JP2009228296A - Seismic strengthening method for bridge - Google Patents

Seismic strengthening method for bridge Download PDF

Info

Publication number
JP2009228296A
JP2009228296A JP2008074788A JP2008074788A JP2009228296A JP 2009228296 A JP2009228296 A JP 2009228296A JP 2008074788 A JP2008074788 A JP 2008074788A JP 2008074788 A JP2008074788 A JP 2008074788A JP 2009228296 A JP2009228296 A JP 2009228296A
Authority
JP
Japan
Prior art keywords
bridge
girders
abutment
seismic
pier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008074788A
Other languages
Japanese (ja)
Inventor
Kenji Tazaki
賢治 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ENGINEERING CONSULTANTS
Nippon Engineering Consultants Co Ltd
Original Assignee
NIPPON ENGINEERING CONSULTANTS
Nippon Engineering Consultants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ENGINEERING CONSULTANTS, Nippon Engineering Consultants Co Ltd filed Critical NIPPON ENGINEERING CONSULTANTS
Priority to JP2008074788A priority Critical patent/JP2009228296A/en
Publication of JP2009228296A publication Critical patent/JP2009228296A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seismic strengthening method for a bridge, which can realize seismic strengthening without applying direct lining strengthening to a bridge pier, or which can decrease the level of the lining strengthening even if the lining strengthening is performed. <P>SOLUTION: The multispan bridge 1, in which a plurality of girders 2 continue in the direction of a bridge axis, is characterized in that the adjacent girders 2 and 2 can be connected together by means of a connecting device which is constituted to tie the girders 2 and 2 together in a range not exceeding the design expansion/contraction amount of an expansion joint device arranged between the adjacent girders 2 and 2, so as to prevent such a motion that a section between the girders 2 and 2 is opened/closed. A device, in which stoppers 5b and 5b are attached to both ends of a steel wire 5a with a predetermined length, or a seismic control damper is used as the connecting device 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、既設及び新設の多径間橋梁を対象とする耐震補強方法に関する。   The present invention relates to a seismic reinforcement method for existing and new multi-span bridges.

中間橋脚を有する既設の多径間単純橋梁のうち、古い基準で設計されたものは、現行の耐震基準を満たしていないことが多く、非常に危険である。特に、大規模地震時、橋脚の変形が大きい場合には、例えば図3(1)に示すような橋梁(両端に設置された橋台53,53と、中間に配置された橋脚54によって二つの桁52,52が支承される橋梁51)において、橋梁51の中央部付近(橋脚54によって支持される二つの桁52,52の隣接する桁端部付近)が、図3(2)に示すように、橋軸直角方向(同図中、矢印で示す方向)に変位し、隣接する桁52,52間において、桁端部同士が開閉するような動きが生じてしまうことがあり、橋梁が損壊、或いは、倒壊してしまう可能性が高い。   Of existing multi-span simple bridges with intermediate piers, those designed with the old standards are often very dangerous because they often do not meet the current seismic standards. In particular, when the deformation of the pier is large during a large-scale earthquake, for example, a bridge as shown in FIG. 3 (1) (two girder is formed by the abutments 53 and 53 installed at both ends and the pier 54 arranged in the middle. As shown in FIG. 3 (2), in the bridge 51 on which 52 and 52 are supported, the vicinity of the center of the bridge 51 (near the end of adjacent girder 52 and 52 supported by the pier 54). , It is displaced in the direction perpendicular to the bridge axis (the direction indicated by the arrow in the figure), and the movement between the adjacent girders 52, 52 may occur such that the end portions of the girders open and close, and the bridge is damaged. Or, there is a high possibility of collapse.

従って、現行の耐震基準を満たしていない多径間橋梁については、橋脚の補強が必要となり、そのための具体的な措置として、鉄筋コンクリート、鋼板、或いは、炭素繊維シート等の補強部材を、橋脚の外周に巻立てるという工事(巻立て補強工事)が実施されている。
特開2007−224579号公報 特開2007−016500号公報
Therefore, for multi-span bridges that do not meet the current seismic standards, reinforcement of the piers is necessary, and as a concrete measure, reinforcing members such as reinforced concrete, steel plates, or carbon fiber sheets should be used. Construction (winding reinforcement work) is being carried out.
JP 2007-224579 A JP 2007-016500 A

しかしながら、橋脚が水中にある河川橋や湖面橋、或いは、橋脚が斜面の土中にあるような橋梁においては、巻立て補強工事が物理的に不可能であったり、物理的には可能であっても、施工上の制約等からコストが嵩んでしまい、経済的な理由で工事を実施できない、ということもある。   However, for river bridges and lake surface bridges where the piers are underwater, or bridges where the piers are in the soil of the slope, winding reinforcement work is physically impossible or physically possible. However, the cost is increased due to construction restrictions and the like, and the construction cannot be performed for economic reasons.

本発明は、かかる従来技術の問題を解決すべくなされたものであって、橋脚を直接巻立て補強せず実現することができ、或いは、巻立て補強を行う場合であっても、その補強レベルを低減することができる耐震補強方法を提供することを目的とする。   The present invention has been made to solve such problems of the prior art, and can be realized without directly winding and reinforcing the pier, or even when the reinforcing reinforcement is applied, the level of reinforcement can be achieved. An object of the present invention is to provide a seismic reinforcement method capable of reducing the above.

本発明の橋梁の耐震補強方法は、複数の単純桁が橋軸方向へ連続する多径間橋梁を対象とし、隣接する桁同士を橋脚上で連結装置によって連結することにより、橋軸直角方向の地震力に対し、隣接する桁同士が開閉するような動きを防止し、橋脚の水平変位を小さくできるようにすることを特徴としている。尚、連結装置としては、所定長さの鋼材の両端にストッパを取り付けたもの、或いは、制震ダンパーを用いることが好ましい。   The seismic reinforcement method for a bridge according to the present invention is intended for multi-span bridges in which a plurality of simple girders are continuous in the direction of the bridge axis. It is characterized by the ability to reduce the horizontal displacement of the bridge pier by preventing the movement between adjacent girders against earthquake force. In addition, as a connection apparatus, it is preferable to use the thing which attached the stopper to the both ends of the steel material of predetermined length, or a damping damper.

また、本発明の橋梁の耐震補強方法は、橋台上において支持される桁の端部を、橋台に対して固定することにより、橋軸直角方向の地震力に対し、上部工の地震慣性力を、橋脚よりも耐力、剛性の大きい橋台で受け持ち、橋脚及び橋台上において桁が橋軸直角方向へ変位することを防止できるようにすることを特徴としている。尚、桁の端部を橋台に対して固定するための具体的な手段としては、橋台上に固定装置を立設すること、或いは、橋台上に、アンカーを用いて桁の端部を直接或いは間接的に固定することが好ましい。   Moreover, the seismic reinforcement method for a bridge according to the present invention fixes the seismic inertial force of the superstructure against the seismic force perpendicular to the bridge axis by fixing the end of the beam supported on the abutment to the abutment. It is characterized in that it is handled by an abutment having a higher yield strength and rigidity than the pier, and that it is possible to prevent the girder from being displaced in the direction perpendicular to the bridge axis on the pier and the abutment. In addition, as a concrete means for fixing the end part of the girder to the abutment, a fixing device is erected on the abutment, or the end part of the girder is directly or directly on the abutment using an anchor. It is preferable to fix indirectly.

本発明の橋梁の耐震補強方法によれば、多径間橋梁において、橋脚上において隣接する桁同士が連結されることにより、或いは、橋台に対して桁端部が固定されることにより、橋軸直角方向に地震力が作用した場合であっても、隣接する桁同士が開閉しないように拘束することができ、連続桁(一本棒)の挙動に近くなり、地震力が、耐力、剛性の大きい橋台に分担され、橋脚の変形を小さくすることができる。その結果、橋脚の巻立て補強を行わずに耐震性能を必要なレベルまで向上させることができる。また、桁を橋軸方向に連結することにより、落橋に対する安全性が向上する、という効果も期待することができる。   According to the seismic reinforcement method for a bridge of the present invention, in a multi-span bridge, by connecting adjacent girders on a pier, or by fixing an end of a girder to an abutment, Even when a seismic force is applied in a perpendicular direction, it can be constrained so that adjacent girders do not open and close, and the behavior of a continuous girder (single bar) is close, and the seismic force is improved in strength and rigidity. It is divided into large abutments and can reduce the deformation of the pier. As a result, the seismic performance can be improved to a necessary level without reinforcing the piers. Moreover, the effect that the safety | security with respect to a falling bridge improves by connecting a girder to a bridge-axis direction can also be anticipated.

以下、添付図面に沿って、本発明を実施するための最良の形態について説明する。図1は、本発明の第1の実施形態に係る橋梁の耐震補強方法の説明図であって、本発明の補強方法を、鋼箱桁タイプの橋梁1における桁2,2の接合部に対して適用した例を示す図である。より詳細には、図1(1)は、本発明の補強方法によって補強した橋梁1における桁2の端面図、(2)は、橋脚4上において支持される桁2,2の垂直断面図((1)のx−x線による断面図)、(3)は、橋脚4上において支持される桁2,2の水平断面図((1)のy−y線による断面図)である。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. FIG. 1 is an explanatory view of a seismic reinforcement method for a bridge according to a first embodiment of the present invention. The reinforcement method according to the present invention is applied to a joint portion of girders 2 and 2 in a steel box girder type bridge 1. FIG. More specifically, FIG. 1 (1) is an end view of the girder 2 in the bridge 1 reinforced by the reinforcing method of the present invention, and (2) is a vertical sectional view of the girder 2 and 2 supported on the pier 4 ( (1) is a cross-sectional view taken along line xx), and (3) is a horizontal cross-sectional view of the girders 2 and 2 supported on the pier 4 (cross-sectional view taken along line yy of (1)).

図1の橋梁1は、本発明の補強方法の適用前においては、隣接する桁2,2間は連結されていなかった(尚、隣接する桁2,2上に載置される床版6,6同士は、図示しない伸縮継手装置によって路面が連続するように接続されている。)が、適用後においては、隣接する桁2,2間が、連結装置5によって強固に連結される。   The bridge 1 in FIG. 1 was not connected between the adjacent girders 2 and 2 before application of the reinforcing method of the present invention (in addition, the floor slab 6 placed on the adjacent girders 2 and 2). 6 are connected by an expansion joint device (not shown) so that road surfaces are continuous.) After application, the adjacent beams 2 and 2 are firmly connected by the connecting device 5.

尚、本実施形態においては、連結装置5として、所定の長さの鋼線5aの両端部にストッパ5b,5bを取り付けたものが用いられており、各ストッパ5b,5bを、各桁2,2の壁面に係止させて、対向する桁2,2間に鋼線5aを張り渡すようにして連結するように構成されている。尚、鋼線5aには、プレストレスコンクリート(PC)の製造に使用されるPC鋼線等を用いることができる。また、連結装置5の構成部材としては、鋼線5aの代わりに、鋼棒(PC鋼棒等)、その他の鋼材、或いは、制震ダンパー(低降伏点鋼材を用いたダンパー等を含む軸降伏型ダンパー、又は、摩擦履歴型ダンパー、粘性ダンパー、シリンダー型ダンパー等)を用いることもできる。また、ストッパ5bは、桁2の壁面に直接係止させるのではなく、桁2の壁面に形成したブラケットに対して係止させるような構造としても良い。   In the present embodiment, the connecting device 5 is one in which stoppers 5b, 5b are attached to both ends of a steel wire 5a having a predetermined length, and each stopper 5b, 5b is connected to each digit 2, The steel wire 5a is stretched between the opposite beams 2 and 2 so as to be engaged with each other. In addition, the PC steel wire etc. which are used for manufacture of prestressed concrete (PC) can be used for the steel wire 5a. Moreover, as a structural member of the connecting device 5, instead of the steel wire 5a, a steel bar (PC steel bar or the like), other steel materials, or a damping damper (a damper using a low yield point steel material or the like) is included. Type dampers, friction history type dampers, viscous dampers, cylinder type dampers, etc.) can also be used. Further, the stopper 5b may be configured to be locked to a bracket formed on the wall surface of the girder 2 instead of being directly locked to the wall surface of the beam 2.

連結装置5は、桁2の温度変化、コンクリートのクリープ及び乾燥収縮、活荷重によって生じるたわみによる移動量を吸収できる構造(例えば、鋼線5aの長さを温度伸縮量分長くし、或いは、ストッパ5bと桁2の壁面に形成したブラケット間に隙間を設けるというような構造)となっている。   The connecting device 5 has a structure capable of absorbing the amount of movement due to deflection caused by temperature changes of the girders 2, concrete creep and drying shrinkage, and live loads (for example, the length of the steel wire 5a is increased by the amount of temperature expansion or contraction, or a stopper. 5b and a structure in which a gap is provided between brackets formed on the wall surface of the girder 2).

また、この連結装置5は、隣接する桁2,2間に配置されている伸縮継手装置(図示せず)の「設計伸縮量」を超えない範囲で、桁2,2同士を拘束するように構成されている。この点について具体的に説明すると、隣接する桁2,2間の離間寸法が「ある値」(ここでは、この値を「限界値」と言う。)よりも小さい場合には、連結装置5は緊張しておらず、隣接する桁2,2同士は、余裕をもって緩やかに連結された状態となるが、隣接する桁2,2間の離間寸法が「限界値」に達すると、連結装置5は緊張し、それ以上桁2,2間が拡開することを抑止する。そして、この「限界値」は、伸縮継手装置の「設計伸縮量」を超えない範囲で設定されている。   Further, the connecting device 5 restrains the girders 2 and 2 within a range not exceeding the “design expansion amount” of the expansion joint device (not shown) disposed between the adjacent girders 2 and 2. It is configured. More specifically, in this case, when the distance between the adjacent girders 2 and 2 is smaller than “a certain value” (here, this value is referred to as “limit value”), the connecting device 5 The adjacent girders 2 and 2 are in a state of being loosely coupled with a margin, but when the separation dimension between the adjacent girders 2 and 2 reaches the “limit value”, the coupling device 5 It is tense and prevents further expansion between digits 2 and 2. The “limit value” is set in a range not exceeding the “design expansion amount” of the expansion joint device.

尚、伸縮継手装置の「設計伸縮量」は、桁の温度変化、コンクリートのクリープ及び乾燥収縮、活荷重によって生じる撓みによる上部構造の移動量等を考慮して、設置される桁毎に設定されており、一般的には、下記のような算定式によって算定されている。   The “design expansion amount” of the expansion joint device is set for each installed girder in consideration of the temperature change of the girder, the creep and drying shrinkage of the concrete, the amount of movement of the superstructure due to the deflection caused by the live load, etc. Generally, it is calculated by the following formula.

橋 種 基本伸縮量(単位:mm)
鋼橋の場合: 0.6L
寒冷地の鋼橋の場合: 0.72L
鉄筋コンクリート橋: 0.4L+0.2Lβ
寒冷地の鉄筋コンクリート橋: 0.5L+0.2Lβ
プレストレストコンクリート橋: 0.4L+0.6Lβ
寒冷地のプレストレストコンクリート橋: 0.5L+0.6Lβ
Bridge type Basic expansion and contraction (unit: mm)
For steel bridge: 0.6L
For steel bridges in cold regions: 0.72L
Reinforced concrete bridge: 0.4L + 0.2Lβ
Reinforced concrete bridge in cold region: 0.5L + 0.2Lβ
Prestressed concrete bridge: 0.4L + 0.6Lβ
Prestressed concrete bridge in cold region: 0.5L + 0.6Lβ

尚、上記算定式中、「L」は伸縮桁長(単位:m)、「β」は低減係数である。また、低減係数βは、コンクリートの材令が1ヶ月の場合は「0.6」、2ヶ月の場合は「0.4」、6ヶ月の場合は「0.3」、12ヶ月の場合は「0.2」、24ヶ月の場合は「0.1」とされる。更に、上記基本伸縮量には、余裕量(基本伸縮量×20%、但し、最小10mm)が付加される。   In the above formula, “L” is the length of the expansion / contraction digit (unit: m), and “β” is the reduction coefficient. The reduction factor β is “0.6” if the concrete age is 1 month, “0.4” if it is 2 months, “0.3” if it is 6 months, and if it is 12 months In the case of “0.2” and 24 months, “0.1” is set. Furthermore, a margin (basic expansion / contraction amount × 20%, but a minimum of 10 mm) is added to the basic expansion / contraction amount.

連結装置5について、隣接する桁2,2間の離間寸法の「限界値」が、伸縮継手装置の「設計伸縮量」を超えない範囲で設定されている、とは、隣接する桁2,2間の間隔が開いていくとき、その離間寸法が、そこに配置されている伸縮継手装置の「設計伸縮量」に達する前に、連結装置5が緊張状態となり、それ以上桁2,2間が拡開しない状態となること、桁2,2間が「設計伸縮量」まで拡開しないよう拘束されること、を意味している。   With respect to the connecting device 5, the “limit value” of the separation distance between the adjacent girders 2 and 2 is set within a range not exceeding the “design expansion amount” of the expansion joint device. When the space between the connecting devices 5 increases, the connecting device 5 is in a tensioned state before the distance between the distances reaches the “design expansion amount” of the expansion joint device disposed therein, This means that it does not expand, and that the space between the girders 2 and 2 is constrained not to expand to the “design expansion / contraction amount”.

本実施形態に係る発明によれば、上記のような構成に係る連結装置5によって桁2,2間が連結されることにより、大規模地震時において、桁2,2に対し、橋軸直角方向へ振れるような力が作用した場合であっても、隣接する桁2,2間が開閉するような動きを防止することができ、その結果、図3(2)に示したような、橋軸直角方向への桁の変位、乃至は、橋脚の変形を好適に回避することができる。   According to the invention according to the present embodiment, by connecting the girders 2 and 2 with the coupling device 5 having the above-described configuration, the bridge axis is perpendicular to the girders 2 and 2 in a large-scale earthquake. Even when a force that swings to the side acts, it is possible to prevent the movement between the adjacent girders 2 and 2 from being opened and closed. As a result, the bridge shaft as shown in FIG. The displacement of the girder in the perpendicular direction or the deformation of the pier can be preferably avoided.

尚、本実施形態においては、本発明に係る補強方法を、鋼箱桁タイプの橋梁1に対して適用する例について説明したが、適用対象となる橋梁の桁の種類は、鋼箱桁には限定されず、コンクリートT桁、鋼板桁等、どのような桁の橋梁に対しても適用することができる。また、橋脚の形式についても、単柱式の橋脚には限定されず、壁式、ラーメン、鋼製橋脚等、あらゆる形式の橋脚を有する橋梁に対して適用することができる。更に、既設の橋梁のみならず、新設の橋梁に対しても適用可能である。   In this embodiment, the example in which the reinforcing method according to the present invention is applied to the steel box girder type bridge 1 has been described. However, the type of bridge girder to be applied is the steel box girder. The present invention is not limited, and can be applied to any girder bridge such as a concrete T girder and a steel plate girder. Also, the form of the pier is not limited to a single pillar type pier, but can be applied to bridges having any type of pier such as a wall type, a ramen, and a steel pier. Furthermore, the present invention can be applied not only to existing bridges but also to new bridges.

図2は、本発明の第2の実施形態に係る橋梁の耐震補強方法の説明図であって、本発明の補強方法を、コンクリート箱桁タイプの橋梁1における桁2と橋台4の接合部に対して適用した例を示す図である。より詳細には、図2(1)は、本発明の補強方法によって補強した橋梁1における桁2の垂直断面図(橋軸直角方向の垂直断面図)、(2)は、橋台3上において支持される桁2の垂直断面図((1)のz−z線による断面図)である。   FIG. 2 is an explanatory view of the seismic reinforcement method for a bridge according to the second embodiment of the present invention. The reinforcement method of the present invention is applied to a joint between a girder 2 and an abutment 4 in a concrete box girder type bridge 1. It is a figure which shows the example applied with respect to. More specifically, FIG. 2 (1) is a vertical sectional view (vertical sectional view in a direction perpendicular to the bridge axis) of the beam 2 in the bridge 1 reinforced by the reinforcing method of the present invention, and (2) is a support on the abutment 3. It is a vertical sectional view (sectional view taken along line zz in (1)) of the girders 2 to be used.

図2の橋梁1は、本発明の補強方法の適用前においては、橋台3上において支持される桁2の端部は、橋台3に対して固定されていなかったが、適用後においては、橋台3上に立設された二つの固定装置7,7によって、桁2が側方から挟まれるようにして固定され、大規模地震時において、桁2に対し、橋軸直角方向へ振れるような力が作用した場合であっても、橋台3上において桁2が橋軸直角方向へ変位することを防止して、橋脚の変形を好適に回避することができる。   In the bridge 1 of FIG. 2, the end of the girder 2 supported on the abutment 3 was not fixed to the abutment 3 before application of the reinforcing method of the present invention. The two fixing devices 7 and 7 erected on the base 3 are fixed so that the girder 2 is sandwiched from the side, and in a large-scale earthquake, the force swings in a direction perpendicular to the bridge axis with respect to the girder 2 Even when this occurs, it is possible to prevent the girder 2 from being displaced in the direction perpendicular to the bridge axis on the abutment 3 and to suitably avoid the deformation of the pier.

本実施形態においては、本発明に係る補強方法を、コンクリート箱桁タイプの橋梁1に対して適用する例について説明したが、第1の実施形態における場合と同様に、適用対象となる橋梁の桁の種類は限定されず、鋼箱桁、コンクリートT桁、鋼板桁等、どのような桁の橋梁に対しても適用することができ、既設の橋梁にも、新設の橋梁に対しても適用可能である。   In the present embodiment, the example in which the reinforcing method according to the present invention is applied to the concrete box girder type bridge 1 has been described. However, as in the first embodiment, the bridge girder to be applied is applied. There is no limitation on the type of steel, and it can be applied to any girder bridge such as steel box girder, concrete T girder, steel plate girder, etc., and can be applied to both existing and new bridges. It is.

また、本実施形態においては、固定装置7は、鋼材製の箱形の本体7aと、本体7aを橋台3上において固定するために橋台3の内部に埋設されたアンカー7bと、本体7aと桁2の側壁面との間に配置される緩衝材7cとによって構成されているが、かかる構成のものには限定されず、橋台3上において桁2が橋軸直角方向へ変位することを防止できる限り、どのような構成としても良い。   Moreover, in this embodiment, the fixing device 7 includes a steel box-shaped main body 7a, an anchor 7b embedded in the abutment 3 in order to fix the main body 7a on the abutment 3, a main body 7a and a girder. Although it is comprised by the buffer material 7c arrange | positioned between 2 side wall surfaces, it is not limited to the thing of such a structure, It can prevent that the girder 2 is displaced to a bridge axis orthogonal direction on the abutment 3. As long as it has any configuration.

例えば、固定装置を鉄筋コンクリートによって構成してもよいし、また、図1(1)に示した橋梁1のように、床版6の下側中央部に空間(平行な二つの桁2,2の間の空間)が形成されている場合、固定装置を橋台の中央に立設し、平行な二つの桁2,2によって固定装置を跨がせるような構成、つまり、固定装置を桁2,2間の空間に進入させて、橋台3上における桁2の移動(橋軸直角方向への変位)を規制するような構成とすることもできる。また、複数のI型鋼を、長手方向が橋軸方向と平行になるような向きで、橋軸直角方向へ所定間隔を置いて平行に配置してなる桁を用いた橋梁において、I型鋼(桁)の下フランジを、橋台の内部に下半部を埋設させたアンカーを用いて、橋台に対して直接固定し、或いは、何らかの材を間に介在させて間接的に固定するような構成としても良い。   For example, the fixing device may be composed of reinforced concrete, and a space (two parallel girders 2 and 2 in the lower center portion of the floor slab 6 as in the bridge 1 shown in FIG. 1 (1). If the fixing device is erected in the center of the abutment and the fixing device is straddled by two parallel girders 2 and 2, that is, the fixing device is installed in the girders 2 and 2 It is also possible to adopt a configuration in which the movement of the beam 2 on the abutment 3 (displacement in the direction perpendicular to the bridge axis) is restricted by entering the space between them. Further, in a bridge using a girder in which a plurality of I-shaped steels are arranged in parallel with a predetermined interval in a direction perpendicular to the bridge axis in a direction in which the longitudinal direction is parallel to the bridge axis direction, ) The lower flange can be fixed directly to the abutment using an anchor with the lower half embedded in the abutment, or indirectly fixed with some material in between. good.

本発明の第1の実施形態に係る橋梁の耐震補強方法の説明図。Explanatory drawing of the earthquake-proof reinforcement method of the bridge which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る橋梁の耐震補強方法の説明図。Explanatory drawing of the earthquake-proof reinforcement method of the bridge which concerns on the 2nd Embodiment of this invention. 大規模地震時、多径間の橋梁51において生じ得る桁52,52の変位についての説明図。Explanatory drawing about the displacement of the girders 52 and 52 which may arise in the bridge 51 between many diameters at the time of a large-scale earthquake.

符号の説明Explanation of symbols

1,51:橋梁、
2,52,52:桁、
3,53,53:橋台、
4,54:橋脚、
5:連結装置、
5a:鋼線、
5b:ストッパ、
6:床版、
7:固定装置、
7a:本体、
7b:アンカー、
7c:緩衝材
1,51: Bridge,
2, 52, 52: digits,
3, 53, 53: Abutment,
4,54: Pier
5: Connecting device,
5a: steel wire,
5b: stopper,
6: Floor slab,
7: fixing device,
7a: body,
7b: anchor,
7c: cushioning material

Claims (6)

複数の単純桁が橋軸方向へ連続する多径間橋梁を対象とする耐震補強方法であって、
隣接する桁間に配置されている伸縮継手装置の設計伸縮量を超えない範囲で桁同士を拘束するように構成した連結装置によって、隣接する桁同士を橋脚上で連結することにより、橋軸直角方向の地震力に対し、隣接する桁同士が開閉するような動きを防止し、橋脚の水平変位を小さくできるようにすることを特徴とする橋梁の耐震補強方法。
A seismic reinforcement method for multi-span bridges in which multiple simple girders continue in the direction of the bridge axis,
By connecting the adjacent girders on the pier with a connecting device configured to constrain the girders in a range not exceeding the design expansion and contraction amount of the expansion joint device arranged between the adjacent girders, A seismic reinforcement method for bridges, which prevents the movement of adjacent girders from opening and closing against the seismic force in the direction, enabling the horizontal displacement of the pier to be reduced.
複数の単純桁が橋軸方向へ連続する多径間橋梁を対象とする耐震補強方法であって、
橋台上において支持される桁の端部を、橋台に対して固定することにより、橋台上において桁が橋軸直角方向へ変位することを防止できるようにすることを特徴とする橋梁の耐震補強方法。
A seismic reinforcement method for multi-span bridges in which multiple simple girders continue in the direction of the bridge axis,
A method for seismic reinforcement of a bridge, characterized in that the end of the girder supported on the abutment is fixed to the abutment so that the girder can be prevented from being displaced in the direction perpendicular to the bridge axis on the abutment. .
複数の単純桁が橋軸方向へ連続する多径間橋梁を対象とする耐震補強方法であって、
隣接する桁同士を橋脚上で連結装置によって連結することにより、橋軸直角方向の地震力に対し、隣接する桁同士が開閉するような動きを防止し、橋脚の水平変位を小さくできるようにし、更に、
橋台上において支持される桁の端部を、橋台に対して固定することにより、橋軸直角方向の地震力に対し、上部工の地震慣性力を、橋脚よりも耐力、剛性の大きい橋台で受け持ち、橋脚及び橋台上において桁が橋軸直角方向へ変位することを防止できるようにすることを特徴とする橋梁の耐震補強方法。
A seismic reinforcement method for multi-span bridges in which multiple simple girders continue in the direction of the bridge axis,
By connecting adjacent girders on the pier with a coupling device, against the seismic force in the direction perpendicular to the bridge axis, the movement of the adjacent girders to open and close can be prevented, and the horizontal displacement of the pier can be reduced, Furthermore,
By fixing the end of the girder supported on the abutment to the abutment, the super inertia's seismic inertial force is handled by the abutment with higher proof strength and rigidity than the pier against the seismic force perpendicular to the bridge axis. An anti-seismic reinforcement method for a bridge, characterized in that the girder can be prevented from being displaced in the direction perpendicular to the bridge axis on the pier and abutment.
前記連結装置として、所定長さの鋼材の両端にストッパを取り付けたもの、或いは、制震ダンパーを用いることを特徴とする、請求項1又は請求項3に記載の橋梁の耐震補強方法。   The method of seismic reinforcement of a bridge according to claim 1 or 3, wherein a steel plate having a predetermined length is used as the connecting device, or a damping damper is used. 前記橋台上に固定装置を立設して、前記桁の端部を橋台に対して固定することを特徴とする、請求項2又は請求項3に記載の橋梁の耐震補強方法。   4. The method for seismic reinforcement of a bridge according to claim 2 or 3, wherein a fixing device is erected on the abutment to fix the end of the beam to the abutment. 前記橋台上に、アンカーを用いて前記桁の端部を直接或いは間接的に固定することを特徴とする、請求項2又は請求項3に記載の橋梁の耐震補強方法。   4. The method for seismic reinforcement of a bridge according to claim 2, wherein an end of the beam is fixed directly or indirectly on the abutment using an anchor.
JP2008074788A 2008-03-24 2008-03-24 Seismic strengthening method for bridge Pending JP2009228296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074788A JP2009228296A (en) 2008-03-24 2008-03-24 Seismic strengthening method for bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074788A JP2009228296A (en) 2008-03-24 2008-03-24 Seismic strengthening method for bridge

Publications (1)

Publication Number Publication Date
JP2009228296A true JP2009228296A (en) 2009-10-08

Family

ID=41243995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074788A Pending JP2009228296A (en) 2008-03-24 2008-03-24 Seismic strengthening method for bridge

Country Status (1)

Country Link
JP (1) JP2009228296A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208471A (en) * 2010-03-30 2011-10-20 Jfe Engineering Corp Stopper mechanism of steel plate panel for composite floor slab
CN102619165A (en) * 2012-03-20 2012-08-01 北京工业大学 Shock-absorbing device for bridge security belt connection system
JP2013039873A (en) * 2011-08-16 2013-02-28 West Japan Railway Co Seismic control beam and gate type beam including the seismic control beam
KR101579058B1 (en) * 2015-10-27 2015-12-21 (주)우암건설 Seismic reinforcing method of bridge
CN108442238A (en) * 2018-05-28 2018-08-24 湘潭大学 A kind of transverse direction assembled runback bit-type Antivibration block and its construction method
CN108797318A (en) * 2018-07-02 2018-11-13 中铁第四勘察设计院集团有限公司 It is long the United Nations General Assembly's stroke Railway Bridges And Piers beam integrated structure that one kind, which being suitable for both sides,
JP2019039269A (en) * 2017-08-29 2019-03-14 Jr東日本コンサルタンツ株式会社 Aseismatic reinforcement method and aseismatic reinforcement structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013924A (en) * 2006-07-03 2008-01-24 Nippon Steel Engineering Co Ltd Base isolation structure of girder bridge and base isolation structure of aerial structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013924A (en) * 2006-07-03 2008-01-24 Nippon Steel Engineering Co Ltd Base isolation structure of girder bridge and base isolation structure of aerial structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208471A (en) * 2010-03-30 2011-10-20 Jfe Engineering Corp Stopper mechanism of steel plate panel for composite floor slab
JP2013039873A (en) * 2011-08-16 2013-02-28 West Japan Railway Co Seismic control beam and gate type beam including the seismic control beam
CN102619165A (en) * 2012-03-20 2012-08-01 北京工业大学 Shock-absorbing device for bridge security belt connection system
CN102619165B (en) * 2012-03-20 2014-07-23 北京工业大学 Shock-absorbing device for bridge security belt connection system
KR101579058B1 (en) * 2015-10-27 2015-12-21 (주)우암건설 Seismic reinforcing method of bridge
JP2019039269A (en) * 2017-08-29 2019-03-14 Jr東日本コンサルタンツ株式会社 Aseismatic reinforcement method and aseismatic reinforcement structure
CN108442238A (en) * 2018-05-28 2018-08-24 湘潭大学 A kind of transverse direction assembled runback bit-type Antivibration block and its construction method
CN108442238B (en) * 2018-05-28 2023-09-19 湘潭大学 Transverse assembly type self-resetting anti-seismic stop block and construction method thereof
CN108797318A (en) * 2018-07-02 2018-11-13 中铁第四勘察设计院集团有限公司 It is long the United Nations General Assembly's stroke Railway Bridges And Piers beam integrated structure that one kind, which being suitable for both sides,

Similar Documents

Publication Publication Date Title
Ou et al. Cyclic behavior of precast segmental concrete bridge columns with high performance or conventional steel reinforcing bars as energy dissipation bars
JP2009228296A (en) Seismic strengthening method for bridge
KR101096170B1 (en) Method for constructing continuous filled steel tube girder bridge
JP3755886B1 (en) Bearing structure of fixed bearings in bridges and seismic reinforcement method for existing bridges
Niwa et al. Experimental study on the possibility of using steel fiber–reinforced concrete to reduce conventional rebars in beam-column joints
Liu et al. Earthquake damage of curved highway bridges in 2008 Wenchuan earthquake
JP2003253621A (en) Continuous beam structure for continuing existing simple beam bridge
Mitoulis et al. Restrain of a seismically isolated bridge by external stoppers
Mato et al. " Arroyo Las Piedras" Viaduct: The first Composite Steel-Concrete High Speed Railway Bridge in Spain
JP7123870B2 (en) Girder reinforcement structure
JP2019039269A (en) Aseismatic reinforcement method and aseismatic reinforcement structure
JP4508293B2 (en) Structure near the intermediate fulcrum of continuous I-girder bridge
JP3748525B2 (en) Seismic reinforcement structure for bridges
JP4492422B2 (en) Structure near the intermediate fulcrum of continuous I-girder bridge
KR20040097591A (en) Girder bridge protection apparatus, sacrifice bracing, sacrifice bracing restrainer composing it and reinforcement construction method thereof
Yang et al. Bridges with innovative buckling restrained SMA expansion joints having a high symmetrical tension/compression capacity
Tandon Economical design of earthquake-resistant bridges
Dunker et al. Expanding the use of integral abutments in Iowa
Javanmardi Seismic Behaviour Investigation of a Cablestayed Bridge with Hybrid Passive Control System
JP2020041346A (en) Seismic strengthening method and bridge
Uemura et al. Development of reinforced concrete column with embedded concrete hinge and lateral restraints for Anti-Catastrophe oriented design
Han et al. Seismic failure of typical curved RC bridges in Wenchuan Earthquake
Arzoumanidis et al. The new Tacoma Narrows suspension bridge: critical issues in seismic analysis and design
Tegos et al. A Proposal for the improvement of the earthquake resistance of multi-span precast I-Beam bridges
JP2012117364A (en) Vibration control bridge pier structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727