JP2021009928A - Rigid/flex multilayer printed board - Google Patents

Rigid/flex multilayer printed board Download PDF

Info

Publication number
JP2021009928A
JP2021009928A JP2019123117A JP2019123117A JP2021009928A JP 2021009928 A JP2021009928 A JP 2021009928A JP 2019123117 A JP2019123117 A JP 2019123117A JP 2019123117 A JP2019123117 A JP 2019123117A JP 2021009928 A JP2021009928 A JP 2021009928A
Authority
JP
Japan
Prior art keywords
rigid
wiring pattern
plating film
hole
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019123117A
Other languages
Japanese (ja)
Inventor
秀幸 大塚
Hideyuki Otsuka
秀幸 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon CMK Corp
CMK Corp
Original Assignee
Nippon CMK Corp
CMK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon CMK Corp, CMK Corp filed Critical Nippon CMK Corp
Priority to JP2019123117A priority Critical patent/JP2021009928A/en
Publication of JP2021009928A publication Critical patent/JP2021009928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

To provide a rigid/flex multilayer printed board that has excellent connection reliability for a plating through hole and does not cause a crack in a plating film due to sagging of a cover film.SOLUTION: A rigid/flex multilayer printed board includes a flexible base board, a wiring pattern formed on the flexible base board, a flexible board consisting of a coverlay that protects the wiring pattern, a rigid board on the flexible board, which is composed of an insulating resin layer and the wiring pattern laminated so as to expose a part of the flexible board, and a plating through hole that connects the flexible board and the wiring pattern formed on the rigid board, and the surface of the plating film constituting the plating through hole is coated with a reinforcing metal film having hardness higher than that of the plating film.SELECTED DRAWING: Figure 1

Description

本発明は、リジッド・フレックス多層プリント配線板に関するものであり、特に、貫通めっきスルーホールの接続信頼性に優れたリジッド・フレックス多層プリント配線板に関する。 The present invention relates to a rigid flex multilayer printed wiring board, and more particularly to a rigid flex multilayer printed wiring board having excellent connection reliability of through-hole plating through holes.

近年、自動車の自動制御化が益々進み、部品や各種センサの搭載点数が非常に多くなってきている。その結果、部品やセンサなどに用いられるプリント配線板においては、装置内への設置自由度の高さや、装置の小型化に寄与できるリジッド・フレックス多層プリント配線板の需要が高まっている。 In recent years, the automatic control of automobiles has been progressing more and more, and the number of parts and various sensors mounted on them has become extremely large. As a result, in printed wiring boards used for parts and sensors, there is an increasing demand for rigid flex multilayer printed wiring boards that can contribute to the high degree of freedom of installation in equipment and the miniaturization of equipment.

図9に示したように、リジッド・フレックス多層プリント配線板pwは、一般的に、中心部にフレキシブル基板6を配置し、一部に屈曲可能なフレキシブル領域Fを露出する形で、当該フレキシブル基板6の表裏面にリジッド基板17を積層した構成(フレキシブル基板6とリジッド基板17が重なる部分を、部品実装が可能な「リジッド領域R」と呼ぶことにする)が多く採用されているが、上下方向の配線パターン間を接続する貫通めっきスルーホールを形成する場合、フレキシブル基板6上にリジッド基板17を貼り付けるための接着剤が介在するため、ドリル加工によって穿孔される貫通孔の壁面が滑らかに仕上がらず、めっき不良が発生し易いという問題があった。 As shown in FIG. 9, the rigid flex multilayer printed wiring board pw generally has a flexible substrate 6 arranged in a central portion and a flexible region F that can be bent is partially exposed. A configuration in which a rigid substrate 17 is laminated on the front and back surfaces of No. 6 (the portion where the flexible substrate 6 and the rigid substrate 17 overlap is referred to as a "rigid region R" in which components can be mounted) is often adopted. When forming a through-plating through hole that connects the wiring patterns in the directions, an adhesive for attaching the rigid substrate 17 is interposed on the flexible substrate 6, so that the wall surface of the through hole drilled by drilling is smooth. There was a problem that it was not finished and plating defects were likely to occur.

このような問題を解決する手段として、例えば、次に示すものが知られている(特許文献1参照)。
図10(a)は、リジッド領域Rに設けた貫通めっきスルーホール15の要部拡大断面図を示したものであり、フレキシブル基板6の表裏面に接着剤3aを介してリジッド基板17が積層され、当該リジッド基板17における接着剤3aの配置側面であって、かつ、貫通めっきスルーホール15を形成する箇所に、延性及び放熱性に優れた金属箔20a(例えば、銅箔やアルミニウム箔など)が設けられている。当該金属箔20aによって、貫通孔15aの内壁が滑らかに仕上がるというものである。
As a means for solving such a problem, for example, the following is known (see Patent Document 1).
FIG. 10A shows an enlarged cross-sectional view of a main part of the through-plating through hole 15 provided in the rigid region R, and the rigid substrate 17 is laminated on the front and back surfaces of the flexible substrate 6 via an adhesive 3a. A metal foil 20a (for example, a copper foil or an aluminum foil) having excellent ductility and heat dissipation is provided on the side surface of the rigid substrate 17 on which the adhesive 3a is arranged and where the through-hole plating through hole 15 is formed. It is provided. The inner wall of the through hole 15a is smoothly finished by the metal foil 20a.

即ち、ドリルの摩擦熱によって接着層3aが軟化すると、図10(b)に示したように、ドリルの進行及び後退動作によって、リジッド基板17の貫通孔端部15cに欠けや割れなどが発生したり、接着剤3aが抉り取られたりするため、めっき膜15bにポケット部25が生じる場合があったが、貫通孔端部15cの強度向上機能とドリルの摩擦熱の放熱機能とを併せ持つ延性及び放熱性に優れた金属箔20aを設けることで、上記問題を解決するものである。 That is, when the adhesive layer 3a is softened by the frictional heat of the drill, as shown in FIG. 10B, the through hole end portion 15c of the rigid substrate 17 is chipped or cracked due to the advancing and retracting operations of the drill. In addition, since the adhesive 3a is scraped off, a pocket portion 25 may be formed in the plating film 15b. However, the durability and the function of radiating the frictional heat of the drill are combined with the strength improving function of the through hole end portion 15c. The above problem is solved by providing the metal foil 20a having excellent heat dissipation.

ところで、現在のリジッド・フレックス多層プリント配線板は、図10で示した接着剤3aも、リジッド基板17と同じガラスクロス等の補強基材にエポキシ樹脂などの熱硬化性樹脂を含浸させた材料(プリプレグ)を用いており、加えて、ドリル加工の際に用いるエントリーボード(ドリル加工の際に基板上に載置する当て板)も、リジッド基板17の孔明けに用いるアルミニウム板ではなく、ドリルの摩擦熱を抑える樹脂付きのアルミニウム板を用いるなど構成や加工方法が改善されたため、延性及び放熱性に優れる金属箔20aを設けずとも、図10(b)に示したような、めっき膜15bにポケット部25が発生するほどの大きな凹みは発生しなくなった。
しかしながら、図11に示したように、現在の構成や加工方法においても、フレキシブルベース基板1に形成された配線パターン2を保護するカバーレイ5(具体的には、カバーレイ5を構成するポリイミドなどのカバーフィルム4)のめっき膜15bへのダレ込み(伸び)を完全には無くすことができないという問題があった(なお、図11中に示した符号3は、カバーレイ5を構成する「接着剤」である。)。
By the way, in the current rigid flex multilayer printed wiring board, the adhesive 3a shown in FIG. 10 is also a material in which the same reinforcing base material such as glass cloth as the rigid substrate 17 is impregnated with a thermosetting resin such as epoxy resin ( Prepreg) is used, and in addition, the entry board used for drilling (the backing plate placed on the board during drilling) is not the aluminum plate used for drilling the rigid board 17, but the drill. Since the configuration and processing method have been improved, such as by using an aluminum plate with a resin that suppresses frictional heat, the plating film 15b as shown in FIG. 10B can be formed without providing the metal foil 20a having excellent ductility and heat dissipation. The dent that is large enough to generate the pocket portion 25 no longer occurs.
However, as shown in FIG. 11, even in the current configuration and processing method, the coverlay 5 (specifically, the polyimide constituting the coverlay 5) that protects the wiring pattern 2 formed on the flexible base substrate 1 is used. There was a problem that the sagging (elongation) of the cover film 4) into the plating film 15b could not be completely eliminated (note that reference numeral 3 shown in FIG. 11 indicates “adhesion” constituting the coverlay 5. Agent ".).

これは、リジッド・フレックス多層プリント配線板の孔明けに用いられるドリルが、リジッド基板の孔明けに用いられる一般的なドリルのように、耐摩耗性を重視したものではなく、フレキシブル材料に対する切れ味を重視したものであるため、元々、一般的なドリルよりも磨耗が早いという理由によるものだが、近年では、リジッド基板に使用される絶縁樹脂層として、樹脂中にフィラーを多く含むハロゲンフリー材が使用されるようになり、ドリルの磨耗がより早まる方向へと進んできたため、ドリルのリフレッシュ(研磨処理)や交換の時期を製品毎に設定しても、完全には防ぎきれないからである。
従って、ドリルの進行及び後退動作によって発生するめっき膜15bへのカバーフィルム4のダレ込みを、製造ロット中で皆無にすることは、ほぼ不可能であり、換言すると、カバーフィルム4のダレ込み部4aがめっき膜15bに食い込んだ製品が、製造ロット中に混入してしまうことは避けられないのである。
This is because the drill used for drilling holes in rigid flex multilayer printed wiring boards does not emphasize wear resistance like general drills used for drilling holes in rigid substrates, but rather sharpness for flexible materials. Originally, it wears faster than general drills because it is emphasized, but in recent years, halogen-free materials containing a large amount of filler in the resin have been used as the insulating resin layer used for rigid substrates. This is because the drill has been worn more quickly, and even if the time for refreshing (polishing) or replacing the drill is set for each product, it cannot be completely prevented.
Therefore, it is almost impossible to eliminate the sagging of the cover film 4 into the plating film 15b caused by the advancing and retreating operations of the drill in the production lot. In other words, the sagging portion of the cover film 4. It is inevitable that the product in which 4a bites into the plating film 15b is mixed in the production lot.

ここで、めっき膜15bにカバーレイ4のダレ込み部4aが食い込んだ場合の問題点について説明する。
まず、リジッド・フレックス多層プリント配線板の場合、貫通めっきスルーホール15のめっき膜15bに、カバーフィルム4のダレ込み部4aが食い込むと、当該ダレ込み部4aを起点にクラック26が発生しやすくなるという性質がある(図11参照)。
その理由は、リジッド・フレックス多層プリント配線板の構造が、最も大きな応力を受ける基板中心部にフレキシブル基板6を配置する、即ち、カバーフィルム4のダレ込み部4aが存在するからである。
このような傾向を示すリジッド・フレックス多層プリント配線板であっても、一般仕様品の場合には、めっき膜15bの厚さが20μmあれば、信頼性試験{例えば、板厚0.6mm、温度サイクル試験条件:−65℃(30分)⇔125℃(30分)、100サイクル}に合格する可能性が高く、然程、問題にはならないのであるが、車載仕様品の場合、一般仕様品よりも板厚が厚くなることが多い上に(即ち、より大きな応力を受けやすい)、信頼性試験{例えば、板厚1.2mm、温度サイクル試験条件:−65℃(30分)⇔125℃(30分)、1000サイクル}も、一般仕様品よりかなり厳しい条件が求められるため、当該信頼性試験をパスできない可能性が高くなる、即ち、カバーフィルム4のダレ込み部4aを起点に、クッラク26が発生する危険性が高くなるという問題が出てくるのである。
Here, a problem will be described when the sagging portion 4a of the coverlay 4 bites into the plating film 15b.
First, in the case of a rigid flex multilayer printed wiring board, if the sagging portion 4a of the cover film 4 bites into the plating film 15b of the through-hole plating through hole 15, cracks 26 are likely to occur starting from the sagging portion 4a. (See FIG. 11).
The reason is that in the structure of the rigid flex multilayer printed wiring board, the flexible substrate 6 is arranged at the center of the substrate which receives the largest stress, that is, there is a sagging portion 4a of the cover film 4.
Even in the case of a rigid flex multilayer printed wiring board showing such a tendency, in the case of a general specification product, if the thickness of the plating film 15b is 20 μm, a reliability test {for example, plate thickness 0.6 mm, temperature Cycle test conditions: -65 ° C (30 minutes) ⇔ 125 ° C (30 minutes), 100 cycles} There is a high possibility that it will pass, so it does not matter so much, but in the case of in-vehicle specifications, general specifications In addition to being often thicker than (ie, susceptible to greater stress), reliability tests {eg, plate thickness 1.2 mm, temperature cycle test conditions: -65 ° C (30 minutes) ⇔ 125 ° C (30 minutes), 1000 cycles} also requires considerably stricter conditions than general specification products, so there is a high possibility that the reliability test cannot be passed, that is, starting from the sagging portion 4a of the cover film 4, it is easy to use. There is a problem that the risk of occurrence of 26 increases.

因みに、めっき膜15bを厚くすれば(例えば、35μm以上)、クッラク26が発生する危険性を回避することは可能であるが、外層に析出されるめっき膜も厚くなり、高密度配線化の妨げになることから、採用は難しいのが実状であった。 Incidentally, if the plating film 15b is thickened (for example, 35 μm or more), it is possible to avoid the risk of crack 26 being generated, but the plating film deposited on the outer layer is also thickened, which hinders high-density wiring. Therefore, it was difficult to hire them.

特開平6−204625号公報Japanese Unexamined Patent Publication No. 6-204625

本発明は、上記の如き従来の問題と実状に鑑みてなされたものであり、カバーフィルムのダレ込みによるめっき膜のクラックが発生することのない、貫通めっきスルーホールの接続信頼性に優れたリジッド・フレックス多層プリント配線板を提供することを課題とする。 The present invention has been made in view of the above-mentioned conventional problems and actual conditions, and is a rigid with excellent connection reliability of through-hole plating through holes, which does not cause cracks in the plating film due to sagging of the cover film. -The challenge is to provide a flex multi-layer printed wiring board.

本発明者は、上記の課題を解決すべく種々研究を重ねた結果、貫通めっきスルーホールを構成するめっき膜を、当該めっき膜よりも硬度の高い補強金属膜で被覆すれば、極めて良い結果が得られることを見出し、本発明を完成するに至った。 As a result of conducting various studies to solve the above problems, the present inventor obtains extremely good results if the plating film constituting the through-plating through hole is coated with a reinforcing metal film having a hardness higher than that of the plating film. We have found that it can be obtained and have completed the present invention.

すなわち、本発明は、フレキシブルベース基板と、当該フレキシブルベース基板上に形成された配線パターンと、当該配線パターンを保護するカバーレイとからなるフレキシブル基板と;当該フレキシブル基板上であって、当該フレキシブル基板の一部を露出するように積層された絶縁樹脂層と配線パターンとからなるリジッド基板と;当該フレキシブル基板とリジッド基板に形成された配線パターンを接続する貫通めっきスルーホールとを備えたリジッド・フレックス多層プリント配線板であって、当該貫通めっきスルーホールを構成するめっき膜の表面が、当該めっき膜よりも硬度の高い補強金属膜で被覆されていることを特徴とするリジッド・フレックス多層プリント配線板により、上記課題を解決したものである。 That is, the present invention comprises a flexible base substrate, a flexible substrate composed of a wiring pattern formed on the flexible base substrate, and a coverlay that protects the wiring pattern; the flexible substrate on the flexible substrate. A rigid substrate composed of an insulating resin layer laminated so as to expose a part of the substrate and a wiring pattern; and a rigid flex provided with a through-plated through hole for connecting the flexible substrate and the wiring pattern formed on the rigid substrate. A rigid flex multilayer printed wiring board, which is a multilayer printed wiring board, wherein the surface of a plating film constituting the through-plated through hole is covered with a reinforcing metal film having a hardness higher than that of the plating film. This solves the above-mentioned problems.

本発明によれば、カバーフィルムのダレ込み部が貫通めっきスルーホールのめっき膜に食い込んでしまった場合においても、当該めっき膜がより硬度の高い補強金属膜で被覆されているため、めっき膜にクラックが発生することのない、貫通めっきスルーホールの接続信頼性に優れたリジッド・フレックス多層プリント配線板が得られる。 According to the present invention, even when the sagging portion of the cover film bites into the plating film of the through-plating through hole, the plating film is covered with a reinforcing metal film having a higher hardness, so that the plating film can be formed. A rigid flex multilayer printed wiring board with excellent connection reliability of through-plated through holes that does not cause cracks can be obtained.

(a)は、本発明リジッド・フレックス多層プリント配線板の実施の形態を示す概略断面説明図で、(b)は、(a)の丸で囲んだ部分の要部拡大断面図。(A) is a schematic cross-sectional explanatory view showing an embodiment of the rigid flex multilayer printed wiring board of the present invention, and (b) is an enlarged cross-sectional view of a main part of the circled portion of (a). (a)〜(d)は、本発明リジッド・フレックス多層プリント配線板の製造例を示す概略断面工程図。(A) to (d) are schematic cross-sectional process charts showing a manufacturing example of the rigid flex multilayer printed wiring board of the present invention. (e)〜(g)は、図2の工程に続く概略断面工程図。(E) to (g) are schematic cross-sectional process diagrams following the process of FIG. (h)〜(j)は、図3の工程に続く概略断面工程図。(H) to (j) are schematic cross-sectional process charts following the process of FIG. (k)〜(m)は、図4の工程に続く概略断面工程図。(K) to (m) are schematic cross-sectional process diagrams following the process of FIG. (n)〜(p)は、図5の工程に続く概略断面工程図。(N) to (p) are schematic cross-sectional process diagrams following the process of FIG. (q)〜(s)は、図6の工程に続く概略断面工程図。(Q) to (s) are schematic cross-sectional process charts following the process of FIG. 本発明リジッド・フレックス多層プリント配線板の他の実施の形態を示す概略断面説明図。The schematic cross-sectional explanatory view which shows the other embodiment of the rigid flex multilayer printed wiring board of this invention. 一般的なリジッド・フレックス多層プリント配線板の構成を示す概略断面説明図。Schematic cross-sectional explanatory view showing the structure of a general rigid flex multilayer printed wiring board. (a)は、従来のリジッド・フレックス多層プリント配線板の貫通めっきスルーホールの要部拡大断面図。(b)は、ドリルの進行及び後退動作によって発生するめっき膜のポケット部を説明するための要部拡大断面図。(A) is an enlarged cross-sectional view of a main part of a through-plated through hole of a conventional rigid flex multilayer printed wiring board. (B) is an enlarged cross-sectional view of a main part for explaining a pocket portion of a plating film generated by a forward and backward operation of a drill. ドリルの進行及び後退動作によって発生するめっき膜へのカバーフィルムのダレ込みを説明するためのリジッド・フレックス多層プリント配線板の要部拡大断面図。An enlarged cross-sectional view of a main part of a rigid flex multilayer printed wiring board for explaining the sagging of the cover film into the plating film caused by the advancement and retreat of the drill.

以下、本発明リジッド・フレックス多層プリント配線板の実施の形態を、図1(a)及び(b)を用いて説明する。なお、この実施の形態では、高剛性と高密度配線化が要求される車載仕様品に好適な、内層側に厚さが100μm以上のコア基材からなる厚み調節層を備えたリジッド・フレックス多層プリント配線板の図面を用いることとし、また、従来技術と同じ部位には、同じ符号を付すようにした。 Hereinafter, embodiments of the rigid flex multilayer printed wiring board of the present invention will be described with reference to FIGS. 1 (a) and 1 (b). In this embodiment, a rigid flex multilayer layer provided with a thickness adjusting layer made of a core substrate having a thickness of 100 μm or more on the inner layer side, which is suitable for in-vehicle specification products requiring high rigidity and high-density wiring. The drawings of the printed wiring board are used, and the same parts as those in the prior art are designated by the same reference numerals.

図1(a)において、PWはリジッド・フレックス多層プリント配線板で、当該リジッド・フレックス多層プリント配線板PWは、中心部に配置されたフレキシブル基板6と、一部に屈曲可能なフレキシブル領域Fを露出する形で、当該フレキシブル基板6の表裏面に積層されたリジッド基板17とから構成されている。当該フレキシブル基板6とリジッド基板17が重なる部分は、部品実装が可能な「リジッド領域R」である。
具体的に説明すると、フレキシブル基板6は、フレキシブルベース基板1と、当該フレキシブルベース基板1の表裏面に形成された第一配線パターン2と、当該第一配線パターン2を保護する接着剤3とカバーフィルム4とからなるカバーレイ5で構成されている。
一方、リジッド基板17は、フレキシブル基板6上に配置された第一絶縁樹脂層7と、厚さが100μm以上のコア基材からなる厚み調節層8と、当該厚み調節層8上に形成された第二絶縁樹脂層9及び第二配線パターン10と、当該第二配線パターン10の形成層上に交互に3層ずつ積層された第三絶縁樹脂層12及び第三配線パターン13とから構成されている。
In FIG. 1A, the PW is a rigid flex multilayer printed wiring board, and the rigid flex multilayer printed wiring board PW has a flexible substrate 6 arranged in a central portion and a flexible region F which is partially bendable. It is composed of a rigid substrate 17 laminated on the front and back surfaces of the flexible substrate 6 in an exposed form. The portion where the flexible substrate 6 and the rigid substrate 17 overlap is a "rigid region R" on which components can be mounted.
Specifically, the flexible substrate 6 covers the flexible base substrate 1, the first wiring pattern 2 formed on the front and back surfaces of the flexible base substrate 1, and the adhesive 3 that protects the first wiring pattern 2. It is composed of a coverlay 5 composed of a film 4.
On the other hand, the rigid substrate 17 is formed on the first insulating resin layer 7 arranged on the flexible substrate 6, the thickness adjusting layer 8 made of a core base material having a thickness of 100 μm or more, and the thickness adjusting layer 8. It is composed of a second insulating resin layer 9 and a second wiring pattern 10, and a third insulating resin layer 12 and a third wiring pattern 13 in which three layers are alternately laminated on the forming layer of the second wiring pattern 10. There is.

そして、当該リジッド領域Rには、フレキシブル基板6を挟んだ両面に形成されている第二配線パターン10と、当該第二配線パターン10の形成層間に位置する配線パターン(ここでは「第一配線パターン2」と「第二配線パターン10」に相当)を接続するベリードホール11と、第二配線パターン10と第三配線パターン13間、及び上下方向に隣接する第三配線パターン13間を接続するブラインドビアホール14と、フレキシブル基板6を挟んだ両面に積層されている外層の第三配線パターン13と、当該外層の第三配線パターン13の形成層間に位置する配線パターン(ここでは「第一配線パターン2」「第二配線パターン10」「内外層の第三配線パターン13」に相当)を接続する貫通めっきスルーホール15と、外層の第三配線パターン13を保護するソルダーレジスト16が形成されている。
図1(b)に示したように、当該貫通めっきスルーホール15を構成するめっき膜15bの表面は、当該めっき膜15bよりも硬度の高い補強金属膜18で被覆されている。これによって、カバーフィルム4のダレ込み部4aがめっき膜15bに食い込んだ場合においても、当該ダレ込み部4aを起点としたクラックの発生を防止することができ、貫通めっきスルーホール15の接続信頼性を確保することができる。
Then, in the rigid region R, a second wiring pattern 10 formed on both sides of the flexible substrate 6 and a wiring pattern located between the forming layers of the second wiring pattern 10 (here, "first wiring pattern"). 2 ”and“ second wiring pattern 10 ”) are connected to the belled hole 11, between the second wiring pattern 10 and the third wiring pattern 13, and between the third wiring patterns 13 adjacent in the vertical direction. A wiring pattern located between the blind via hole 14, the third wiring pattern 13 of the outer layer laminated on both sides of the flexible substrate 6 and the formation layer of the third wiring pattern 13 of the outer layer (here, "first wiring pattern"). A through-plated through hole 15 for connecting (corresponding to 2), “second wiring pattern 10”, and “third wiring pattern 13 for inner and outer layers” and a solder resist 16 for protecting the third wiring pattern 13 for the outer layer are formed. ..
As shown in FIG. 1B, the surface of the plating film 15b constituting the through-plating through hole 15 is covered with a reinforcing metal film 18 having a hardness higher than that of the plating film 15b. As a result, even when the sagging portion 4a of the cover film 4 bites into the plating film 15b, it is possible to prevent the occurrence of cracks starting from the sagging portion 4a, and the connection reliability of the through-hole plating through hole 15 can be prevented. Can be secured.

続いて、本発明リジッド・フレックス多層プリント配線板PWの製造方法を、図2〜図7を用いて説明する。
尚、文中に出てくる「絶縁接着剤層」は、実際には、加熱・積層プレスで硬化された後は、半硬化状態の接着剤ではなく、硬化済みの「絶縁樹脂層」となるものであるが、説明の便宜上、硬化前後に関係なく「絶縁接着剤層」という表現で説明を進めていく。
Subsequently, a method of manufacturing the rigid flex multilayer printed wiring board PW of the present invention will be described with reference to FIGS. 2 to 7.
The "insulating adhesive layer" that appears in the text is actually a cured "insulating resin layer" rather than a semi-cured adhesive after being cured by heating and laminating press. However, for convenience of explanation, the explanation will proceed with the expression "insulating adhesive layer" regardless of before and after curing.

まず、厚さが25〜100μm程度からなるフレキシブルベース基板1の両面に、厚さが9〜18μmの金属箔(例えば、「銅箔」)をエッチング処理することによって、第一配線パターン2を形成し、次いで、当該第一配線パターン2を保護するカバーレイ5(例えば、接着剤3とポリイミドフィルム等のカバーフィルム4からなる厚さが25〜70μm程度のカバーレイ)を積層することによって、図2(a)に示したフレキシブル基板6を得る。 First, the first wiring pattern 2 is formed by etching a metal foil (for example, "copper foil") having a thickness of 9 to 18 μm on both sides of a flexible base substrate 1 having a thickness of about 25 to 100 μm. Then, by laminating a coverlay 5 (for example, a coverlay having a thickness of about 25 to 70 μm composed of an adhesive 3 and a cover film 4 such as a polyimide film) that protects the first wiring pattern 2, the figure is shown. The flexible substrate 6 shown in 2 (a) is obtained.

次に、100μm以上の厚みを有するコア基材8a(例えば、ガラスクロスなどの補強基材にエポキシ樹脂などの熱硬化性樹脂を含浸させた絶縁基板)の両面に、厚さが35〜105μmからなる導体層19a(例えば、「銅箔」)が積層された両面金属箔張り積層板を用意し(図2(b1)参照)、当該両面金属箔張り積層板をエッチング処理することによって、後にフレキシブル基板6のフレキシブル領域Fとなる部分に対応したベタ状のダミーパターン19を有する厚み調節層8を得る(図2(b2)参照)。 Next, the thickness of the core base material 8a having a thickness of 100 μm or more (for example, an insulating substrate in which a reinforcing base material such as glass cloth is impregnated with a thermosetting resin such as epoxy resin) has a thickness of 35 to 105 μm or more. A double-sided metal foil-covered laminated board on which the conductor layer 19a (for example, "copper foil") is laminated is prepared (see FIG. 2 (b1)), and the double-sided metal foil-covered laminated board is etched to be flexible later. A thickness adjusting layer 8 having a solid dummy pattern 19 corresponding to a portion of the substrate 6 to be a flexible region F is obtained (see FIG. 2 (b2)).

次に、フレキシブル基板6とダミーパターン19が形成された厚み調節層8とを接着する第一絶縁接着剤層7a(例えば、ガラスクロスなどの補強基材にエポキシ樹脂などの熱硬化性樹脂を含浸させた半硬化状態のプリプレグなど)を用意し(図2(c1)参照)、当該ダミーパターン19に対応する箇所に、これよりも若干大きめの開口部7bを、ルータ加工やパンチングプレス加工などによって形成する(図2(c2)参照)。 Next, the first insulating adhesive layer 7a (for example, a reinforcing base material such as glass cloth) impregnated with a thermosetting resin such as epoxy resin to bond the flexible substrate 6 and the thickness adjusting layer 8 on which the dummy pattern 19 is formed. Prepare a semi-cured prepreg, etc. (see FIG. 2 (c1)), and make a slightly larger opening 7b at the location corresponding to the dummy pattern 19 by router processing, punching press processing, etc. Form (see FIG. 2 (c2)).

ここで、第一絶縁接着剤層7aの厚みは、ダミーパターン19と同等、若しくは、第一絶縁接着剤層7aの厚みをダミーパターン19より5〜10μm程度薄くすることが望ましい。
その理由は、加熱・積層プレスの際に、第一絶縁接着剤層7aから流れ出る樹脂が、ダミーパターン19側へと流れていくことを抑制でき、当該ダミーパターン19が当該樹脂によって強固に接着されることなく(フレキシブル基板6とダミーパターン19の間に樹脂が浸み込むことなく)積層できるからである(即ち、後に行われる不要部21の除去工程を容易に行うことができるからである)。
Here, it is desirable that the thickness of the first insulating adhesive layer 7a is the same as that of the dummy pattern 19, or that the thickness of the first insulating adhesive layer 7a is about 5 to 10 μm thinner than that of the dummy pattern 19.
The reason is that the resin flowing out from the first insulating adhesive layer 7a can be suppressed from flowing to the dummy pattern 19 side during the heating / laminating press, and the dummy pattern 19 is firmly adhered by the resin. This is because the layers can be laminated without (that is, the resin does not penetrate between the flexible substrate 6 and the dummy pattern 19) (that is, the step of removing the unnecessary portion 21 which is performed later can be easily performed). ..

次に、図2(d)に示したように、フレキシブル基板6の表裏面に、開口部7bが形成された第一絶縁接着剤層7a、ダミーパターン19が形成された厚み調節層8、第二絶縁接着剤層9a(例えば、ガラスクロスなどの補強基材にエポキシ樹脂などの熱硬化性樹脂を含浸させた、厚さが20〜60μmからなる半硬化状態のプリプレグなど)、金属箔20(例えば、厚さが9〜18μmの銅箔)をこの順に配置した後、加熱・積層プレスを行うことによって、上記構成部材を一体化形成する(図3(e)参照)。 Next, as shown in FIG. 2D, a first insulating adhesive layer 7a having an opening 7b formed on the front and back surfaces of the flexible substrate 6, a thickness adjusting layer 8 having a dummy pattern 19 formed, and a third layer. (Ii) Insulating adhesive layer 9a (for example, a semi-cured prepreg having a thickness of 20 to 60 μm obtained by impregnating a reinforcing base material such as glass cloth with a thermosetting resin such as epoxy resin), metal foil 20 (for example). For example, copper foils having a thickness of 9 to 18 μm) are arranged in this order, and then heated and laminated pressed to integrally form the constituent members (see FIG. 3E).

ここで、本実施の形態では、厚み調節層8にはダミーパターン19のみを形成する例を示したが、ダミーパターン19の形成面とは反対側の面にも、勿論、配線パターンを形成することは可能である。この場合、コア基材8aに積層される導体層19aの厚みが35μm程度であれば、そのままエッチング処理して形成すればよく、70〜105μmと厚い場合には、一度、ダウンエッチングで導体層19aを薄くしてから、エッチング処理で形成すればよい。 Here, in the present embodiment, an example in which only the dummy pattern 19 is formed on the thickness adjusting layer 8 is shown, but of course, a wiring pattern is also formed on the surface opposite to the formation surface of the dummy pattern 19. It is possible. In this case, if the thickness of the conductor layer 19a laminated on the core base material 8a is about 35 μm, it may be formed by etching as it is, and if it is as thick as 70 to 105 μm, the conductor layer 19a may be down-etched once. May be thinned and then formed by etching.

次に、図3(f)に示したように、ドリル加工で貫通孔11a(例えば、孔径が150〜300μmの貫通孔)を穿孔した後、過マンガン酸ナトリウム溶液や過マンガン酸カリウム溶液等の湿式デスミア処理、あるいはプラズマ等の乾式デスミア処理で当該貫通孔11aの内壁をクリーニングし、次いで、無電解めっき処理及び電解めっき処理を順次行うことによって、当該貫通孔11aを含む基板全面にめっき膜11b(例えば、設定膜厚を20μmとした「銅めっき膜」)を析出させる(図3(g)参照)。 Next, as shown in FIG. 3 (f), after drilling a through hole 11a (for example, a through hole having a hole diameter of 150 to 300 μm) by drilling, a sodium permanganate solution, a potassium permanganate solution, or the like is prepared. By cleaning the inner wall of the through hole 11a by a wet desmear treatment or a dry desmear treatment such as plasma, and then sequentially performing a non-electrolytic plating treatment and an electrolytic plating treatment, the entire surface of the substrate including the through hole 11a is plated film 11b. (For example, a "copper plating film" having a set film thickness of 20 μm) is deposited (see FIG. 3 (g)).

次に、図4(h)に示したように、めっき膜11bが析出された貫通孔11aに孔埋め樹脂11cを充填した後、周知のフォトエッチングプロセス{導体層(ここでは、金属箔20とめっき膜11bを足した導体層に相当)上に感光性のエッチングレジストをラミネートした後、露光、現像処理(例えば、1%程度の炭酸ナトリウム溶液による現像処理)を行ってエッチングレジストパターンを形成し、次いで、当該エッチングレジストパターンから露出した導体層をエッチング処理(例えば、塩化第二鉄溶液や塩化第二銅溶液によるエッチング処理)によって除去した後、不要となったエッチングレジストパターンを剥離(例えば、3%程度の水酸化ナトリウム溶液による剥離)する工程}を行なうことによって、第二配線パターン10を形成するとともに、両面に形成された第二配線パターン10と当該第二配線パターン10の形成層間に位置する第一配線パターン2とを接続するベリードホール11を形成する(図4(i)参照)。 Next, as shown in FIG. 4H, after filling the through hole 11a in which the plating film 11b is deposited with the hole-filling resin 11c, a well-known photoetching process {conductor layer (here, the metal foil 20 and the metal foil 20) A photosensitive etching resist is laminated on the conductor layer to which the plating film 11b is added), and then exposed and developed (for example, developed with a sodium carbonate solution of about 1%) to form an etching resist pattern. Then, after removing the conductor layer exposed from the etching resist pattern by an etching treatment (for example, an etching treatment with a ferric chloride solution or a cupric chloride solution), the unnecessary etching resist pattern is peeled off (for example,). By performing the step (peeling with a sodium hydroxide solution of about 3%)}, the second wiring pattern 10 is formed, and between the second wiring pattern 10 formed on both sides and the forming layer of the second wiring pattern 10. A belled hole 11 is formed to connect the first wiring pattern 2 to be located (see FIG. 4 (i)).

次に、図4(j)に示したように、第二配線パターン10が形成された第二絶縁接着剤層9aの上に、第三絶縁接着剤層12a(例えば、ガラスクロスなどの補強基材にエポキシ樹脂などの熱硬化性樹脂を含浸させた、厚さが20〜60μmからなる半硬化状態のプリプレグなど)と金属箔20(例えば、厚さが9〜18μmの銅箔)を順次積層した後、コンフォーマル工法やラージウィンドウ工法、及びカッパーダイレクト工法などのレーザ加工を行うことによって、下層の第二配線パターン10を露出させる非貫通穴14a(例えば、トップ径が100〜200μm、ボトム径が80〜180μmの非貫通穴)を形成し(図5(k)参照)、次いで、デスミア処理により当該非貫通穴14a内をクリーニングした後、無電解めっき処理及び電解めっき処理(フィルドビア用のめっき液を用いた電解めっき処理)を順次行うことによって、当該非貫通穴14aにめっき14b(例えば、銅めっき)を充填する(図5(l)参照)。 Next, as shown in FIG. 4 (j), a reinforcing group such as a third insulating adhesive layer 12a (for example, a glass cloth or the like) is placed on the second insulating adhesive layer 9a on which the second wiring pattern 10 is formed. A semi-cured prepreg having a thickness of 20 to 60 μm, which is impregnated with a heat-curable resin such as an epoxy resin, and a metal foil 20 (for example, a copper foil having a thickness of 9 to 18 μm) are sequentially laminated. After that, non-through hole 14a (for example, top diameter is 100 to 200 μm, bottom diameter is 100 to 200 μm, bottom diameter) that exposes the second wiring pattern 10 in the lower layer by performing laser processing such as the conformal method, the large window method, and the copper direct method. Formed a non-through hole (80 to 180 μm) (see FIG. 5 (k)), and then the inside of the non-through hole 14a was cleaned by desmear treatment, followed by electrolytic plating treatment and electrolytic plating treatment (plating for filled vias). By sequentially performing electrolytic plating treatment using a liquid), the non-through holes 14a are filled with plating 14b (for example, copper plating) (see FIG. 5 (l)).

次に、図5(l)に示した基板の導体層(金属箔20と、この上に析出されためっき14bの一部からなるめっき膜)に対してフォトエッチングプロセスを行ことによって、第三配線パターン13を形成するとともに当該第三配線パターン13と第二配線パターン10間を接続するブラインドビアホール14を形成する(図5(m)参照)。 Next, a photoetching process was performed on the conductor layer (a metal foil 20 and a plating film composed of a part of the plating 14b deposited on the metal foil 20) of the substrate shown in FIG. 5 (l). A wiring pattern 13 is formed, and a blind via hole 14 connecting the third wiring pattern 13 and the second wiring pattern 10 is formed (see FIG. 5 (m)).

次に、図4(j)〜図5(m)と同じ工程を1回行った後、図4(j)〜図5(l)と同じ工程を行なうことによって、図6(n)に示した状態の基板を形成し、次いで、ベリードホール11の形成と同じ要領で、貫通孔15a(例えば、孔径が200〜800μmの貫通孔)及びめっき膜15b(例えば、設定膜厚を20μmとしためっき膜)を形成する(図6(o)参照)。 Next, the same steps as in FIGS. 4 (j) to 5 (m) are performed once, and then the same steps as in FIGS. 4 (j) to 5 (l) are performed, as shown in FIG. 6 (n). Then, in the same manner as in the formation of the belly hole 11, the through hole 15a (for example, a through hole having a hole diameter of 200 to 800 μm) and the plating film 15b (for example, the set film thickness was set to 20 μm) were formed. A plating film) is formed (see FIG. 6 (o)).

次に、フォトエッチングプロセスを行なうことによって、外層の第三配線パターン13を形成するとともに、両面に形成された外層の第三配線パターン13と当該外層の第三配線パターン13の形成層間に位置する第一〜第三の配線パターンを接続する貫通めっきスルーホール15を形成した後、当該外層の第三配線パターン13を保護するソルダーレジスト16を形成する。次いで、貫通めっきスルーホール15を構成するめっき膜15b(例えば、銅めっき膜)の表面を、これよりも硬度の高い金属、例えば、鉄、コバルト、パラジウム、ニッケル、ロジウム、白金、クロムなどからなる補強金属膜(ここでは図示していないが、図1(b)に示した「補強金属膜18」に相当する)で被覆することによって、図6(p)に示した中間基板MPWを得る。 Next, by performing a photo-etching process, the third wiring pattern 13 of the outer layer is formed, and the third wiring pattern 13 of the outer layer formed on both sides is located between the forming layers of the third wiring pattern 13 of the outer layer. After forming the through-plated through hole 15 connecting the first to third wiring patterns, the solder resist 16 that protects the third wiring pattern 13 of the outer layer is formed. Next, the surface of the plating film 15b (for example, copper plating film) constituting the through-plating through hole 15 is made of a metal having a hardness higher than this, for example, iron, cobalt, palladium, nickel, rhodium, platinum, chromium, or the like. By coating with a reinforcing metal film (not shown here, but corresponding to the “reinforcing metal film 18” shown in FIG. 1 (b)), the intermediate substrate MPW shown in FIG. 6 (p) is obtained.

ここで、当該補強金属膜18の構成は特に限定されず、任意に選択することができるが、ニッケルめっき膜(例えば、3〜5μm)とこの上に析出させた金めっき膜(例えば、0.03〜0.5μm)の二層構造、あるいは、ニッケルめっき膜(例えば、1〜5μm)、パラジウムめっき膜(例えば、0.1〜2μm)、金めっき膜(0.03〜0.5μm)をこの順に析出させた三層構造とすれば、外層に露出する第三配線パターン13の表面処理として行なわれるニッケル/金めっき処理、ニッケル/パラジウム/金めっき処理の際に、同時に形成することができるため、製造工程の簡略化と低コスト化を図る上で好ましい。 Here, the configuration of the reinforcing metal film 18 is not particularly limited and may be arbitrarily selected, but a nickel plating film (for example, 3 to 5 μm) and a gold plating film deposited on the nickel plating film (for example, 0. A two-layer structure of 03 to 0.5 μm), a nickel plating film (for example, 1 to 5 μm), a palladium plating film (for example, 0.1 to 2 μm), and a gold plating film (0.03 to 0.5 μm). If the three-layer structure is deposited in this order, it can be formed at the same time during the nickel / gold plating treatment and the nickel / palladium / gold plating treatment performed as the surface treatment of the third wiring pattern 13 exposed to the outer layer. Therefore, it is preferable in order to simplify the manufacturing process and reduce the cost.

次に、図6(p)に示した中間基板MPWの一方の面Aに対してルータ加工を行ない、ダミーパターン19の外周に沿うようにスリット22を形成することによって(図7(q)参照)、フレキシブル領域F上に位置する不要部21aを除去した後(図7(r)参照)、同様の手段で、中間基板MPWの他方の面B側の不要部21bを除去し、次いで、ルータ加工やパンチング加工により外形加工を行なうことによって、図7(s)に示した本発明のリジッド・フレックス多層プリント配線板PWを得る。 Next, router processing is performed on one surface A of the intermediate substrate MPW shown in FIG. 6 (p), and a slit 22 is formed along the outer circumference of the dummy pattern 19 (see FIG. 7 (q)). ), After removing the unnecessary portion 21a located on the flexible region F (see FIG. 7 (r)), the unnecessary portion 21b on the other surface B side of the intermediate substrate MPW is removed by the same means, and then the router. The rigid flex multilayer printed wiring board PW of the present invention shown in FIG. 7 (s) is obtained by performing outer shape processing by processing or punching.

本発明を説明するに当たって、板厚が0.8mm以上の車載仕様品に好適に用いることができる、内層側に厚さが100μm以上のコア基材からなる厚み調節層を配置したリジッド・フレックス多層プリント配線板PWの例を用いて説明したが、本発明の構成はこの限りでなく、図8に示すような、フレキシブル領域Fに相当する部分に予め開口部23aを設けた絶縁樹脂層23と配線パターン24とを交互に積み上げていく構成のリジッド・フレックス多層プリント配線板であってもよい。また、本発明を逸脱しない範囲であれば、他の構成にも本発明を適用することは可能であり、さらにまた、板厚、層数、材料なども本発明の範囲内で変更が可能である。 In explaining the present invention, a rigid flex multilayer structure in which a thickness adjusting layer made of a core substrate having a thickness of 100 μm or more is arranged on the inner layer side, which can be suitably used for an in-vehicle specification product having a plate thickness of 0.8 mm or more. Although the description has been given using the example of the printed wiring board PW, the configuration of the present invention is not limited to this, and the insulating resin layer 23 in which the opening 23a is provided in advance in the portion corresponding to the flexible region F as shown in FIG. It may be a rigid flex multilayer printed wiring board having a structure in which wiring patterns 24 are alternately stacked. Further, the present invention can be applied to other configurations as long as it does not deviate from the present invention, and the plate thickness, the number of layers, the material, etc. can be changed within the scope of the present invention. is there.

また、本発明の利用に当たっては、クラックが発生しやすい車載仕様品に用いることが最も効果的であるといえるが、信頼性試験が然程厳しくない一般仕様品でも、板厚が1.0mm以上となった場合、フレキシブル基板が配置される中心層には、上下層よりも高い応力が掛かり、カバーフィルムのダレ込み部を起点とする貫通めっきスルーホールのクラックが発生する可能性が高いため、車載仕様品に限らず、クラックの発生が懸念される一般仕様品にも利用するのが望ましいといえる。 Further, in using the present invention, it can be said that it is most effective to use it for an in-vehicle specification product in which cracks are likely to occur, but even for a general specification product whose reliability test is not so strict, the plate thickness is 1.0 mm or more. In this case, a higher stress is applied to the central layer on which the flexible substrate is arranged than in the upper and lower layers, and there is a high possibility that cracks in the through-plating through holes starting from the sagging portion of the cover film will occur. It can be said that it is desirable to use it not only for in-vehicle specification products but also for general specification products where cracks may occur.

1:フレキシブルベース基板
2:第一配線パターン
3、3a:接着剤
4:カバーフィルム
4a:ダレ込み部
5:カバーレイ
6:フレキシブル基板
7:第一絶縁樹脂層
7a:第一絶縁接着剤層
7b:開口部
8:厚み調節層
8a:コア基材
9:第二絶縁樹脂層
9a:第二絶縁接着剤層
10:第二配線パターン
11:ベリードホール
11a:貫通孔
11b:めっき膜
11c:孔埋め樹脂
12:第三絶縁樹脂層
12a:第三絶縁接着剤層
13:第三配線パターン
14:ブラインドビアホール
14a:非貫通穴
14b:めっき
15:貫通めっきスルーホール
15a:貫通孔
15b:めっき膜
15c:貫通孔端部
16:ソルダーレジスト
17:リジッド基板
18:補強金属膜
19:ダミーパターン
19a:導体層
20、20a:金属箔
21a、21b:不要部
22:スリット
23:絶縁樹脂層
23a:開口部
24:配線パターン
25:ポケット部
26:クラック
F:フレキシブル領域
R:リジッド領域
MPW:中間基板
PW、pw:リジッド・フレックス多層プリント配線板
1: Flexible base substrate 2: First wiring pattern 3, 3a: Adhesive 4: Cover film 4a: Dripping part 5: Coverlay 6: Flexible substrate 7: First insulating resin layer 7a: First insulating adhesive layer 7b : Opening 8: Thickness adjusting layer 8a: Core base material 9: Second insulating resin layer 9a: Second insulating adhesive layer 10: Second wiring pattern 11: Belid hole 11a: Through hole 11b: Plating film 11c: Hole Filling resin 12: Third insulating resin layer 12a: Third insulating adhesive layer 13: Third wiring pattern 14: Blind via hole 14a: Non-through hole 14b: Plating 15: Through plating Through hole 15a: Through hole 15b: Plating film 15c : Through hole end 16: Solder resist 17: Rigid substrate 18: Reinforcing metal film 19: Dummy pattern 19a: Conductor layers 20, 20a: Metal foil 21a, 21b: Unnecessary part 22: Slit 23: Insulating resin layer 23a: Opening 24: Wiring pattern 25: Pocket part 26: Crack F: Flexible area R: Rigid area MPW: Intermediate board PW, pw: Rigid flex multilayer printed wiring board

Claims (2)

フレキシブルベース基板と、当該フレキシブルベース基板上に形成された配線パターンと、当該配線パターンを保護するカバーレイとからなるフレキシブル基板と;当該フレキシブル基板上であって、当該フレキシブル基板の一部を露出するように積層された絶縁樹脂層と配線パターンとからなるリジッド基板と;当該フレキシブル基板とリジッド基板に形成された配線パターンを接続する貫通めっきスルーホールとを備えたリジッド・フレックス多層プリント配線板であって、当該貫通めっきスルーホールを構成するめっき膜の表面が、当該めっき膜よりも硬度の高い補強金属膜で被覆されていることを特徴とするリジッド・フレックス多層プリント配線板。 A flexible base substrate, a flexible substrate composed of a wiring pattern formed on the flexible base substrate and a coverlay that protects the wiring pattern; a part of the flexible substrate is exposed on the flexible substrate. A rigid flex multilayer printed wiring board provided with a rigid substrate composed of an insulating resin layer and a wiring pattern laminated in such a manner; and a through-plated through hole for connecting the flexible substrate and the wiring pattern formed on the rigid substrate. A rigid flex multilayer printed wiring board, characterized in that the surface of a plating film constituting the through-plated through hole is coated with a reinforcing metal film having a hardness higher than that of the plating film. 当該補強金属膜が、ニッケルめっき膜とこの上に析出させた金めっき膜の二層構造、あるいは、ニッケルめっき膜、パラジウムめっき膜、金めっき膜をこの順に析出させた三層構造からなることを特徴とする請求項1に記載のリジッド・フレックス多層プリント配線板。 The reinforcing metal film has a two-layer structure consisting of a nickel plating film and a gold plating film deposited on the nickel plating film, or a three-layer structure in which a nickel plating film, a palladium plating film, and a gold plating film are deposited in this order. The rigid flex multilayer printed wiring board according to claim 1.
JP2019123117A 2019-07-01 2019-07-01 Rigid/flex multilayer printed board Pending JP2021009928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019123117A JP2021009928A (en) 2019-07-01 2019-07-01 Rigid/flex multilayer printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019123117A JP2021009928A (en) 2019-07-01 2019-07-01 Rigid/flex multilayer printed board

Publications (1)

Publication Number Publication Date
JP2021009928A true JP2021009928A (en) 2021-01-28

Family

ID=74199714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019123117A Pending JP2021009928A (en) 2019-07-01 2019-07-01 Rigid/flex multilayer printed board

Country Status (1)

Country Link
JP (1) JP2021009928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114286516A (en) * 2021-12-13 2022-04-05 深圳市易超快捷科技有限公司 Manufacturing method of split-tail stepped electric-thick golden finger rigid-flexible printed circuit board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204625A (en) * 1992-12-28 1994-07-22 Fujikura Ltd Rigid flexible wiring board
JPH10229281A (en) * 1997-02-14 1998-08-25 Hitachi Aic Inc Manufacturing end face electrode through-hole wiring board
JP2015216210A (en) * 2014-05-09 2015-12-03 日本シイエムケイ株式会社 Rigid flex multilayer printed wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204625A (en) * 1992-12-28 1994-07-22 Fujikura Ltd Rigid flexible wiring board
JPH10229281A (en) * 1997-02-14 1998-08-25 Hitachi Aic Inc Manufacturing end face electrode through-hole wiring board
JP2015216210A (en) * 2014-05-09 2015-12-03 日本シイエムケイ株式会社 Rigid flex multilayer printed wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114286516A (en) * 2021-12-13 2022-04-05 深圳市易超快捷科技有限公司 Manufacturing method of split-tail stepped electric-thick golden finger rigid-flexible printed circuit board
CN114286516B (en) * 2021-12-13 2023-09-29 深圳市易超快捷科技有限公司 Manufacturing method of tail-separating ladder electric-thickness golden finger soft and hard combined plate

Similar Documents

Publication Publication Date Title
JP5198105B2 (en) Manufacturing method of multilayer flexible printed wiring board
JP4855186B2 (en) Manufacturing method of double-sided flexible printed wiring board
US9713267B2 (en) Method for manufacturing printed wiring board with conductive post and printed wiring board with conductive post
TWI223972B (en) Double-sided printed circuit board without via holes and method of fabricating the same
JP2014501448A (en) Printed circuit board and manufacturing method thereof
JP6214398B2 (en) Printed circuit board
JP2009158615A (en) Multilayer printed board, and its manufacturing method
TW200917924A (en) Method for manufacturing multilayer printed-wiring board
JP2005236205A (en) Mutilayer printed-wiring board and manufacturing method therefor
TWI487451B (en) Manufacturing method of multilayer printed wiring board
JP2021009928A (en) Rigid/flex multilayer printed board
KR101229967B1 (en) Multilayer circuit board having cable portion and method for manufacturing same
TW201414367A (en) Printed circuit board and method for manufacturing the same
TWI391063B (en) Multilayer circuit board and manufacturing method thereof
KR20110097961A (en) Multilayer printed board and method for manufacturing the same
JP2009176897A (en) Multilayer printed wiring board and manufacturing method therefor
JP7389666B2 (en) Manufacturing method of rigid-flex multilayer printed wiring board
JP5317491B2 (en) Method for manufacturing printed wiring board
JP4549807B2 (en) Multilayer printed wiring board manufacturing method, multilayer printed wiring board, and electronic device
KR101231273B1 (en) The printed circuit board and the method for manufacturing the same
JP2008085099A (en) Rigid flex circuit board
KR20060003847A (en) A multi-layer board provide with interconnect bump hole of the inner layer rcc and therefor method
TW200829116A (en) Multilayer printed-wiring board and method of manufacturing the same
KR101231343B1 (en) The printed circuit board and the method for manufacturing the same
JP2006196762A (en) Flexible multilayer wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231003