32 via the inclined part.SELECTED DRAWING: Figure 1

Description

本発明は、橋脚に架け渡される桁の動的応答を抑えるための桁の補強構造に関するものである。 The present invention relates to a girder reinforcement structure for suppressing the dynamic response of a girder spanned over a pier.

近年、PRC(Prestressed Reinforced Concrete)技術の発達により桁の低剛性化が可能となり、動的応答の大きな橋梁が増えている。また、列車や自動車の走行速度の高速化や通行量の増加に伴い、桁の動的応答が増加する傾向にあり、補強を要する事例が増えている。 In recent years, the development of PRC (Prestressed Reinforced Concrete) technology has made it possible to reduce the rigidity of girders, and the number of bridges with large dynamic responses is increasing. In addition, as the traveling speed of trains and automobiles increases and the traffic volume increases, the dynamic response of the girder tends to increase, and the number of cases requiring reinforcement is increasing.

例えば特許文献1,2には、既設の桁を補強して剛性を高めることで、列車走行によって桁に共振現象が生じて、大きな揺れやたわみが発生することを抑えることができる桁の補強構造が開示されている。 For example, in Patent Documents 1 and 2, by reinforcing the existing girder to increase the rigidity, it is possible to suppress the occurrence of resonance phenomenon in the girder due to train running and the occurrence of large shaking and bending. Is disclosed.

特開2017−214699号公報JP-A-2017-214669 特開2017−218824号公報JP-A-2017-218824

しかしながら供用中の桁の全長を補強する工事は、列車の運行スケジュールなどの様々な制約の中で行わなければならず、工期や工費が増大する傾向にある。また、桁に対する直接的な補強工事が行えない場合もある。
そこで、本発明は、既設の桁の使用を妨げることなく、効率的に桁の動的応答を抑えることが可能な桁の補強構造を提供することを目的としている。
However, the work to reinforce the overall length of the girder in service must be carried out within various restrictions such as the train operation schedule, and the construction period and construction cost tend to increase. In some cases, direct reinforcement work for the girder cannot be performed.
Therefore, an object of the present invention is to provide a girder reinforcing structure capable of efficiently suppressing the dynamic response of the girder without hindering the use of the existing girder.

前記目的を達成するために、本発明の桁の補強構造は、橋脚に架け渡される桁の動的応答を抑えるための桁の補強構造であって、前記橋脚の上部を囲むように配置される係留部と、前記係留部から前記桁の中央側に張り出された位置で前記桁の下面に接触させる支承部と、前記支承部から前記橋脚の側面に向けて斜めに延伸される傾斜部とが枠材によって一体に形成されたフレーム構造体を備え、前記支承部に作用した荷重は、前記係留部を介して前記橋脚の上部に伝達されるとともに、前記傾斜部を介して前記橋脚の側面に伝達されることを特徴とする。 In order to achieve the above object, the girder reinforcing structure of the present invention is a girder reinforcing structure for suppressing the dynamic response of the girder bridged over the pier, and is arranged so as to surround the upper part of the pier. A mooring portion, a support portion that comes into contact with the lower surface of the girder at a position protruding from the mooring portion toward the center of the girder, and an inclined portion that extends obliquely from the support portion toward the side surface of the pier. The frame structure is integrally formed of a frame member, and the load acting on the bearing portion is transmitted to the upper part of the pier via the mooring portion and the side surface of the pier via the inclined portion. It is characterized by being transmitted to.

ここで、前記係留部には前記支承部側に向けた引張力が発生するとともに、前記傾斜部には圧縮力が発生することになる。これを言い換えると、前記橋脚の上部には前記支承部側に向けた水平力が作用するとともに、前記橋脚の側面には鉛直面に対して交差する方向の力が作用することになる。 Here, a tensile force is generated in the mooring portion toward the bearing portion side, and a compressive force is generated in the inclined portion. In other words, a horizontal force acting toward the support portion side acts on the upper part of the pier, and a force in a direction intersecting the vertical plane acts on the side surface of the pier.

また、前記橋脚の側面に、前記傾斜部の延伸方向に対して直交する面を有する台座部が設けられる構成とすることができる。さらに、前記フレーム構造体の重量は、前記桁の重量の5%以内であることが好ましい。 Further, the side surface of the pier may be provided with a pedestal portion having a surface orthogonal to the extending direction of the inclined portion. Further, the weight of the frame structure is preferably within 5% of the weight of the girder.

このように構成された本発明の桁の補強構造は、橋脚に対して、係留部と支承部と傾斜部とが一体に形成されたフレーム構造体を取り付け、桁の下面に接触させた支承部に作用した荷重を係留部を介して橋脚の上部に伝達させるとともに、傾斜部を介して橋脚の側面に伝達させる。 In the girder reinforcement structure of the present invention configured in this way, a frame structure in which a mooring portion, a support portion, and an inclined portion are integrally formed is attached to a bridge pier, and the support portion is brought into contact with the lower surface of the girder. The load acting on the bridge is transmitted to the upper part of the pier via the mooring portion and to the side surface of the pier via the inclined portion.

このような構成であれば、桁の下方における作業のみで構築できるので、既設の桁の使用を妨げることがない。また、比較的耐力に余裕がある橋脚を利用することで、効率的に桁の動的応答を抑えることができるようになる。 With such a configuration, it can be constructed only by the work below the girder, so that the use of the existing girder is not hindered. In addition, by using a pier with a relatively large yield strength, it becomes possible to efficiently suppress the dynamic response of the girder.

また、このようなフレーム構造体においては、係留部に支承部側に向けた引張力が発生するとともに傾斜部には圧縮力が発生するだけなので、枠材によって簡単に製作することができる。 Further, in such a frame structure, since a tensile force is generated in the mooring portion toward the bearing portion and a compressive force is only generated in the inclined portion, it can be easily manufactured by the frame material.

さらに、フレーム構造体からは、橋脚の上部には支承部側に向けた水平力が作用するとともに、橋脚の側面には鉛直面に対して交差する方向の力が作用することになるだけなので、既存の橋脚がもともと有している耐力だけで桁の動的応答を抑えることが可能になる場合が多い。 Furthermore, from the frame structure, a horizontal force toward the bearing side acts on the upper part of the pier, and a force in the direction intersecting the vertical plane acts only on the side surface of the pier. In many cases, it is possible to suppress the dynamic response of the girder only by the original strength of the existing pier.

ここで、橋脚の側面に傾斜部の延伸方向に対して直交する面を有する台座部を設けることで、傾斜部の配置が容易に行えるようになる。また、フレーム構造体の重量を桁の重量の5%以内に収めるのであれば、橋脚や基礎部を補強する必要がなく、工費や工期を低減することができる場合が多い。 Here, by providing a pedestal portion having a surface orthogonal to the extending direction of the inclined portion on the side surface of the pier, the inclined portion can be easily arranged. Further, if the weight of the frame structure is kept within 5% of the weight of the girder, it is not necessary to reinforce the pier or the foundation, and the construction cost and the construction period can be reduced in many cases.

本実施の形態の桁の補強構造の構成を説明する斜視図である。It is a perspective view explaining the structure of the reinforcement structure of the girder of this embodiment. フレーム構造体を斜め上方から見た斜視図である。It is a perspective view which looked at the frame structure from diagonally above. フレーム構造体を橋軸方向で見た斜視図である。It is a perspective view which looked at the frame structure in the direction of a bridge axis. 本実施の形態の桁の補強構造に作用する力について模式的に示した説明図である。It is explanatory drawing which showed typically the force acting on the reinforcing structure of the girder of this embodiment. 実施例1の桁の補強構造の構成を説明する斜視図である。It is a perspective view explaining the structure of the reinforcement structure of the girder of Example 1. FIG. フレーム構造体を上方から見た斜視図である。It is a perspective view which looked at the frame structure from above. フレーム構造体を仰ぎ見た斜視図である。It is a perspective view which looked up at the frame structure. フレーム構造体の寸法を例示した説明図である。It is explanatory drawing which illustrates the dimension of the frame structure. 実施例1の桁の補強構造に作用する力について模式的に示した説明図である。It is explanatory drawing which showed typically the force acting on the reinforcing structure of the girder of Example 1. FIG.

以下、本発明の実施の形態について図面を参照して説明する。図1は、本実施の形態の桁の補強構造の構成を説明するための図で、図2,3は、フレーム構造体4の構成を説明するための斜視図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining the configuration of the girder reinforcing structure of the present embodiment, and FIGS. 2 and 3 are perspective views for explaining the configuration of the frame structure 4.

まず、図1を参照しながら、本実施の形態の桁の補強構造が設けられる橋梁1について説明する。この橋梁1は、橋脚3,3間や橋脚3と橋台(図示省略)との間に、桁2が架け渡される構造物である。この橋梁1が鉄道橋の場合、桁2の上面に敷設された軌道を列車Tが走行することになる。 First, the bridge 1 provided with the girder reinforcement structure of the present embodiment will be described with reference to FIG. The bridge 1 is a structure in which a girder 2 is bridged between the piers 3 and 3 and between the pier 3 and the abutment (not shown). When the bridge 1 is a railway bridge, the train T runs on the track laid on the upper surface of the girder 2.

橋脚3の上端面に端部が載置される桁2は、PRC(Prestressed Reinforced Concrete)、プレストレストコンクリート(PC)、鉄筋コンクリート(RC)又は鋼材などによって製作される。要するに、PC桁や鋼製桁などと呼ばれる桁2に適用される。 The girder 2 on which the end portion is placed on the upper end surface of the pier 3 is manufactured of PRC (Prestressed Reinforced Concrete), prestressed concrete (PC), reinforced concrete (RC), steel material, or the like. In short, it is applied to a girder 2 called a PC girder or a steel girder.

一方、橋脚3は、フーチング34や基礎杭35などによって構成される基礎部の上に、柱状又は壁状に鉄筋コンクリートによって構築される。橋脚3の上部は、段落としなどによって主鉄筋の低減がなされていなければ、基本的に曲げ耐力及びせん断耐力に余裕度がある。 On the other hand, the pier 3 is constructed of reinforced concrete in a columnar or wall shape on a foundation portion composed of a footing 34, a foundation pile 35, or the like. The upper part of the pier 3 basically has a margin in bending strength and shearing strength unless the main reinforcing bars are reduced by means of paragraphs or the like.

本実施の形態で例示した橋脚3は、上部に設けられる脚頭部31が橋軸直交方向に膨出した形状となっている。ここで、脚頭部31下方の柱状部の橋軸方向に現れる側面を橋軸方向面32とし、橋軸直交方向の側面を幅方向面33とする。 The bridge pier 3 illustrated in the present embodiment has a shape in which the leg head 31 provided at the upper portion bulges in the direction orthogonal to the bridge axis. Here, the side surface of the columnar portion below the leg head 31 that appears in the bridge axis direction is referred to as the bridge axis direction surface 32, and the side surface in the direction orthogonal to the bridge axis is referred to as the width direction surface 33.

そして、本実施の形態の桁の補強構造を構成するフレーム構造体4は、このような構成の橋脚3に対して取り付けられて、桁2を下面21から支持する。すなわちフレーム構造体4は、橋脚3の脚頭部31を囲むように配置される係留部41と、係留部41から張り出された位置で桁2の下面21に接触させる支承部42と、支承部42から橋軸方向面32に向けて斜めに延伸される傾斜部43とが、枠材によって一体に形成される。 Then, the frame structure 4 constituting the girder reinforcing structure of the present embodiment is attached to the pier 3 having such a configuration, and the girder 2 is supported from the lower surface 21. That is, the frame structure 4 has a mooring portion 41 arranged so as to surround the leg head 31 of the bridge pier 3, and a bearing portion 42 that comes into contact with the lower surface 21 of the girder 2 at a position protruding from the mooring portion 41. An inclined portion 43 extending obliquely from the portion 42 toward the bridge axial surface 32 is integrally formed by the frame material.

フレーム構造体4を構成する枠材には、H形鋼、溝形鋼、I形鋼などの鋼材が使用できる。また、鋼材の種類や断面の大きさは、部位ごとに適したものを使用することができる。以下、図2,3を参照しながら、フレーム構造体4の詳細について説明する。 Steel materials such as H-shaped steel, channel steel, and I-shaped steel can be used as the frame material constituting the frame structure 4. Further, the type of steel material and the size of the cross section can be suitable for each part. Hereinafter, the details of the frame structure 4 will be described with reference to FIGS. 2 and 3.

係留部41は、脚頭部31の側面に接触させる梁状の作用部411と、作用部411の両端からそれぞれ桁2の中央側に張り出される梁状の張出部412,412とによって、平面視コ字状に形成される。 The mooring portion 41 is formed by a beam-shaped working portion 411 that comes into contact with the side surface of the leg head 31, and a beam-shaped protruding portion 421, 412 that projects from both ends of the working portion 411 toward the center of the girder 2, respectively. It is formed in a U-shape in a plan view.

作用部411は、支承部42とは反対側の橋軸方向面に接触させる。また、作用部411の近傍の張出部412の内側面は、脚頭部31の幅方向面に接触させる。ここで、作用部411の端部と張出部412の端部とは、ボルトなどによって接合させる。 The working portion 411 is brought into contact with the bridge axial plane on the side opposite to the bearing portion 42. Further, the inner surface of the overhanging portion 412 in the vicinity of the acting portion 411 is brought into contact with the width direction surface of the leg head 31. Here, the end portion of the working portion 411 and the end portion of the overhanging portion 412 are joined by a bolt or the like.

そして、張出部412,412の桁2の中央側の端部間に、梁状の支承部42を架け渡す。すなわち、作用部411と張出部412,412と支承部42とによって、平面視略長方形の枠体が形成される。 Then, a beam-shaped bearing portion 42 is bridged between the central ends of the girders 2 of the overhanging portions 421 and 412. That is, the working portion 411, the overhanging portions 421, 412, and the bearing portion 42 form a frame body having a substantially rectangular shape in a plan view.

こうして形成される枠体には、傾斜部43によって支えられる支承部42を押し下げる方向の力が作用するとともに、支承部42の上昇は桁2の下面21によって制限されるため、特別に脚頭部31に対して固定をしなくても、取り付けられた位置に留めることができる。なお、必要に応じて、作用部411や張出部412の下面を受ける受台(図示せず)を、脚頭部31の側面に設けることもできる。 A force in the direction of pushing down the support portion 42 supported by the inclined portion 43 acts on the frame body formed in this way, and the rise of the support portion 42 is restricted by the lower surface 21 of the girder 2, so that the leg head is specially formed. It can be fixed in the attached position without being fixed to 31. If necessary, a pedestal (not shown) for receiving the lower surfaces of the acting portion 411 and the overhanging portion 412 may be provided on the side surface of the leg head 31.

支承部42の上面には、橋軸直交方向に間隔を置いて、ゴム支承421,・・・が取り付けられる。このゴム支承421の上面が、桁2の下面21に接触することになる。すなわち桁2からの荷重は、ゴム支承421に対して鉛直方向に入力される。また、ゴム支承421と桁2の下面21とは、接触させるだけで接合はさせない。 Rubber bearings 421, ... Are attached to the upper surface of the bearing portion 42 at intervals in the direction orthogonal to the bridge axis. The upper surface of the rubber bearing 421 comes into contact with the lower surface 21 of the girder 2. That is, the load from the girder 2 is input in the vertical direction with respect to the rubber bearing 421. Further, the rubber bearing 421 and the lower surface 21 of the girder 2 are only brought into contact with each other, but are not joined.

そして、傾斜部43は、支承部42から橋脚3の橋軸方向面32の中間部又は下部に向けて斜めに延伸される。傾斜部43は、図3に示すように、束材431と斜材432とによってトラス状の構面となる傾斜面に形成される。 Then, the inclined portion 43 is obliquely extended from the support portion 42 toward the intermediate portion or the lower portion of the bridge axial surface 32 of the pier 3. As shown in FIG. 3, the inclined portion 43 is formed on an inclined surface which becomes a truss-like structure surface by the bundle member 431 and the inclined member 432.

本実施の形態の傾斜部43は、平面視で橋軸方向と略平行となる3本の束材431,・・・と、束材431,431と支承部42と下枠部44とによって形成される長方形空間に斜めに架け渡される斜材432,432とを備えている。 The inclined portion 43 of the present embodiment is formed by three bundle members 431, ... That are substantially parallel to the bridge axis direction in a plan view, bundle members 431, 431, a support portion 42, and a lower frame portion 44. It is provided with diagonal members 432 and 432 that are diagonally bridged in the rectangular space to be formed.

傾斜部43の下縁を形成する梁状の下枠部44は、橋脚3の橋軸方向面32に対してフレーム構造体4からの力を作用させる部材である。すなわち、支承部42に入力された鉛直方向の荷重は、係留部41に水平方向に伝達されるとともに、傾斜部43に斜め下方に向けて伝達される。 The beam-shaped lower frame portion 44 forming the lower edge of the inclined portion 43 is a member that exerts a force from the frame structure 4 on the bridge axial surface 32 of the pier 3. That is, the vertical load input to the bearing portion 42 is transmitted horizontally to the mooring portion 41 and is also transmitted obliquely downward to the inclined portion 43.

このような力の流れを橋脚3側から見ると、橋脚3の脚頭部31には作用部411から水平力が入力されるとともに、傾斜部43の下縁の下枠部44からは橋脚3の橋軸方向面32に対して交差する方向の力が入力されることになる。 Looking at the flow of such force from the pier 3 side, a horizontal force is input to the pier head 31 of the pier 3 from the acting portion 411, and the pier 3 is input from the lower frame portion 44 of the lower edge of the inclined portion 43. The force in the direction intersecting the bridge axial direction surface 32 of the bridge is input.

下枠部44と橋軸方向面32との間には、力の伝達が円滑に行われるように、図4に示すような台座部5を設けることが好ましい。台座部5は、傾斜部43の延伸方向に対して直交する面となる載置面51を有している。 It is preferable to provide a pedestal portion 5 as shown in FIG. 4 between the lower frame portion 44 and the bridge axial direction surface 32 so that the force can be smoothly transmitted. The pedestal portion 5 has a mounting surface 51 that is a surface orthogonal to the extending direction of the inclined portion 43.

下枠部44は、台座部5の載置面51に対して、あと施工アンカーなどで固定される。ここで、下枠部44から作用する力は、載置面51に直交する方向の押付け力が主となり、あと施工アンカーには引張力が生じない。 The lower frame portion 44 is fixed to the mounting surface 51 of the pedestal portion 5 with a post-construction anchor or the like. Here, the force acting from the lower frame portion 44 is mainly a pressing force in the direction orthogonal to the mounting surface 51, and no tensile force is generated on the post-construction anchor.

そして、下枠部44と係留部41の作用部411との間は、連絡部45によって接続される。すなわち、係留部41と傾斜部43と連絡部45とによって、側面視で三角形が形成される。 Then, the lower frame portion 44 and the working portion 411 of the mooring portion 41 are connected by a connecting portion 45. That is, the mooring portion 41, the inclined portion 43, and the connecting portion 45 form a triangle in a side view.

次に、本実施の形態の桁の補強構造の作用について説明する。
図4は、本実施の形態の桁の補強構造に作用する力について模式的に説明する図である。この橋梁1は、鉄道橋で、列車Tが高速で走行する。
Next, the operation of the reinforcing structure of the girder of the present embodiment will be described.
FIG. 4 is a diagram schematically illustrating a force acting on the reinforcing structure of the girder of the present embodiment. This bridge 1 is a railway bridge, and train T runs at high speed.

列車Tが走行することによって発生する動的な荷重は、台車T1の車輪T2を介して桁2に作用することになる。また、列車Tの走行によって桁2が振動すると、桁2自体の死荷重に起因する慣性力も発生することになる。すなわち、フレーム構造体4の支承部42に作用する作用荷重Pは、列車荷重に慣性力が加わった大きさとなる。 The dynamic load generated by the running of the train T acts on the girder 2 via the wheels T2 of the bogie T1. Further, when the girder 2 vibrates due to the running of the train T, an inertial force due to the dead load of the girder 2 itself is also generated. That is, the acting load P acting on the support portion 42 of the frame structure 4 has a magnitude obtained by adding an inertial force to the train load.

一方、過去の検討例からすると、複線で2000 kN/mm - 4000 kN/mm程度の鉛直剛性を有する支点でなければ、支点追加による動的応答の低減効果は得られないことが判明している。そこで、完全複線載荷を仮定して、列車走行によって発生する全荷重である作用荷重Pをフレーム構造体4が受け持つと仮定した設計を行う。 On the other hand, from past studies, it has been found that the effect of reducing the dynamic response by adding a fulcrum cannot be obtained unless the fulcrum has a vertical rigidity of about 2000 kN / mm -4000 kN / mm for the double track. .. Therefore, assuming complete double-track loading, the design is performed assuming that the frame structure 4 is responsible for the acting load P, which is the total load generated by the train running.

すなわち、設計列車荷重を130×4=520kN、設計死荷重(慣性力)を300kN程度と見込むと、複線分で作用荷重Pは1000kN程度となる。また、フレーム構造体4の各部材は、高速鉄道の列車通過時の卓越周波数となる3Hz程度を避けるために、5Hz以上のものを使用する。 That is, assuming that the design train load is 130 × 4 = 520 kN and the design dead load (inertial force) is about 300 kN, the working load P is about 1000 kN for the double track. Further, each member of the frame structure 4 uses a member having a frequency of 5 Hz or higher in order to avoid a frequency of about 3 Hz, which is a predominant frequency when a high-speed railway passes a train.

また、地震時においては重量増加がマイナスに働くことになるため、フレーム構造体4は重くなりすぎないようにする。例えば、桁2の重量が600t程度とすると、その5%以内、すなわち30t以内の重量のフレーム構造体4にする。例えば、安全をみて10t程度の重量のフレーム構造体4を製作するのが好ましい。 Further, since the weight increase works negatively in the event of an earthquake, the frame structure 4 should not be too heavy. For example, if the weight of the girder 2 is about 600 tons, the frame structure 4 has a weight of 5% or less, that is, 30 tons or less. For example, for safety reasons, it is preferable to manufacture the frame structure 4 having a weight of about 10 tons.

フレーム構造体4は、橋脚3に対して、脚頭部31と、橋軸方向面32の中間部又は下部で接触する。脚頭部31に対しては、作用部411から水平力のみが伝達されるように接触させる。すなわち、列車Tの通過時に引張力が繰り返し載荷されないように、平面視コ字状の係留部41で脚頭部31を抱き込み、コンクリートの支圧によって水平力に抵抗させる。 The frame structure 4 contacts the pier 3 at the intermediate portion or the lower portion of the pier head 31 and the bridge axial surface 32. The leg head 31 is brought into contact with the acting portion 411 so that only the horizontal force is transmitted. That is, the leg head 31 is embraced by the mooring portion 41 having a U-shape in a plan view so that the tensile force is not repeatedly loaded when the train T passes, and the horizontal force is resisted by the bearing pressure of concrete.

一方、橋軸方向面32に対しては、台座部5の位置で、あと施工アンカーによって下枠部44と接合させる。このあと施工アンカーには、鉛直荷重に抵抗するせん断力と水平力に抵抗する圧縮力とが、列車Tの通過時に繰り返し作用することとなる。この影響度を考慮して、あと施工アンカーの数と配置間隔を決定する。 On the other hand, with respect to the bridge axial surface 32, the pedestal portion 5 is joined to the lower frame portion 44 by a post-construction anchor. After that, the shearing force that resists the vertical load and the compressive force that resists the horizontal force repeatedly act on the construction anchor when the train T passes. Considering this degree of influence, the number of post-construction anchors and the placement interval are determined.

このように構成された本実施の形態の桁の補強構造は、橋脚3に対して、係留部41と支承部42と傾斜部43とが一体に形成されたフレーム構造体4を取り付け、桁2の下面21に接触させた支承部42に作用した作用荷重Pを、係留部41を介して橋脚3の脚頭部31に伝達させるとともに、傾斜部43を介して橋脚3の橋軸方向面32に伝達させる。 In the girder reinforcement structure of the present embodiment configured as described above, the frame structure 4 in which the mooring portion 41, the bearing portion 42, and the inclined portion 43 are integrally formed is attached to the bridge pier 3, and the girder 2 is attached. The acting load P acting on the bearing portion 42 in contact with the lower surface 21 of the bridge is transmitted to the pier head 31 of the pier 3 via the mooring portion 41, and the bridge axial surface 32 of the pier 3 is transmitted via the inclined portion 43. To convey to.

このような構成であれば、桁2の下方における作業のみで構築できるので、既設の桁2の使用を妨げることがない。例えば、工場などで製作された各部材を橋脚3の周囲に運び込み、ボルト接合によってフレーム構造体4を所定の位置で組み立てるのであれば、短時間で取り付けを行うことができる。また、こうした作業であれば、桁2の上面に敷設された軌道における列車Tの走行の支障になることがない。 With such a configuration, since it can be constructed only by the work below the girder 2, it does not interfere with the use of the existing girder 2. For example, if each member manufactured in a factory or the like is carried around the pier 3 and the frame structure 4 is assembled at a predetermined position by bolt joining, the frame structure 4 can be attached in a short time. In addition, such work does not hinder the running of the train T on the track laid on the upper surface of the girder 2.

さらに、主鉄筋の段落としなどがされていない脚頭部31は、曲げ耐力やせん断耐力に比較的に余裕があるため、特別な補強をしなくても、そのまま既設の橋脚3を利用することが可能で、効率的に桁2の動的応答を抑えることができる。すなわち、フレーム構造体4の支承部42によって橋脚3よりも桁2の中央側に支点が追加されると、スパン短縮効果によって桁2の動的応答を低減させることができる。 Further, since the leg head 31 which is not provided as a paragraph of the main reinforcing bar has a relatively large bending strength and shear strength, the existing pier 3 can be used as it is without any special reinforcement. It is possible to efficiently suppress the dynamic response of the digit 2. That is, when the support portion 42 of the frame structure 4 adds a fulcrum to the center side of the girder 2 with respect to the pier 3, the dynamic response of the girder 2 can be reduced by the span shortening effect.

そして、このようなフレーム構造体4においては、係留部41に支承部42側に向けた引張力Q1が発生することになるが、鋼材のように引張強度が高い枠材を使用することで、簡単かつ軽量に製作することができる。また、傾斜部43には圧縮力Q2が発生することになるが、座屈が起きない断面及び長さにすることで、簡単に対処できる。 Then, in such a frame structure 4, a tensile force Q1 toward the support portion 42 side is generated in the mooring portion 41, but by using a frame material having a high tensile strength such as a steel material, the frame material has a high tensile strength. It can be manufactured easily and lightweight. Further, a compressive force Q2 is generated in the inclined portion 43, which can be easily dealt with by making the cross section and length so that buckling does not occur.

さらに、フレーム構造体4からは、橋脚3の脚頭部31には支承部42側に向けた水平力R1が作用するとともに、橋脚3の橋軸方向面32には鉛直面に対して交差する方向の押圧力R2が作用することになるだけなので、既存の橋脚3がもともと有している耐力だけで桁2の動的応答を抑えることが可能になる。 Further, from the frame structure 4, a horizontal force R1 toward the support portion 42 side acts on the pier head 31 of the pier 3, and the bridge axial surface 32 of the pier 3 intersects the vertical plane. Since the pressing force R2 in the direction only acts, it is possible to suppress the dynamic response of the girder 2 only by the proof stress originally possessed by the existing pier 3.

詳細には、橋脚3の脚頭部31は、係留部41によって囲まれてコンクリート構造物にとって卓越する圧縮強度に対する支圧荷重が付加されるだけで、引張力は直接的には付加されないので、既設の橋脚3を傷めることがない。また、下枠部44を橋脚3に対して固定するために設けられるあと施工アンカーにも引張疲労が起きないので、既設の橋脚3の損傷を防ぐことができる。 Specifically, the pier 31 of the pier 3 is surrounded by the mooring portion 41 and only a bearing load for the compressive strength predominant for the concrete structure is applied, and no tensile force is directly applied. It will not damage the existing pier 3. Further, since tensile fatigue does not occur in the post-construction anchor provided for fixing the lower frame portion 44 to the pier 3, damage to the existing pier 3 can be prevented.

さらに、橋脚3の橋軸方向面32に、傾斜部43の延伸方向に対して直交する載置面51を有する台座部5を設けることで、傾斜部43の下縁の下枠部44の設置が容易に行えるようになる。 Further, by providing the pedestal portion 5 having the mounting surface 51 orthogonal to the extending direction of the inclined portion 43 on the bridge axial direction surface 32 of the pier 3, the lower frame portion 44 of the lower edge of the inclined portion 43 is installed. Will be easy to do.

また、このような台座部5を設けることで、あと施工アンカーに引張力が作用するのを極力抑えることができるようになり、あと施工アンカーの配置数量を低減することができる。すなわち、あと施工アンカーに作用する力を、圧縮力又はせん断力にすることが容易にできる。 Further, by providing such a pedestal portion 5, it becomes possible to suppress the action of the tensile force on the post-construction anchor as much as possible, and it is possible to reduce the arrangement quantity of the post-construction anchor. That is, the force acting on the post-construction anchor can be easily made into a compressive force or a shearing force.

そして、フレーム構造体4の重量を桁2の重量の5%以内に収めるのであれば、橋脚3や基礎部(34,35)の設計の許容範囲内に収まることが多く、橋脚3等を補強することなく、工費や工期を低減することができるようになる。 If the weight of the frame structure 4 is kept within 5% of the weight of the girder 2, it often falls within the allowable range of the design of the pier 3 and the foundation (34, 35), and the pier 3 and the like are reinforced. It will be possible to reduce the construction cost and construction period without doing so.

以下、前記実施の形態で説明した桁の補強構造とは別の実施形態について、図5−図9を参照しながら説明する。なお、前記実施の形態で説明した内容と同一乃至均等な部分の説明については、同一用語又は同一符号を付して説明する。 Hereinafter, an embodiment different from the girder reinforcing structure described in the above embodiment will be described with reference to FIGS. 5 to 9. The same or equivalent parts as those described in the above-described embodiment will be described with the same terms or the same reference numerals.

本実施例1では、前記実施の形態で説明したフレーム構造体4とは別の形状のフレーム構造体6を使用する。実施例1のフレーム構造体6も、H形鋼、溝形鋼、I形鋼などの鋼材を枠材として使用して製作される。 In the first embodiment, a frame structure 6 having a shape different from that of the frame structure 4 described in the above embodiment is used. The frame structure 6 of the first embodiment is also manufactured by using a steel material such as H-shaped steel, channel steel, or I-shaped steel as a frame material.

フレーム構造体6は、図5−図7に示すように、橋脚3の脚頭部31を囲むように配置される係留部61と、係留部61から張り出された位置で桁2の下面21に接触させる支承部62と、支承部62から橋軸方向面32に向けて斜めに延伸される傾斜部63とが、枠材によって一体に形成される。 As shown in FIGS. 5 to 7, the frame structure 6 has a mooring portion 61 arranged so as to surround the leg head 31 of the bridge pier 3 and a lower surface 21 of the girder 2 at a position protruding from the mooring portion 61. The support portion 62 that comes into contact with the bridge and the inclined portion 63 that extends obliquely from the support portion 62 toward the bridge axial surface 32 are integrally formed by the frame material.

係留部61は、図6に示すように、平面視略長方形の脚頭部31の周囲を囲むように配置される作用部611と、作用部611から桁2の中央側に張り出される張出部612とによって形成される。 As shown in FIG. 6, the mooring portion 61 includes an action portion 611 arranged so as to surround the leg head 31 having a substantially rectangular plan view, and an overhang extending from the action portion 611 toward the center of the girder 2. Formed by part 612.

平面視ロ字状の作用部611の内側面は、脚頭部31の側面に接触させる。この作用部611の各辺となる梁状の枠材同士は、ボルトなどによって接合させる。この作用部611の各部材には、それほど大きな力が作用しないため、比較的断面の小さい鋼材を使用して軽量化を図ることもできる。 The inner surface of the action portion 611 having a rectangular shape in a plan view is brought into contact with the side surface of the leg head 31. The beam-shaped frame members on each side of the working portion 611 are joined by bolts or the like. Since a large force does not act on each member of the working portion 611, it is possible to reduce the weight by using a steel material having a relatively small cross section.

一方、張出部612には、大きな引張力が発生することになるため、比較的断面の大きな鋼材によって製作し、必要に応じて斜材などで補強を行う。そして、張出部612の桁2の中央側の縁部に、梁状の支承部62を設ける。 On the other hand, since a large tensile force is generated in the overhanging portion 612, the overhanging portion 612 is manufactured of a steel material having a relatively large cross section, and is reinforced with a diagonal material or the like as necessary. Then, a beam-shaped bearing portion 62 is provided at the central edge of the girder 2 of the overhanging portion 612.

支承部62の上面には、橋軸直交方向に間隔を置いて、ゴム支承621,・・・が取り付けられる。このゴム支承621の上面は、桁2の下面21に接合させることなく接触させる。 Rubber bearings 621, ... Are attached to the upper surface of the bearing portion 62 at intervals in the direction orthogonal to the bridge axis. The upper surface of the rubber bearing 621 is brought into contact with the lower surface 21 of the girder 2 without being joined.

そして、傾斜部63は、支承部62から橋脚3の橋軸方向面32の中間部又は下部に向けて斜めに延伸される。傾斜部63は、図7に示すように、主材631と補強材632とによって傾斜面に形成される。なお、この図7では、支承部62の図示を省略している。 Then, the inclined portion 63 is obliquely extended from the support portion 62 toward the intermediate portion or the lower portion of the bridge axial surface 32 of the pier 3. As shown in FIG. 7, the inclined portion 63 is formed on an inclined surface by the main material 631 and the reinforcing member 632. In FIG. 7, the support portion 62 is not shown.

本実施例1の傾斜部63は、平面視で橋軸方向と略平行となる3本の主材631,・・・と、隅角部に斜めに配置される補強材632とを備えている。ここで、主材631には、断面の大きな鋼材を使用し,補強材632には断面が小さな鋼材を使用する。 The inclined portion 63 of the first embodiment includes three main members 631, ... That are substantially parallel to the bridge axis direction in a plan view, and a reinforcing member 632 that is obliquely arranged at a corner portion. .. Here, a steel material having a large cross section is used for the main material 631, and a steel material having a small cross section is used for the reinforcing material 632.

傾斜部63の下縁を形成する梁状の下枠部64は、橋脚3の橋軸方向面32に対してフレーム構造体6からの力を作用させる部材である。すなわち、支承部62に入力された鉛直方向の荷重は、係留部61に水平方向に伝達されるとともに、傾斜部63に斜め下方に向けて伝達される。 The beam-shaped lower frame portion 64 forming the lower edge of the inclined portion 63 is a member that exerts a force from the frame structure 6 on the bridge axial surface 32 of the pier 3. That is, the vertical load input to the bearing portion 62 is transmitted horizontally to the mooring portion 61 and diagonally downward to the inclined portion 63.

下枠部64と橋軸方向面32との間には、力の伝達が円滑に行われるように、台座部5を設けることができる。また、下枠部64の下端部側を台座部と同様の形状に成形することもできる。 A pedestal portion 5 can be provided between the lower frame portion 64 and the bridge axial direction surface 32 so that force can be smoothly transmitted. Further, the lower end side of the lower frame portion 64 can be molded into the same shape as the pedestal portion.

そして、図5に示すように、係留部61の作用部611と張出部612の境界近傍と下枠部64との間は、連絡部65によって接続される。図8に、フレーム構造体6の寸法の一例を示した。 Then, as shown in FIG. 5, the action portion 611 of the mooring portion 61, the vicinity of the boundary of the overhanging portion 612, and the lower frame portion 64 are connected by a connecting portion 65. FIG. 8 shows an example of the dimensions of the frame structure 6.

ここで、作用部611と下枠部64と補強材632には、断面高さ200mmのH形鋼を使用し、それ以外の部材には、断面高さ500mmのH形鋼を使用した。また、高速鉄道の列車通過時の卓越周波数を避けた5Hz以上の部材にするために、H-200×200×8×12の断面形状のH形鋼であれば1500mm以下の長さにし、H-500×500×25×25の断面形状のH形鋼であれば2400mm以下の長さにする。 Here, H-shaped steel having a cross-sectional height of 200 mm was used for the working portion 611, the lower frame portion 64, and the reinforcing material 632, and H-shaped steel having a cross-sectional height of 500 mm was used for the other members. In addition, in order to make the member 5Hz or higher avoiding the predominant frequency when passing a high-speed railway train, if it is an H-section steel with a cross-sectional shape of H-200 × 200 × 8 × 12, the length should be 1500 mm or less. -For H-beams with a cross-sectional shape of 500 x 500 x 25 x 25, the length should be 2400 mm or less.

次に、本実施例1の桁の補強構造の作用について説明する。
図9は、本実施例1の桁の補強構造に作用する力について模式的に説明する図である。ここで、フレーム構造体6は、橋軸方向面32と傾斜部63とのなす角がθとなるように橋脚3に取り付けられる。
Next, the operation of the reinforcing structure of the girder of the first embodiment will be described.
FIG. 9 is a diagram schematically illustrating a force acting on the reinforcing structure of the girder of the first embodiment. Here, the frame structure 6 is attached to the pier 3 so that the angle formed by the bridge axial surface 32 and the inclined portion 63 is θ.

そして、この橋梁1も鉄道橋で、列車Tの走行によって、列車荷重と桁2の慣性力との合計で1000kN程度の作用荷重Pが支承部62に作用する。支承部62に鉛直方向に作用荷重Pが載荷されると、係留部61には水平方向にPtanθの力が伝達される。この力は、作用部611から橋脚3の脚頭部31に水平力として作用することになる。また、その反力として、係留部61には+Ptanθの引張力が生じることになる。 This bridge 1 is also a railway bridge, and as the train T travels, a working load P of about 1000 kN in total of the train load and the inertial force of the girder 2 acts on the bearing portion 62. When the acting load P is loaded on the bearing portion 62 in the vertical direction, the force of Ptan θ is transmitted to the mooring portion 61 in the horizontal direction. This force acts as a horizontal force from the acting portion 611 to the leg head 31 of the pier 3. Further, as the reaction force, a tensile force of + Ptan θ is generated in the mooring portion 61.

これに対して、傾斜部63には-P/cosθの圧縮力が生じることになる。そして、下枠部64を介して橋脚3の橋軸方向面32には、鉛直方向にPの大きさの力が作用するとともに、水平方向にPtanθの力が作用することになる。 On the other hand, a compressive force of −P / cos θ is generated in the inclined portion 63. Then, a force having a magnitude of P acts in the vertical direction and a force of Ptan θ acts in the horizontal direction on the bridge axial surface 32 of the pier 3 via the lower frame portion 64.

このように構成された実施例1の桁の補強構造では、フレーム構造体6を取り付けたことによって橋脚3に付加される追加荷重は、脚頭部31においてはPtanθ、橋軸方向面32においては、鉛直方向のPと水平方向のPtanθとの合力のみである。 In the girder reinforcement structure of the first embodiment configured in this way, the additional load applied to the pier 3 by attaching the frame structure 6 is Ptan θ at the pier head 31 and Ptan θ at the bridge axial plane 32. , Only the resultant force of P in the vertical direction and Ptan θ in the horizontal direction.

要するに、橋脚3に何の補強も加えなくても、これらの追加される荷重が許容される範囲において、フレーム構造体6によって動的応答を低減させることができる。また、必要に応じて橋脚3の一部を補強するだけで、動的応答の低減に効果的なフレーム構造体6を設置できるようになる。 In short, the frame structure 6 can reduce the dynamic response to the extent that these additional loads are acceptable, without adding any reinforcement to the piers 3. Further, the frame structure 6 which is effective in reducing the dynamic response can be installed only by reinforcing a part of the pier 3 as needed.

また、実施例1のフレーム構造体6は、前記実施の形態で説明したフレーム構造体4と比べて傾斜部63の延長を短くできる。ここで、桁2のたわみを抑えられる剛性(等価鉛直剛性)は、傾斜部63の主材631の長さと軸剛性のみで決まるため、例えば等価鉛直剛性を300kN/mm以上にできるような傾斜部63の長さに決定することで、効果的に桁2の動的応答を抑えることができる。
なお、他の構成及び作用効果については、前記実施の形態と略同様であるので説明を省略する。
Further, the frame structure 6 of the first embodiment can shorten the extension of the inclined portion 63 as compared with the frame structure 4 described in the above embodiment. Here, the rigidity that can suppress the deflection of the girder 2 (equivalent vertical rigidity) is determined only by the length of the main material 631 of the inclined portion 63 and the axial rigidity. Therefore, for example, the inclined portion that can make the equivalent vertical rigidity 300 kN / mm or more. By determining the length to 63, the dynamic response of the digit 2 can be effectively suppressed.
Since other configurations and actions and effects are substantially the same as those of the above-described embodiment, description thereof will be omitted.

以上、図面を参照して、本発明の実施の形態を詳述してきたが、具体的な構成は、この実施の形態又は実施例1に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment or the first embodiment, and the design is such that the gist of the present invention is not deviated. Modifications are included in the present invention.

例えば、前記実施の形態では、橋梁1として列車Tが走行する鉄道橋について説明したが、これに限定されるものではなく、自動車の走行によって桁が振動する道路橋にも本発明を適用することができる。 For example, in the above-described embodiment, the railway bridge on which the train T travels as the bridge 1 has been described, but the present invention is not limited to this, and the present invention is applied to a road bridge in which the girder vibrates due to the traveling of an automobile. Can be done.

また、前記実施の形態では、脚頭部31が膨出した形状の橋脚3を例に説明したが、これに限定されるものではなく、水平断面の形状が高さ方向に略均一となるような橋脚にも本発明を適用することができる。 Further, in the above-described embodiment, the pier 3 having a bulging leg head 31 has been described as an example, but the present invention is not limited to this, and the shape of the horizontal cross section is substantially uniform in the height direction. The present invention can be applied to various piers.

1 :橋梁
2 :桁
21 :下面
3 :橋脚
31 :脚頭部(上部)
32 :橋軸方向面(側面)
4 :フレーム構造体
41 :係留部
42 :支承部
43 :傾斜部
5 :台座部
51 :載置面
6 :フレーム構造体
61 :係留部
62 :支承部
63 :傾斜部
P :作用荷重
Q1 :引張力
Q2 :圧縮力
R1 :水平力
R2 :押圧力
1: Bridge 2: Girder 21: Bottom surface 3: Pier 31: Leg head (upper part)
32: Bridge axial plane (side surface)
4: Frame structure 41: Mooring part 42: Support part 43: Inclined part 5: Pedestal part 51: Mounting surface 6: Frame structure 61: Mooring part 62: Supporting part 63: Inclined part P: Acting load Q1: Pull Force Q2: Compressive force R1: Horizontal force R2: Pushing pressure

Claims (5)

橋脚に架け渡される桁の動的応答を抑えるための桁の補強構造であって、
前記橋脚の上部を囲むように配置される係留部と、前記係留部から前記桁の中央側に張り出された位置で前記桁の下面に接触させる支承部と、前記支承部から前記橋脚の側面に向けて斜めに延伸される傾斜部とが枠材によって一体に形成されたフレーム構造体を備え、
前記支承部に作用した荷重は、前記係留部を介して前記橋脚の上部に伝達されるとともに、前記傾斜部を介して前記橋脚の側面に伝達されることを特徴とする桁の補強構造。
It is a reinforcement structure of the girder to suppress the dynamic response of the girder over the pier.
A mooring portion arranged so as to surround the upper portion of the pier, a bearing portion that contacts the lower surface of the girder at a position protruding from the mooring portion toward the center of the girder, and a side surface of the pier from the support portion. It is provided with a frame structure in which an inclined portion extending obliquely toward is formed integrally with a frame material.
A girder reinforcing structure, characterized in that the load acting on the bearing portion is transmitted to the upper part of the pier via the mooring portion and is transmitted to the side surface of the pier via the inclined portion.
前記係留部には前記支承部側に向けた引張力が発生するとともに、前記傾斜部には圧縮力が発生することを特徴とする請求項1に記載の桁の補強構造。 The girder reinforcing structure according to claim 1, wherein a tensile force is generated in the mooring portion toward the support portion side, and a compressive force is generated in the inclined portion. 前記橋脚の上部には前記支承部側に向けた水平力が作用するとともに、前記橋脚の側面には鉛直面に対して交差する方向の力が作用することを特徴とする請求項1に記載の桁の補強構造。 The first aspect of the present invention, wherein a horizontal force acting toward the support portion side acts on the upper part of the pier, and a force acting in a direction intersecting the vertical plane acts on the side surface of the pier. Reinforced structure of the girder. 前記橋脚の側面に、前記傾斜部の延伸方向に対して直交する面を有する台座部が設けられることを特徴とする請求項1乃至3のいずれか1項に記載の桁の補強構造。 The girder reinforcing structure according to any one of claims 1 to 3, wherein a pedestal portion having a surface orthogonal to the extending direction of the inclined portion is provided on the side surface of the pier. 前記フレーム構造体の重量は、前記桁の重量の5%以内であることを特徴とする請求項1乃至4のいずれか1項に記載の桁の補強構造。
The reinforcing structure for a girder according to any one of claims 1 to 4, wherein the weight of the frame structure is within 5% of the weight of the girder.
JP2019126325A 2019-07-05 2019-07-05 Girder reinforcement structure Active JP7123870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019126325A JP7123870B2 (en) 2019-07-05 2019-07-05 Girder reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019126325A JP7123870B2 (en) 2019-07-05 2019-07-05 Girder reinforcement structure

Publications (2)

Publication Number Publication Date
JP2021011736A true JP2021011736A (en) 2021-02-04
JP7123870B2 JP7123870B2 (en) 2022-08-23

Family

ID=74227274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019126325A Active JP7123870B2 (en) 2019-07-05 2019-07-05 Girder reinforcement structure

Country Status (1)

Country Link
JP (1) JP7123870B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11747663B2 (en) 2021-04-27 2023-09-05 Lg Electronics Inc. Display device
KR102612849B1 (en) * 2023-04-07 2023-12-11 이우연 Height-adjustable and error-correctable post-type footbridge with bracket file reinforcement cap

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270407A (en) * 1985-05-23 1986-11-29 株式会社 間組 Apparatus for moving high bridge slab mold frame centle
JP2001164512A (en) * 1999-12-06 2001-06-19 Kajima Corp Section division type precast segment construction method
JP2004324265A (en) * 2003-04-25 2004-11-18 Sho Bond Constr Co Ltd Bridge fall preventing device, movement limiting device and bridge fall preventing method
JP2007132077A (en) * 2005-11-10 2007-05-31 Yokogawa Bridge Corp Construction method of rigid-frame bridge with angle brace member, and rigid-frame bridge with angle brace member
JP2008038504A (en) * 2006-08-08 2008-02-21 Tokyo Fabric Kogyo Kk Method for improving antiseismic performance of bridge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270407A (en) * 1985-05-23 1986-11-29 株式会社 間組 Apparatus for moving high bridge slab mold frame centle
JP2001164512A (en) * 1999-12-06 2001-06-19 Kajima Corp Section division type precast segment construction method
JP2004324265A (en) * 2003-04-25 2004-11-18 Sho Bond Constr Co Ltd Bridge fall preventing device, movement limiting device and bridge fall preventing method
JP2007132077A (en) * 2005-11-10 2007-05-31 Yokogawa Bridge Corp Construction method of rigid-frame bridge with angle brace member, and rigid-frame bridge with angle brace member
JP2008038504A (en) * 2006-08-08 2008-02-21 Tokyo Fabric Kogyo Kk Method for improving antiseismic performance of bridge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11747663B2 (en) 2021-04-27 2023-09-05 Lg Electronics Inc. Display device
KR102612849B1 (en) * 2023-04-07 2023-12-11 이우연 Height-adjustable and error-correctable post-type footbridge with bracket file reinforcement cap

Also Published As

Publication number Publication date
JP7123870B2 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
KR100864220B1 (en) Steel pipe girder used bridge
JP4917168B1 (en) Seismic reinforcement structure and method using compression braces
JP7123870B2 (en) Girder reinforcement structure
JP2020105803A (en) Cable-stayed bridge and cable-stayed bridge construction method
KR20180112150A (en) Prestressing appratus and construction method of girder
JP2009228296A (en) Seismic strengthening method for bridge
KR20160073710A (en) Prestressed Steel-Concrete Composite Box Girder, Bridge using such Composite Box Girders, and Continuous Structure of such Composite Box Girders
JP4347158B2 (en) Steel bridge, steel bridge reinforcement method and repair method
JP4508293B2 (en) Structure near the intermediate fulcrum of continuous I-girder bridge
KR100648046B1 (en) Beam and Girder Reinforcing Apparatus using External Post-Tension and Reinforcing Method using the same
KR102131498B1 (en) Composite beam and floor structure and joint structure between composite beam and column
JP2019002164A (en) Precast floor slab joint structure
JP4492422B2 (en) Structure near the intermediate fulcrum of continuous I-girder bridge
KR100767145B1 (en) Construction method of prestressed concrete temporary bridge that can be assembled and dismantled using lateral steel wire
JP2014173259A (en) Continuous girder bridge and construction method thereof
KR101329372B1 (en) Deflection control structure of deck plate of slim floor with demountable tendon and construction method thereof
KR101591808B1 (en) the deep composite precast beam, the connection structure between composite precast column and the deep composite precast beam
JP2002302908A (en) Rigid connection structure for upper and lower part composite member
KR101160187B1 (en) Precast integrated track girder and it's manufacture and construction method for railway bridge
JP2021067078A (en) Bridge fall prevention structure
KR20160063682A (en) Prestressed Steel-Concrete Composite Girder with Upper Hollow Portion, and Continuous Structure of such Prestressed Steel-Concrete Composite Girders
JP7328610B1 (en) junction structure
JP4452518B2 (en) Composite member joining structure
KR102551244B1 (en) Web-open type steel box, bridge and construction method therewith
JP5827588B2 (en) Floor slab reinforcement structure and reinforcement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220810

R150 Certificate of patent or registration of utility model

Ref document number: 7123870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150