JP2019039269A - Aseismatic reinforcement method and aseismatic reinforcement structure - Google Patents

Aseismatic reinforcement method and aseismatic reinforcement structure Download PDF

Info

Publication number
JP2019039269A
JP2019039269A JP2017163932A JP2017163932A JP2019039269A JP 2019039269 A JP2019039269 A JP 2019039269A JP 2017163932 A JP2017163932 A JP 2017163932A JP 2017163932 A JP2017163932 A JP 2017163932A JP 2019039269 A JP2019039269 A JP 2019039269A
Authority
JP
Japan
Prior art keywords
bridge
girder
abutment
piers
pier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017163932A
Other languages
Japanese (ja)
Inventor
石橋 忠良
Tadayoshi Ishibashi
忠良 石橋
光商 大庭
Kosho Oba
光商 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JR East Consultants Co
Original Assignee
JR East Consultants Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JR East Consultants Co filed Critical JR East Consultants Co
Priority to JP2017163932A priority Critical patent/JP2019039269A/en
Publication of JP2019039269A publication Critical patent/JP2019039269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

To provide an aseismatic reinforcement technology which facilitates the installation even when there is any factor typical to the existing bridge.SOLUTION: Four bridge girders G1 to G4 are integrated together into one connection girder GX. The constraint in the horizontal direction is reduced with respect to supports B2, B3, B4, B5, B6, and B7 installed in bridge piers P1 to P3. For bridge abutment A1, A2 other than the bridge piers P1 to P3 (the bridge piers which support the supports B2, B3, B4, B5, B6, and B7 to be reduced the constraint in the horizontal direction), the aseismatic reinforcement is applied. More specifically, the aseismatic reinforcement is not given to the bridge piers P1 to P3 for which the construction condition is severe, and the aseismatic reinforcement is given to the bridge abutment A1, A2 for which the construction condition is mild.SELECTED DRAWING: Figure 2

Description

本発明は、橋りょうの耐震補強技術に関し、特に橋りょう下部に施工困難な個所を有する橋りょうの耐震補強技術に関する。   The present invention relates to a seismic reinforcement technique for a bridge, and more particularly to a seismic reinforcement technique for a bridge having a difficult-to-construct part at a lower part of the bridge.

近年の大規模な地震被害を踏まえて耐震設計基準が見直されている。一方で既設の橋りょうは古い耐震設計基準により設計されているものも多い。したがって、既設橋りょうに対し耐震補強工事がなされる。   Based on recent large-scale earthquake damage, the seismic design standards have been reviewed. On the other hand, many existing bridges are designed according to old seismic design standards. Therefore, seismic reinforcement work will be performed on the existing bridge.

具体的には、橋脚や橋脚基礎の地震耐力を向上させる(例えば特許文献1)。耐震補強工事には種々の建設機械や資材が必要になる。   Specifically, the earthquake resistance of a bridge pier or a pier foundation is improved (for example, patent document 1). Various construction machines and materials are required for seismic reinforcement work.

特開2015-203291号公報JP-A-2015-203291

しかしながら、橋りょうの下には、鉄道や道路や河川が存在することが多い。このような個所は、建設機械の設置や資材の搬入が困難である。また、鉄道や道路が隣接している場合は、より慎重な安全対策が必要になる。河川内の橋脚工事では仮締切工が必要となる。   However, there are many railways, roads and rivers under the bridge. In such places, it is difficult to install construction machines and carry in materials. In addition, more careful safety measures are required when railroads and roads are adjacent to each other. Temporary deadlines are required for the construction of piers in rivers.

さらに、鉄道に近接した構造物の補強を行う際には、安全上の観点から夜間に列車が走行しない時間帯のみでしか施工できない場合もある。道路に近接した構造物の補強を行う際には、車線を一部規制したり、通行止めを行って施工する等の制約がある。さらに上記の補強に際しては、鉄道事業者、道路管理者、河川管理との協議が必要であり、単に工事費が増大するのみでなく、工期が見通せないという課題がある。   Furthermore, when reinforcing a structure close to a railway, it may be possible to construct only in a time zone where the train does not travel at night from the viewpoint of safety. When reinforcing a structure close to a road, there are restrictions such as partially restricting the lane or performing construction with closed roads. Further, the above-mentioned reinforcement requires discussion with the railway operator, road manager, and river management, and there is a problem that not only the construction cost increases but also the construction period cannot be foreseen.

このような既設橋りょう特有の要因が既設橋りょうの耐震化を遅らせる一因となっている。   Such factors peculiar to existing bridges contribute to delaying the earthquake resistance of existing bridges.

本発明は上記課題を解決するものであり、既設橋りょう特有の要因がある場合でも、容易に施工可能な耐震補強方法および耐震補強構造を提供することを目的とする。   This invention solves the said subject, and it aims at providing the earthquake-proof reinforcement method and earthquake-proof reinforcement structure which can be easily constructed even when there exists a factor peculiar to an existing bridge.

上記課題を解決する本発明は、N(Nは2以上の整数)連の橋桁を有する橋りょうの耐震補強方法である。前記N連の橋桁のうち連続するK(Kは2以上N以下の整数)連の橋桁を連結して連結桁とする工程と、前記連結桁を支持する少なくとも1つの橋脚又は橋台に設置される支承の水平方向の拘束を低減する工程と、前記水平方向の拘束が低減された支承を支持する橋脚または橋台以外の少なくとも1つの橋脚又は橋台を補強する工程、からなる。   The present invention that solves the above-mentioned problems is a method for seismic reinforcement of a bridge having N (N is an integer of 2 or more) bridge girder. The step of connecting consecutive K (K is an integer of 2 or more and N or less) consecutive bridge girder among the N consecutive bridge girders and connecting girder and installed on at least one pier or abutment supporting the connecting girder A step of reducing horizontal restraint of the bearing, and a step of reinforcing at least one pier or abutment other than the pier or the abutment supporting the bearing with the reduced horizontal restraint.

K連の個別の桁を連結することにより、個別の桁の落橋が防止できる。また支承の水平方向の拘束を低減することにより、当該支承部では桁に作用する地震時の水平方向の慣性力(以下「水平力」という。)が橋台や橋脚に低減して伝達される。一方、支承の水平方向の拘束を低減しない当該支承部においては、本来水平方向の拘束を低減した支承部において伝達されるべき水平力もあわせて橋台や橋脚に伝達されることとなり、前記水平力が伝達される橋台や橋脚において耐震補強する。前記の水平方向の拘束を低減する支承は、後述する実施例のとおり、橋脚や橋台の強度、補強の難易度に応じて適宜選定することが可能なため、補強施工困難箇所での補強を避け、施工容易箇所にて、補強することが可能になる。すなわち、既設橋りょう特有の要因がある場合でも、容易に補強が施工可能である。   By connecting K-girder individual girder, individual girder can be prevented from being dropped. In addition, by reducing the horizontal restraint of the bearing, the horizontal inertia force (hereinafter referred to as “horizontal force”) acting on the girder is reduced and transmitted to the abutment or pier. On the other hand, in the bearing part that does not reduce the horizontal restraint of the bearing, the horizontal force that should be transmitted in the bearing part that originally reduced the horizontal restraint is also transmitted to the abutment or the pier, and the horizontal force is transmitted. Reinforce seismic reinforcement at the abutments and piers. The support for reducing the horizontal restraint can be appropriately selected according to the strength of the piers and abutments and the difficulty level of reinforcement as in the examples described later. It becomes possible to reinforce at an easy construction site. That is, even if there are factors peculiar to existing bridges, reinforcement can be easily performed.

なお、本明細書中の「水平」とは、橋りょうの橋軸方向と橋軸直角方向を含む面に平行な方向を意味する。   In the present specification, “horizontal” means a direction parallel to a plane including the bridge axis direction of the bridge and the direction perpendicular to the bridge axis.

上記発明において好ましくは、前記橋桁の連結は、引張力に対抗するように、および、圧縮力に対抗するように、連結する。   Preferably, in the above invention, the bridge girder is connected so as to oppose a tensile force and oppose a compressive force.

これにより、連結桁では、水平面内の曲げモーメントが隣り合う橋桁同士に伝達される。   Thereby, in a connection girder, the bending moment in a horizontal surface is transmitted to adjacent bridge beams.

上記発明において好ましくは、前記引張力に対抗するような橋桁の連結は、前記連結桁の両端にケーブル、鋼材等を固定することによりなされる。   Preferably, in the above invention, the bridge girder is connected to oppose the tensile force by fixing a cable, a steel material or the like to both ends of the connection girder.

橋桁同士が引っ張られるように外力が作用する場合、ケーブルは引張方向の力に対抗する。   When an external force is applied so that the bridge girders are pulled together, the cable resists the force in the pulling direction.

上記課題を解決する本発明は、N(Nは2以上の整数)連の橋桁を有する橋りょうである。前記N連の橋桁のうち連続するK(Kは2以上N以下の整数)連の橋桁を連結手段により連結した連結桁と、前記連結桁を支持する少なくとも1つの橋脚又は橋台に設置され、水平方向の拘束が低減された支承を有し、前記水平方向の拘束が低減された支承を支持する橋脚または橋台以外の少なくとも1つの橋脚又は橋台が耐震補強される。   The present invention for solving the above problems is a bridge having N (N is an integer of 2 or more) bridge girder. It is installed on a connecting girder that connects consecutive K (K is an integer not less than 2 and not more than N) bridge girders among the N girder bridge girder and at least one pier or abutment that supports the connecting girder. At least one abutment or abutment other than the abutment or abutment that has a bearing with reduced direction restraint and supports the bearing with reduced horizontal restraint is seismically reinforced.

上記発明において好ましくは、前記連結手段は、引張力対抗機能および圧縮力対抗機能を有する。   Preferably in the above invention, the connecting means has a tensile force resistance function and a compression force resistance function.

上記発明において好ましくは、前記引張力対抗機能は、前記連結桁の両端に固定されたケーブルである。   Preferably, in the above invention, the tensile force resistance function is a cable fixed to both ends of the connecting beam.

本発明に係る耐震補強方法および耐震補強構造によれば、既設橋りょう特有の要因がある場合でも、容易に施工できる。   According to the seismic strengthening method and the seismic strengthening structure according to the present invention, construction can be easily performed even when there are factors peculiar to existing bridges.

既設橋りょう例Existing bridge example 適用例Application examples 適用例における地震時挙動Earthquake behavior in application examples 変形例1Modification 1 変形例2Modification 2 変形例3Modification 3 変形例4Modification 4 変形例5Modification 5 連結手段例1Connection means example 1 連結手段例2Example 2 of connecting means 連結手段例3(側面図)Connection means example 3 (side view) 連結手段例3(平面図)Connection means example 3 (plan view)

〜既設橋りょう例〜
図1は、本発明が適用される既設橋りょうの例である。多径間橋りょうの耐震補強をおこなう。
~ Examples of existing bridges ~
FIG. 1 is an example of an existing bridge to which the present invention is applied. Seismic reinforcement of multi-span bridges.

図1では、単純桁が連続する4径間橋りょうである。橋桁G1〜G4から構成される。   In FIG. 1, it is a four span bridge with continuous simple girders. It consists of bridge girders G1-G4.

橋桁G1の一端は、支承B1を介して橋脚A1に支持され、橋桁G1の他端は、支承B2を介して橋脚P1に支持される。橋桁G2の一端は、支承B3を介して橋脚P1に支持され、橋桁G2の他端は、支承B4を介して橋脚P2に支持される。橋桁G3の一端は、支承B5を介して橋脚P2に支持され、橋桁G3の他端は、支承B6を介して橋脚P3に支持される。橋桁G4の一端は、支承B7を介して橋脚P3に支持され、橋桁G4の他端は、支承B8を介して橋台A2に支持される。   One end of the bridge girder G1 is supported by the pier A1 via the support B1, and the other end of the bridge girder G1 is supported by the pier P1 via the support B2. One end of the bridge girder G2 is supported by the pier P1 via the support B3, and the other end of the bridge girder G2 is supported by the pier P2 via the support B4. One end of the bridge girder G3 is supported by the pier P2 via the support B5, and the other end of the bridge girder G3 is supported by the pier P3 via the support B6. One end of the bridge girder G4 is supported by the pier P3 via the support B7, and the other end of the bridge girder G4 is supported by the abutment A2 via the support B8.

支承B1〜8では水平方向の変位が拘束されている。したがって、地震時に橋桁G1〜G4に水平力が発生すると、支承B1〜8を介して、橋台A1,A2および橋脚P1〜Pに伝達される。これに対する耐震補強が必要になる。   In the supports B1 to B8, the horizontal displacement is restricted. Therefore, when a horizontal force is generated in the bridge girders G1 to G4 at the time of the earthquake, they are transmitted to the abutments A1 and A2 and the piers P1 to P via the supports B1 to B8. Seismic reinforcement against this is necessary.

ところで、橋脚P3は河川の中に設けられており、さらに、鉄道や道路が河川と並行して走っているとする。橋脚P1と橋脚P2は、鉄道に隣接する。橋脚P2は、道路に隣接する。   By the way, it is assumed that the pier P3 is provided in the river and that a railroad and a road are running in parallel with the river. The pier P1 and the pier P2 are adjacent to the railway. The pier P2 is adjacent to the road.

したがって、施工条件が厳しいため、橋脚P1〜P3に対する大規模な耐震補強は困難である。なお、橋台A1,A2付近では、施工条件の制約は緩い。例えば、補強工事のための充分な作業スペースを確保できる。   Therefore, since the construction conditions are severe, large-scale seismic reinforcement for the piers P1 to P3 is difficult. In the vicinity of the abutments A1 and A2, the restrictions on the construction conditions are loose. For example, a sufficient work space for reinforcement work can be secured.

〜本発明適用例〜
図2は、本発明の適用例である。図1に示す既設の多径間橋りょうに対し、上記施工条件下(既設橋りょう特有の要因)において、耐震補強をおこなう。
-Application example of the present invention-
FIG. 2 shows an application example of the present invention. The existing multi-span bridge shown in FIG. 1 is subjected to seismic reinforcement under the above construction conditions (factors specific to the existing bridge).

まず、橋桁G1と橋桁G2を連結し、橋桁G2と橋桁G3を連結し、橋桁G3と橋桁G4を連結し、4つの橋桁G1〜G4を一体とし、1つの連結桁GXとする。   First, the bridge beam G1 and the bridge beam G2 are connected, the bridge beam G2 and the bridge beam G3 are connected, the bridge beam G3 and the bridge beam G4 are connected, and the four bridge beams G1 to G4 are integrated into one connection beam GX.

連結桁GXでは、水平面内の曲げモーメントが隣り合う橋桁同士に伝達される(連結詳細については後述する)。   In the connecting girder GX, the bending moment in the horizontal plane is transmitted to adjacent bridge girders (the details of the connection will be described later).

図2における桁間において、点線四角は連結部J1〜J3を示す。   Between the digits in FIG. 2, dotted squares indicate the connecting portions J1 to J3.

次に、連結桁GXを支持する橋脚P1〜P3および橋台A1,A2のうち、橋脚P1〜P3に設置される支承B2,B3,B4,B5,B6,B7について水平方向の拘束を低減する(水平方向拘束低減詳細については後述する)。なお支承B2,B3,B4,B5,B6,B7は引き続き連結桁の自重を橋脚P1〜P3に伝達する。また、橋台A1,A2に設置される支承B1,B8は既存のままとする(水平方向拘束低減対象外)。   Next, among the piers P1 to P3 and the abutments A1 and A2 that support the connecting girder GX, the horizontal restraint is reduced for the supports B2, B3, B4, B5, B6, and B7 installed on the piers P1 to P3 ( Details of horizontal constraint reduction will be described later). The bearings B2, B3, B4, B5, B6, and B7 continue to transmit the weight of the connecting girder to the piers P1 to P3. In addition, the supports B1 and B8 installed on the abutments A1 and A2 are left as they are (not subject to horizontal restriction reduction).

図2における支承において、実線中塗の三角は水平方向拘束低減対象外(引き続き水平方向の移動を拘束する)を示し、点線中抜の三角は水平方向拘束低減対象を示す。   In the support shown in FIG. 2, the solid-line solid triangle indicates that the horizontal direction is not reduced (the horizontal movement is still restricted), and the dotted-lined triangle indicates the horizontal direction reduction.

一方で、連結桁GXを支持する橋脚P1〜P3および橋台A1,A2のうち、橋脚P1〜P3(水平方向拘束低減対象の支承B2,B3,B4,B5,B6,B7を支持する橋脚)以外の橋台A1,A2において、耐震補強をおこなう。   On the other hand, of the piers P1 to P3 and the abutments A1 and A2 that support the connecting girder GX, except for the piers P1 to P3 (the piers that support the supports B2, B3, B4, B5, B6, and B7 that are subject to horizontal constraint reduction) The abutments A1 and A2 will be seismically strengthened.

すなわち、施工条件が厳しい橋脚P1〜P3においては、耐震補強を行わず(もしくは比較的軽微な耐震補強をおこなう)、施工条件の制約が緩い橋台A1,A2にて耐震補強をおこなう(耐震補強詳細については後述する)。   In other words, in the piers P1 to P3 where the construction conditions are severe, seismic reinforcement is not performed (or relatively light seismic reinforcement is performed), and seismic reinforcement is performed on the abutments A1 and A2 where the construction conditions are loose (details of seismic reinforcement) Will be described later).

図2における橋脚、橋台において、ハッチングは耐震補強対象を示し、中塗は耐震補強対象外を示す。   In the piers and abutments in FIG. 2, hatching indicates a seismic reinforcement target, and intermediate coating indicates a non-seismic reinforcement target.

〜地震時挙動〜
図3は、上記適用例における地震時挙動を示す概略図(平面図)である。ただし、説明の便宜のため、変位振幅を強調して図示している。
~ Behavior during earthquake ~
FIG. 3 is a schematic diagram (plan view) showing the behavior during an earthquake in the application example. However, for convenience of explanation, the displacement amplitude is shown in an emphasized manner.

連結桁GXでは、水平面内の曲げモーメントが隣り合う橋桁同士に伝達される。一方で、橋脚P1〜P3に設置される支承B2,B3,B4,B5,B6,B7では水平方向の拘束が低減される(図2参照)。   In the connecting beam GX, the bending moment in the horizontal plane is transmitted to adjacent bridge beams. On the other hand, horizontal restraint is reduced in the supports B2, B3, B4, B5, B6, and B7 installed on the piers P1 to P3 (see FIG. 2).

地震時に連結桁GXに水平力(連結桁の慣性力)が発生した場合、水平力は橋台A1,A2に集中する。一方で、水平力の橋脚P1〜P3への伝達は低減される。   When a horizontal force (inertial force of the connecting girder) is generated in the connecting beam GX during the earthquake, the horizontal force is concentrated on the abutments A1 and A2. On the other hand, transmission of horizontal force to the piers P1 to P3 is reduced.

橋台A1,A2では充分な耐震補強が行われており、水平力に耐えることができる。橋脚P1〜P3では耐震補強が行われていないが、伝達される水平力が低減されており、既設の耐震力により水平力に耐えることができる。   The abutments A1 and A2 have sufficient seismic reinforcement and can withstand horizontal force. The bridge piers P1 to P3 are not seismically reinforced, but the transmitted horizontal force is reduced, and the existing seismic force can withstand the horizontal force.

〜効果〜
多径間橋りょうの箇所によって施工条件に差が出るような既設橋りょう特有の要因がある場合でも、施工困難箇所を避け、施工容易箇所にて、容易に施工可能である。
~effect~
Even when there are factors peculiar to existing bridges that cause differences in construction conditions depending on the location of the multi-span bridge, it is possible to easily perform construction at easy construction sites while avoiding difficult construction sites.

充分な耐震補強が行われた橋台A1,A2でも、耐震補強が行われていない橋脚P1〜P3でも、損傷を防止できる。   Damage can be prevented even with the abutments A1 and A2 that have undergone sufficient seismic reinforcement and the piers P1 to P3 that have not undergone seismic reinforcement.

連結桁GXとすることにより、連結桁のスパンは連結前の各個別の桁に比べて大きくなる。このため連結桁の固有周期は各個別の桁の固有周期よりも長くなり、入力地震動を低減できる。   By using the concatenated digits GX, the span of the concatenated digits becomes larger than each individual digit before the concatenation. For this reason, the natural period of a connection digit becomes longer than the natural period of each individual digit, and input seismic motion can be reduced.

〜変形例〜
上記適用例では、橋脚P1〜P3においては、耐震補強を行わず(もしくは比較的軽微な耐震補強をおこなう)、橋台A1,A2にて耐震補強をおこなった。
~ Modification ~
In the above application example, the piers P1 to P3 were not subjected to seismic reinforcement (or relatively light seismic reinforcement), and were subjected to seismic reinforcement at the abutments A1 and A2.

本発明は、上記適用例に限定されず、様々な変形が可能である。図4〜8にて、変形例1〜5について示す。図示桁間において、点線四角は連結手段を示す。図示支承において、実線中塗の三角は水平方向拘束低減対象外(引き続き水平方向の移動を拘束する)を示し、点線中抜の三角は水平方向拘束低減対象を示す。図示橋脚、橋台において、ハッチングは耐震補強対象を示し、中塗は耐震補強対象外を示す。   The present invention is not limited to the above application examples, and various modifications are possible. 4-8, it shows about the modifications 1-5. Between the illustrated digits, dotted squares indicate connecting means. In the illustrated bearing, the solid-line middle-coated triangle indicates that the horizontal direction restriction is not reduced (the horizontal movement is still restricted), and the dotted-lined triangle indicates the horizontal direction restriction reduction target. In the illustrated piers and abutments, hatching indicates a target for seismic reinforcement, and intermediate coating indicates a target for seismic reinforcement.

図4は、変形例1である。単純桁が連続する5径間橋りょうである。橋桁G1〜G5を1つの連結桁GXとする。   FIG. 4 shows a first modification. It is a 5-span bridge with simple girder. The bridge girders G1 to G5 are defined as one connecting girder GX.

連結桁GXを支持する橋脚P1〜P4および橋台A1,A2のうち、橋台A1、橋脚P2〜P4に設置される支承B1,B4,B5,B6,B7,B8,B9について水平方向の拘束を低減する。   Among the bridge piers P1 to P4 and the abutments A1 and A2 that support the connecting girder GX, horizontal restraint is reduced for the supports B1, B4, B5, B6, B7, B8, and B9 installed on the abutments A1 and P2 to P4. To do.

一方で、連結桁GXを支持する橋脚P1〜P4および橋台A1,A2のうち、橋台A1、橋脚P2〜P4以外の橋脚P1および橋台A2において、耐震補強をおこなう。   On the other hand, among the piers P1 to P4 and the abutments A1 and A2 that support the connecting girder GX, seismic reinforcement is performed on the pier P1 and the abutment A2 other than the abutments A1 and the piers P2 to P4.

すなわち、橋脚の一部を耐震補強対象としてもよい。   That is, a part of the pier may be a seismic reinforcement target.

図5は、変形例2である。単純桁が連続する5径間橋りょうである。橋桁G1〜G5を1つの連結桁GXとする。とする。   FIG. 5 is a second modification. It is a 5-span bridge with simple girder. The bridge girders G1 to G5 are defined as one connecting girder GX. And

連結桁GXを支持する橋脚P1〜P4および橋台A1,A2のうち、橋台A1,A2、橋脚P2,P3に設置される支承B1,B4,B5,B6,B7,B10について水平方向の拘束を低減する。   Of the piers P1 to P4 and the abutments A1 and A2 that support the connecting girder GX, the horizontal restraint is reduced for the supports B1, B4, B5, B6, B7, and B10 installed on the abutments A1 and A2 and the piers P2 and P3. To do.

一方で、連結桁GXを支持する橋脚P1〜P4および橋台A1,A2のうち、橋台A1,A2、橋脚P2,P3以外の橋脚P1,P4において、耐震補強をおこなう。   On the other hand, among the piers P1 to P4 and the abutments A1 and A2 that support the connecting girder GX, seismic reinforcement is performed on the piers P1 and P4 other than the abutments A1 and A2 and the piers P2 and P3.

すなわち、橋台以外を耐震補強対象としてもよい。   That is, it is good also considering a seismic reinforcement object other than an abutment.

図6は、変形例3である。単純桁が連続する4径間橋りょうである。橋桁G1,G2を連結部J1を介して連結桁GX1とし、橋桁G3,G4を連結部J2を介して連結桁GX2とする。   FIG. 6 shows a third modification. This is a 4-span bridge with simple girder. The bridge girders G1 and G2 are connected to the connecting beam GX1 through the connecting portion J1, and the bridge beams G3 and G4 are connected to the connecting beam GX2 through the connecting portion J2.

連結桁GX1を支持する橋台A1,橋脚P1,P2のうち、橋脚P1に設置される支承B2,B3について水平方向の拘束を低減する。連結桁GX2を支持する橋脚P2,P3,橋台A2のうち、橋脚P3に設置される支承B6,B7について水平方向の拘束を低減する。   Of the abutments A1 and piers P1 and P2 that support the connecting beam GX1, horizontal restraint is reduced for the supports B2 and B3 installed on the pier P1. Of the bridge piers P2 and P3 and the abutment A2 that support the connecting girder GX2, horizontal restraint is reduced for the supports B6 and B7 installed on the pier P3.

一方で、連結桁GX1を支持する橋台A1,橋脚P1,P2のうち、橋脚P2以外の橋台A1,橋脚P2において、耐震補強をおこなう。連結桁GX2を支持する橋脚P2,P3,橋台A2のうち、橋脚P3以外の橋脚P2,橋台A2において、耐震補強をおこなう。   On the other hand, among the abutment A1 and the piers P1 and P2 that support the connecting girder GX1, seismic reinforcement is performed on the abutment A1 and the pier P2 other than the pier P2. Of the piers P2, P3 and abutment A2 that support the connecting girder GX2, seismic reinforcement is performed at the pier P2 and the abutment A2 other than the pier P3.

すなわち、必ずしも全ての橋桁を1つの連結桁としなくともよい。図示の例では、4連の橋桁を2つの2連からなる連結桁としている。   In other words, not all bridge girders need to be one connected girder. In the example shown in the figure, four bridge girders are connected to two double girders.

図7は、変形例4である。3径間ゲルバー橋りょうである。橋脚P1,P2間にヒンジH1,H2が存在する。ヒンジH1,H2部分を連結して、橋桁G1〜G3を1つの連結桁GXとする。   FIG. 7 shows a fourth modification. It is a three-span Gerber bridge. Hinges H1 and H2 exist between the piers P1 and P2. The hinges H1 and H2 are connected to each other, and the bridge beams G1 to G3 are set as one connection beam GX.

連結桁GXを支持する橋脚P1,P2および橋台A1,A2のうち、橋脚P1,P2に設置される支承B2,B3について水平方向の拘束を低減する。   Of the piers P1 and P2 and the abutments A1 and A2 that support the connecting girder GX, horizontal restraint is reduced for the supports B2 and B3 installed on the piers P1 and P2.

一方で、連結桁GXを支持する橋脚P1,P2および橋台A1,A2のうち、橋脚P1,P2以外の橋台A1,A2において、耐震補強をおこなう。   On the other hand, among the piers P1 and P2 and the abutments A1 and A2 that support the connecting girder GX, the seismic reinforcement is performed on the abutments A1 and A2 other than the piers P1 and P2.

すなわち、連続する単純桁以外、例えば、ゲルバー橋にも適用可能である。   That is, the present invention can be applied to a Gerber bridge other than a continuous simple girder.

図8は、変形例5である。3径間ゲルバー橋りょうである。橋台A1と橋脚P1との間にヒンジH1が存在し、橋脚P2と橋台A2との間にヒンジH2が存在する。ヒンジH1,H2部分を連結して、橋桁G1〜G3を1つの連結桁GXとする。   FIG. 8 shows a fifth modification. It is a three-span Gerber bridge. A hinge H1 exists between the abutment A1 and the pier P1, and a hinge H2 exists between the pier P2 and the abutment A2. The hinges H1 and H2 are connected to each other, and the bridge beams G1 to G3 are set as one connection beam GX.

連結桁GXを支持する橋脚P1,P2および橋台A1,A2のうち、橋脚P1および橋台A2に設置される支承B2,B4ついて水平方向の拘束を低減する。   Of the piers P1 and P2 and the abutments A1 and A2 that support the connecting girder GX, horizontal restraint is reduced for the supports B2 and B4 installed on the pier P1 and the abutment A2.

一方で、連結桁GXを支持する橋脚P1,P2および橋台A1,A2のうち、橋脚P1,橋台A2以外の橋台A1,橋脚P2において、耐震補強をおこなう。   On the other hand, among the piers P1 and P2 and the abutments A1 and A2 that support the connecting girder GX, the seismic reinforcement is performed on the abutments A1 and the pier P2 other than the pier P1 and the abutment A2.

すなわち、ゲルバー橋においても、種々の変形が可能である。   That is, various modifications are possible in the Gerber bridge.

さらに、上記変形例1〜5に限定されず、たとえば、単純桁と連続桁からなる多径間橋りょうにも適用可能である。   Furthermore, it is not limited to the said modifications 1-5, For example, it can apply also to the multi span bridge which consists of a simple girder and a continuous girder.

〜連結詳細〜
連結桁GXは、個別の橋桁の連結部(J1〜J4)に引張力対抗機能11および圧縮力対抗機能12を有する。地震時に連結桁に水平力が作用し、連結部に橋桁同士から引張力が作用する場合、引張力対抗機能11は引張方向の力に対抗する。同様に、橋桁同士から圧縮力が作用する場合、圧縮力対抗機能12は圧縮方向の力に対抗する。
~ Consolidation details ~
The connecting girder GX has a tensile force resistance function 11 and a compressive force resistance function 12 in the connecting portions (J1 to J4) of the individual bridge beams. When a horizontal force acts on the connecting girder during an earthquake and a tensile force acts between the bridge girders on the connecting portion, the tensile force counter-function 11 counters the force in the tensile direction. Similarly, when a compressive force is applied from the bridge beams, the compressive force counter function 12 counters the force in the compression direction.

たとえば、図3(平面図)の例では、図示下向きに地震時慣性力が作用して図示連結桁の下側に引張方向の力が作用し、引張力対抗機能11が対抗し、図示上側に圧縮方向の力が作用し、圧縮力対抗機能12が対抗している。その結果、連結桁GXでは、水平面内の曲げモーメントが隣り合う橋桁同士に伝達される。   For example, in the example of FIG. 3 (plan view), an inertial force at the time of earthquake acts downward in the figure, a tensile force acts on the lower side of the illustrated connecting girder, and the tensile force counter function 11 counteracts, on the upper side in the figure. A force in the compression direction acts, and the compression force counter function 12 counters. As a result, in the connecting beam GX, the bending moment in the horizontal plane is transmitted to adjacent bridge beams.

図3の例では、便宜的に一方向に水平力が発生しているが、地震時には双方向に水平力が発生する。図3の例と反対方向に水平力が発生する場合は、図示下側にて圧縮力対抗機能12が対抗し、図示上側に引張力対抗機能11が対抗する。   In the example of FIG. 3, horizontal force is generated in one direction for convenience, but horizontal force is generated in both directions during an earthquake. When a horizontal force is generated in the direction opposite to the example of FIG. 3, the compressing force counter function 12 counters on the lower side in the figure, and the tensile force counter function 11 counters on the upper side in the figure.

具体的な連結手段は、特定の構造に限定されず、様々な変形が可能である。   The specific connecting means is not limited to a specific structure, and various modifications are possible.

図9は連結例1である。   FIG. 9 shows a connection example 1.

各橋桁間において、橋桁の側面に沿うようにPC鋼棒21が配置され、橋桁に設けられたブラケット22にPC鋼棒が定着されることにより、引張力対抗機能11が形成される。   Between each bridge girder, the PC steel bar 21 is arranged along the side surface of the bridge girder, and the PC steel bar is fixed to the bracket 22 provided on the bridge girder, whereby the tensile force resistance function 11 is formed.

PC鋼棒の代わりに、PCケーブル、鉄筋その他鋼材等を使用してもよい。   Instead of the PC steel bar, a PC cable, a reinforcing bar or other steel material may be used.

各橋桁間において、間詰コンクリート23が打設され、圧縮力対抗機能12が形成される。温度変化による橋軸方向の変位に対応できるように、間詰コンクリートはスリットを有していてもよい。   Between each bridge girder, the interstitial concrete 23 is laid, and the compressive force resistance function 12 is formed. The interstitial concrete may have a slit so as to cope with displacement in the bridge axis direction due to temperature change.

間詰めコンクリートは、各橋桁間の全断面に配置する必要はない。すなわち両端にあれば中央にある必要はない。例えば図12において、橋桁G1とG2の連結部の図示上端部分と図示下端部のみに設置し、中間部分に設置しない場合もある。   Filled concrete need not be placed on the entire cross section between each bridge girder. That is, if it is at both ends, it does not need to be in the center. For example, in FIG. 12, it may be installed only in the illustrated upper end portion and the illustrated lower end portion of the connecting portion of the bridge girders G1 and G2, and may not be installed in the intermediate portion.

コンクリートの代わりに、モルタル、セメントペースト、鋼材、樹脂又はゴム等を使用してもよい。   Instead of concrete, mortar, cement paste, steel, resin or rubber may be used.

図10は連結例2である。   FIG. 10 is a connection example 2.

各橋桁間において、橋桁の側面に沿うように鋼管20が配置され、橋桁に設けられたブラケット25に鋼管が定着されることにより、引張力対抗機能11が形成される。   Between each bridge girder, the steel pipe 20 is arranged along the side face of the bridge girder, and the steel pipe is fixed to the bracket 25 provided on the bridge girder, whereby the tensile force resistance function 11 is formed.

一方、鋼管内にコンクリート26が充填され、圧縮力対抗機能12が形成される。   On the other hand, the concrete 26 is filled in the steel pipe, and the compressive force resistance function 12 is formed.

なお、上記コンクリート26が充填された鋼管20は、連結桁が水平面内での曲げモーメントに抵抗するために効率的な位置に設ければよいが、既設ケーブルなどと支障する場合には、必ずしも連結桁の内面に設ける必要はなく外面に設けても良い。   The steel pipe 20 filled with the concrete 26 may be provided at an efficient position so that the connecting beam resists the bending moment in the horizontal plane. It does not need to be provided on the inner surface of the beam and may be provided on the outer surface.

図11および図12は連結例3である。図11は側面図であり、図12は平面図である。   11 and 12 show a connection example 3. FIG. 11 is a side view, and FIG. 12 is a plan view.

連結例1の引張力対抗機能11が各橋桁間にPC鋼棒を配置するものであるのに対し、連結例3の引張力対抗機能11は連結桁GXの両端(図示橋桁G1および橋桁G5)にケーブル27を固定し、ケーブル27に緊張力を導入するものである。橋桁G1〜5には、定着部28及び偏向部(デビエーター)29を介してケーブル27の緊張力が桁に伝達される。ケーブル、定着部は鋼、樹脂などで構成される。   Whereas the tensile force resistance function 11 of the connection example 1 is to dispose a PC steel rod between each bridge girder, the tensile force resistance function 11 of the connection example 3 is the both ends of the connection beam GX (the illustrated bridge beam G1 and the bridge beam G5). The cable 27 is fixed to the cable 27, and tension is introduced into the cable 27. The tension of the cable 27 is transmitted to the bridge girders G <b> 1 to G <b> 5 through the fixing unit 28 and the deflecting unit (deviator) 29. The cable and fixing unit are made of steel, resin, or the like.

ケーブル27は、各橋桁G1〜5の水平方向の変位を低減できる。   The cable 27 can reduce the horizontal displacement of each bridge girder G1-5.

一方、連結例1と同様に、各橋桁間において、間詰コンクリート23が打設され、圧縮力対抗機能12が形成される。   On the other hand, in the same manner as in the connection example 1, the interstitial concrete 23 is placed between the bridge girders, and the compressive force resistance function 12 is formed.

さらに、上記連結例1〜3に限定されず、たとえば、鋼製桁であれば各橋桁間を添接板を介して連結してもよい。   Furthermore, it is not limited to the said connection examples 1-3, For example, if it is a steel girder, you may connect between each bridge girder via an attachment board.

〜水平方向拘束低減手段〜
図1において、既設橋りょうでは支承B1〜8について水平方向の変位が拘束されている。図2において、支承B2,B3,B4,B5,B6,B7について水平方向の拘束を低減する。
~ Horizontal restraint reduction means ~
In FIG. 1, the horizontal displacement is restrained for the supports B1 to 8 in the existing bridge. In FIG. 2, the horizontal restraint is reduced for the supports B2, B3, B4, B5, B6, and B7.

具体的には、既設支承を免震支承やすべり支承に取り換える。   Specifically, replace existing bearings with seismic isolation bearings and sliding bearings.

免震支承であれば、橋桁の水平力の橋脚P1〜P3への伝達を大幅に低減できる。   If it is a seismic isolation bearing, the transmission of the horizontal force of the bridge girder to the piers P1 to P3 can be greatly reduced.

すべり支承であれば、当該すべり支承の摩擦係数をμ、当該支承が負担する鉛直力をVとすれば、橋桁から支承に働く水平力がμVを超えると当該支承は滑りμNを超える水平力は橋脚P1〜P3へ伝達されないようにできる。   If it is a sliding bearing, if the friction coefficient of the sliding bearing is μ and the vertical force that the bearing bears is V, the horizontal force acting on the bearing from the bridge girder exceeds μV, and the horizontal force exceeding the sliding μN is It can be prevented from being transmitted to the piers P1 to P3.

この場合、前記μNを既設の橋脚P1〜P3の支承位置に載荷した場合に橋脚に発生する断面力が橋脚の強度(例えば曲げ耐力、せん断耐力等)以下であれば、橋脚P1〜P3は大規模には損傷しない。   In this case, the bridge piers P1 to P3 are large if the cross-sectional force generated at the pier when the μN is loaded at the support positions of the existing piers P1 to P3 is less than the strength of the pier (for example, bending strength, shear strength, etc.). Does not damage the scale.

通常、Nの値を大幅に調整することは困難であり、補強が困難な橋脚や橋台の強度に応じて取り替える支承の摩擦係数を適宜選定する。   Usually, it is difficult to adjust the value of N significantly, and the friction coefficient of the bearing to be replaced is appropriately selected according to the strength of the pier or abutment that is difficult to reinforce.

図1等の側面図では、橋桁端部を1つの支承により支持しているようにもみえるが、実際は、図示直交する方向に奥行きを有し、複数の支承が配置されている(例えば図9参照)。水平方向の拘束を低減する際は、全ての支承を取り換える。   In the side view of FIG. 1 and the like, the bridge girder end portion seems to be supported by one support, but in reality, the bridge girder has a depth in a direction orthogonal to the drawing and a plurality of supports are arranged (for example, FIG. 9). reference). When reducing horizontal restraints, replace all bearings.

〜耐震補強手段〜
適用例において、図1における既設橋りょうに対し、図2のように橋台A1,A2において、耐震補強をおこなう。また、変形例1(図4),変形例2(図5),変形例3(図6),変形例5(図8)では、橋脚において耐震補強をおこなう。
~ Seismic reinforcement means ~
In the application example, the existing bridge in FIG. 1 is subjected to seismic reinforcement at the abutments A1 and A2 as shown in FIG. In Modification 1 (FIG. 4), Modification 2 (FIG. 5), Modification 3 (FIG. 6), and Modification 5 (FIG. 8), seismic reinforcement is performed on the pier.

橋脚の耐震補強の例として、RC巻き立て、鋼板巻き立て、樹脂シート巻き立て等により柱の曲げ又はせん断耐力や靱性を増したり、杭を増したりする。   As an example of seismic reinforcement of a bridge pier, RC bending, steel sheet winding, resin sheet winding, etc. increase the bending or shear strength and toughness of a column, or increase piles.

橋台の耐震補強の例としては、橋脚で用いる方法の他に、グランドアンカにより、橋台と背面部との一体性を増す。   As an example of the seismic reinforcement of the abutment, in addition to the method used in the pier, the ground anchor increases the unity between the abutment and the rear portion.

また、上記補強する橋脚や橋台に設置される支承部も当初設計時に比べて増加した地震時水平力を負担することになるため、支承本体やアンカーボルトを交換、あるいはアンカー用コンクリートの増し打ちやアンカーボルト数を増すといった補強を行う。 In addition, since the bearings installed on the piers and abutments to be reinforced will bear an increased horizontal force during earthquakes compared to the initial design, the bearing body and anchor bolts can be replaced, or the concrete for anchoring can be increased. Reinforcement such as increasing the number of anchor bolts.

A1,A2 橋台
P1〜P4 橋脚
G1〜G5 橋桁
GX,GX1,GX2 連結桁
B1〜B10 支承
J1〜J4 連結部
H1,H2 ヒンジ
11 引張力対抗機能
12 圧縮力対抗機能
20 鋼管
21 PC鋼棒
22 ブラケット
23 間詰コンクリート
25 ブラケット
26 充填コンクリート
27 ケーブル
28 定着部
29 デビエータ
A1, A2 Abutment P1-P4 Pier G1-G5 Bridge girder GX, GX1, GX2 Connecting girder B1-B10 Bearing J1-J4 Connecting part H1-H4 Hinge 11 Tensile force resistance function 12 Compressive force resistance function 20 Steel pipe 21 PC steel rod 22 Bracket 23 Filled concrete 25 Bracket 26 Filled concrete 27 Cable 28 Fixing part 29 Deviator

Claims (6)

N(Nは2以上の整数)連の橋桁を有する橋りょうの耐震補強方法であって、
前記N連の橋桁のうち連続するK(Kは2以上N以下の整数)連の橋桁を連結して連結桁とする工程と、
前記連結桁を支持する少なくとも1つの橋脚又は橋台に設置される支承の水平方向の拘束を低減する工程と、
前記水平方向の拘束が低減された支承を支持する橋脚または橋台以外の少なくとも1つの橋脚又は橋台を補強する工程、
からなる耐震補強方法。
A method of seismic reinforcement of a bridge having N (N is an integer of 2 or more) bridges,
A step of connecting consecutive K (K is an integer of 2 or more and N or less) consecutive bridge beams among the N bridge beams to form a connection beam;
Reducing the horizontal restraint of a bearing installed on at least one pier or abutment that supports the connecting girder;
Reinforcing at least one abutment or abutment other than the abutment or abutment that supports the bearing with reduced horizontal restraint;
Seismic reinforcement method consisting of
前記橋桁の連結は、引張力に対抗するように、および、圧縮力に対抗するように、連結する
請求項1記載の耐震補強方法。
The seismic reinforcement method according to claim 1, wherein the bridge girder is connected so as to oppose a tensile force and oppose a compressive force.
前記引張力に対抗するような橋桁の連結は、前記連結桁の両端にケーブルを固定することによりなされる
請求項2記載の耐震補強方法。
The seismic reinforcement method according to claim 2, wherein the connection of the bridge girders against the tensile force is performed by fixing cables to both ends of the connection girders.
N(Nは2以上の整数)連の橋桁を有する橋りょうであって、
前記N連の橋桁のうち連続するK(Kは2以上N以下の整数)連の橋桁を連結手段により連結した連結桁と、
前記連結桁を支持する少なくとも1つの橋脚又は橋台に設置され、水平方向の拘束が低減された支承
を有し、
前記水平方向の拘束が低減された支承を支持する橋脚または橋台以外の少なくとも1つの橋脚又は橋台が耐震補強された
橋りょう。
A bridge having N (N is an integer of 2 or more) bridge girder,
A connecting girder in which consecutive K (K is an integer of 2 or more and N or less) consecutive bridge girder among the N girder bridge girder,
Installed on at least one pier or abutment that supports the connecting girder and having a reduced horizontal restraint;
A bridge in which at least one abutment or abutment that supports the bearing with reduced horizontal restraint is seismically reinforced.
前記連結手段は、引張力対抗機能および圧縮力対抗機能を有する
請求項4記載の橋りょう。
The bridge according to claim 4, wherein the connecting means has a tensile force resistance function and a compression force resistance function.
前記引張力対抗機能は、前記連結桁の両端に固定されたケーブルである
請求項5記載の橋りょう。
The bridge according to claim 5, wherein the tensile force resistance function is a cable fixed to both ends of the connecting beam.
JP2017163932A 2017-08-29 2017-08-29 Aseismatic reinforcement method and aseismatic reinforcement structure Pending JP2019039269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017163932A JP2019039269A (en) 2017-08-29 2017-08-29 Aseismatic reinforcement method and aseismatic reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017163932A JP2019039269A (en) 2017-08-29 2017-08-29 Aseismatic reinforcement method and aseismatic reinforcement structure

Publications (1)

Publication Number Publication Date
JP2019039269A true JP2019039269A (en) 2019-03-14

Family

ID=65726755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017163932A Pending JP2019039269A (en) 2017-08-29 2017-08-29 Aseismatic reinforcement method and aseismatic reinforcement structure

Country Status (1)

Country Link
JP (1) JP2019039269A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041346A (en) * 2018-09-12 2020-03-19 Jr東日本コンサルタンツ株式会社 Seismic strengthening method and bridge
CN111794071A (en) * 2020-07-06 2020-10-20 上海崇明水利工程有限公司 Water conservancy bridge structure
CN116467781A (en) * 2023-04-21 2023-07-21 合肥工业大学 Design method of economic quasi-shock-isolation system of highway bridge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183530A (en) * 1996-12-26 1998-07-14 Mitsubishi Heavy Ind Ltd Reinforcing method for bridge
JP2007247225A (en) * 2006-03-15 2007-09-27 Oriental Construction Co Ltd Continuous girder structure formed of a plurality of simple girder bridges, and construction method
JP2009228296A (en) * 2008-03-24 2009-10-08 Nippon Engineering Consultants Co Ltd Seismic strengthening method for bridge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183530A (en) * 1996-12-26 1998-07-14 Mitsubishi Heavy Ind Ltd Reinforcing method for bridge
JP2007247225A (en) * 2006-03-15 2007-09-27 Oriental Construction Co Ltd Continuous girder structure formed of a plurality of simple girder bridges, and construction method
JP2009228296A (en) * 2008-03-24 2009-10-08 Nippon Engineering Consultants Co Ltd Seismic strengthening method for bridge

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
星隈順一 他: "地震の影響を最小化する新構造技術の開発に関する研究", 平成22年度 土木研究所成果報告書, JPN7021001606, 2011, JP, pages 1 - 6, ISSN: 0004503547 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041346A (en) * 2018-09-12 2020-03-19 Jr東日本コンサルタンツ株式会社 Seismic strengthening method and bridge
JP7116644B2 (en) 2018-09-12 2022-08-10 Jr東日本コンサルタンツ株式会社 Seismic reinforcement method and bridge
CN111794071A (en) * 2020-07-06 2020-10-20 上海崇明水利工程有限公司 Water conservancy bridge structure
CN116467781A (en) * 2023-04-21 2023-07-21 合肥工业大学 Design method of economic quasi-shock-isolation system of highway bridge
CN116467781B (en) * 2023-04-21 2023-09-22 合肥工业大学 Design method of economic quasi-shock-isolation system of highway bridge

Similar Documents

Publication Publication Date Title
JP2019039269A (en) Aseismatic reinforcement method and aseismatic reinforcement structure
CN109898691A (en) A kind of damping earthing type assembled steel reinforced concrete tuning quality damping wall
KR101256130B1 (en) ease precast girder and bridge using the same
Cormack The design and construction of the major bridges on the Mangaweka rail deviation
KR101527782B1 (en) Management and reverse displacement of composite bridge composite inclined support installation method
Sun et al. Design of looping cable anchorage system for new San Francisco–Oakland Bay Bridge main suspension span
JP2009228296A (en) Seismic strengthening method for bridge
JP6182402B2 (en) Seismic reinforcement method for bridges to prevent falling bridges
JP7116644B2 (en) Seismic reinforcement method and bridge
JP2010047933A (en) Damping reinforcement frame
Melkumyan Base isolation retrofitting design for the existing 9-story large-panel apartment building
Arzoumanidis et al. Performance‐based seismic analysis and design of suspension bridges
KR102174713B1 (en) Seismic reinforcement device for underground structure
JP2003082618A (en) Bridge earthquake-resistant reinforcing method
Farhat et al. Full-scale experimental testing and finite element analysis of a totally prefabricated counterfort retaining wall system.
KR102521965B1 (en) Bridge having reinforced structure for transverse direction and point part
JP3735813B2 (en) Seismic pile group structure
Astin Design of the Third Karnaphuli bridge
JP2012117364A (en) Vibration control bridge pier structure
CN220058059U (en) Viaduct large-span bearing platform structure of subway station in straddling operation
Dunker et al. Expanding the use of integral abutments in Iowa
Melkumyan Base isolation retrofitting design for the existing 2-story stone building and its Conversion into a 3-Story kindergarten
Mavrakis Greece's new high‐speed railway line: Detailed design and construction engineering of bridge SG26
Huang et al. Analysis of innovative structural design of Liyutuo Lounge Bridge in Dujiangyan
Carvajal et al. Geotechnical Evaluation of Alternative Configurations of Integral Abutment Bridge Approach Slabs for Mitigation of Asphalt Distress

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211201