JP2021006720A - Combusting-cylinder ratio variation control apparatus - Google Patents

Combusting-cylinder ratio variation control apparatus Download PDF

Info

Publication number
JP2021006720A
JP2021006720A JP2020178875A JP2020178875A JP2021006720A JP 2021006720 A JP2021006720 A JP 2021006720A JP 2020178875 A JP2020178875 A JP 2020178875A JP 2020178875 A JP2020178875 A JP 2020178875A JP 2021006720 A JP2021006720 A JP 2021006720A
Authority
JP
Japan
Prior art keywords
cylinder
ratio
combustion
deactivation
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020178875A
Other languages
Japanese (ja)
Inventor
智洋 中野
Tomohiro Nakano
智洋 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JP2021006720A publication Critical patent/JP2021006720A/en
Priority to JP2022137679A priority Critical patent/JP7435674B2/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D1/00Controlling fuel-injection pumps, e.g. of high pressure injection type
    • F02D1/02Controlling fuel-injection pumps, e.g. of high pressure injection type not restricted to adjustment of injection timing, e.g. varying amount of fuel delivered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3058Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used the engine working with a variable number of cycles

Abstract

To provide a combusting-cylinder ratio variation control apparatus capable of suppressing variation in an engine revolution associated with a change in cylinder deactivation intervals in performing the variation control of a combusting-cylinder ratio.SOLUTION: A combusting-cylinder ratio variation control unit 11, for use in variation control of a combusting-cylinder ratio of an engine 10 during an intermittent deactivation operation performing an intermittent cylinder deactivation, includes a target combusting-cylinder ratio computation part 13 and a cylinder deactivation pattern determination part 14. The target combusting-cylinder ratio computation part 13 calculates, as a target combusting-cylinder ratio, a combusting-cylinder ratio that can be realized by repeating cylinder deactivation at a constant interval. In a case where a present combusting-cylinder ratio is consistent with the target combusting-cylinder ratio, the cylinder deactivation pattern determination part 14 sets, as a cylinder deactivation pattern to be executed next, a pattern with which cylinder deactivation pattern can realize the target cylinder deactivation interval, whereas in a case where the aforementioned consistency is absent, the cylinder deactivation pattern determination part sets a pattern with which a cylinder deactivation interval becomes shorter than the present cylinder deactivation interval by one cylinder so as to realize the target combusting-cylinder ratio.SELECTED DRAWING: Figure 1

Description

本発明は、気筒休止を間欠的に行う間欠休止運転中にエンジンの燃焼気筒比率の可変制御を行う技術に関する。 The present invention relates to a technique for variably controlling the combustion cylinder ratio of an engine during intermittent pause operation in which cylinders are paused intermittently.

上記のような燃焼気筒比率[=燃焼気筒数/(燃焼気筒数+休止気筒数)]の可変制御を行う方法として、特許文献1に記載の方法が知られている。同文献では、燃焼を行う気筒、燃焼を休止する気筒を固定しないことで、多様な燃焼気筒比率を実現している。 The method described in Patent Document 1 is known as a method for variably controlling the combustion cylinder ratio [= number of combustion cylinders / (number of combustion cylinders + number of rest cylinders)] as described above. In this document, various combustion cylinder ratios are realized by not fixing the cylinders that perform combustion and the cylinders that stop combustion.

米国特許第9200575号明細書U.S. Pat. No. 9,200,755

上記文献には、所定の燃焼気筒比率を実現する気筒休止のパターンの一例として、5気筒を続けて燃焼を行った後に1気筒の燃焼を休止し、その後、1気筒で燃焼を行った後に1気筒の燃焼を休止するパターンで気筒休止を行うことで、燃焼気筒比率を0.75(=6/8)とすることが記載されている。この気筒休止のパターンには、気筒休止間隔が5気筒分の区間と同間隔が1気筒分の区間とが存在している。 In the above document, as an example of a cylinder suspension pattern that realizes a predetermined combustion cylinder ratio, combustion of one cylinder is paused after continuously burning five cylinders, and then combustion is performed by one cylinder, and then 1 It is described that the combustion cylinder ratio is set to 0.75 (= 6/8) by performing cylinder suspension in a pattern of suspending combustion of cylinders. In this cylinder deactivation pattern, there are a section where the cylinder deactivation interval is for 5 cylinders and a section where the same interval is for 1 cylinder.

エンジン回転数は、気筒休止に応じて一旦落ち込むが、その後のエンジン回転数の上昇量は、気筒休止間隔が長い区間では大きくなり、同間隔が短い区間では小さくなる。そのため、気筒休止間隔が長い区間と短い区間とが混在すると、エンジンの回転変動が大きくなる。こうしたエンジンの回転変動を抑えるには、気筒毎の個別のトルク管理が必要となる。すなわち、気筒休止間隔が短い区間では燃焼を行う各気筒のトルク発生量を、同間隔が長い区間よりも大きくして、次の気筒休止までのエンジン回転数の上昇量を揃える必要がある。 The engine speed drops once in response to cylinder deactivation, but the amount of increase in engine speed thereafter increases in the section where the cylinder deactivation interval is long, and decreases in the section where the same interval is short. Therefore, if a section having a long cylinder deactivation interval and a section having a short cylinder deactivation interval are mixed, the engine rotation fluctuation becomes large. In order to suppress such engine rotation fluctuations, individual torque management for each cylinder is required. That is, it is necessary to increase the torque generation amount of each cylinder that burns in the section where the cylinder deactivation interval is short as compared to the section where the same interval is long, and to make the amount of increase in the engine speed until the next cylinder deactivation uniform.

さらに、燃焼気筒比率の可変制御を行う場合には、同比率の変更に応じて気筒休止のパターンが変化する。そのため、回転変動を抑えるための気筒毎の個別のトルク管理は複雑なものとなる。 Further, when the combustion cylinder ratio is variably controlled, the cylinder deactivation pattern changes according to the change of the ratio. Therefore, individual torque management for each cylinder to suppress rotational fluctuation becomes complicated.

本発明は、こうした実情に鑑みてなされたものであり、その解決しようとする課題は、燃焼気筒比率の可変制御を行う際の気筒休止間隔の変化に伴うエンジンの回転変動を抑制することである。 The present invention has been made in view of these circumstances, and the problem to be solved is to suppress fluctuations in engine rotation due to changes in cylinder deactivation intervals when variable control of the combustion cylinder ratio is performed. ..

上記課題を解決する燃焼気筒比率の可変制御装置は、気筒休止を間欠的に行う間欠休止運転中にエンジンの燃焼気筒比率の可変制御を行う燃焼気筒比率の可変制御装置において、一定の間隔での気筒休止の繰り返しにより実現可能な燃焼気筒比率を目標燃焼気筒比率として演算する目標燃焼気筒比率演算部と、現在の燃焼気筒比率を実現する間隔で気筒休止を行ってからその次に気筒休止を行うまでの気筒休止の間隔を次回休止間隔としたとき、前記目標燃焼気筒比率と現在の燃焼気筒比率とが一致しているときには、前記目標燃焼気筒比率を実現可能な間隔を前記次回休止間隔とし、前記目標燃焼気筒比率と現在の燃焼気筒比率とが一致していないときには、現在の燃焼気筒比率を実現する間隔よりも前記目標燃焼気筒比率を実現可能な間隔に1気筒分近い間隔を前記次回休止間隔とする気筒休止パターン決定部と、を備えている。 A variable control device for the combustion cylinder ratio that solves the above problems is a variable control device for the combustion cylinder ratio that performs variable control of the combustion cylinder ratio of the engine during intermittent pause operation in which cylinder suspension is performed intermittently, at regular intervals. The target combustion cylinder ratio calculation unit that calculates the combustion cylinder ratio that can be realized by repeating cylinder suspension as the target combustion cylinder ratio, and the cylinder suspension at intervals that realize the current combustion cylinder ratio, and then the cylinder suspension is performed. When the interval between cylinder suspensions up to is the next suspension interval, and the target combustion cylinder ratio and the current combustion cylinder ratio match, the interval at which the target combustion cylinder ratio can be realized is defined as the next suspension interval. When the target combustion cylinder ratio and the current combustion cylinder ratio do not match, the interval of one cylinder closer to the interval at which the target combustion cylinder ratio can be realized than the interval at which the current combustion cylinder ratio is realized is paused next time. It is equipped with a cylinder suspension pattern determination unit for intervals.

このように次回休止間隔を設定した場合には、燃焼気筒比率を一定としている間は、気筒休止間隔が一定に保たれ、燃焼気筒比率を変更する際にも、気筒休止間隔は1気筒分ずつしか変化しないようになる。したがって、上記可変制御装置によれば、燃焼気筒比率の可変制御を行う際の気筒休止間隔の変化に伴うエンジンの回転変動を抑制することができる。 When the next pause interval is set in this way, the cylinder pause interval is kept constant while the combustion cylinder ratio is constant, and even when the combustion cylinder ratio is changed, the cylinder pause interval is one cylinder at a time. Will only change. Therefore, according to the variable control device, it is possible to suppress fluctuations in engine rotation due to changes in the cylinder deactivation interval when variable control of the combustion cylinder ratio is performed.

燃焼気筒比率の可変制御装置の第1実施形態の構成を模式的に示す図。The figure which shows typically the structure of 1st Embodiment of the variable control device of a combustion cylinder ratio. 上記可変制御装置に設けられた目標燃焼気筒比率演算部が演算する目標燃焼気筒比率と要求トルク、エンジン回転数との関係を示すグラフ。The graph which shows the relationship between the target combustion cylinder ratio calculated by the target combustion cylinder ratio calculation unit provided in the said variable control device, the required torque, and the engine speed. 上記可変制御装置に設けられた気筒休止パターン決定部が実行する気筒休止パターン決定ルーチンのフローチャート。The flowchart of the cylinder deactivation pattern determination routine executed by the cylinder deactivation pattern determination unit provided in the said variable control device. 同実施形態による燃焼気筒比率の可変制御の実施態様の一例を示すタイムチャート。A time chart showing an example of an embodiment of variable control of the combustion cylinder ratio according to the same embodiment. 燃焼気筒比率の可変制御装置の第2実施形態の構成を模式的に示す図。The figure which shows typically the structure of the 2nd Embodiment of the variable control device of a combustion cylinder ratio. 上記可変制御装置に設けられた目標燃焼気筒比率演算部が演算する目標燃焼気筒比率と要求トルク、エンジン回転数との関係を示すグラフ。The graph which shows the relationship between the target combustion cylinder ratio calculated by the target combustion cylinder ratio calculation unit provided in the said variable control device, the required torque, and the engine speed.

(第1実施形態)
以下、燃焼気筒比率の可変制御方法、及び可変制御装置の第1実施形態を、図1〜図4を参照して詳細に説明する。ここではまず、図1を参照して、同実施形態の可変制御装置の構成を説明する。
(First Embodiment)
Hereinafter, the variable control method of the combustion cylinder ratio and the first embodiment of the variable control device will be described in detail with reference to FIGS. 1 to 4. Here, first, the configuration of the variable control device of the same embodiment will be described with reference to FIG.

図1に示すエンジン10は、直列に配列された4つの気筒#1〜#4を備える。同エンジン10での気筒#1〜#4の点火順序は、気筒#1、気筒#3、気筒#4、気筒#2の順となっている。 The engine 10 shown in FIG. 1 includes four cylinders # 1 to # 4 arranged in series. The firing order of cylinders # 1 to # 4 in the engine 10 is in the order of cylinder # 1, cylinder # 3, cylinder # 4, and cylinder # 2.

エンジン10は、電子制御ユニット11により制御される。電子制御ユニット11には、エンジン10に設置された各種センサが検出した、エンジン回転数、吸入空気量などの検出信号が入力されている。そして、電子制御ユニット11は、それらの検出信号に基づいて、エンジン10のスロットル開度や燃料噴射時期、燃料噴射量、点火時期等を制御する。 The engine 10 is controlled by the electronic control unit 11. Detection signals such as engine speed and intake air amount detected by various sensors installed in the engine 10 are input to the electronic control unit 11. Then, the electronic control unit 11 controls the throttle opening degree, the fuel injection timing, the fuel injection amount, the ignition timing, and the like of the engine 10 based on the detection signals.

また、電子制御ユニット11は、エンジン10の燃焼気筒比率の可変制御を行う燃焼気筒比率可変制御部12を備える。本実施形態の燃焼気筒比率の可変制御装置は、この燃焼気筒比率可変制御部12により構成されている。燃焼気筒比率は、燃焼気筒及び休止気筒の総数に対する燃焼気筒数の比率[=燃焼気筒数/(燃焼気筒数+休止気筒数)]を表しており、燃焼気筒比率の可変制御は、そうしたエンジン10の燃焼気筒比率を同エンジン10の出力要求に応じて変更する制御となっている。 Further, the electronic control unit 11 includes a combustion cylinder ratio variable control unit 12 that performs variable control of the combustion cylinder ratio of the engine 10. The combustion cylinder ratio variable control device of the present embodiment is composed of the combustion cylinder ratio variable control unit 12. The combustion cylinder ratio represents the ratio of the number of combustion cylinders to the total number of combustion cylinders and rest cylinders [= number of combustion cylinders / (number of combustion cylinders + number of rest cylinders)], and variable control of the combustion cylinder ratio is such an engine 10. It is controlled to change the combustion cylinder ratio of the engine 10 according to the output request of the engine 10.

燃焼気筒比率可変制御部12は、エンジン10の運転状態に応じて、燃焼気筒比率の目標値である目標燃焼気筒比率を演算する目標燃焼気筒比率演算部13と、目標燃焼気筒比率に基づき、エンジン10の気筒休止パターンを決定する気筒休止パターン決定部14とを備えている。そして、燃焼気筒比率可変制御部12は、決定された気筒休止パターンに従って気筒休止が行われるようにエンジン10を制御する。 The combustion cylinder ratio variable control unit 12 is based on the target combustion cylinder ratio calculation unit 13 that calculates the target combustion cylinder ratio, which is the target value of the combustion cylinder ratio, and the engine based on the target combustion cylinder ratio, according to the operating state of the engine 10. It is provided with a cylinder suspension pattern determining unit 14 for determining a cylinder suspension pattern of 10. Then, the combustion cylinder ratio variable control unit 12 controls the engine 10 so that the cylinder deactivation is performed according to the determined cylinder deactivation pattern.

(目標燃焼気筒比率の決定)
ここで、目標燃焼気筒比率演算部13による目標燃焼気筒比率の演算について説明する。目標燃焼気筒比率演算部13は、規定の制御周期毎に、エンジン10の回転数(以下、エンジン回転数と記載する)と、運転者のアクセルペダルの踏込量などから求められたエンジン10の要求トルクとを読込むとともに、それら要求トルク、エンジン回転数から目標燃焼気筒比率を演算する。
(Determination of target combustion cylinder ratio)
Here, the calculation of the target combustion cylinder ratio by the target combustion cylinder ratio calculation unit 13 will be described. The target combustion cylinder ratio calculation unit 13 requests the engine 10 obtained from the engine speed (hereinafter referred to as the engine speed) and the amount of depression of the accelerator pedal of the driver for each specified control cycle. While reading the torque, the target combustion cylinder ratio is calculated from the required torque and engine speed.

図2に、目標燃焼気筒比率演算部13が演算する目標燃焼気筒比率の値と、要求トルク、エンジン回転数との関係を示す。同図に示すように、目標燃焼気筒比率は、値が50%、67%、75%、80%、100%のいずれかとなるように演算される。 FIG. 2 shows the relationship between the value of the target combustion cylinder ratio calculated by the target combustion cylinder ratio calculation unit 13 and the required torque and the engine speed. As shown in the figure, the target combustion cylinder ratio is calculated so that the value is one of 50%, 67%, 75%, 80%, and 100%.

同図に示すように、本実施形態では、要求トルクが既定値αを超えるエンジン10の運転域、及びエンジン回転数が既定値βを下回るエンジン10の運転域では、目標燃焼気筒比率が100%に固定される。燃焼気筒比率が100%の場合のエンジン10は、すべての気筒で燃焼を行う全気筒燃焼で運転される。このときのエンジン10では、吸気行程において気筒が吸入する空気の流量(シリンダ流入空気量)を調整することで、要求出力が実現されている。以下、こうした全気筒燃焼運転を行うエンジン10の運転域を全気筒燃焼運転域と記載する。 As shown in the figure, in the present embodiment, the target combustion cylinder ratio is 100% in the operating range of the engine 10 in which the required torque exceeds the default value α and in the operating range of the engine 10 in which the engine speed is lower than the default value β. Is fixed to. When the combustion cylinder ratio is 100%, the engine 10 is operated by all-cylinder combustion in which combustion is performed in all cylinders. In the engine 10 at this time, the required output is realized by adjusting the flow rate of air taken in by the cylinder (cylinder inflow air amount) in the intake stroke. Hereinafter, the operating range of the engine 10 that performs such all-cylinder combustion operation will be referred to as an all-cylinder combustion operating range.

これに対して、要求トルクが既定値α以下、且つエンジン回転数が既定値β以上の運転域では、目標燃焼気筒比率が要求トルクに応じて50%〜80%の範囲で変更される。こうした運転域では、間欠的に気筒休止が行われ、シリンダ流入空気量の調整と燃焼気筒比率の変更とにより、エンジン10の要求出力が実現されている。以下、こうした間欠的な気筒休止を行うエンジン10の運転域を、間欠休止運転域と記載する。 On the other hand, in the operating range where the required torque is equal to or less than the default value α and the engine speed is equal to or higher than the default value β, the target combustion cylinder ratio is changed in the range of 50% to 80% according to the required torque. In such an operating range, cylinder suspension is performed intermittently, and the required output of the engine 10 is realized by adjusting the cylinder inflow air amount and changing the combustion cylinder ratio. Hereinafter, the operating range of the engine 10 that performs such intermittent cylinder deactivation will be referred to as an intermittent deactivation operating range.

ちなみに、全気筒燃焼運転域と間欠休止運転域とを分ける要求トルクの閾値となっている上記既定値αの値には、燃焼気筒比率を80%とした状態でも達成可能なエンジントルクの最大値が設定されている。これに対して、全気筒燃焼運転域と間欠休止運転域とを分けるエンジン回転数の閾値となっている上記既定値βの値には、次のような値が設定されている。すなわち、間欠休止運転中のエンジン10では、気筒休止が行われる毎にエンジン回転数が一時的落ち込むため、気筒休止間隔を周期とした振動や騒音が発生する。気筒休止の間隔が一定の場合、エンジン回転数が低いほど、気筒休止に伴う振動や騒音の周波数も低くなる。一方、乗員は、ある程度よりも低い周波数の振動や騒音を不快と感じ易い。そこで、上記既定値βには、気筒休止による振動や騒音の周波数が、乗員が不快に感じるほどの低い周波数とならないエンジン回転数の下限値が値として設定されている。 By the way, the above-mentioned default value α, which is the threshold value of the required torque that separates the all-cylinder combustion operation range and the intermittent pause operation range, is the maximum value of the engine torque that can be achieved even when the combustion cylinder ratio is 80%. Is set. On the other hand, the following values are set for the value of the above-mentioned default value β, which is the threshold value of the engine speed that separates the all-cylinder combustion operation range and the intermittent pause operation range. That is, in the engine 10 during the intermittent deactivation operation, the engine speed temporarily drops each time the cylinder deactivation is performed, so that vibration and noise are generated with the cylinder deactivation interval as a cycle. When the cylinder deactivation interval is constant, the lower the engine speed, the lower the frequency of vibration and noise associated with cylinder deactivation. On the other hand, occupants tend to feel uncomfortable with vibrations and noises having frequencies lower than a certain level. Therefore, the default value β is set as a lower limit value of the engine speed at which the frequency of vibration or noise due to cylinder deactivation does not become a low frequency that makes the occupant feel uncomfortable.

(気筒休止パターンの決定)
続いて、気筒休止パターン決定部14による気筒休止パターンの決定について説明する。表1には、燃焼気筒比率の可変制御において使用される燃焼気筒比率の値のそれぞれにおける、気筒の燃焼、休止の順序が示されている。同表に示されるように、燃焼気筒比率の可変制御では、0%、50%、67%、75%、80%、83%、86%、88%、100%の9通りの燃焼気筒比率が使用される。ちなみに、燃料カット時やアイドルストップ時など、一時的に全ての気筒で燃焼を休止する全気筒休止の場合が、燃焼気筒比率が0%の場合となる。
(Determining cylinder deactivation pattern)
Subsequently, determination of the cylinder deactivation pattern by the cylinder deactivation pattern determination unit 14 will be described. Table 1 shows the order of combustion and deactivation of the cylinders in each of the values of the combustion cylinder ratio used in the variable control of the combustion cylinder ratio. As shown in the table, in the variable control of the combustion cylinder ratio, there are nine types of combustion cylinder ratios of 0%, 50%, 67%, 75%, 80%, 83%, 86%, 88% and 100%. used. Incidentally, in the case of all cylinder deactivation in which combustion is temporarily deactivated in all cylinders such as when fuel is cut or idle stop, the combustion cylinder ratio is 0%.

上記9通りの燃焼気筒比率のうち、0%は全気筒休止の場合の比率であり、100%は全気筒燃焼の場合の比率である。よって、表1に示される燃焼気筒比率のうちで、エンジン10の間欠休止運転中に使用される比率は、50%、67%、75%、80%、83%、86%、及び88%の7通りとなる。これらの燃焼気筒比率では、燃焼行程を迎える気筒の順にN(1以上の整数)個の気筒を続けて燃焼させた後に1個の気筒の燃焼を休止するパターンで気筒休止が繰り返される。すなわち、間欠休止運転中に使用される燃焼気筒比率はすべて、上記パターンの気筒休止の繰り返しによって、すなわち一定の間隔での気筒休止の繰り返しによって実現可能な比率となっている。そして、目標燃焼気筒比率演算部13が間欠休止運転中の目標燃焼気筒比率として演算する、50%、67%、75%、及び80%の各燃焼気筒比率も、一定の間隔での気筒休止の繰り返しによって実現可能な燃焼気筒比率となっている。 Of the above nine combustion cylinder ratios, 0% is the ratio in the case of all cylinder deactivation, and 100% is the ratio in the case of all cylinder combustion. Therefore, among the combustion cylinder ratios shown in Table 1, the ratios used during the intermittent pause operation of the engine 10 are 50%, 67%, 75%, 80%, 83%, 86%, and 88%. There are 7 ways. In these combustion cylinder ratios, cylinder deactivation is repeated in a pattern in which N (integer of 1 or more) cylinders are continuously burned in the order of cylinders reaching the combustion stroke and then combustion of one cylinder is stopped. That is, all the combustion cylinder ratios used during the intermittent deactivation operation are ratios that can be realized by repeating the cylinder deactivation of the above pattern, that is, by repeating the cylinder deactivation at regular intervals. Then, the 50%, 67%, 75%, and 80% combustion cylinder ratios calculated by the target combustion cylinder ratio calculation unit 13 as the target combustion cylinder ratio during the intermittent pause operation are also cylinder pauses at regular intervals. It is a combustion cylinder ratio that can be realized by repetition.

本実施形態では、上記気筒休止パターンのそれぞれに、各パターンにおいて続けて燃焼する気筒の数(N)を値とする識別番号(ID)を付している。さらに、本実施形態では、後述する気筒休止パターン決定ルーチンにおける、全気筒燃焼運転から間欠休止運転への移行時、及び全気筒休止運転から間欠休止運転への移行時における処理の都合上、燃焼気筒比率が0%(全気筒休止)及び100%(全気筒燃焼)の場合については、次の扱いとしている。すなわち、気筒休止のみが繰り返される燃焼気筒比率が0%(全気筒休止)の場合については、1回の気筒休止からなるパターンを便宜上の気筒休止パターンとし、その識別番号を「0」としている。また、燃焼のみが繰り返される燃焼気筒比率が100%の場合については、1回の燃焼からなるパターンを便宜上の気筒休止パターンとし、その識別番号を「8」としている。 In the present embodiment, each of the cylinder deactivation patterns is assigned an identification number (ID) whose value is the number of cylinders (N) that continuously burn in each pattern. Further, in the present embodiment, for the convenience of processing in the cylinder deactivation pattern determination routine described later at the time of transition from all cylinder deactivation operation to intermittent deactivation operation and at the time of transition from all cylinder deactivation operation to intermittent deactivation operation, the combustion cylinder The cases where the ratio is 0% (all cylinders deactivated) and 100% (all cylinders burned) are treated as follows. That is, when the ratio of combustion cylinders in which only cylinder deactivation is repeated is 0% (all cylinder deactivation), a pattern consisting of one cylinder deactivation is used as a convenient cylinder deactivation pattern, and its identification number is set to "0". Further, when the ratio of combustion cylinders in which only combustion is repeated is 100%, a pattern consisting of one combustion is set as a cylinder deactivation pattern for convenience, and the identification number is set to "8".

さらに、本実施形態では、気筒休止パターンを変更する際には、変更前の気筒休止パターンを最後まで行ってから、変更後の気筒休止パターンを最初から開始するようにしている。また、本実施形態では、変更前の気筒休止パターンの最後に気筒休止を行ってから、変更後の気筒休止パターンを開始するようにしている。そのため、識別番号が1〜7の各気筒休止パターンは、末尾に当たる気筒が休止気筒となるように設定されている。さらに、気筒休止を含んでいない全気筒燃焼に対応する識別番号が8の気筒休止パターンについては、他の気筒休止パターンへの変更の直前の場合に限り、1個の気筒で燃焼した後に1個の気筒の燃焼を休止するパターンとするようにしている。 Further, in the present embodiment, when changing the cylinder deactivation pattern, the cylinder deactivation pattern before the change is performed to the end, and then the cylinder deactivation pattern after the change is started from the beginning. Further, in the present embodiment, the cylinder deactivation pattern is started at the end of the cylinder deactivation pattern before the change, and then the cylinder deactivation pattern after the change is started. Therefore, in each cylinder suspension pattern having the identification numbers 1 to 7, the cylinder corresponding to the end is set to be the suspension cylinder. Further, regarding the cylinder deactivation pattern having the identification number 8 corresponding to the combustion of all cylinders not including the cylinder deactivation, one after burning in one cylinder only immediately before the change to another cylinder deactivation pattern. The pattern is such that the combustion of the cylinder is stopped.

気筒休止パターン決定部14は、目標燃焼気筒比率演算部13が演算した目標燃焼気筒比率に基づき、上記識別番号0〜8の気筒休止パターンのいずれかを、実際にエンジン10で行う気筒休止のパターンとして決定する。図3に、気筒休止パターン決定部14が気筒休止パターンの決定に際して実行する気筒休止パターン決定ルーチンのフローチャートを示す。気筒休止パターン決定部14は、同ルーチンの処理を、エンジン10の燃焼周期毎に実行する。 The cylinder deactivation pattern determination unit 14 actually performs any of the cylinder deactivation patterns of the identification numbers 0 to 8 in the engine 10 based on the target combustion cylinder ratio calculated by the target combustion cylinder ratio calculation unit 13. To determine as. FIG. 3 shows a flowchart of a cylinder deactivation pattern determination routine executed by the cylinder deactivation pattern determination unit 14 when determining a cylinder deactivation pattern. The cylinder deactivation pattern determination unit 14 executes the same routine processing for each combustion cycle of the engine 10.

図3に示すように、本ルーチンの処理が開始されると、まずステップS100において、目標燃焼気筒比率演算部13が演算した目標燃焼気筒比率の気筒休止パターンの識別番号(以下、目標パターンNtと記載する)と、エンジン10において現在行われている気筒休止パターンの識別番号(以下、現在パターンNcと記載する)と、が読み込まれる。続いて、ステップS110において、目標パターンNt、現在パターンNcの両値が一致しているか否かが判定される。そして、両値が一致していれば(YES)、ステップS120に処理が進められ、一致していなければ(NO)、ステップS130に処理が進められる。 As shown in FIG. 3, when the processing of this routine is started, first, in step S100, the identification number of the cylinder deactivation pattern of the target combustion cylinder ratio calculated by the target combustion cylinder ratio calculation unit 13 (hereinafter referred to as the target pattern Nt). The identification number of the cylinder deactivation pattern currently being performed in the engine 10 (hereinafter, referred to as the pattern Nc) is read. Subsequently, in step S110, it is determined whether or not both the values of the target pattern Nt and the current pattern Nc match. If both values match (YES), the process proceeds to step S120, and if they do not match (NO), the process proceeds to step S130.

ステップS120に処理が進められると、そのステップS120において、現在パターンNcの値が次回パターンNnの値として設定される。そして、ステップS160において、現在の気筒休止パターンが終了してから行われる次回の気筒休止パターンとして、次回パターンNnの値を識別番号とする気筒休止パターンが設定された後、本ルーチンの処理が終了される。すなわち、このときのエンジン10では、次回も現在と同じ気筒休止パターンで気筒休止が行われる。 When the process proceeds to step S120, the value of the current pattern Nc is set as the value of the next pattern Nn in the step S120. Then, in step S160, as the next cylinder deactivation pattern to be performed after the current cylinder deactivation pattern ends, a cylinder deactivation pattern having the value of the next pattern Nn as an identification number is set, and then the processing of this routine ends. Will be done. That is, in the engine 10 at this time, the cylinder deactivation is performed in the same cylinder deactivation pattern as the present one next time.

これに対して、現在パターンNc及び目標パターンNtの両値が一致しておらず(S110:NO)、ステップS130に処理が進められると、そのステップS130において、両値の大小関係が判定される。そして、目標パターンNtの値が現在パターンNcの値よりも大きい値である場合には(S130:YES)、ステップS140において、現在パターンNcの値に1を加えた値が、次回パターンNnの値として設定される(Nn←Nc+1)。一方、目標パターンNtの値が現在パターンNcの値よりも小さい値である場合には(S130:NO)、ステップS150において、現在パターンNcの値から1を引いた値が次回パターンNnの値として設定される(Nn←Nc−1)。そして、上述のステップS160において、ステップS140又はステップS150で設定した次回パターンNnの値を識別番号とする気筒休止パターンが次回に行う気筒休止パターンとして設定された後、本ルーチンの処理が終了される。 On the other hand, if both values of the current pattern Nc and the target pattern Nt do not match (S110: NO) and the process proceeds to step S130, the magnitude relationship between the two values is determined in step S130. .. Then, when the value of the target pattern Nt is larger than the value of the current pattern Nc (S130: YES), the value obtained by adding 1 to the value of the current pattern Nc in step S140 is the value of the next pattern Nn. Is set as (Nn ← Nc + 1). On the other hand, when the value of the target pattern Nt is smaller than the value of the current pattern Nc (S130: NO), in step S150, the value obtained by subtracting 1 from the value of the current pattern Nc is used as the value of the next pattern Nn. It is set (Nn ← Nc-1). Then, in step S160 described above, the processing of this routine is terminated after the cylinder deactivation pattern having the value of the next pattern Nn set in step S140 or step S150 as the identification number is set as the cylinder deactivation pattern to be performed next time. ..

ここで、現在の燃焼気筒比率を実現する間隔で気筒休止を行ってからその次に気筒休止を行うまでの気筒休止の間隔を次回休止間隔と記載する。上記のように間欠休止運転中に使用される識別番号1〜7の各気筒休止パターンは、その末尾が気筒休止とされている。よって、次回休止間隔は、現在の気筒休止パターンが終了してから行われる次回の気筒休止パターンにおける燃焼気筒数に相当する。 Here, the cylinder deactivation interval from the cylinder deactivation to the next cylinder deactivation at the interval that realizes the current combustion cylinder ratio is described as the next deactivation interval. As described above, each cylinder suspension pattern of the identification numbers 1 to 7 used during the intermittent suspension operation has a cylinder suspension at the end. Therefore, the next deactivation interval corresponds to the number of combustion cylinders in the next cylinder deactivation pattern performed after the current cylinder deactivation pattern ends.

上記気筒休止パターン決定ルーチンでは、目標燃焼気筒比率に対応する気筒休止パターンの識別番号(目標パターンNt)と実行中の気筒休止パターンの識別番号(現在パターンNc)とが一致する場合(S110:YES)には、実行中の気筒休止パターンが次回も継続される。目標パターンNtと現在パターンNcとが一致する場合とは、目標燃焼気筒比率と現在の燃焼気筒比率とが一致している場合であり、このときの気筒休止間隔は、目標燃焼気筒比率を実現可能な間隔となっている。よって、気筒休止パターン決定部14は、目標燃焼気筒比率と現在の燃焼気筒比率とが一致しているときには、目標燃焼気筒比率を実現可能な間隔を次回休止間隔とするように、気筒休止のパターンを決定していることになる。 In the cylinder stop pattern determination routine, when the identification number of the cylinder stop pattern (target pattern Nt) corresponding to the target burning cylinder ratio and the identification number of the cylinder stop pattern being executed (current pattern Nc) match (S110: YES). ), The running cylinder pause pattern will continue next time. The case where the target pattern Nt and the current pattern Nc match is the case where the target combustion cylinder ratio and the current combustion cylinder ratio match, and the cylinder pause interval at this time can realize the target combustion cylinder ratio. It is an interval. Therefore, when the target combustion cylinder ratio and the current combustion cylinder ratio match, the cylinder deactivation pattern determination unit 14 sets the cylinder deactivation pattern so that the interval at which the target combustion cylinder ratio can be realized is the next deactivation interval. Will be decided.

これに対して、目標パターンNtと現在パターンNcとが一致しない場合には(S110:NO)、目標パターンNtに近づく側に現在パターンNcの値に1を加減算した値を識別番号とする気筒休止パターンが次回に実行する気筒休止パターンとされる。こうした場合、次回の気筒休止パターンの燃焼気筒数は、現在の気筒休止パターンの燃焼気筒数よりも目標燃焼気筒比率を実現する気筒休止パターンの燃焼気筒数に1気筒分近い値となる。すなわち、このときの次回休止間隔は、現在の燃焼気筒比率を実現する間隔よりも目標燃焼気筒比率を実現可能な間隔に1気筒分近い間隔とされる。 On the other hand, when the target pattern Nt and the current pattern Nc do not match (S110: NO), the cylinder deactivation is set to the value obtained by adding or subtracting 1 to the value of the current pattern Nc on the side approaching the target pattern Nt as the identification number. The pattern is the cylinder deactivation pattern to be executed next time. In such a case, the number of combustion cylinders in the next cylinder deactivation pattern is closer to the number of combustion cylinders in the cylinder deactivation pattern that realizes the target combustion cylinder ratio than the number of combustion cylinders in the current cylinder deactivation pattern. That is, the next pause interval at this time is an interval that is closer to one cylinder than the interval at which the current combustion cylinder ratio can be realized.

(作用効果)
続いて、こうした本実施形態の燃焼気筒比率の可変制御方法及び可変制御装置の作用、効果を説明する。
(Action effect)
Subsequently, the variable control method of the combustion cylinder ratio and the operation and effect of the variable control device of the present embodiment will be described.

図4に、全気筒燃焼運転域から間欠休止運転域における目標燃焼気筒比率が50%の領域にエンジン10の運転域が移行したときの燃焼気筒比率、気筒休止パターン、及び噴射信号の推移を示す。なお、噴射信号は、気筒での燃焼を行う際にその気筒への燃料噴射を指令する信号であり、同図にはエンジン10の4つの気筒#1〜#4に対する噴射信号をマージしたものが示されている。ちなみに、噴射信号は、気筒休止を行うときには出力されないため、同図に示す噴射信号のパルスの間隔が他の部分よりも開いた部分が気筒休止を行っている部分となる。 FIG. 4 shows the transition of the combustion cylinder ratio, the cylinder deactivation pattern, and the injection signal when the operation range of the engine 10 shifts from the all-cylinder combustion operation range to the region where the target combustion cylinder ratio in the intermittent deactivation operation range is 50%. .. The injection signal is a signal for instructing fuel injection to the cylinder when combustion is performed in the cylinder, and in the figure, the injection signals for the four cylinders # 1 to # 4 of the engine 10 are merged. It is shown. By the way, since the injection signal is not output when the cylinder is deactivated, the portion where the pulse interval of the injection signal shown in the figure is wider than the other portions is the portion where the cylinder is deactivated.

目標燃焼気筒比率が100%から50%に変更されると、まず88%の燃焼気筒比率に対応する識別番号が7の気筒休止パターンが実行される。エンジン10は、このときに、全気筒燃焼運転から間欠休止運転へと切り替わる。 When the target combustion cylinder ratio is changed from 100% to 50%, a cylinder deactivation pattern with an identification number of 7 corresponding to the 88% combustion cylinder ratio is first executed. At this time, the engine 10 switches from the all-cylinder combustion operation to the intermittent pause operation.

以後、順番に、86%の燃焼気筒比率に対応する識別番号が6の気筒休止パターン、83%の燃焼気筒比率に対応する識別番号が5の気筒休止パターン、80%の燃焼気筒比率に対応する識別番号が4の気筒休止パターン、75%の燃焼気筒比率に対応する識別番号が3の気筒休止パターン、67%の燃焼気筒比率に対応する識別番号が2の気筒休止パターンを1回ずつ実行した後、このときの目標燃焼気筒比率である50%の燃焼気筒比率に対応する識別番号が1のパターンに気筒休止パターンが変更される。上述のように、識別番号が1〜7の各気筒休止パターンでは、識別番号の値が、気筒休止までに連続して燃焼を行う気筒の数、すなわち気筒休止間隔に対応している。よって、このときの燃焼気筒比率の変更は、気筒休止間隔が1気筒分ずつ変化するように気筒休止パターンを順番に変化させていくことで行われている。 After that, in order, the cylinder deactivation pattern with the identification number 6 corresponding to the combustion cylinder ratio of 86%, the cylinder deactivation pattern with the identification number 5 corresponding to the combustion cylinder ratio of 83%, and the combustion cylinder ratio of 80% correspond. A cylinder deactivation pattern with an identification number of 4, a cylinder deactivation pattern with an identification number of 3 corresponding to a 75% combustion cylinder ratio, and a cylinder deactivation pattern with an identification number of 2 corresponding to a 67% combustion cylinder ratio were executed once. Later, the cylinder deactivation pattern is changed to a pattern in which the identification number corresponding to the 50% combustion cylinder ratio, which is the target combustion cylinder ratio at this time, is 1. As described above, in each cylinder deactivation pattern having the identification numbers 1 to 7, the value of the identification number corresponds to the number of cylinders that continuously burn before the cylinder deactivation, that is, the cylinder deactivation interval. Therefore, the change of the combustion cylinder ratio at this time is performed by sequentially changing the cylinder deactivation pattern so that the cylinder deactivation interval changes by one cylinder.

なお、間欠休止運転域において目標燃焼気筒比率の値が変更された場合にも、同様に、気筒休止間隔が1気筒分ずつ変化するように気筒休止パターンを変化させていくことで、燃焼気筒比率が変更される。このように、間欠休止運転域での燃焼気筒比率の変更は、気筒休止間隔が1気筒分ずつ変化するように気筒休止パターンを変化させていくことで行われる。 Even when the value of the target combustion cylinder ratio is changed in the intermittent deactivation operation range, the combustion cylinder ratio is similarly changed by changing the cylinder deactivation pattern so that the cylinder deactivation interval changes by one cylinder. Is changed. In this way, the combustion cylinder ratio is changed in the intermittent deactivation operation range by changing the cylinder deactivation pattern so that the cylinder deactivation interval changes by one cylinder at a time.

ちなみに、エンジン10の運転域が間欠休止運転域から全気筒燃焼運転域に移行した際には、88%の燃焼気筒比率に対応する識別番号が7の気筒休止パターンとなるまで、気筒休止間隔が1気筒分ずつ変化するように気筒休止パターンを順番に変化させる。そして、上記識別番号が7の気筒休止パターンを実行した後、100%の燃焼気筒比率に対応する識別番号が8の気筒休止パターンに、すなわち全気筒燃焼運転に移行する。この場合、エンジン10の運転域が全気筒燃焼運転域に入っていても、識別番号が7の気筒休止パターンから識別番号が8の気筒休止パターンに切り替えられるまでは、間欠休止運転が続けられることになる。 By the way, when the operating range of the engine 10 shifts from the intermittent deactivation operating range to the all-cylinder combustion operating range, the cylinder deactivation interval is set until the identification number corresponding to the 88% combustion cylinder ratio becomes the cylinder deactivation pattern of 7. The cylinder deactivation pattern is sequentially changed so as to change for each cylinder. Then, after executing the cylinder deactivation pattern with the identification number 7, the shift to the cylinder deactivation pattern with the identification number 8 corresponding to the 100% combustion cylinder ratio, that is, to the all-cylinder combustion operation. In this case, even if the operating range of the engine 10 is in the all-cylinder combustion operating range, the intermittent deactivation operation is continued until the cylinder deactivation pattern with the identification number 7 is switched to the cylinder deactivation pattern with the identification number 8. become.

また、上記実施形態では、燃焼気筒比率が目標燃焼気筒比率と同じ値となっている場合には、目標燃焼気筒比率に対応した気筒休止パターンが繰り返される。すなわち、この場合には、気筒休止間隔が一定に保たれる。 Further, in the above embodiment, when the combustion cylinder ratio is the same value as the target combustion cylinder ratio, the cylinder deactivation pattern corresponding to the target combustion cylinder ratio is repeated. That is, in this case, the cylinder deactivation interval is kept constant.

本実施形態では、上記態様で燃焼気筒比率の可変制御が行われている。こうした燃焼気筒比率の可変制御は、エンジン10の間欠休止運転中の気筒休止の頻度を変更することで実現される。間欠休止運転中のエンジン10では、エンジン回転数は、気筒休止に応じて一旦落ち込み、その後の気筒での燃焼に応じて上昇する。このときのエンジン回転数の上昇量は、次の気筒休止までの燃焼気筒数が多いほど、すなわち、気筒休止間隔が長いほど大きくなる。そのため、気筒休止間隔が長い区間と短い区間とが混在すると、エンジンの回転変動が大きくなる。 In the present embodiment, the variable control of the combustion cylinder ratio is performed in the above embodiment. Such variable control of the combustion cylinder ratio is realized by changing the frequency of cylinder deactivation during the intermittent deactivation operation of the engine 10. In the engine 10 during intermittent deactivation, the engine speed drops once in response to cylinder deactivation and then increases in response to combustion in the cylinder. The amount of increase in the engine speed at this time increases as the number of combustion cylinders until the next cylinder deactivation increases, that is, as the cylinder deactivation interval becomes longer. Therefore, if a section having a long cylinder deactivation interval and a section having a short cylinder deactivation interval are mixed, the engine rotation fluctuation becomes large.

これに対して、本実施形態では、燃焼気筒比率を一定としている間は、気筒の休止間隔が一定に保たれる。また、燃焼気筒比率を変更する際にも、気筒の休止間隔は1気筒分ずつしか変化しない。そのため、気筒休止間隔の変化に伴うエンジンの回転変動を抑制することができる。 On the other hand, in the present embodiment, the pause interval of the cylinders is kept constant while the combustion cylinder ratio is constant. Also, when changing the combustion cylinder ratio, the cylinder pause interval changes only by one cylinder. Therefore, it is possible to suppress fluctuations in engine rotation due to changes in cylinder deactivation intervals.

なお、気筒休止間隔の変化に伴うエンジンの回転変動は、気筒毎の個別のトルク管理により、抑制を図ることができる。すなわち、各気筒のシリンダ吸入空気量や点火時期などの調整により、気筒休止間隔が短い区間では燃焼を行う各気筒のトルク発生量を同間隔が長い区間よりも大きくして、次の気筒休止までのエンジン回転数の上昇量を揃えるようにすれば、気筒休止間隔の変化に伴うエンジンの回転変動を抑えることができる。 It should be noted that fluctuations in engine rotation due to changes in cylinder deactivation intervals can be suppressed by individual torque management for each cylinder. That is, by adjusting the cylinder intake air amount and ignition timing of each cylinder, the torque generation amount of each cylinder that burns in the section where the cylinder deactivation interval is short is made larger than that in the section where the interval is long, and until the next cylinder deactivation. If the amount of increase in the engine speed is made uniform, it is possible to suppress the fluctuation of the engine speed due to the change of the cylinder deactivation interval.

本実施形態でも、燃焼気筒比率の変更に際しては、気筒休止間隔も変更されるため、エンジン10の回転変動を十分に抑えるには、気筒毎の個別のトルク管理が必要となる場合がある。そうした場合にも、本実施形態では、気筒休止間隔を1気筒分ずつ段階的に変化させて燃焼気筒比率を変更しているため、気筒毎のトルク発生量の小幅な調整だけで、エンジン10の回転変動が抑えられる。 Also in this embodiment, when the combustion cylinder ratio is changed, the cylinder deactivation interval is also changed, so that individual torque management for each cylinder may be required in order to sufficiently suppress the rotational fluctuation of the engine 10. Even in such a case, in the present embodiment, since the cylinder pause interval is changed stepwise by one cylinder to change the combustion cylinder ratio, the engine 10 can be adjusted only by making a small adjustment of the torque generation amount for each cylinder. Rotational fluctuation is suppressed.

なお、上記実施形態は、次のように変更して実施することもできる。
・エンジン10の運転域における全気筒燃焼運転域と間欠休止運転域との区分けや、間欠運転休止運転域内での目標燃焼気筒比率の区分けを、図2のものとは異なる区分けとしてもよい。
The above embodiment can also be modified and implemented as follows.
-The division between the all-cylinder combustion operation area and the intermittent operation pause operation area in the operation range of the engine 10 and the division of the target combustion cylinder ratio in the intermittent operation suspension operation area may be different from those in FIG.

・上記実施形態では、燃焼気筒比率の可変制御での同燃焼気筒比率の変更に際して使用する気筒休止パターンとして、気筒休止間隔が1〜7気筒の7つのパターンを設定していた。各パターンの気筒休止間隔の気筒数が連続しているのであれば、こうした気筒休止パターンの数や種類は適宜に変更してもよい。 -In the above embodiment, seven patterns with cylinder deactivation intervals of 1 to 7 are set as cylinder deactivation patterns used when changing the combustion cylinder ratio by variable control of the combustion cylinder ratio. As long as the number of cylinders at the cylinder deactivation interval of each pattern is continuous, the number and types of such cylinder deactivation patterns may be appropriately changed.

(第2実施形態)
次に、燃焼気筒比率の可変制御方法、及び可変制御装置の第2実施形態を、図5及び図6を併せ参照して詳細に説明する。
(Second Embodiment)
Next, the variable control method of the combustion cylinder ratio and the second embodiment of the variable control device will be described in detail with reference to FIGS. 5 and 6.

図5に示すように、本実施形態の可変制御装置は、第1バンクB1及び第2バンクB2の2つのバンクにそれぞれ3つの気筒が設けられたV型6気筒のエンジン10’に適用される。以下の説明では、第1バンクB1に設けられた3つの気筒をそれぞれ気筒#1、気筒#3、気筒#5と記載し、第2バンクB2に設けられた3つの気筒をそれぞれ気筒#2、気筒#4、気筒#6と記載する。このとき、同エンジン10’での気筒#1〜#6の点火順序は、気筒#1、気筒#2、気筒#3、気筒#4、気筒#5、気筒#6の順となっている。 As shown in FIG. 5, the variable control device of the present embodiment is applied to a V-type 6-cylinder engine 10'in which three cylinders are provided in two banks of the first bank B1 and the second bank B2, respectively. .. In the following description, the three cylinders provided in the first bank B1 are described as cylinders # 1, cylinders # 3, and cylinders # 5, respectively, and the three cylinders provided in the second bank B2 are referred to as cylinders # 2, respectively. Described as cylinder # 4 and cylinder # 6. At this time, the firing order of cylinders # 1 to # 6 in the engine 10'is the order of cylinder # 1, cylinder # 2, cylinder # 3, cylinder # 4, cylinder # 5, and cylinder # 6.

エンジン10’を制御する電子制御ユニット11’は、燃焼気筒比率の可変制御装置としての燃焼気筒比率可変制御部12’を備える。燃焼気筒比率可変制御部12’は、エンジン10’の運転状態に応じて目標燃焼気筒比率を演算する目標燃焼気筒比率演算部13’と、目標燃焼気筒比率に基づき、エンジン10’の気筒休止パターンを決定する気筒休止パターン決定部14’とを備えている。そして、燃焼気筒比率可変制御部12’は、決定された気筒休止パターンに従って気筒休止が行われるようにエンジン10’を制御する。 The electronic control unit 11'that controls the engine 10' includes a combustion cylinder ratio variable control unit 12' as a variable control device for the combustion cylinder ratio. The combustion cylinder ratio variable control unit 12'has a target combustion cylinder ratio calculation unit 13'that calculates a target combustion cylinder ratio according to the operating state of the engine 10', and a cylinder deactivation pattern of the engine 10'based on the target combustion cylinder ratio. It is provided with a cylinder deactivation pattern determination unit 14'that determines. Then, the combustion cylinder ratio variable control unit 12'controls the engine 10'so that the cylinder deactivation is performed according to the determined cylinder deactivation pattern.

図6に、目標燃焼気筒比率演算部13’が演算する目標燃焼気筒比率の値と、要求トルク、エンジン回転数との関係を示す。目標燃焼気筒比率演算部13’は、規定の制御周期毎に、エンジン回転数と要求トルクとを読込むとともに、それらエンジン回転数、要求トルクから目標燃焼気筒比率を演算する。同図に示すように本実施形態では、目標燃焼気筒比率は、値が33%、50%、67%、71%、75%、100%のいずれかとなるように演算される。具体的には、要求トルクが既定値γを超えるエンジン10’の運転域、及びエンジン回転数が既定値εを下回るエンジン10’の運転域では、目標燃焼気筒比率が100%に固定される。これに対して、要求トルクが既定値γ以下、且つエンジン回転数が既定値ε以上となるエンジン10’の運転域では、目標燃焼気筒比率が要求トルクに応じて33%〜75%の範囲で変更される。 FIG. 6 shows the relationship between the value of the target combustion cylinder ratio calculated by the target combustion cylinder ratio calculation unit 13', the required torque, and the engine speed. The target combustion cylinder ratio calculation unit 13'reads the engine speed and the required torque for each specified control cycle, and calculates the target combustion cylinder ratio from the engine speed and the required torque. As shown in the figure, in the present embodiment, the target combustion cylinder ratio is calculated so that the value is any one of 33%, 50%, 67%, 71%, 75%, and 100%. Specifically, the target combustion cylinder ratio is fixed at 100% in the operating range of the engine 10'where the required torque exceeds the default value γ and in the operating range of the engine 10' where the engine speed is below the default value ε. On the other hand, in the operating range of the engine 10'where the required torque is γ or less and the engine speed is ε or more, the target combustion cylinder ratio is in the range of 33% to 75% depending on the required torque. Be changed.

一方、本実施形態においても、気筒休止パターン決定部14’は、目標燃焼気筒比率に基づき、エンジン10’で行う気筒休止パターンを決定する。本実施形態において気筒休止パターン決定部14’は、表2に示される12通りの気筒休止パターンのいずれかを、エンジン10’で行う気筒休止パターンとして選んでいる。 On the other hand, also in this embodiment, the cylinder deactivation pattern determination unit 14'determines the cylinder deactivation pattern performed by the engine 10'based on the target combustion cylinder ratio. In the present embodiment, the cylinder deactivation pattern determination unit 14'selects any of the 12 cylinder deactivation patterns shown in Table 2 as the cylinder deactivation pattern performed by the engine 10'.

同表に示すように、本実施形態で使用する12通りの気筒休止パターンは、0%、33%、50%、60%、67%、71%、75%、78%、80%、82%、83%、100%の燃焼気筒比率にそれぞれ対応している。このうち、全気筒休止を表す0%、全気筒燃焼を表す100%の両燃焼気筒比率に対応する気筒休止パターンを除く、10通りの気筒休止パターンでは、燃焼行程を迎える気筒の順にN(1以上の整数)個の気筒を続けて燃焼させた後に2気筒続けて燃焼を休止するパターンで気筒休止が繰り返される。すなわち、間欠休止運転中に使用される気筒休止パターンはすべて、上記パターンの気筒休止の繰り返しによって、すなわち一定の間隔での気筒休止の繰り返しによって実現可能な比率となっている。 As shown in the table, the 12 cylinder deactivation patterns used in this embodiment are 0%, 33%, 50%, 60%, 67%, 71%, 75%, 78%, 80% and 82%. , 83%, and 100% combustion cylinder ratio, respectively. Of these, in the 10 cylinder deactivation patterns, excluding the cylinder deactivation patterns corresponding to the ratio of both combustion cylinders of 0% indicating all cylinder deactivation and 100% indicating all cylinder combustion, N (1) in the order of the cylinders reaching the combustion stroke. Cylinder deactivation is repeated in a pattern in which combustion is paused for two cylinders in succession after burning three cylinders in succession. That is, all the cylinder deactivation patterns used during the intermittent deactivation operation have a ratio that can be realized by repeating the cylinder deactivation of the above pattern, that is, by repeating the cylinder deactivation at regular intervals.

本実施形態では、上記12通りの気筒休止パターンのそれぞれに、各パターンにおいて続けて燃焼する気筒の数(N)を値とする識別番号(ID)を付している。また、本実施形態では、燃焼気筒比率が0%(全気筒休止)の場合については、2気筒続けての気筒休止からなるパターンを便宜上の気筒休止パターンとし、その識別番号を「0」としている。さらに、本実施形態では、燃焼のみが繰り返される燃焼気筒比率が100%(全気筒燃焼)の場合については、2気筒続けての燃焼からなるパターンを便宜上の気筒休止パターンとし、その識別番号を「11」としている。 In the present embodiment, each of the above 12 cylinder deactivation patterns is assigned an identification number (ID) whose value is the number of cylinders (N) that continuously burn in each pattern. Further, in the present embodiment, when the combustion cylinder ratio is 0% (all cylinders are deactivated), a pattern consisting of two consecutive cylinder deactivations is set as a cylinder deactivation pattern for convenience, and the identification number is set to "0". .. Further, in the present embodiment, when the ratio of combustion cylinders in which only combustion is repeated is 100% (all cylinder combustion), a pattern consisting of continuous combustion of two cylinders is set as a cylinder deactivation pattern for convenience, and the identification number is ". 11 ".

そして、気筒休止パターン決定部14’は、目標燃焼気筒比率演算部13が演算した目標燃焼気筒比率に基づき、上記識別番号0〜11の気筒休止パターンのいずれかを、実際にエンジン10’で行う気筒休止のパターンとして決定する。本実施形態の気筒休止パターン決定部14’も、図3の気筒休止パターン決定ルーチンに従って気筒休止パターンを決定している。すなわち、本実施形態においても、燃焼気筒比率の変更は、識別番号が1ずつ変化するように気筒休止パターンを順番に変化させていくことで行われる。また、本実施形態においても、間欠休止運転中に使用される気筒休止パターンの識別番号の値は、該当気筒休止パターンを繰り返したときの気筒休止間隔に対応している。よって、本実施形態においても、気筒休止パターン決定部14’は、目標燃焼気筒比率と現在の燃焼気筒比率とが一致しているときには、目標燃焼気筒比率を実現可能な間隔を次回休止間隔とし、目標燃焼気筒比率と現在の燃焼気筒比率とが一致していないときには、現在の燃焼気筒比率を実現する間隔よりも目標燃焼気筒比率を実現可能な間隔に1気筒分近い間隔を次回休止間隔としている。 Then, the cylinder deactivation pattern determination unit 14'actually performs any of the cylinder deactivation patterns of the identification numbers 0 to 11 in the engine 10'based on the target combustion cylinder ratio calculated by the target combustion cylinder ratio calculation unit 13. Determined as a cylinder deactivation pattern. The cylinder deactivation pattern determination unit 14'of this embodiment also determines the cylinder deactivation pattern according to the cylinder deactivation pattern determination routine of FIG. That is, also in the present embodiment, the combustion cylinder ratio is changed by sequentially changing the cylinder deactivation pattern so that the identification number changes by one. Further, also in the present embodiment, the value of the identification number of the cylinder deactivation pattern used during the intermittent deactivation operation corresponds to the cylinder deactivation interval when the corresponding cylinder deactivation pattern is repeated. Therefore, also in the present embodiment, when the target combustion cylinder ratio and the current combustion cylinder ratio match, the cylinder pause pattern determination unit 14'sets the interval at which the target combustion cylinder ratio can be realized as the next pause interval. When the target combustion cylinder ratio and the current combustion cylinder ratio do not match, the interval for achieving the target combustion cylinder ratio is closer to one cylinder than the interval for achieving the current combustion cylinder ratio as the next pause interval. ..

以上のように構成された本実施形態でも、燃焼気筒比率を一定としている間は、気筒の休止間隔が一定に保たれる。また、燃焼気筒比率の変更の際に、気筒の休止間隔は1気筒分ずつしか変化しない。そのため、本実施形態の可変制御方法及び可変制御装置によっても、燃焼気筒比率の可変制御を行う際の気筒休止間隔の変化に伴うエンジンの回転変動を抑制することができる。 Even in the present embodiment configured as described above, the pause interval between cylinders is kept constant while the combustion cylinder ratio is constant. Further, when the combustion cylinder ratio is changed, the pause interval of the cylinders changes only by one cylinder. Therefore, the variable control method and the variable control device of the present embodiment can also suppress the rotation fluctuation of the engine due to the change of the cylinder deactivation interval when the variable control of the combustion cylinder ratio is performed.

ここで、第1実施形態におけるような、N個の気筒を続けて燃焼させた後に1個の気筒の燃焼を休止するパターンの気筒休止の繰り返しによる間欠燃焼運転を、V型気筒配列のエンジンで行うことを考える。こうした場合、上記Nの値が奇数となるパターンで間欠燃焼を行うと、燃焼を休止する気筒が、2つのバンクのうちの一方に集中してしまう。そしてその結果、両バンクの排気性状に偏りが生じ、エミッションコントロールが困難となる虞がある。これに対して、本実施形態では、第1バンクB1と第2バンクB2との間で交番に燃焼を行うように点火順序が設定されたエンジン10’において、間欠燃焼運転中の燃焼休止を2気筒ずつ連続して行うようにしている。そのため、第1バンクB1、第2バンクB2でそれぞれ1気筒ずつ燃焼が休止されることになり、バンク間の排気性状の偏りを抑制できる。 Here, in the engine of the V-type cylinder array, the intermittent combustion operation by repeating the cylinder deactivation of the pattern in which the combustion of one cylinder is deactivated after continuously combusting N cylinders as in the first embodiment is performed. Think about what to do. In such a case, if intermittent combustion is performed in a pattern in which the value of N is an odd number, the cylinders that stop combustion are concentrated in one of the two banks. As a result, the exhaust properties of both banks may be biased, making emission control difficult. On the other hand, in the present embodiment, in the engine 10'in which the ignition order is set so as to alternately burn between the first bank B1 and the second bank B2, the combustion suspension during the intermittent combustion operation is 2 I try to do it continuously for each cylinder. Therefore, combustion is suspended by one cylinder in each of the first bank B1 and the second bank B2, and the bias of the exhaust properties between the banks can be suppressed.

なお、2気筒続けて燃焼を休止する気筒休止パターンを採用すれば、1個の気筒だけで燃焼を休止する気筒休止パターンを採用する場合よりも、間欠燃焼運転中のエンジントルクの変動は大きくなる。ここで、2気筒続けて燃焼を休止したときのエンジントルクの無発生期間は、4気筒エンジンでは360°CAとなるが、6気筒エンジンでは240°CAとなる。このようにエンジンの気筒数が多いほど、2気筒続けて燃焼を休止したときのエンジントルクの無発生期間は短くなる。よって、気筒数の多いエンジンでは、2気筒続けて燃焼を休止する気筒休止パターンを採用しても、エンジントルクの変動を許容可能な範囲内に留め易い。 If a cylinder deactivation pattern that suspends combustion for two cylinders in a row is adopted, the fluctuation of the engine torque during intermittent combustion operation becomes larger than that when a cylinder deactivation pattern that suspends combustion with only one cylinder is adopted. .. Here, the period during which the engine torque is not generated when the combustion is stopped for two consecutive cylinders is 360 ° CA for the 4-cylinder engine, but 240 ° CA for the 6-cylinder engine. As described above, as the number of cylinders of the engine increases, the period during which the engine torque is not generated when the combustion is stopped for two consecutive cylinders becomes shorter. Therefore, in an engine having a large number of cylinders, even if a cylinder deactivation pattern in which combustion is deactivated for two cylinders in a row is adopted, it is easy to keep the fluctuation of the engine torque within an acceptable range.

10,10’…エンジン、11,11’…電子制御ユニット、12,12’…燃焼気筒比率可変制御部(燃焼気筒比率の可変制御装置)、13,13’…目標燃焼気筒比率演算部、14,14’…気筒休止パターン決定部。 10, 10'... engine, 11, 11' ... electronic control unit, 12, 12' ... combustion cylinder ratio variable control unit (variable control device for combustion cylinder ratio), 13, 13' ... target combustion cylinder ratio calculation unit, 14 , 14'... Cylinder suspension pattern determination unit.

Claims (1)

気筒休止を間欠的に行う間欠休止運転中にエンジンの燃焼気筒比率の可変制御を行う燃焼気筒比率の可変制御装置において、
一定の間隔での気筒休止の繰り返しにより実現可能な燃焼気筒比率を目標燃焼気筒比率として演算する目標燃焼気筒比率演算部と、
現在の燃焼気筒比率を実現する間隔で気筒休止を行ってからその次に気筒休止を行うまでの気筒休止の間隔を次回休止間隔としたとき、前記目標燃焼気筒比率と現在の燃焼気筒比率とが一致しているときには、前記目標燃焼気筒比率を実現可能な間隔を前記次回休止間隔とし、前記目標燃焼気筒比率と現在の燃焼気筒比率とが一致していないときには、現在の燃焼気筒比率を実現する間隔よりも前記目標燃焼気筒比率を実現可能な間隔に1気筒分近い間隔を前記次回休止間隔とする気筒休止パターン決定部と、
を備える燃焼気筒比率の可変制御装置。
In the combustion cylinder ratio variable control device that performs variable control of the combustion cylinder ratio of the engine during intermittent deactivation operation in which cylinder deactivation is performed intermittently
A target combustion cylinder ratio calculation unit that calculates the combustion cylinder ratio that can be realized by repeating cylinder deactivation at regular intervals as the target combustion cylinder ratio,
When the interval between cylinder suspensions from the cylinder suspension to the next cylinder suspension at the interval that realizes the current combustion cylinder ratio is set as the next suspension interval, the target combustion cylinder ratio and the current combustion cylinder ratio are When they match, the interval at which the target combustion cylinder ratio can be realized is set as the next pause interval, and when the target combustion cylinder ratio and the current combustion cylinder ratio do not match, the current combustion cylinder ratio is realized. A cylinder pause pattern determination unit that sets an interval closer to one cylinder as the interval that can realize the target combustion cylinder ratio than the interval as the next pause interval, and
A variable control device for the combustion cylinder ratio.
JP2020178875A 2016-12-16 2020-10-26 Combusting-cylinder ratio variation control apparatus Pending JP2021006720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022137679A JP7435674B2 (en) 2016-12-16 2022-08-31 Combustion cylinder ratio variable control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016244468 2016-12-16
JP2016244468 2016-12-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017133752A Division JP6881105B2 (en) 2016-12-16 2017-07-07 Variable control method of combustion cylinder ratio

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022137679A Division JP7435674B2 (en) 2016-12-16 2022-08-31 Combustion cylinder ratio variable control device

Publications (1)

Publication Number Publication Date
JP2021006720A true JP2021006720A (en) 2021-01-21

Family

ID=62714188

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017133752A Active JP6881105B2 (en) 2016-12-16 2017-07-07 Variable control method of combustion cylinder ratio
JP2020178875A Pending JP2021006720A (en) 2016-12-16 2020-10-26 Combusting-cylinder ratio variation control apparatus
JP2022137679A Active JP7435674B2 (en) 2016-12-16 2022-08-31 Combustion cylinder ratio variable control device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017133752A Active JP6881105B2 (en) 2016-12-16 2017-07-07 Variable control method of combustion cylinder ratio

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022137679A Active JP7435674B2 (en) 2016-12-16 2022-08-31 Combustion cylinder ratio variable control device

Country Status (2)

Country Link
JP (3) JP6881105B2 (en)
RU (1) RU2683339C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7435674B2 (en) 2016-12-16 2024-02-21 トヨタ自動車株式会社 Combustion cylinder ratio variable control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863166B2 (en) 2017-08-08 2021-04-21 トヨタ自動車株式会社 Variable control device for combustion cylinder ratio

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958132A (en) * 1982-09-28 1984-04-03 Isuzu Motors Ltd Engine with variable number of cylinders in operation
JPH0579364A (en) * 1991-03-06 1993-03-30 Aisin Seiki Co Ltd Variable cylinder control device
JPH08246910A (en) * 1995-03-09 1996-09-24 Sanshin Ind Co Ltd Cylinder cut-off control device for two-cycle engine
JP2007009779A (en) * 2005-06-29 2007-01-18 Toyota Motor Corp Control device for internal combustion engine
JP2011202610A (en) * 2010-03-26 2011-10-13 Toyota Motor Corp Control device for vehicle
JP2018188972A (en) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 Intermittent combustion operation method of engine and engine controller
JP2019031937A (en) * 2017-08-08 2019-02-28 トヨタ自動車株式会社 Variable control device of combustion cylinder ratio

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1312210A1 (en) * 1984-12-05 1987-05-23 Хабаровский политехнический институт Method for controlling internal combustion engine
RU2108472C1 (en) * 1996-07-16 1998-04-10 Акционерное общество закрытого типа "Зил-КАР" Dump truck diesel engine operation method
JP3715041B2 (en) * 1996-09-06 2005-11-09 本田技研工業株式会社 Control device for cylinder deactivation engine
JP2005256664A (en) * 2004-03-10 2005-09-22 Toyota Motor Corp Output-control device of internal combustion engine
JP4735512B2 (en) * 2006-11-01 2011-07-27 トヨタ自動車株式会社 Vehicle exhaust noise control device
JP2008215185A (en) 2007-03-05 2008-09-18 Denso Corp Fuel injection control unit and fuel injection control system
JP2011196357A (en) 2010-03-24 2011-10-06 Denso Corp Engine control device
US9458780B2 (en) * 2012-09-10 2016-10-04 GM Global Technology Operations LLC Systems and methods for controlling cylinder deactivation periods and patterns
JP6881105B2 (en) 2016-12-16 2021-06-02 トヨタ自動車株式会社 Variable control method of combustion cylinder ratio

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958132A (en) * 1982-09-28 1984-04-03 Isuzu Motors Ltd Engine with variable number of cylinders in operation
JPH0579364A (en) * 1991-03-06 1993-03-30 Aisin Seiki Co Ltd Variable cylinder control device
JPH08246910A (en) * 1995-03-09 1996-09-24 Sanshin Ind Co Ltd Cylinder cut-off control device for two-cycle engine
JP2007009779A (en) * 2005-06-29 2007-01-18 Toyota Motor Corp Control device for internal combustion engine
JP2011202610A (en) * 2010-03-26 2011-10-13 Toyota Motor Corp Control device for vehicle
JP2018188972A (en) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 Intermittent combustion operation method of engine and engine controller
JP2019031937A (en) * 2017-08-08 2019-02-28 トヨタ自動車株式会社 Variable control device of combustion cylinder ratio

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7435674B2 (en) 2016-12-16 2024-02-21 トヨタ自動車株式会社 Combustion cylinder ratio variable control device

Also Published As

Publication number Publication date
JP2018100658A (en) 2018-06-28
JP7435674B2 (en) 2024-02-21
JP2022164815A (en) 2022-10-27
JP6881105B2 (en) 2021-06-02
RU2683339C1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP7435674B2 (en) Combustion cylinder ratio variable control device
US9964051B2 (en) Firing fraction management in skip fire engine control
US9239037B2 (en) Split bank and multimode skip fire operation
JP6812897B2 (en) Intermittent combustion operation method of engine and engine control device
JP6863166B2 (en) Variable control device for combustion cylinder ratio
EP3336336B1 (en) Variable combustion cylinder ratio control method and variable combustion cylinder ratio control device
JP6226146B2 (en) Engine control device
CN109863291B (en) Method of changing phase of firing sequence and skip fire engine controller
JP6888508B2 (en) Internal combustion engine control device
JP7010040B2 (en) Engine control unit
JP2019060302A (en) Internal combustion engine control device
JP6226147B2 (en) Engine control device
JP3740897B2 (en) Control device for internal combustion engine
JP2022076700A (en) Control device of internal combustion engine
JP2019206961A (en) Vehicle system
BR102017026284A2 (en) VARIABLE COMBUSTION CYLINDER RATE CONTROL METHOD AND VARIABLE COMBUSTION CYLINDER RATE CONTROL DEVICE
JP2014159753A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230104