JP2021008611A - 三次元網状構造体用エチレン系アイオノマー及びその成形体 - Google Patents

三次元網状構造体用エチレン系アイオノマー及びその成形体 Download PDF

Info

Publication number
JP2021008611A
JP2021008611A JP2020112523A JP2020112523A JP2021008611A JP 2021008611 A JP2021008611 A JP 2021008611A JP 2020112523 A JP2020112523 A JP 2020112523A JP 2020112523 A JP2020112523 A JP 2020112523A JP 2021008611 A JP2021008611 A JP 2021008611A
Authority
JP
Japan
Prior art keywords
group
ethylene
copolymer
structural unit
ionomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020112523A
Other languages
English (en)
Other versions
JP7484495B2 (ja
Inventor
知己 平本
Tomoki Hiramoto
知己 平本
正弘 上松
Masahiro Uematsu
正弘 上松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Japan Polyethylene Corp
Original Assignee
Japan Polypropylene Corp
Japan Polyethylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp, Japan Polyethylene Corp filed Critical Japan Polypropylene Corp
Publication of JP2021008611A publication Critical patent/JP2021008611A/ja
Application granted granted Critical
Publication of JP7484495B2 publication Critical patent/JP7484495B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerization Catalysts (AREA)

Abstract

【課題】 柔軟性、弾性回復性、成形性のバランスに優れる三次元網状構造体用エチレン系アイオノマー、及びその成形体、特に三次元網状構造体の提供。【解決手段】 (a)エチレン及び/又は炭素数3〜20のα−オレフィンに由来する構造単位(A)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位(B)を必須構成単位として含む共重合体(P)をベース樹脂とすること;(b)カルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部が周期表の第1族、第2族、又は第12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換されていること;(c)〜(f)複素弾性率G*の絶対値、メルトフローレート(MFR)及び弾性回復率が所定の範囲内にあること;を満足するアイオノマー樹脂である、三次元網状構造体用エチレン系アイオノマー。【選択図】図2

Description

本発明は、新規アイオノマーを用いた柔軟性、弾性回復性、成形性のバランスに優れる三次元網状構造体用エチレン系アイオノマー及びその成形体に関するものである。
エチレン系アイオノマーは、エチレン−不飽和カルボン酸共重合体をベース樹脂とし、ナトリウムや亜鉛等の金属イオンで分子間結合した樹脂である(特許文献1)。強靭で弾性に富み、かつ柔軟性があり、耐摩耗性、及び透明性等の特徴がある。
現在、市販されているエチレン系アイオノマーとしては、Dupont社が開発したエチレン−メタクリル酸共重合体のナトリウム塩や亜鉛塩「Surlyn(登録商標)」、及び、三井・ダウポリケミカル社が販売している「ハイミラン(登録商標)」等が知られている。
しかしながら、これら現在市販されているエチレン系アイオノマーに用いられるベース樹脂のエチレン−不飽和カルボン酸共重合体には、いずれも、エチレンと不飽和カルボン酸等の極性基含有モノマーを、高圧ラジカル重合法により重合した極性基含有オレフィン共重合体が用いられている。高圧ラジカル重合法は、比較的極性基含有モノマーの種類を選ばずに安価に重合可能であるという利点がある。しかし、この、高圧ラジカル重合法で製造される極性基含有オレフィン共重合体の分子構造は、図1に示すイメージ図のように、多くの長鎖分岐及び短鎖分岐を不規則に有する構造であり、強度的には不十分であるという欠点がある。
一方、従来より、触媒を用いた重合方法を用いて、図2に示すイメージ図のように、分子構造が直鎖状の極性基含有オレフィン共重合体を製造する方法が模索されていたが、極性基含有モノマーは一般的に触媒毒となるため重合が難しく、実際に、工業的に安価で安定的な方法で、所望の物性を有する極性基含有オレフィン共重合体を得ることは長年難しいとされていた。
しかしながら近年、本願出願人等により開発された新触媒及び新製造方法を用いることにより、分子構造が実質的に直鎖状の極性基含有オレフィン共重合体を、工業的に安価で安定的に得る方法が提案されている。例えば、エチレン系アイオノマーのベース樹脂となる極性基含有オレフィン共重合体の製造方法として、後周期遷移金属触媒を用い、エチレンとアクリル酸t−ブチルの共重合体を製造し、得られた極性基含有オレフィン共重合体を熱または酸処理を行うことでエチレンーアクリル酸共重合体に変性した後、金属イオンと反応させ二元アイオノマーを製造することに成功したことが本願出願人等により報告されている(特許文献2)。
該エチレン系アイオノマーは、ベース樹脂が実質的に直鎖状の分子構造を有すると共にアイオノマーとしての機能も有する、従来にはない新規のエチレン系アイオノマーであり、その物性等は従来のエチレン系アイオノマーとは大きく異なる。
また、特許文献3では、特定のせん断速度におけるスウェル比が特定のポリエチレンを使用し、特定のストランド形状にて製造されベッドの変形に追従できる柔軟性を有した三次元網状構造体が開示されている。
米国特許第3264272号明細書 特開2016−79408号公報 国際公開第2013/088736号
特許文献3に記載の通り、近年、ポリエチレンを材料として製造された三次元網状構造体は、高反発で寝返りがし易いことや、通気性の良く、水洗いもでき衛生的である等のメリットがあり、ベッド用マット等に普及されつつある。しかし、ポリエチレン製三次元網状構造体はポリエチレン材料そのものの弾性回復性が十分でないため、ゴム的な反発力に乏しく、人の体重で三次元網状構造体が圧縮された際に十分なクッション性を得ることが難しいという課題がある。そのため、柔軟性、弾性回復性を兼ね備え、且つ、ポリエチレン材料に近い成形性を有する新しい材料が求められている。
本願は、かかる従来技術の状況に鑑み、柔軟性、弾性回復性、成形性のバランスに優れる三次元網状構造体用エチレン系アイオノマー及びその成形体である三次元網状構造体を提供することを目的とする。
上記課題の解決のため本発明者らが検討を重ねた結果、特定のエチレン系アイオノマーを用いることで、三次元網状構造体用材料として柔軟性、弾性回復性、成形性のバランスに関し優れた効果を有することを見出した。
特許文献2に記載されているようなエチレン系アイオノマーは、前駆体樹脂が実質的に直鎖状の分子構造を有すると共にアイオノマーとしての機能も有する、従来にはない新規のエチレン系アイオノマーであり、その物性等は従来のエチレン系アイオノマーとは大きく異なり、特有の特性及び適した用途についても未知であった。本発明は、エチレン系アイオノマーは基本的に高い弾性回復性を有さないにも関わらず、実質的に直鎖状の特定のエチレン系アイオノマーを用いることで意外にも柔軟性、成形性を保ったままで弾性回復性に関し優れた効果を有することを見出したことに基づくものである。
すなわち、本発明の態様は以下の1.〜8.で示される。
1.下記の特性(a)〜(f):
(a)エチレン及び/又は炭素数3〜20のα−オレフィンに由来する構造単位(A)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位(B)を必須構成単位として含む共重合体(P)をベース樹脂とすること;
(b)前記構造単位(B)中のカルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部が周期表の第1族、第2族、又は第12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換されていること;
(c)回転式レオメータで測定した複素弾性率Gの絶対値0.1MPaにおける位相角δが、50〜75度であること;
(d)温度190℃、荷重2.16kgにおけるメルトフローレート(MFR)が1〜50g/10分であること;
(e)引張試験における弾性回復率が65〜100%であること;及び
(f)引張弾性率が20〜200MPaであること;
を満足するアイオノマー樹脂である、三次元網状構造体用エチレン系アイオノマー。
2.
前記共重合体(P)の13C−NMRにより算出されるメチル分岐数が、炭素1,000個当たり50個以下であることを特徴とする、前記1.に記載の三次元網状構造体用エチレン系アイオノマー。
3.
前記共重合体(P)が、共重合体中に前記構造単位(B)を2〜20mol%含むことを特徴とする、前記1.又は2.に記載の三次元網状構造体用エチレン系アイオノマー。
4.
前記構造単位(A)が、エチレンに由来する構造単位であることを特徴とする、前記1.〜3.のいずれか1項に記載の三次元網状構造体用エチレン系アイオノマー。
5.
前記共重合体(P)が、周期表の第8〜11族の遷移金属を含む遷移金属触媒を用いて製造されることを特徴とする、前記1.〜4.のいずれか1項に記載の三次元網状構造体用エチレン系アイオノマー。
6.
前記遷移金属触媒が、リンスルホン酸又はリンフェノール配位子とニッケル又はパラジウムからなる遷移金属触媒であることを特徴とする、前記5.に記載の三次元網状構造体用エチレン系アイオノマー。
7.
前記1.〜6.のいずれか一項に記載のエチレン系アイオノマーからなる成形体。
8.
前記成形体が三次元網状構造体である、前記7.に記載の成形体。
本発明により、柔軟性、弾性回復性、成形性のバランスに優れたエチレン系アイオノマーとそれから成る成形体が得られる。実質的に直鎖状構造である本発明に係るアイオノマーは、従来の材料に比べ柔軟性、弾性回復性に優れた三次元網状構造体が得られることから有用である。
図1は、高圧ラジカル法重合プロセスにより重合された多分岐状オレフィン共重合体の分子構造のイメージ図である。 図2は、金属触媒を用いて重合された直鎖状オレフィン共重合体の分子構造のイメージ図である。
以下、本発明に関わるアイオノマー及び、その用途について、項目毎に詳細に説明する。
なお、本明細書において、「(メタ)アクリル酸」とは、アクリル酸またはメタクリル酸を意味する。また、本明細書において数値範囲を示す「〜」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。また、本明細書において、共重合体とは、少なくとも一種の単位(A)と、少なくとも一種の単位(B)とを含む、二元系以上の共重合体を意味する。
(1)特性(a)
本発明のアイオノマーは、エチレン及び/又は炭素数3〜20のα−オレフィンに由来する構造単位(A)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位(B)とを必須構成単位として含み、これらが実質的に直鎖状にランダム共重合した共重合体(P)をベース樹脂とする。
(1−1)構造単位(A)
構造単位(A)はエチレンに由来する構造単位及び炭素数3〜20のα−オレフィンに由来する構造単位からなる群より選ばれる少なくとも一種の構造単位である。
このうち、本発明に関わるα−オレフィンは構造式:CH=CHR18で表される、炭素数3〜20のα−オレフィンである(R18は炭素数1〜18の炭化水素基であり、直鎖構造であっても分岐を有していてもよい)。α−オレフィンの炭素数は、より好ましくは、3〜12である。
構造単位(A)の具体例として、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、3−メチル−1−ブテン、及び4−メチル−1−ペンテン等が挙げられ、エチレンであってもよい。エチレンとしては、石油原料由来の他、植物原料由来等の非石油原料由来のエチレンを用いることができる。
また、構造単位(A)は、一種類であってもよいし、複数種であってもよい。
二種の組み合わせとしては、エチレン−プロピレン、エチレン−1−ブテン、エチレン−1−ヘキセン、エチレン−1−オクテン、プロピレン−1−ブテン、プロピレン−1−ヘキセン、及びプロピレン−1−オクテン等が挙げられる。
三種の組み合わせとしては、エチレン−プロピレン−1−ブテン、エチレン−プロピレン−1−ヘキセン、エチレン−プロピレン−1−オクテン、プロピレン−1−ブテン−ヘキセン、及びプロピレン−1−ブテン−1−オクテン等が挙げられる。
本発明においては、構造単位(A)としては、好ましくは、エチレンを必須で含み、必要に応じて1種以上の炭素数3〜20のα−オレフィンをさらに含んでも良い。
構造単位(A)中のエチレンは、構造単位(A)の全molに対して、65〜100mol%であってもよく、70〜100mol%であってもよい。
(1−2)構造単位(B)
構造単位(B)は、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位である。
カルボキシル基を有するモノマーとしては具体的にはアクリル酸、メタクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ノルボルネンジカルボン酸、ビシクロ[2,2,1]ヘプト−2−エン−5,6−ジカルボン酸などの不飽和カルボン酸が挙げられる。
ジカルボン酸無水物基を有するモノマーとしては無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、5−ノルボルネン−2,3−ジカルボン酸無水物、3,6−エポキシ−1,2,3,6−テトラヒドロフタル酸無水物、テトラシクロ[ 6 .2 .1 .1 3 , 6.0 2 , 7] ドデカ−9−エン−4 ,5−ジカルボン酸無水物、2,7−オクタジエン−1−イルコハク酸無水物などの不飽和ジカルボン酸無水物が挙げられる。
具体的な化合物として、アクリル酸、メタクリル酸、5−ノルボルネン−2,3−ジカルボン酸無水物が挙げられ、特にアクリル酸であってもよい。
また、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーは、一種類であってもよいし、複数種であってもよい。
なお、ジカルボン酸無水物基は空気中の水分と反応して開環し、一部がジカルボン酸となる場合があるが、本発明の主旨を逸脱しない範囲においてならば、ジカルボン酸無水物基が開環していても良い。
(1−3)任意の構造単位(C)
本発明に関わる共重合体(P)は構造単位(A)及び、構造単位(B)で示される構造単位以外の任意の構造単位(C)を含んでいてもよい。構造単位(C)を与えるモノマーは、構造単位(A)及び、構造単位(B)を与えるモノマーと同一でない限り、任意のモノマーを使用できる。
構造単位(C)を与える任意のモノマーは、分子構造中に炭素−炭素二重結合を1つ以上有する化合物であれば限定されないが、例えば一般式(1)で表される非環状モノマー(i)や一般式(2)で表される環状モノマー(ii)などが挙げられる。
(i)非環状モノマー
[上記一般式(1)中、T〜Tはそれぞれ独立して、水素原子、炭素数1〜20の炭化水素基、水酸基で置換された炭素数1〜20の炭化水素基、炭素数1〜20のアルコキシ基で置換された炭素数2〜20の炭化水素基;炭素数2〜20のエステル基で置換された炭素数3〜20の炭化水素基、ハロゲン原子で置換された炭素数1〜20の炭化水素基;炭素数1〜20のアルコキシ基、炭素数6〜20のアリール基、炭素数2〜20のエステル基、炭素数炭素数3〜20のシリル基、ハロゲン原子、又は、シアノ基からなる群より選択される置換基であり、
は、水酸基で置換された炭素数1〜20の炭化水素基、炭素数1〜20のアルコキシ基で置換された炭素数2〜20の炭化水素基;炭素数2〜20のエステル基で置換された炭素数3〜20の炭化水素基、ハロゲン原子で置換された炭素数1〜20の炭化水素基;炭素数1〜20のアルコキシ基、炭素数6〜20のアリール基、炭素数2〜20のエステル基、炭素数炭素数3〜20のシリル基、ハロゲン原子、又は、シアノ基からなる群より選択される置換基である。]
なお、ここにいう「エステル基」とは、ヒドロカルビルオキシカルボニル基を意味する。
また、ここにいう「シリル基」とは、トリ(ヒドロカルビル)シリル基を意味する。
本発明のアイオノマーにおいては、T及びT2は水素原子であってもよく、Tは水素原子又はメチル基であってもよく、Tは炭素数2〜20のエステル基であってもよい。
〜Tに関する炭化水素基;アルコキシ基で置換された炭化水素基;エステル基で置換された炭化水素基、アルコキシ基、アリール基、エステル基、シリル基が有する炭素骨格は、分岐、環、及び/又は不飽和結合を有してもよい。
〜Tに関する炭化水素基の炭素数は、下限値が1以上であればよく、上限値は20以下であればよく、10以下であってもよい。
〜Tに関するアルコキシ基で置換された炭化水素基の炭素数は、下限値が1以上であればよく、上限値は20以下であればよく、10以下であってもよい。
〜Tに関するエステル基で置換された炭化水素基の炭素数は、下限値が2以上であればよく、上限値は20以下であればよく、10以下であってもよい。
〜Tに関するアルコキシ基の炭素数は、下限値が1以上であればよく、上限値は20以下であればよく、10以下であってもよい。
〜Tに関するアリール基の炭素数は、下限値が6以上であればよく、上限値は20以下であればよく、11以下であってもよい。
〜Tに関するエステル基の炭素数は、下限値が2以上であればよく、上限値は20以下であればよく、10以下であってもよい。
〜Tに関するシリル基の炭素数は、下限値が3以上であればよく、上限値は18以下であればよく、12以下であってもよい。シリル基としては、トリメチルシリル基、トリエチルシリル基、トリn−プロピルシリル基、トリイソプロピルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、及びトリフェニルシリル基等が挙げられる。
非環状モノマーとしては、具体的には、(メタ)アクリル酸エステル等のアクリル酸エステル又はα−置換アクリル酸エステル等が挙げられる。
本発明に関わるアクリル酸エステル又はα−置換アクリル酸エステルは、構造式:CH=C(R21)CO(R22)で表される化合物である。ここで、R21は、水素原子または炭素数1〜10の炭化水素基であり、分岐、環、及び/又は不飽和結合を有してもよい。R22は、炭素数1〜20の炭化水素基であり、分岐、環、及び/又は不飽和結合を有してもよい。さらに、R22内の任意の位置にヘテロ原子を含有してもよい。
アクリル酸エステル又はα−置換アクリル酸エステルとして、R21は、水素原子または炭素数1〜5の炭化水素基であるアクリル酸エステル又はα−置換アクリル酸エステルが挙げられる。また、R21が水素原子であるアクリル酸エステル又はR21がメチル基であるメタクリル酸エステルが挙げられる。
(メタ)アクリル酸エステルの具体例としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル等が挙げられる。
具体的な化合物として、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル(nBA)、アクリル酸イソブチル(iBA)、アクリル酸t−ブチル(tBA)、及びアクリル酸2−エチルヘキシル等が挙げられ、特にアクリル酸n−ブチル(nBA)、アクリル酸イソブチル(iBA)、及びアクリル酸t−ブチル(tBA)であってもよい。
なお、非環状モノマーは、一種類であってもよいし、複数種であってもよい。
(ii)環状モノマー
[一般式(2)中、R〜R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭素数1〜20の炭化水素基からなる群より選ばれるものであり、R及びR10、並びに、R11及びR12は、各々一体化して2価の有機基を形成してもよく、R又はR10と、R11又はR12とは、互いに環を形成していてもよい。
また、nは、0又は正の整数を示し、nが2以上の場合には、R〜Rは、それぞれの繰り返し単位の中で、それぞれ同一でも異なっていてもよい。]
環状モノマーとしては、ノルボルネン系オレフィン等が挙げられ、ノルボルネン、ビニルノルボルネン、エチリデンノルボルネン、ノルボルナジエン、テトラシクロドデセン、トリシクロ[4.3.0.12,5]、トリシクロ[4.3.0.12,5]デク−3−エン、などの環状オレフィンの骨格を有する化合物等が挙げられ、2−ノルボルネン(NB)、及び、テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン等であってもよい。
(1−4)アイオノマーのベース樹脂となる共重合体(P)
本発明で用いるアイオノマーのベース樹脂となる共重合体(P)は、エチレン及び/又は炭素数3〜20のα−オレフィンに由来する構造単位(A)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位(B)とを必須構成単位として含み、これらが実質的に直鎖状にランダム共重合していることを特徴とする。
本発明に関わる共重合体は、構造単位(A)及び、構造単位(B)をそれぞれ1種類以上含有し、合計2種以上のモノマー単位を含むことが必要であり、その他の任意の構造単位(C)を含んでいてもよい。
本発明に関わる共重合体の構造単位と構造単位量について説明する。
エチレン及び/又は炭素数3〜20のα−オレフィン(A)、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマー(B)、および任意のモノマー(C)それぞれ1分子に由来する構造を、共重合体中の1構造単位と定義する。
そして、共重合体中の構造単位全体を100mol%とした時に各構造単位の比率をmol%で表したものが構造単位量である。
(i)エチレン及び/又は炭素数3〜20のα−オレフィン(A)の構造単位量:
本発明に関わる構造単位(A)の構造単位量は、
下限が60.000mol%以上、好ましくは70.000mol%以上、より好ましくは80.000mol%以上、さらに好ましくは85.000mol%以上、さらにより好ましくは90.000mol%以上、特に好ましくは92.000mol%以上であり、
上限が97.999mol%以下、好ましくは97.990mol%以下、より好ましくは97.980mol%以下、さらに好ましくは96.980mol%以下、さらにより好ましくは96.900mol%以下、特に好ましくは92.300mol%以下から選択される。
共重合体の良好な靱性の観点から、エチレン及び/又は炭素数3〜20のα−オレフィン(A)に由来する構造単位量は60.000mol%以上が好ましく、共重合体の結晶化度を高くしないで良好な透明性を得る観点からは97.999mol%以下が好ましい。
(ii)カルボキシル基及び/又はジカルボン酸無水物基を有するモノマー(B)の構造単位量:
本発明に関わる構造単位(B)の構造単位量は、
下限が2.0mol%以上、好ましくは2.9mol%以上であり、より好ましくは5.1mol%以上、
上限が20.0mol%以下、好ましくは15.0mol%以下、より好ましくは10.0mol%以下、さらに好ましくは8.0mol%以下、特に好ましくは5.4mol%以下から選択される。
共重合体の極性の高い異種材料との良好な接着性の観点から、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマー(B)に由来する構造単位量は2.0mol%以上が好ましく、共重合体の良好な機械物性の観点から、20.0mol%以下が好ましい。
更に、用いられるカルボキシル基及び/又はジカルボン酸無水物基を有するモノマーは単独でも良く、2種類以上を合わせて用いても良い。
(iii)任意のモノマー(C)の構造単位量:
本発明に関わる構造単位(C)の構造単位量は、
下限が0.001mol%以上、好ましくは0.010mol%以上、より好ましくは0.020mol%以上、さらに好ましくは0.100mol%以上、さらにより好ましくは2.000mol%以上であり、特に好ましくは2.300mol%以上であり、
上限が20.000mol%以下、好ましくは15.000mol%以下、より好ましくは10.000mol%以下、さらに好ましくは5.000mol%以下、特に好ましくは2.900mol%以下から選択される。
共重合体の良好な柔軟性の観点からは、任意のモノマー(C)に由来する構造単位量が0.001mol%以上が好ましく、共重合体の良好な機械物性の観点からは、20.000mol%以下が好ましい。
更に、用いられる任意のモノマーは単独でも良く、2種類以上を合わせて用いても良い。
(iv)共重合体の炭素1,000個当たりの分岐数:
本発明の共重合体においては、弾性率を高くし、充分な機械物性を得る点から、13C−NMRにより算出されるメチル分岐数が、炭素1,000個当たり、上限が50個以下であってもよく、5個以下であってもよく、1個以下であってもよく、0.5個以下であってもよく、下限は、特に限定されず、少なければ少ないほどよい。またエチル分岐数が炭素1,000個当たり、上限が3.0個以下であってもよく、2.0個以下であってもよく、1.0個以下であってもよく、0.5個以下であってもよく、下限は、特に限定されず、少なければ少ないほどよい。さらにブチル分岐数が炭素1,000個当たり、上限が7.0個以下であってもよく、5.0個以下であってもよく、3.0個以下であってもよく、0.5個以下であってもよく、下限は、特に限定されず、少なければ少ないほどよい。
共重合体中のカルボキシ基及び/又はジカルボン酸無水物基を有するモノマー、及び非環状モノマーに由来する構造単位量、および分岐数の測定方法:
本発明の共重合体中のカルボキシ基及び/又はジカルボン酸無水物基を有するモノマー、及び非環状モノマーに由来する構造単位量、および炭素1,000個当たりの分岐数は13C−NMRスペクトルを用いて求められる。13C−NMRは以下の方法によって測定する。
試料200〜300mgをo−ジクロロベンゼン(CCl)と重水素化臭化ベンゼン(CBr)の混合溶媒(CCl/CBr=2/1(体積比))2.4mlおよび化学シフトの基準物質であるヘキサメチルジシロキサンと共に内径10mmφのNMR試料管に入れて窒素置換した後封管し、加熱溶解して均一な溶液としてNMR測定試料とする。
NMR測定は10mmφのクライオプローブを装着したブルカー・ジャパン(株)のAV400M型NMR装置を用いて120℃で行う。
13C−NMRは、試料の温度120℃、パルス角を90°、パルス間隔を51.5秒、積算回数を512回以上、逆ゲートデカップリング法で測定する。
化学シフトはヘキサメチルジシロキサンの13Cシグナルを1.98ppmに設定し、他の13Cによるシグナルの化学シフトはこれを基準とする。
得られた13C−NMRにおいて、多元共重合体が有するモノマー又は分岐に特有のシグナルを同定し、その強度を比較することで、共重合体中の各モノマーの構造単位量、および分岐数を解析することができる。モノマーまたは分岐に特有のシグナルの位置は公知の資料を参照することもできるし、試料に応じて独自に同定することもできる。このような解析手法は、当業者にとって一般的に行いうるものである。
(v)重量平均分子量(Mw)と分子量分布(Mw/Mn):
本発明に関わる共重合体の重量平均分子量(Mw)は、
下限が通常1,000以上であり、好ましくは6,000以上であり、
上限が通常2,000,000以下であり、好ましくは1,500,000以下であり、更に好ましくは1,000,000以下であり、特に好適なのは800,000以下であり、最も好ましくは38,000以下である。
共重合体の機械的強度や耐衝撃性などの良好な物性の観点からは、Mwが1,000以上が好ましく、共重合体の適度な溶融粘度により共重合体の良好な成形加工性を得る観点からは、Mwが2,000,000以下が好ましい。
本発明に関わる共重合体の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、通常1.5〜4.0、好ましくは1.6〜3.5、更に好ましくは1.9〜2.3の範囲である。共重合体の成形を始めとして良好な各種加工性を得る観点からは、Mw/Mnは1.5以上が好ましく、共重合体の良好な機械物性の観点からは、4.0以下が好ましい。
また、本発明においては(Mw/Mn)を分子量分布パラメーターと表現することがある。
本発明に関わる重量平均分子量(Mw)及び数平均分子量(Mn)はゲルパーミエイションクロマトグラフィー(GPC)によって求められる。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnを算出するものである。
本発明に関わるGPCの測定方法の一例は以下の通りである。
(測定条件)
使用機種:ウォーターズ社製150C
検出器:FOXBORO社製MIRAN1A・IR検出器(測定波長:3.42μm)
測定温度:140℃
溶媒:オルトジクロロベンゼン(ODCB)
カラム:昭和電工社製AD806M/S(3本)
流速:1.0mL/分
注入量:0.2mL
(試料の調製)
試料はODCB(0.5mg/mLのBHT(2,6−ジ−t−ブチル−4−メチルフェノール)を含む)を用いて1mg/mLの溶液を調製し、140℃で約1時間を要して溶解させる。
(分子量(M)の算出)
標準ポリスチレン法により行い、保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。使用する標準ポリスチレンは例えば、東ソー社製の、(F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000)の銘柄、昭和電工製単分散ポリスチレン(S−7300、S−3900、S−1950、S−1460、S−1010、S−565、S−152、S−66.0、S−28.5、S−5.05、の各0.07mg/mL溶液)などである。各々が0.5mg/mLとなるようにODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して較正曲線を作成する。較正曲線は最小二乗法で近似して得られる三次式、又は溶出時間と分子量の対数値を4次式で近似したものなどを用いる。分子量(M)への換算に使用する粘度式[η]=K×Mαは以下の数値を用いる。
ポリスチレン(PS):K=1.38×10−4、α=0.7
ポリエチレン(PE):K=3.92×10−4、α=0.733
ポリプロピレン(PP):K=1.03×10−4、α=0.78
(vi)融点(Tm、℃):
本発明に関わる共重合体の融点は、示差走査型熱量計(DSC)により測定した吸熱曲線の最大ピーク温度によって示される。最大ピーク温度とは、DSC測定において、縦軸に熱流(mW)、横軸に温度(℃)をとった際に得られる吸熱曲線に複数ピークが示された場合、そのうちベースラインからの高さが最大であるピークの温度の事を示し、ピークが1つだった場合には、そのピークの温度の事を示している。
融点は50℃〜140℃であることが好ましく、60℃〜138℃であることが更に好ましく、70℃〜135℃が最も好ましい。融点の下限は良好な耐熱性の観点から、また融点の上限は良好な接着性の観点から定めたものである。
本発明において、融点は、例えば、エスアイアイ・ナノテクノロジー株式会社製のDSC(DSC7020)を使用し、試料約5.0mgをアルミパンに詰め、10℃/分で200℃まで昇温し、200℃で5分間等温保持後、10℃/分で20℃まで降温し、20℃で5分間等温保持後、再度、10℃/分で200℃まで昇温させる際の吸収曲線より求めることができる。
(vii)結晶化度(%):
本発明の共重合体においては、示差走査熱量測定(DSC)により観測される結晶化度は、特に限定されないが、0%を超え、30%以下であることが好ましく、0%を超え、25%以下であることが更に好ましく、5%を超え、25%以下であることが特に好ましく、5%以上、20%以下であることが最も好ましい。
共重合体の良好な靱性の観点から、結晶化度は0%を超えることが好ましく、共重合体の良好な透明性の観点から結晶化度は30%以下であることが好ましい。
なお、結晶化度は透明性の指標となり、共重合体の結晶化度が低くなればなるほど、その透明性が優れると判断することができる。
本発明において、結晶化度は、例えば、エスアイアイ・ナノテクノロジー株式会社製のDSC(DSC7020)を使用し、試料約5.0mgをアルミパンに詰め、10℃/分で200℃まで昇温し、200℃で5分間等温保持後、10℃/分で20℃まで降温し、20℃で5分間等温保持後、再度、10℃/分で200℃まで昇温させる際に得られる融解吸熱ピーク面積から融解熱(ΔH)を求め、その融解熱を高密度ポリエチレン(HDPE)の完全結晶の融解熱293J/gで除することにより求めることができる。
(viii)共重合体の分子構造:
本発明に関わる共重合体の分子鎖末端は、エチレン及び/又は炭素数3〜20のα−オレフィンの構造単位(A)であっても良く、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)であっても良く、任意のモノマーの構造単位(C)であっても良い。
また、本発明に関わる共重合体は、エチレン及び/又は炭素数3〜20のα−オレフィンの構造単位(A)、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)、及び任意のモノマーの構造単位(C)のランダム共重合体、ブロック共重合体、並びにグラフト共重合体等が挙げられる。これらの中では、構造単位(B)を多く含むことが可能なランダム共重合体であってもよい。
一般的な三元系の共重合体の分子構造例(1)を下記に示す。
ランダム共重合体とは、上記に示した分子構造例(1)のエチレン及び/又は炭素数3〜20のα−オレフィンの構造単位(A)とカルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)と任意のモノマーの構造単位(C)とが、ある任意の分子鎖中の位置においてそれぞれの構造単位を見出す確率が、その隣接する構造単位の種類と無関係な共重合体である。
上記のように、共重合体の分子構造例(1)は、エチレン及び/又は炭素数3〜20のα−オレフィンの構造単位(A)とカルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)と任意のモノマーの構造単位(C)とが、ランダム共重合体を形成している。
なお、グラフト変性によってカルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)を導入した共重合体の下記分子構造例(2)も参考に掲載すると、エチレン及び/又は炭素数3〜20のα−オレフィンの構造単位(A)及び任意のモノマーの構造単位(C)とが共重合された共重合体の一部が、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)にグラフト変性される。
また、共重合体におけるランダム共重合性は種々の方法により確認することが可能であるが、共重合体のコモノマー含量と融点との関係からランダム共重合性を判別する手法が「特開2015−163691号公報」及び「特開2016−079408」に詳しく述べられている。上記文献から共重合体の融点(Tm、℃)が−3.74×[Z]+130(ただし、[Z]はコモノマー含量/mol%)よりも高い場合はランダム性が低いと判断できる。
ランダム共重合体である本発明に関わる共重合体は示差走査熱量測定(DSC)により観測される融点(Tm、℃)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)及び任意のモノマーの構造単位(C)の合計の含有量[Z](mol%)とが下記の式(I)を満たすことが好ましい。
50<Tm<−3.74×[Z]+130・・・(I)
共重合体の融点(Tm、℃)は、ランダム共重合性を高め、良好な衝撃強度などの機械物性を得る観点から、−3.74×[Z]+130(℃)以下であることが好ましく、良好な耐熱性の観点から融点が50℃以上であることが好ましい。
さらに本発明に関わる共重合体は、その分子構造を直鎖状とする観点から、遷移金属触媒の存在下で製造されたものであることが好ましい。
なお、高圧ラジカル重合法プロセスによる重合、金属触媒を用いた重合など、製造方法によって共重合体の分子構造は異なることが知られている。
この分子構造の違いは製造方法を選択する事によって制御が可能であるが、例えば、特開2010−150532号公報に記載されている様に、回転式レオメータで測定した複素弾性率によっても、その分子構造を推定する事ができる[後記(3−1)参照]。
(2)特性(b)
構造単位(B)のカルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部が周期表の第1族、第2族、又は第12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換されているという特性である。
(2−1)金属イオン
カルボン酸塩基の金属イオンとしては、周期表の第1族、第2族及び第12族からなる群より選ばれる族の一価又は二価の金属イオンが挙げられ、具体的には、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)及び、亜鉛(Zn)のイオン等が挙げられる。この中でも、Li、Na、K、Rb、Cs、Mg2+、Ca2+、Sr2+、Ba2+及びZn2+からなる群から選ばれる少なくとも1種がより好ましく、特に好ましくは、Li、Na、K、Mg2+、Ca2+、及びZn2+である。更に好ましくは、取扱い易さの観点から、特にナトリウム(Na)、又は、亜鉛(Zn2+)のイオンである。
カルボン酸塩基は、例えば、共重合体のエステル基を加水分解若しくは加熱分解させた後、又は、加水分解若しくは加熱分解させながら、周期表の第1族、第2族、又は第12族の金属イオンを含有する化合物と反応させることで、共重合体中のエステル基部分を金属含有カルボン酸塩に変換することで得られる。
なお、金属イオンは、一種類であってもよいし、複数種であってもよい。
金属イオンの含有量としては、ベース樹脂としての共重合体中のカルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部又は全部を中和する量を含むことが好ましく、好ましい中和度(平均中和度)としては、5〜95mol%、より好ましくは10〜90mol%、さらに好ましくは20〜80mol%である。
なお、中和度は、共重合体中のカルボキシ基及び/又はジカルボン酸無水物基に含まれ得るカルボキシ基の合計mol量に対する、金属イオンの価数×mol量の合計mol量の割合から求めることができる。
そして、ジカルボン酸無水物基はカルボン酸塩を形成する際に、開環してジカルボン酸となるため、ジカルボン酸無水物基1molにつき、2molのカルボキシ基を有するものとして前記カルボキシ基の合計mol量を求める。また、例えばZn2+等の二価の金属イオンは、1molにつき、2molのカルボキシ基と塩を形成できるものとして、2×mol量により中和度の分子の合計mol量を算出する。
中和度が高いと、アイオノマーの引張強度及び引張破壊応力が高く、引張破壊ひずみが小さくなるが、アイオノマーのメルトフローレート(MFR)が小さくなる傾向がある。一方、中和度が低いと、適度なMFRのアイオノマーが得られるが、引張弾性率及び引張破壊応力は低く、引張破壊ひずみが高くなる傾向がある。
なお、中和度は、カルボキシル基及び/又はジカルボン酸無水物基の量と加えた金属イオンのモル比から計算できる。
(3)特性(c)
(3−1)
複素弾性率Gの絶対値0.1MPaにおける位相角δについての特性である。より具体的には、回転式レオメータで測定した複素弾性率Gの絶対値0.1MPaにおける位相角δが、50〜75度であるという特性である。
回転式レオメータで測定した複素弾性率Gの絶対値0.1MPaにおける位相角δは、分子量分布と長鎖分岐の両方の影響を受ける。しかし、Mw/Mn≦4、より好ましくはMw/Mn≦3である共重合体に限れば長鎖分岐の量の指標になり、その分子構造に含まれる長鎖分岐が多いほどδ(|G|=0.1MPa)値は小さくなる。
なお、共重合体のMw/Mnが1.5以上であれば、当該分子構造が長鎖分岐を含まない構造である場合でもδ(|G|=0.1MPa)値が75度を上回ることはない。
より具体的には、回転式レオメータで測定した複素弾性率Gの絶対値0.1MPaにおける位相角δ(|G|=0.1MPa)が50度以上である場合、共重合体の分子構造は実質的に直鎖状構造、すなわち直鎖状の構造であって長鎖分岐を全く含まない構造か、あるいは機械的強度に影響を与えない程度の少量の長鎖分岐を含む構造を示す。
また、回転式レオメータで測定した複素弾性率Gの絶対値0.1MPaにおける位相角δ(|G|=0.1MPa)が50度より低い場合、共重合体の分子構造は長鎖分岐を過多に含む構造を示し、機械的強度が劣るものとなる。
本発明のアイオノマーは、機械的強度を向上する点から、前記位相角δの下限が、51度以上であることが好ましく、54度以上であることがより好ましく、56度以上であることが更に好ましく、58度以上であることがより更に好ましく、上限は、特に限定されず、75度に近ければ近いほどよく、70度以下であってもよい。
(3−2)
複素弾性率の測定方法は、以下の通りである。
試料を厚さ1.0mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持する。その後、試料を表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、厚さが約1.0mmの試料からなるプレス板を作成した。試料からなるプレス板を直径25mm円形に加工したものをサンプルとし、動的粘弾性特性の測定装置としてRheometrics社製ARES型回転式レオメータを用い、窒素雰囲気下において以下の条件で動的粘弾性を測定する。
・プレート:φ25mm パラレルプレート
・温度:160℃
・歪み量:10%
・測定角周波数範囲:1.0×10−2〜1.0×10 rad/s
・測定間隔:5点/decade
複素弾性率Gの絶対値(Pa)の常用対数log|G|に対して位相角δをプロットし、log|G|=5.0に相当する点のδ(度)の値をδ(|G|=0.1MPa)とする。測定点の中にlog|G|=5.0に相当する点がないときは、log|G|=5.0前後の2点を用いて、log|G|=5.0におけるδ値を線形補間で求める。また、測定点がいずれもlog|G|<5であるときは、log|G|値が大きい方から3点の値を用いて2次曲線でlog|G|=5.0におけるδ値を補外して求める。
(4)特性(d)〜(f)
(4−1)特性(d)
本発明のアイオノマーにおいては、温度190℃、荷重2.16kgにおけるメルトフローレート(MFR)は、1〜50g/10分であり、好ましくは2〜20g/10分である。
MFRは、50g/10分以上であると、分子量が低下し、ドローダウンが大きくなり成形が困難となる。また、MFRは、1g/10分未満であると押出負荷が大きくなり過ぎ成形が困難となる。
MFRはベースとなる共重合体(P)の分子量を調整することにより、増減することが出来る。
(4−2)特性(e)
本発明のアイオノマーにおいては、引張試験における弾性回復率[後記実施例(8)参照]が65〜100%である。引張試験における弾性回復率が65%未満の場合、三次元網状構造体のクッション性が低下する恐れがある。
(4−3)特性(f)
本発明のアイオノマーにおいては、引張弾性率が20〜200MPaであり、好ましくは20〜120MPaである。
引張弾性率は、200MPa超の場合、ベッドマットして使用する場合、寝心地が硬くなり過ぎる恐れがある。一方、引張弾性率が20MPa未満となるアイオノマーは製造が困難である。
(4−4)その他
・アイオノマーの融点(Tm、℃)
本発明に関わるアイオノマーの融点(Tm、℃)は、50℃〜140℃であることが好ましく、60℃〜138℃であることが更に好ましく、70℃〜135℃が最も好ましい。良好な耐熱性の観点から50℃以上であり、良好な接着性の観点から140℃以下である。
本願発明に関わるアイオノマーのうち、構造単位(A)と構造単位(B)のみからなる二元共重合体をベースとするアイオノマーは、融点が90℃以上であることが好ましく、より好ましくは95℃以上、更に好ましくは100℃以上を示すと良い。三元以上の多元系共重合体をベースとするアイオノマーの融点は、100℃未満であることが好ましく、より好ましくは95℃未満、更に好ましくは90℃未満を示すと良い。
・結晶化度(%):
本発明のアイオノマーにおいては、示差走査熱量測定(DSC)により観測される結晶化度は、特に限定されないが、0%を超え、30%以下であることが好ましく、0%を超え、25%以下であることが更に好ましく、5%を超え、25%以下であることが特に好ましく、7%以上、24%以下であることが最も好ましい。
アイオノマーの良好な靱性の観点からは、結晶化度が0%を超えることが好ましく、共重合体の良好な透明性の観点からは、結晶化度が、30%以下であることが好ましい。なお、結晶化度は透明性の指標となり、アイオノマーの結晶化度が低くなればなるほど、その透明性が優れると判断することができる。
(5)アイオノマーの製造方法
(5−1)重合触媒
本発明に関わる共重合体の製造に用いる重合触媒の種類は、構造単位(A)、構造単位(B)、及び任意の構造単位(C)を共重合することが可能なものであれば特に限定されないが、例えば、キレート性配位子を有する第5〜11族の遷移金属化合物が挙げられる。
好ましい遷移金属の具体例としては、バナジウム原子、ニオビウム原子、タンタル原子、クロム原子、モリブデン原子、タングステン原子、マンガン原子、鉄原子、白金原子、ルテニウム原子、コバルト原子、ロジウム原子、ニッケル原子、パラジウム原子、銅原子などが挙げられる。これらの中で好ましくは、第8〜11族の遷移金属であり、さらに好ましくは第10族の遷移金属であり、特に好ましくはニッケル(Ni)、パラジウム(Pd)である。これらの金属は、単一であっても複数を併用してもよい。
キレート性配位子は、P、N、O、及びSからなる群より選択される少なくとも2個の原子を有しており、二座配位(bidentate)又は多座配位(multidentate)であるリガンドを含み、電子的に中性又は陰イオン性である。Brookhartらによる総説に、キレート性配位子の構造が例示されている(Chem.Rev.,2000,100,1169)。
キレート性配位子としては、好ましくは、二座アニオン性P、O配位子が挙げられる。二座アニオン性P、O配位子として例えば、リンスルホン酸、リンカルボン酸、リンフェノール、リンエノラートが挙げられる。キレート性配位子としては、他に、二座アニオン性N、O配位子が挙げられる。二座アニオン性N、O配位子として例えば、サリチルアルドイミナ−トやピリジンカルボン酸が挙げられる。キレート性配位子としては、他に、ジイミン配位子、ジフェノキサイド配位子、及びジアミド配位子等が挙げられる。
キレート性配位子から得られる金属錯体の構造は、置換基を有してもよいアリールホスフィン化合物、アリールアルシン化合物又はアリールアンチモン化合物が配位した下記構造式(a)又は(b)で表される。
[構造式(a)、及び構造式(b)において、
Mは、元素の周期表の第5〜11族のいずれかに属する遷移金属、即ち前述したような種々の遷移金属を表す。
は、酸素、硫黄、−SO−、又は−CO−を表す。
は、炭素又はケイ素を表す。
nは、0又は1の整数を表す。
は、リン、砒素又はアンチモンを表す。
53及びR54は、それぞれ独立に、水素又は炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基を表す。
55は、それぞれ独立に、水素、ハロゲン、又は炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基を表す。
56及びR57は、それぞれ独立に、水素、ハロゲン、炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基、OR52、CO52、COM’、C(O)N(R51、C(O)R52、SR52、SO52、SOR52、OSO52、P(O)(OR522−y(R51、CN、NHR52、N(R52、Si(OR513−x(R51、OSi(OR513−x(R51、NO、SOM’、POM’、P(O)(OR52M’又はエポキシ含有基を表す。
51は、水素又は炭素数1ないし20の炭化水素基を表す。
52は、炭素数1ないし20の炭化水素基を表す。
M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウム又はフォスフォニウムを表し、xは、0から3までの整数、yは、0から2までの整数を表す。
なお、R56とR57が互いに連結し、脂環式環、芳香族環、又は酸素、窒素、若しくは硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。この時、環員数は5〜8であり、該環上に置換基を有していても、有していなくてもよい。
は、Mに配位したリガンドを表す。
また、R53とLが互いに結合して環を形成してもよい。]
より好ましくは、下記構造式(c)で表される遷移金属錯体である。
[構造式(c)において、
Mは、元素の周期表の第5〜11族のいずれかに属する遷移金属、即ち前述したような種々の遷移金属を表す。
は、酸素、硫黄、−SO−、又は−CO−を表す。
は、炭素又はケイ素を表す。
nは、0又は1の整数を表す。
は、リン、砒素又はアンチモンを表す。
53及びR54は、それぞれ独立に、水素又は炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基を表す。
55は、それぞれ独立に、水素、ハロゲン、又は炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基を表す。
58、R59、R60及びR61は、それぞれ独立に、水素、ハロゲン、炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基、OR52、CO52、COM’、C(O)N(R51、C(O)R52、SR52、SO52、SOR52、OSO52、P(O)(OR522−y(R51、CN、NHR52、N(R52、Si(OR513−x(R51、OSi(OR513−x(R51、NO、SOM’、POM’、P(O)(OR52M’又はエポキシ含有基を表す。
51は、水素又は炭素数1ないし20の炭化水素基を表す。
52は、炭素数1ないし20の炭化水素基を表す。
M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウム又はフォスフォニウムを表し、xは、0から3までの整数、yは、0から2までの整数を表す。
なお、R58〜R61から適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、又は酸素、窒素、若しくは硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。この時、環員数は5〜8であり、該環上に置換基を有していても、有していなくてもよい。
は、Mに配位したリガンドを表す。
また、R53とLが互いに結合して環を形成してもよい。]
ここで、キレート性配位子を有する第5〜11族の遷移金属化合物の触媒としては、代表的に、いわゆる、SHOP系触媒及びDrent系触媒等の触媒が知られている。
SHOP系触媒は、置換基を有してもよいアリール基を有するリン系リガンドがニッケル金属に配位した触媒である(例えば、国際公開第2010/050256号公報を参照)。
また、Drent系触媒は、置換基を有してもよいアリール基を有するリン系リガンドがパラジウム金属に配位した触媒である(例えば、特開2010−202647号公報を参照)。
(5−2)共重合体の重合方法:
重合方法としては、媒体中で少なくとも一部の生成重合体がスラリーとなるスラリー重合、液化したモノマー自身を媒体とするバルク重合、気化したモノマー中で行う気相重合、又は、高温高圧で液化したモノマーに生成重合体の少なくとも一部が溶解する高圧イオン重合などが挙げられる。もっとも、その分子構造を直鎖状とする観点から、遷移金属触媒の存在下で製造されたものであることが好ましい。
重合形式としては、バッチ重合、セミバッチ重合、又は連続重合のいずれの形式でもよい。
また、リビング重合を行ってもよいし、連鎖移動を併発しながら重合を行ってもよい。
更に、重合の際には、いわゆるchain shuttling agent(CSA)を併用し、chain shuttling反応や、coordinative chain transfer polymerization(CCTP)を行ってもよい。
具体的な製造プロセス及び条件については、例えば、特開2010−260913号公報、及び特開2010−202647号公報等に開示されている。
(5−3)共重合体へのカルボキシル基及び/又はジカルボン酸無水物基の導入方法:
(i)
本発明に関わる共重合体へのカルボキシル基及び/又はジカルボン酸無水物基の導入方法は特に限定されない。本発明の主旨を逸脱しない範囲においては種々の方法によりカルボキシル基及び/又はジカルボン酸無水物基を導入することができる。
カルボキシル基及び/又はジカルボン酸無水物基の導入方法は、例えば、カルボキシル基及び/又はジカルボン酸無水物基を有するコモノマーを直接共重合する方法や、他のモノマーを共重合した後、変性によりカルボキシル基及び/又はジカルボン酸無水物基を導入する方法などが挙げられる。
変性によりカルボキシル基及び/又はジカルボン酸無水物基を導入する方法としては、例えばカルボン酸を導入する場合、アクリル酸エステルを共重合した後に加水分解し、カルボン酸に変化する方法やアクリル酸t−ブチルを共重合した後、加熱分解によりカルボン酸に変化させる方法等が挙げられる。
上記、加水分解又は加熱分解する際に、反応を促進させる添加剤として、従来公知の酸・塩基触媒を使用してもよい。酸・塩基触媒としては特に制限されないが、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属やアルカリ土類金属の水酸化物、炭酸水素ナトリウムや炭酸ナトリウムなどのアルカリ金属、アルカリ土類金属の炭酸塩、モンモリロナイトなどの固体酸、塩酸、硝酸、硫酸などの無機酸、ギ酸、酢酸、安息香酸、クエン酸、パラトルエンスルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸などの有機酸などを適宜用いることが出来る。
反応促進効果、価格、装置腐食性等の観点から水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、パラトルエンスルホン酸、トリフルオロ酢酸が好ましく、パラトルエンスルホン酸、トリフルオロ酢酸がより好ましい。
(ii)
もっとも、本発明に関わるアイオノマーはエチレン及び/又は炭素数2〜20のα−オレフィン/不飽和カルボン酸エステル共重合体を加熱し、該共重合体中の少なくとも一部のエステル基を、周期表の第1族、第2族、又は第12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換する加熱変換工程を経ることにより得るのが好ましい
また、加熱変換工程においては、
(a)エチレン及び/又は炭素数2〜20のα−オレフィン/不飽和カルボン酸エステル共重合体を加熱し、加水分解又は加熱分解によりエチレン及び/又は炭素数2〜20のα−オレフィン/不飽和カルボン酸共重合体にした後、周期表の第1族、第2族、又は第12族の金属イオンを含有する化合物と反応させることで、該エチレン及び/又は炭素数2〜20のα−オレフィン/不飽和カルボン酸共重合体中のカルボン酸を該金属含有カルボン酸塩に変換してもよく、また、
(b)エチレン及び/又は炭素数2〜20のα−オレフィン/不飽和カルボン酸エステル共重合体を加熱し、該共重合体のエステル基を加水分解又は加熱分解させながら、周期表の第1族、第2族、又は第12族の金属イオンを含有する化合物と反応させることで、前記エチレン及び/又は炭素数2〜20のα−オレフィン/不飽和カルボン酸エステル共重合体中のエステル基部分を前記金属含有カルボン酸塩に変換してもよい。
さらに金属イオンを含有する化合物は、周期表の第1族、第2族、又は第12族の金属の酸化物、水酸化物、炭酸塩、重炭酸塩、酢酸塩、ギ酸塩などであってもよい。
金属イオンを含有する化合物は、粒状あるいは微粉状で反応系に供給してもよく、水や有機溶媒に溶解または分散させた後、反応系に供給してもよく、エチレン/不飽和カルボン酸共重合体やオレフィン共重合体をベースポリマーとするマスターバッチを作製し、反応系に供給してもよい。反応を円滑に進行させるためにはマスターバッチを作製し、反応系に供給する方法が好ましい。
さらにまた、金属イオンを含有する化合物との反応はベント押出機、バンバリーミキサー、ロールミルの如き種々の型の装置により、溶融混練することによって行ってもよく、反応はバッチ式でも連続法でもよい。反応によって副生する水及び炭酸ガスを脱気装置により排出することにより、円滑に反応を行うことができることからベント押出機のような脱気装置付きの押出機を用い連続的に行うことが好ましい。
金属イオンを含有する化合物との反応に際し、反応を促進させるために、少量の水を注入してもよい。
エチレン及び/又は炭素数2〜20のα−オレフィン/不飽和カルボン酸エステル共重合体を加熱する温度は、エステルがカルボン酸になる温度であればよく、加熱温度が低すぎる場合はエステルがカルボン酸に変換されず、高すぎる場合には脱カルボニル化や共重合体の分解が進む。従って、本発明の加熱温度は、好ましくは80℃〜350℃、より好ましくは100℃〜340℃、更に好ましくは150℃〜330℃、更により好ましくは200℃〜320℃の範囲で行われる。
反応時間は加熱温度やエステル基部分の反応性等により変わるが、通常1分〜50時間であり、より好ましくは2分〜30時間であり、更に好ましくは2分〜10時間であり、よりさらに好ましくは2分〜3時間であり、特に好ましくは3分〜2時間である。
上記工程において、反応雰囲気下に特に制限はないが、一般に不活性ガス気流下で行われるほうが好ましい。不活性ガスの例としては、窒素、アルゴン、二酸化炭素雰囲気が使用でき、なお、少量の酸素や空気の混入があってもよい。
上記工程で用いる反応器としては、特に制限は無いが、共重合体を実質的に均一に攪拌できる方法であれば何ら限定されず、攪拌器を装備したガラス容器やオートクレーブ(AC)を用いても良いし、ブラベンダープラストグラフ、一軸あるいは二軸押出機、強力スクリュー型混練機、バンバリーミキサー、ニーダー、ロール等の従来知られているいかなる混練機も使用することができる。
(6)添加剤
本発明に関わるアイオノマーには、本発明の主旨を逸脱しない範囲において、従来公知の酸化防止剤、紫外線吸収剤、滑剤、帯電防止剤、着色剤、顔料、架橋剤、発泡剤、核剤、難燃剤、導電材、及び、充填材等の添加剤を配合しても良い。
(7)成形体
本発明の三次元網状構造体用エチレン系アイオノマーは、三次元網状構造体成形に適した性質を有するエチレン系アイオノマーを意味し、良好な成形性を有することから、任意の公知の成形法を用いて、種々の形態の成形品を製造することができる。特に、三次元網状構造体に成形することは、柔軟性、弾性回復性、成形性のバランスに優れるという本発明のアイオノマーの特長を生かすことができることから好ましいが、必ずしも三次元網状構造体成形用途に限られない。
ここで、三次元網状構造体とは、熱可塑性樹脂を原料ないし主原料とし、複数の線状体が無秩序に絡み合い、部分的に熱接着してなる網状構造体を意味する。衝撃吸収材、クッション材、吸音建材等の用途に用いられるものであり、クッション、ソファ、ベッド等にに好適に使用できる。
このような三次元網状構造体の製造方法の詳細については、たとえば国際公開第2006/068120号及び国際公開第01/68967号を参照することができる。
以下に、実施例および比較例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、実施例および比較例における物性の測定と評価は、以下に示す方法によって実施した。
また、表中のno dataは未測定を意味し、not detectedは検出限界未満を意味する。
<測定と評価>
(1)複素弾性率Gの絶対値0.1MPaにおける位相角δ(|G|=0.1MPa)の測定
1)試料の準備、測定
試料を厚さ1.0mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、厚さが約1.0mmの試料からなるプレス板を作製した。試料からなるプレス板を直径25mm円形に加工したものをサンプルとし、動的粘弾性特性の測定装置としてRheometrics社製ARES型回転式レオメータを用い、窒素雰囲気下において以下の条件で動的粘弾性を測定した。
・プレート:φ25mm(直径) パラレルプレート
・温度:160℃
・歪み量:10%
・測定角周波数範囲:1.0×10−2〜1.0×10 rad/s
・測定間隔:5点/decade
複素弾性率Gの絶対値(Pa)の常用対数log|G|に対して位相角δをプロットし、log|G|=5.0に相当する点のδ(度)の値をδ(|G|=0.1MPa)とした。測定点の中にlog|G|=5.0に相当する点がないときは、log|G|=5.0前後の2点を用いて、log|G|=5.0におけるδ値を線形補間で求めた。また、測定点がいずれもlog|G|<5であるときは、log|G|値が大きい方から3点の値を用いて2次曲線でlog|G|=5.0におけるδ値を補外して求めた。
(2)重量平均分子量(Mw)及び分子量分布パラメーター(Mw/Mn)の測定
重量平均分子量(Mw)はゲルパーミエイションクロマトグラフィー(GPC)によって求めた。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnによって算出した。
測定は下記の手順及び条件に従って行った。
1)試料の前処理
試料にカルボン酸基が含まれる場合は、例えばジアゾメタンやテトラメチルシラン(TMS)ジアゾメタンなどを用いたメチルエステル化などのエステル化処理を行い測定に用いた。また、試料にカルボン酸塩基が含まれる場合は酸処理を行い、カルボン酸塩基をカルボン酸基へと変性した後、上記のエステル化処理を行い測定に用いた。
2)試料溶液の調製
4mLバイアル瓶に試料3mgおよびo−ジクロロベンゼン3mLを秤り採り、スクリューキャップおよびテフロン(登録商標)製セプタムで蓋をした後、センシュー科学製SSC−7300型高温振とう機を用いて150℃で2時間振盪を行った。振とう終了後、不溶成分がないことを目視で確認した。
3)測定
ウォーターズ社製Alliance GPCV2000型に昭和電工製高温GPCカラムShowdex HT−G×1本及び同HT−806M×2本を接続し、溶離液にo−ジクロロベンゼンを使用し、温度145℃、流量:1.0mL/分下にて測定を行った。
4)較正曲線
カラムの較正は、昭和電工製単分散ポリスチレン(S−7300、S−3900、S−1950、S−1460、S−1010、S−565、S−152、S−66.0、S−28.5、S−5.05、の各0.07mg/ml溶液)、n−エイコサン及びn−テトラコンタンの測定を上記と同様の条件にて行い、溶出時間と分子量の対数値を4次式で近似した。なお、ポリスチレン分子量(MPS)とポリエチレン分子量(MPE)の換算には次式を用いた。
PE=0.468×MPS
(3)メルトフローレート(MFR)
MFRは、JIS K−7210(1999年)の表1−条件7に従い、温度190℃、荷重2.16kgの条件で測定した。
(4)引張弾性率
試料をJIS K7151(1995年)に記載の方法(冷却方法A)で厚さ1mmのシートを作製し、これを打抜いて作製したJIS K7162(1994年)に記載の5B形小型試験片を用いて、JIS K7161(1994年)に従って温度23℃の条件下において引張試験を行い、引張弾性率を測定した。なお、試験速度は10mm/分とした。
(5)融点及び結晶化度
融点は、示差走査型熱量計(DSC)により測定した吸熱曲線のピーク温度によって示される。測定にはエスアイアイ・ナノテクノロジー株式会社製のDSC(DSC7020)を使用し、次の測定条件で実施した。
試料約5.0mgをアルミパンに詰め、10℃/分で200℃まで昇温し、200℃で5分間保持した後に10℃/分で30℃まで降温させた。30℃で5分間保持した後、再度、10℃/分で昇温させる際の吸収曲線のうち、最大ピーク温度を融点Tmとし、融解吸熱ピーク面積から融解熱(ΔH)を求め、その融解熱を高密度ポリエチレン(HDPE)の完全結晶の融解熱293J/gで除することにより、結晶化度(%)を求めた。
(6)カルボキシル基及び/又はジカルボン酸無水物基を有するモノマー、及び任意のモノマーの構造単位量と炭素1,000個当たりのメチル分岐数の測定
1)試料にカルボン酸塩基が含まれる場合は酸処理を行い、カルボン酸塩基をカルボン酸基へと変性した後に測定に用いた。
2)カルボキシ基及び/又はジカルボン酸無水物基を有するモノマー、及び非環状モノマー由来の構造単位量と炭素1,000個当たりの分岐数の測定方法
本発明の多元共重合体中のカルボキシ基及び/又はジカルボン酸無水物基を有するモノマー、及び非環状モノマーに由来する構造単位量、および炭素1,000個当たりの分岐数は13C−NMRスペクトルを用いて求められる。13C−NMRは以下の方法によって測定した。
試料200〜300mgをo−ジクロロベンゼン(CCl)と重水素化臭化ベンゼン(CBr)の混合溶媒(CCl/CBr=2/1(体積比))2.4mlおよび化学シフトの基準物質であるヘキサメチルジシロキサンと共に内径10mmφのNMR試料管に入れて窒素置換した後封管し、加熱溶解して均一な溶液としてNMR測定試料とした。
NMR測定は10mmφのクライオプローブを装着したブルカー・ジャパン(株)のAV400M型NMR装置を用いて120℃で行った。
13C−NMRは、試料の温度120℃、パルス角を90°、パルス間隔を51.5秒、積算回数を512回以上、逆ゲートデカップリング法で測定した。
化学シフトはヘキサメチルジシロキサンの13Cシグナルを1.98ppmに設定し、他の13Cによるシグナルの化学シフトはこれを基準とした。
1)試料の前処理
試料にカルボン酸塩基が含まれる場合は酸処理を行うことにより、カルボン酸塩基をカルボキシ基へと変性した後に測定に用いた。また試料にカルボキシ基が含まれる場合は、例えばジアゾメタンやトリメチルシリル(TMS)ジアゾメタンなどを用いたメチルエステル化などのエステル化処理を適宜行ってもよい。
2)カルボキシ基及び/又はジカルボン酸無水物基を有するモノマー、及び非環状モノマー由来の構造単位量の算出
<エチレン/t−ブチルアクリレート(E/tBA)>
tBAのt−ブチルアクリレート基の四級炭素シグナルは、13C−NMRスペクトルの79.6〜78.8に検出される。これらのシグナル強度を用い、以下の式からコモノマー量を算出した。
tBA総量(mol%)=I(tBA)×100/〔I(tBA)+I(E)〕
ここで、I(tBA)、I(E)はそれぞれ、以下の式で示される量である。
I(tBA)=I79.6〜78.8
I(E)=(I180.0〜135.0+I120.0〜5.0−I(tBA)×7)/2
<エチレン/t−ブチルアクリレート/n−ブチルアクリレート
(E/tBA/nBA)>
tBAのt−ブチルアクリレート基の四級炭素シグナルは、13C−NMRスペクトルの79.6〜78.8ppm、nBAのブトキシ基のメチレンシグナルは、64.1〜63.4ppmに検出される。これらのシグナル強度を用い、以下の式からコモノマー量を算出した。
tBA総量(mol%)=I(tBA)×100/〔I(tBA)+I(nBA)+I(E)〕
nBA総量(mol%)=I(nBA)×100/〔I(tBA)+I(nBA)+I(E)〕
ここで、I(tBA)、I(nBA)、I(E)はそれぞれ、以下の式で示される量である。
I(tBA)=I79.6〜78.8
I(nBA)=I64.1〜63.4
I(E)=(I180.0〜135.0+I120.0〜5.0−I(nBA)×7−I(tBA)×7)/2
<エチレン/t−ブチルアクリレート/i−ブチルアクリレート
(E/tBA/iBA)>
tBAのt−ブチルアクリレート基の四級炭素シグナルは、13C−NMRスペクトルの79.6〜78.8ppm、iBAのイソブトキシ基のメチレンシグナルは70.5〜69.8ppm、イソブトキシ基のメチルシグナルは19.5〜18.9ppmに検出される。これらのシグナル強度を用い、以下の式からコモノマー量を算出した。
tBA総量(mol%)=I(tBA)×100/〔I(tBA)+I(iBA)+I(E)〕
iBA総量(mol%)=I(iBA)×100/〔I(tBA)+I(iBA)+I(E)〕
ここで、I(tBA)、I(iBA)、I(E)はそれぞれ、以下の式で示される量である。
I(tBA)=I79.6〜78.8
I(iBA)=(I70.5〜69.8+I19.5〜18.9)/3
I(E)=(I180.0〜135.0+I120.0〜5.0−I(iBA)×7−I(tBA)×7)/2
<エチレン/t−ブチルアクリレート/2−ノルボルネン(E/tBA/NB)>
tBAのt−ブチルアクリレート基の四級炭素シグナルは、13C−NMRスペクトルの79.6〜78.8ppm、NBのメチン炭素シグナルは41.9〜41.1ppmに検出される。これらのシグナル強度を用い、以下の式からコモノマー量を算出した。
tBA総量(mol%)=I(tBA)×100/〔I(tBA)+I(NB)+I(E)〕
NB総量(mol%)=I(NB)×100/〔I(tBA)+I(NB)+I(E)〕
ここで、I(tBA)、I(NB)、I(E)はそれぞれ、以下の式で示される量である。
I(tBA)=I79.6〜78.8
I(NB)=(I41.9〜41.1)/2
I(E)=(I180.0〜135.0+I120.0〜5.0−I(NB)×7−I(tBA)×7)/2
なお、各モノマーの構造単位量が不等号を含む「<0.1」で示されている場合、多元共重合体中の構成単位として存在しているが有効数字を考慮して0.1mol%未満の量であることを意味する。
3)炭素1,000個当たりの分岐数の算出
多元共重合体には、主鎖に分岐が単独で存在する孤立型と、複合型(主鎖を介して分岐と分岐が対面した対面タイプ、分岐鎖中に分岐のあるbranched−branchタイプ、および連鎖タイプ)が存在する。
以下は、エチル分岐の構造の例である。なお、対面タイプの例において、Rはアルキル基を表す。
炭素1,000個当たりの分岐数は、以下の式のI(分岐)項に、下記のI(B1)、I(B2)、I(B4)のいずれかを代入し求める。B1はメチル分岐、B2はエチル分岐、B4はブチル分岐を表す。メチル分岐数はI(B1)を用い、エチル分岐数はI(B2)を用い、ブチル分岐数はI(B4)を用いて求める。
分岐数(個/炭素1,000個当たり)=I(分岐)×1000/I(total)
ここで、I(total)、I(B1)、I(B2)、I(B4)は以下の式で示される量である。
I(total)=I180.0〜135.0 +I120.0〜5.0
I(B1)=(I20.0〜19.8+I33.2〜33.1+I37.5〜37.3)/4
I(B2)=I8.6〜7.6 +I11.8〜10.5
I(B4)=I14.3〜13.7 −I32.2〜32.0
ここで、Iは積分強度を、Iの下つき添字の数値は化学シフトの範囲を示す。例えばI180.0〜135.0は180.0ppmと135.0ppmの間に検出した13Cシグナルの積分強度を示す。
帰属は、非特許文献Macromolecules 1984, 17, 1756-1761、Macromolecules 1979,12,41を参考にした。
なお、各分岐数が不等号を含む「<0.1」で示されている場合、多元共重合体中の構成単位として存在しているが有効数字を考慮して0.1mol%未満の量であることを意味する。また、not detectedは検出限界未満を意味する。
(7)赤外吸収スペクトル
試料を180℃にて3分間溶融し、圧縮成形して、厚さ50μm程度のフィルムを作製する。このフィルムをフーリエ変換赤外分光分析により分析して、赤外吸収スペクトルを得た。
製品名:FT/IR−6100 日本分光株式会社製
測定手法:透過法
検出器:TGS(Triglycine sulfate)
積算回数:16〜512回
分解能:4.0cm−1
測定波長:5000〜500cm−1
(8)弾性回復率
1)試料の試験片作製方法
試料をJIS K7151(1995年)に記載の方法(冷却方法A)で厚さ1mmのシートを作製し、これを打抜いてJIS K7162(1994年)に記載の5B形小型試験片を作製した。
2)弾性回復率測定方法
引張試験機テンシロンRTG−1250((株)エー・アンド・デイ製)の初期つかみ具間距離をAとし、21mmに設定し、5B形小型試験片を取り付け、試験片上部と下部にそれぞれ印をつけた。つかみ具間移動量をBとし、Bが約24mmになるまで10mm/分の速さで試験機を上昇させた後、停止し1分間状態を保持した。その後、下部つかみ具を解放し試験片を3分間収縮させた。試験片を試験機より取り出し、つかみ具上昇前に付けた試験片上部と下部の印間距離を試験後つかみ具間距離Cとし、C(mm)を測定した。上記A、B、Cから下記式により弾性回復率を算出した。
弾性回復率(%)=[{1−(試験後つかみ具間距離C−初期つかみ具間距離A)/つかみ具移動量B)}]×100
なお、試験条件は温度23℃、相対湿度50%RHで行った。
<金属錯体の合成>
(1)B−27DM/Ni錯体の合成
B−27DM/Ni錯体は、国際公開第2010/050256号に記載された合成例4に従い、下記の2−ビス(2,6−ジメトキシフェニル)ホスファノ−6−ペンタフルオロフェニルフェノール配位子(B−27DM)を使用した。国際公開第2010/050256号の実施例1に準じて、ビス(1,5−シクロオクタジエン)ニッケル(0)(Ni(COD)と称する)を用いて、B−27DMとNi(COD)とが1対1で反応したニッケル錯体(B−27DM/Ni)を合成した。
(2)B−423/Ni錯体の合成
1)配位子B−423:2−ビス(2,6−ジメトキシフェニル)ホスファノ−6−(2,6−ジイソプロピルフェニル)フェノールの合成

以下のスキームに従って配位子B−423を合成した。
なお、以降の化学式中、−OMOMとはメトキシメトキシ基(−OCHOCH)を表す。
(i)化合物2の合成
国際公開第2010/050256号の合成例1(1)に従って合成した。
(ii)化合物3の合成
化合物2(2.64g、10.0mmol)のTHF(5.0ml)溶液にiso−PrMgCl(2M、5.25ml)を0℃で加えた。反応混合物を25℃で1時間撹拌した後、PCl(618mg、4.50mmol)を−78℃で加えた。
反応混合物を25℃まで3時間かけて昇温し、黄色懸濁液を得た。溶媒を減圧留去し、黄色固体を得た。この混合物を精製することなく、次の反応に用いた。
(iii)化合物5の合成
化合物4(30g、220mmol)のTHF(250ml)溶液にn−BuLi(2.5M、96ml)を0℃で加え、30℃で1時間撹拌した。この溶液にB(OPr)(123g、651mmol)を−78℃で加え、30℃で2時間撹拌して白色懸濁液を得た。
塩酸(1M)を加えてpH=6〜7に調整し、有機層を濃縮して混合物を得た。
得られた混合物を石油エーテル(80ml)で洗浄し、化合物5を26g得た。
(iv)化合物7の合成
化合物5(5.00g、27.5mmol)、化合物6(4.42g、18.3mmol)、Pd(dba)(168mg、0.183mmol)、s−Phos(2−Dicyclohexylphosphino−2’,6’−dimethoxybiphenyl)(376mg、0.916mmol)、KPO(7.35g、34.6mmol)を反応容器に量りとり、トルエン(40ml)を加えた。この溶液を110℃で12時間反応させ、黒色懸濁液を得た。
水(50ml)を加え、酢酸エチル(55ml×3)で抽出した。
有機層を食塩水(20ml)で洗浄してNaSOで脱水した。
有機層を濾過して溶媒を減圧留去した後、シリカゲルカラムで精製することにより1.3gのオイル状物質の化合物7を得た。
(v)化合物8の合成
前記(iv)の工程を繰り返すことにより得られた化合物7(6.5g、22mmol)のTHF(40ml)溶液にn−BuLi(2.5M、9.15ml)を0℃で滴下し、30℃に昇温して1時間撹拌した。この反応溶液を−78℃に冷却してCuCN(2.1g,23mmol)を加え、30℃で1時間撹拌した。
反応溶液を−78℃に冷却して、前記(ii)の工程を繰り返すことにより得られた化合物3(6.7g、20mmol)のTHF(40ml)溶液を加え、30℃で12時間撹拌して白色の懸濁液を得た。
懸濁液にHO(50ml)を加えると白色沈殿が生じた。
白色沈殿を濾過で回収してジクロロメタン(20ml)に溶解させ、アンモニア水(80ml)を加えて3時間撹拌した。
生成物をジクロロメタン(50ml×3)で抽出してNaSOで脱水した後、濃縮して黄色のオイル状物質を得た。このオイル状物質をシリカゲルカラムで精製し、化合物8を2.9g得た。
(vi)B−423の合成
化合物8(2.9g、4.8mmol)のジクロロメタン(20ml)溶液にHCl/酢酸エチル(4M、50ml)を0℃で加え、30℃で2時間撹拌して淡黄色溶液を得た。
溶媒を減圧留去した後、ジクロロメタン(50ml)を加えた。
飽和NaHCO水溶液(100ml)で洗浄し、B−423を2.5g得た。
得られた配位子B−423のNMR帰属値を以下に示す。
[NMR]
H NMR(CDCl、δ、ppm):7.49(t、1H)、7.33(t、1H)、7.22(m、4H)、6.93(d、1H)、6.81(t、1H)、6.49(dd、4H)、6.46(br、1H)、3.56(s、12H)、2.63(sept、2H)、1.05(d、6H)、1.04(d、6H);
31P NMR(CDCl、δ、ppm):−61.6(s).
2)B−423/Ni錯体の合成
B−423/Ni錯体は、B−423配位子を使用し、国際公開第2010/050256号の実施例1に準じて、ビスアセチルアセトナトニッケル(II)[Ni(acac)と称する]を用いて、B−423とNi(acac)とが1対1で反応したニッケル錯体(B−423/Ni)を合成した。
<(製造例1、2):アイオノマーベース樹脂前駆体の製造>
遷移金属錯体(B−27DM/Ni錯体またはB−423/Ni錯体)を用いて、エチレン/アクリル酸t−ブチル/アクリル酸i−ブチル共重合体、及びエチレン/アクリル酸t-ブチル/2−ノルボルネン共重合体を製造した。特開2016−79408号公報に記載された製造例1または製造例3を参考に、乾燥トルエン中、トリn−オクチルアルミニウム(TNOA)及び金属錯体種(触媒)の存在下で共重合体の製造を行った。適宜変更した製造条件として、金属錯体種(触媒)、金属錯体量、トリn−オクチルアルミニウム(TNOA)量、トルエン量、コモノマー1の種類、コモノマー2の種類を表1に;コモノマー1の量、コモノマー2の量、エチレン分圧、重合温度、重合時間を表2に示す。また、製造結果を表3に示す。
更に得られた共重合体について、コモノマー1及び2の含量、並びに当該共重合体の物性を表4及び表5に示す。表4及び表5中、ベース樹脂前駆体1とは、製造例1により得られた共重合体を指し、ベース樹脂前駆体2とは製造例2により得られたベース樹脂前駆体を指す。但し、表中の「非検出」は検出限界未満を意味する。

<(製造例3,4):アイオノマーベース樹脂の製造>
容量500mlセパラブルフラスコに、得られたベース樹脂前駆体1又は2(製造例1又は2の共重合体)を40gとパラトルエンスルホン酸一水和物を0.8g、トルエンを185ml投入し、105℃で4時間撹拌した。イオン交換水185mlを投入し撹拌、静置した後、水層を抜き出した。以後、抜き出した水層のpHが5以上となるまで、イオン交換水の投入と抜き出しを繰り返し行った。残った溶液から溶媒を減圧留去し、恒量になるまで乾燥を行なった。ベース樹脂前駆体1からベース樹脂1を(製造例3)、ベース樹脂前駆体2からベース樹脂2を(製造例4)を、それぞれ得た。
得られた樹脂のIRスペクトルにおいて、tBu基に由来する850cm−1付近のピークの消失及び、エステルのカルボニル基に由来する1730cm−1付近のピークの減少と、カルボン酸(二量体)のカルボニル基に由来する1700cm−1付近のピークの増加を観測した。
これにより、t-ブチルエステルの分解およびカルボン酸の生成を確認し、アイオノマーベース樹脂1,2を得た。得られた樹脂の物性を表6〜8に示す。ここで、表中のEはエチレン、AAはアクリル酸モノマー単位、NBは2-ノルボルネンモノマー単位、iBAはアクリル酸i-ブチルモノマー単位を意味する。但し、表中の「非検出」は検出限界未満を意味する。
<製造例5,6):アイオノマーの製造>
1)Naイオン供給源の作製
容量60mlの小型ミキサーを取り付けた東洋精機(株)製ラボプラストミル:ローラミキサR60型に、エチレン/メタクリル酸(MAA)共重合体(三井・ダウポリケミカル(株)製 銘柄:Nucrel N1050H)を22gと炭酸ナトリウムを18g投入し、180℃、40rpmで3分間混練することでNaイオン供給源を作製した。
2)Znイオン供給源の作製
容量60mlの小型ミキサーを取り付けた東洋精機(株)製ラボプラストミル:ローラミキサR60型に、エチレン/メタクリル酸(MAA)共重合体(三井・ダウポリケミカル(株)製 銘柄:Nucrel N1050H)を21.8gと酸化亜鉛を18gとステアリン酸亜鉛を0.2g投入し、180℃、40rpmで3分間混練することでZnイオン供給源を作製した。
3):アイオノマーの作製
容量60mlの小型ミキサーを取り付けた東洋精機(株)製ラボプラストミル:ローラミキサR60型に、ベース樹脂1又は2を40g投入し、160℃、40rpmで3分間混練し溶解させた。その後、Naイオン供給源またはZnイオン供給源を所望の中和度となるように投入し、250℃、40rpmで5分間混練を行った。
得られた樹脂のIRスペクトルにおいて、カルボン酸(二量体)のカルボニル基に由来する1700cm−1付近のピークが減少し、カルボン酸塩基のカルボニル基に由来する1560cm−1付近のピークが増加していた。カルボン酸(二量体)のカルボニル基に由来する1700cm−1付近のピークの減少量から所望の中和度のアイオノマーが作製できていることを確認した。
ベース樹脂1からアイオノマー実施品1を(製造例5)、ベース樹脂2からアイオノマー実施品2を(製造例6)、それぞれ得た。
得られたアイオノマーの物性を表9、表10に示す。
(比較品1):エチレン/メタクリル酸(E/MAA)ベース二元アイオノマー
エチレンとメタクリル酸とメタクリル酸Naの共重合体であって、高圧ラジカル法プロセスによって製造されたアイオノマー樹脂(三井・ダウポリケミカル(株)製 銘柄:HIMILAN HIM1555)を参考アイオノマーとして用いた。物性を表9、表10に示す。
(比較品2):ポリエチレン
日本ポリエチレン(株)製 銘柄:KS560Tを参考ポリエチレンとして用いた。物性を表9、表10に示す。
(比較品3):ポリエチレン
日本ポリエチレン(株)製 銘柄:KF360Tを参考ポリエチレンとして用いた。物性を表9、表10に示す。
ここで、表中のEはエチレン、AAはアクリル酸モノマー単位、NBは2-ノルボルネンモノマー単位、iBAはアクリル酸i-ブチルモノマー単位、MAAはメタクリル酸モノマー単位を意味する。
また、Na+/(M)AAは(メタ)アクリル酸モノマー単位モル当たりのナトリウムイオンのモル数を百分率で示したものである。
また、2×Zn2+/(M)AAは、(メタ)アクリル酸モノマー単位モル当たりの、一価換算での亜鉛イオン(二価)のモル数、すなわち、亜鉛イオン(二価)のモル数の二倍のモル数を百分率で示したものである。

<実施例と比較例の結果の考察>
[評価]
以上のとおり、表10に示す結果から、アイオノマー実施品1〜2と比較品1〜3とを対比すると、比較品であるエチレン系アイオノマー(比較品1)及びポリエチレン(比較品2〜3)は、柔軟性、弾性回復性のバランスが実施品1〜2のエチレン系アイオノマーに対して見劣りしている。
また表10に示す結果から、比較品1〜3に比べて、本発明による三次元網状構造体用エチレン系アイオノマーである実施品1〜2は、柔軟性、弾性回復性、成形性のバランスが良好であることが確認された。
本発明によれば、ベッドマット等に好適であるエチレン系アイオノマー製の成形品、特に三次元網状構造体を提供することができる。
すなわち、本発明のエチレン系アイオノマーを用いた成形品は、柔軟性、弾性回復性のバランスに優れるため、産業上大いに有用である。

Claims (8)

  1. 下記の特性(a)〜(f):
    (a)エチレン及び/又は炭素数3〜20のα−オレフィンに由来する構造単位(A)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位(B)を必須構成単位として含む共重合体(P)をベース樹脂とすること;
    (b)前記構造単位(B)中のカルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部が周期表の第1族、第2族、又は第12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換されていること;
    (c)回転式レオメータで測定した複素弾性率Gの絶対値0.1MPaにおける位相角δが、50〜75度であること;
    (d)温度190℃、荷重2.16kgにおけるメルトフローレート(MFR)が1〜50g/10分であること;
    (e)引張試験における弾性回復率が65〜100%であること;及び
    (f)引張弾性率が20〜200MPaであること;
    を満足するアイオノマー樹脂である、三次元網状構造体用エチレン系アイオノマー。
  2. 前記共重合体(P)の13C−NMRにより算出されるメチル分岐数が、炭素1,000個当たり50個以下であることを特徴とする、請求項1に記載の三次元網状構造体用エチレン系アイオノマー。
  3. 前記共重合体(P)が、共重合体中に前記構造単位(B)を2〜20mol%含むことを特徴とする、請求項1又は2に記載の三次元網状構造体用エチレン系アイオノマー。
  4. 前記構造単位(A)が、エチレンに由来する構造単位であることを特徴とする、請求項1〜3のいずれか1項に記載の三次元網状構造体用エチレン系アイオノマー。
  5. 前記共重合体(P)が、周期表の第8〜11族の遷移金属を含む遷移金属触媒を用いて製造されることを特徴とする、請求項1〜4のいずれか1項に記載の三次元網状構造体用エチレン系アイオノマー。
  6. 前記遷移金属触媒が、リンスルホン酸又はリンフェノール配位子とニッケル又はパラジウムからなる遷移金属触媒であることを特徴とする、請求項5に記載の三次元網状構造体用エチレン系アイオノマー。
  7. 請求項1〜6のいずれか一項に記載のエチレン系アイオノマーからなる成形体。
  8. 前記成形体が三次元網状構造体である、請求項7に記載の成形体。
JP2020112523A 2019-07-01 2020-06-30 三次元網状構造体用エチレン系アイオノマー及びその成形体 Active JP7484495B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019123066 2019-07-01
JP2019123066 2019-07-01

Publications (2)

Publication Number Publication Date
JP2021008611A true JP2021008611A (ja) 2021-01-28
JP7484495B2 JP7484495B2 (ja) 2024-05-16

Family

ID=74198517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020112523A Active JP7484495B2 (ja) 2019-07-01 2020-06-30 三次元網状構造体用エチレン系アイオノマー及びその成形体

Country Status (1)

Country Link
JP (1) JP7484495B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101855076A (zh) 2007-11-09 2010-10-06 纳幕尔杜邦公司 离聚物及其制品
EP3208285B2 (en) 2014-10-15 2023-01-25 Japan Polyethylene Corporation Production method of an ethylene and/or alpha-olefin-based ionomer
JP7175741B2 (ja) 2017-12-25 2022-11-21 日本ポリエチレン株式会社 多元系極性基含有オレフィン共重合体

Also Published As

Publication number Publication date
JP7484495B2 (ja) 2024-05-16

Similar Documents

Publication Publication Date Title
JP6750936B2 (ja) エチレン系アイオノマーの製造方法及びエチレン系アイオノマー
JP7175741B2 (ja) 多元系極性基含有オレフィン共重合体
CN103772572A (zh) 4-甲基-1-戊烯系共聚物、该共聚物得到的薄膜及脱模薄膜
CN113454127B (zh) 多元离聚物
WO2020262481A1 (ja) 射出成形用又は圧縮成形用樹脂組成物
JP2021007744A (ja) ゴルフボール用樹脂
JP2021008613A (ja) ガスケット用エチレン系アイオノマー及びその成形体
JP7501157B2 (ja) ダイシングテープ基材用樹脂、それを含む樹脂組成物、ダイシングテープ基材及びダイシングテープ
JP7484495B2 (ja) 三次元網状構造体用エチレン系アイオノマー及びその成形体
JP2021008612A (ja) ガラス積層体用樹脂
WO2020204063A1 (ja) 特定のアイオノマーを含むポリアミド樹脂組成物
JP2021001332A (ja) 軟質系シート用エチレン系アイオノマー及びその成形体
JP2021001331A (ja) エチレン系アイオノマー及びその中空成形容器
WO2023182498A1 (ja) 周期表2族金属含有アイオノマー
JP2020117712A (ja) 極性基含有オレフィン共重合体
JP2021001333A (ja) フィルム用樹脂組成物及びそれを用いたエチレン系フィルム
WO2020262369A1 (ja) ラミネート用重合体組成物及びそれを用いた積層体
JP2021008614A (ja) チューブ用エチレン系アイオノマー及びその成形体
JP2023018968A (ja) 帯電防止用樹脂組成物
JP7453843B2 (ja) 極性基含有オレフィン共重合体及びその製造方法
JP2022150804A (ja) 積層体用樹脂組成物、積層体及び液体包装袋

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240415

R150 Certificate of patent or registration of utility model

Ref document number: 7484495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150