JP2018100658A - Variable control method and variable control device of combustion cylinder ratio - Google Patents

Variable control method and variable control device of combustion cylinder ratio Download PDF

Info

Publication number
JP2018100658A
JP2018100658A JP2017133752A JP2017133752A JP2018100658A JP 2018100658 A JP2018100658 A JP 2018100658A JP 2017133752 A JP2017133752 A JP 2017133752A JP 2017133752 A JP2017133752 A JP 2017133752A JP 2018100658 A JP2018100658 A JP 2018100658A
Authority
JP
Japan
Prior art keywords
cylinder
ratio
combustion
combustion cylinder
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017133752A
Other languages
Japanese (ja)
Other versions
JP6881105B2 (en
Inventor
智洋 中野
Tomohiro Nakano
智洋 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to US15/813,875 priority Critical patent/US11149661B2/en
Priority to RU2017142951A priority patent/RU2683339C1/en
Priority to EP17206206.9A priority patent/EP3336336B1/en
Priority to CN201711317564.8A priority patent/CN108223149A/en
Publication of JP2018100658A publication Critical patent/JP2018100658A/en
Application granted granted Critical
Publication of JP6881105B2 publication Critical patent/JP6881105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D1/00Controlling fuel-injection pumps, e.g. of high pressure injection type
    • F02D1/02Controlling fuel-injection pumps, e.g. of high pressure injection type not restricted to adjustment of injection timing, e.g. varying amount of fuel delivered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3058Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used the engine working with a variable number of cycles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable control method and a variable control device of a combustion cylinder ratio capable of suppressing rotational fluctuation of an engine in accompany with change of a cylinder stop interval in variably controlling the combustion cylinder ratio.SOLUTION: A combustion cylinder ratio variable control portion 11 for variably controlling a combustion cylinder ratio of an engine 10 during an intermittent stop operation for intermittently stopping cylinders, includes a target combustion cylinder ratio calculation portion 13 and a cylinder stop pattern determining portion 14. The target combustion cylinder ratio calculation portion 13 calculates a combustion cylinder ratio realizable by repeat of cylinder stop at a fixed interval, as a target combustion cylinder ratio. The cylinder stop pattern determining portion 14 determines a pattern to keep the cylinder stop interval at an interval capable of realizing the target combustion cylinder ratio when the target combustion cylinder ratio and the present combustion cylinder ratio are agreed with each other, and determines a pattern to keep the cylinder stop interval at an interval closer to the interval capable of realizing the target combustion cylinder ratio by one cylinder than the present cylinder stop interval.SELECTED DRAWING: Figure 1

Description

本発明は、気筒休止を間欠的に行う間欠休止運転中にエンジンの燃焼気筒比率の可変制御を行う燃焼気筒比率の可変制御方法及び可変制御装置に関する。   The present invention relates to a variable control method for a combustion cylinder ratio and a variable control apparatus for performing variable control of a combustion cylinder ratio of an engine during intermittent pause operation in which cylinder pause is intermittently performed.

上記のような燃焼気筒比率[=燃焼気筒数/(燃焼気筒数+休止気筒数)]の可変制御を行う方法として、特許文献1に記載の方法が知られている。同文献では、燃焼を行う気筒、燃焼を休止する気筒を固定しないことで、多様な燃焼気筒比率を実現している。   As a method for performing variable control of the combustion cylinder ratio [= the number of combustion cylinders / (the number of combustion cylinders + the number of idle cylinders)] as described above, a method described in Patent Document 1 is known. In this document, various combustion cylinder ratios are realized by not fixing the cylinder that performs combustion and the cylinder that stops combustion.

米国特許9200575号明細書US Patent 9200575

上記文献には、所定の燃焼気筒比率を実現する気筒休止のパターンの一例として、5気筒を続けて燃焼を行った後に1気筒の燃焼を休止し、その後、1気筒で燃焼を行った後に1気筒の燃焼を休止するパターンで気筒休止を行うことで、燃焼気筒比率を0.75(=6/8)とすることが記載されている。この気筒休止のパターンには、気筒休止間隔が5気筒分の区間と同間隔が1気筒分の区間とが存在している。   In the above document, as an example of a cylinder deactivation pattern that realizes a predetermined combustion cylinder ratio, the combustion of one cylinder is deactivated after the combustion of five cylinders is continued, and then the combustion of one cylinder is performed. It is described that the cylinder ratio is set to 0.75 (= 6/8) by performing cylinder deactivation in a pattern in which the cylinder combustion is deactivated. This cylinder deactivation pattern includes a section in which the cylinder deactivation interval is five cylinders and a section in which the same interval is one cylinder.

エンジン回転数は、気筒休止に応じて一旦落ち込むが、その後のエンジン回転数の上昇量は、気筒休止間隔が長い区間では大きくなり、同間隔が短い区間では小さくなる。そのため、気筒休止間隔が長い区間と短い区間とが混在すると、エンジンの回転変動が大きくなる。こうしたエンジンの回転変動を抑えるには、気筒毎の個別のトルク管理が必要となる。すなわち、気筒休止間隔が短い区間では燃焼を行う各気筒のトルク発生量を、同間隔が長い区間よりも大きくして、次の気筒休止までのエンジン回転数の上昇量を揃える必要がある。   The engine speed once falls according to cylinder deactivation, but the subsequent increase in engine speed increases in a section where the cylinder deactivation interval is long and decreases in a section where the same interval is short. For this reason, if a section with a long cylinder deactivation interval and a section with a short cylinder coexist, engine rotation fluctuations increase. In order to suppress such engine fluctuations, individual torque management for each cylinder is required. That is, in a section where the cylinder deactivation interval is short, it is necessary to make the torque generation amount of each cylinder that performs combustion larger than that in a section where the same interval is long so that the engine rotation speed increases until the next cylinder deactivation are aligned.

さらに、燃焼気筒比率の可変制御を行う場合には、同比率の変更に応じて気筒休止のパターンが変化する。そのため、回転変動を抑えるための気筒毎の個別のトルク管理は複雑なものとなる。   Further, when variable control of the combustion cylinder ratio is performed, the cylinder deactivation pattern changes according to the change of the ratio. Therefore, the individual torque management for each cylinder for suppressing the rotational fluctuation becomes complicated.

本発明は、こうした実情に鑑みてなされたものであり、その解決しようとする課題は、燃焼気筒比率の可変制御を行う際の気筒休止間隔の変化に伴うエンジンの回転変動を抑制することのできる燃焼気筒比率の可変制御方法、及び可変制御装置を提供することにある。   The present invention has been made in view of such circumstances, and the problem to be solved is that it is possible to suppress engine rotation fluctuations due to changes in the cylinder deactivation interval when performing variable control of the combustion cylinder ratio. To provide a variable control method of a combustion cylinder ratio and a variable control device.

上記課題を解決する燃焼気筒比率の可変制御方法は、気筒休止を間欠的に行う間欠休止運転中にエンジンの燃焼気筒比率の可変制御を行う方法とされている。そして、同可変制御方法では、燃焼行程を迎える気筒の順にN個の気筒を続けて燃焼させた後に1個の気筒の燃焼を休止するパターンの繰り返しで気筒休止を行う。なお、ここでのNは、1以上の整数である。この場合のエンジンの燃焼気筒比率は、「N/(N+1)」となる。そして、同可変制御方法では、上記Nの値が1ずつ変化するように上記パターンを変化させて燃焼気筒比率を変更している。   A combustion cylinder ratio variable control method that solves the above problem is a method of performing variable control of the combustion cylinder ratio of the engine during intermittent pause operation in which cylinder pause is intermittent. In the variable control method, the cylinder is deactivated by repeating a pattern in which combustion of one cylinder is deactivated after the N cylinders are continuously burned in the order of the cylinders that reach the combustion stroke. Here, N is an integer of 1 or more. In this case, the combustion cylinder ratio of the engine is “N / (N + 1)”. In the variable control method, the combustion cylinder ratio is changed by changing the pattern so that the value of N changes by one.

上記方法では、燃焼気筒比率を一定としている間は、気筒の休止間隔が一定に保たれる。また、燃焼気筒比率を変更する際にも、気筒の休止間隔は1気筒分ずつしか変化しない。したがって、上記可変制御方法によれば、燃焼気筒比率の可変制御を行う際の気筒休止間隔の変化に伴うエンジンの回転変動を抑制することができる。   In the above method, while the combustion cylinder ratio is constant, the cylinder pause interval is kept constant. Also, when changing the combustion cylinder ratio, the cylinder pause interval changes only by one cylinder. Therefore, according to the variable control method described above, it is possible to suppress the engine rotation fluctuation accompanying the change in the cylinder deactivation interval when performing the variable control of the combustion cylinder ratio.

また、上記課題を解決する、もう一つの燃焼気筒比率の可変制御方法は、気筒休止を間欠的に行う間欠休止運転中にエンジンの燃焼気筒比率の可変制御を行う方法であって、Nを1以上の任意の整数としたとき、燃焼行程を迎える気筒の順にN個の気筒を続けて燃焼させた後に2気筒続けて燃焼を休止するパターンで気筒休止を繰り返すとともに、前記Nの値が1ずつ変化するように前記パターンを変化させて燃焼気筒比率を変更している。   In addition, another combustion cylinder ratio variable control method that solves the above-described problem is a method of performing variable control of the combustion cylinder ratio of the engine during intermittent deactivation operation in which cylinder deactivation is intermittently performed, where N is set to 1. When the above-mentioned arbitrary integers are used, the cylinder is repeatedly deactivated in a pattern in which N cylinders are continuously burned in the order of the cylinders that reach the combustion stroke, and then two cylinders are continuously deactivated. The combustion cylinder ratio is changed by changing the pattern so as to change.

こうした場合にも、燃焼気筒比率を一定としている間は、気筒の休止間隔が一定に保たれる。また、燃焼気筒比率の変更の際に、気筒の休止間隔は1気筒分ずつしか変化しない。そのため、上記可変制御方法によっても、燃焼気筒比率の可変制御を行う際の気筒休止間隔の変化に伴うエンジンの回転変動を抑制することができる。   Even in such a case, while the combustion cylinder ratio is constant, the cylinder pause interval is kept constant. Further, when changing the combustion cylinder ratio, the cylinder pause interval changes only by one cylinder. Therefore, even with the above variable control method, it is possible to suppress engine rotation fluctuations due to changes in the cylinder deactivation interval when performing variable control of the combustion cylinder ratio.

また、上記課題を解決する燃焼気筒比率の可変制御装置は、気筒休止を間欠的に行う間欠休止運転中にエンジンの燃焼気筒比率の可変制御を行う。そして、同可変制御装置は、目標燃焼気筒比率演算部と気筒休止パターン決定部とを備えている。   In addition, the variable control device for the combustion cylinder ratio that solves the above-described problem performs variable control of the combustion cylinder ratio of the engine during intermittent pause operation in which cylinder pause is intermittently performed. The variable control device includes a target combustion cylinder ratio calculation unit and a cylinder deactivation pattern determination unit.

目標燃焼気筒比率演算部は、一定の間隔での気筒休止の繰り返しにより実現可能な燃焼気筒比率を目標燃焼気筒比率として演算する。こうした目標燃焼気筒比率の値は、同比率の値が変更された場合、気筒休止の間隔を1気筒分ずつ変化させていくことで、変更前の目標燃焼気筒比率から変更後の目標燃焼気筒比率へと燃焼気筒比率を変更可能な値となる。   The target combustion cylinder ratio calculation unit calculates a combustion cylinder ratio that can be realized by repeating cylinder deactivation at regular intervals as the target combustion cylinder ratio. When the value of the target combustion cylinder ratio is changed, the target combustion cylinder ratio after the change is changed from the target combustion cylinder ratio before the change by changing the cylinder deactivation interval by one cylinder at a time. It becomes a value that can change the combustion cylinder ratio.

一方、気筒休止パターン決定部は、現在の燃焼気筒比率を実現する間隔で気筒休止を行ってからその次に気筒休止を行うまでの気筒休止の間隔を次回休止間隔としたときに、同次回休止間隔を次のように設定するものとなっている。すなわち、気筒休止パターン決定部は、目標燃焼気筒比率と現在の燃焼気筒比率とが一致しているときには、目標燃焼気筒比率を実現可能な間隔を次回休止間隔とする。また、気筒休止パターン決定部は、目標燃焼気筒比率と現在の燃焼気筒比率とが一致していないときには、現在の気筒休止間隔よりも目標燃焼気筒比率を実現可能な間隔に1気筒分近い間隔を次回休止間隔とする。   On the other hand, the cylinder deactivation pattern determination unit sets the next deactivation interval when the cylinder deactivation interval from the cylinder deactivation at the interval for realizing the current combustion cylinder ratio to the next cylinder deactivation is set as the next deactivation interval. The interval is set as follows. In other words, when the target combustion cylinder ratio matches the current combustion cylinder ratio, the cylinder deactivation pattern determination unit sets the interval at which the target combustion cylinder ratio can be realized as the next deactivation interval. Further, when the target combustion cylinder ratio does not match the current combustion cylinder ratio, the cylinder deactivation pattern determination unit sets an interval closer to one cylinder to an interval at which the target combustion cylinder ratio can be achieved than the current cylinder deactivation interval. The next pause interval.

このように次回休止間隔を設定した場合には、燃焼気筒比率を一定としている間は、気筒休止間隔が一定に保たれ、燃焼気筒比率を変更する際にも、気筒休止間隔は1気筒分ずつしか変化しないようになる。したがって、上記可変制御装置によれば、燃焼気筒比率の可変制御を行う際の気筒休止間隔の変化に伴うエンジンの回転変動を抑制することができる。   In this way, when the next deactivation interval is set, the cylinder deactivation interval is kept constant while the combustion cylinder ratio is constant, and the cylinder deactivation interval is set to one cylinder at a time when the combustion cylinder ratio is changed. Only changes. Therefore, according to the variable control device, it is possible to suppress the engine rotational fluctuation accompanying the change in the cylinder deactivation interval when performing the variable control of the combustion cylinder ratio.

燃焼気筒比率の可変制御装置の第1実施形態の構成を模式的に示す図。The figure which shows typically the structure of 1st Embodiment of the variable control apparatus of a combustion cylinder ratio. 上記可変制御装置に設けられた目標燃焼気筒比率演算部が演算する目標燃焼気筒比率と要求トルク、エンジン回転数との関係を示すグラフ。The graph which shows the relationship between the target combustion cylinder ratio which the target combustion cylinder ratio calculating part provided in the said variable control apparatus calculates, request | requirement torque, and an engine speed. 上記可変制御装置に設けられた気筒休止パターン決定部が実行する気筒休止パターン決定ルーチンのフローチャート。The flowchart of the cylinder deactivation pattern determination routine which the cylinder deactivation pattern determination part provided in the said variable control apparatus performs. 同実施形態による燃焼気筒比率の可変制御の実施態様の一例を示すタイムチャート。The time chart which shows an example of the embodiment of the variable control of the combustion cylinder ratio by the embodiment. 燃焼気筒比率の可変制御装置の第2実施形態の構成を模式的に示す図。The figure which shows typically the structure of 2nd Embodiment of the variable control apparatus of a combustion cylinder ratio. 上記可変制御装置に設けられた目標燃焼気筒比率演算部が演算する目標燃焼気筒比率と要求トルク、エンジン回転数との関係を示すグラフ。The graph which shows the relationship between the target combustion cylinder ratio which the target combustion cylinder ratio calculating part provided in the said variable control apparatus calculates, request | requirement torque, and an engine speed.

(第1実施形態)
以下、燃焼気筒比率の可変制御方法、及び可変制御装置の第1実施形態を、図1〜図4を参照して詳細に説明する。ここではまず、図1を参照して、同実施形態の可変制御装置の構成を説明する。
(First embodiment)
Hereinafter, a variable cylinder ratio control method and a variable control apparatus according to a first embodiment will be described in detail with reference to FIGS. Here, first, the configuration of the variable control device of the embodiment will be described with reference to FIG.

図1に示すエンジン10は、直列に配列された4つの気筒#1〜#4を備える。同エンジン10での気筒#1〜#4の点火順序は、気筒#1、気筒#3、気筒#4、気筒#2の順となっている。   The engine 10 shown in FIG. 1 includes four cylinders # 1 to # 4 arranged in series. The ignition order of cylinders # 1 to # 4 in the engine 10 is in the order of cylinder # 1, cylinder # 3, cylinder # 4, and cylinder # 2.

エンジン10は、電子制御ユニット11により制御される。電子制御ユニット11には、エンジン10に設置された各種センサが検出した、エンジン回転数、吸入空気量などの検出信号が入力されている。そして、電子制御ユニット11は、それらの検出信号に基づいて、エンジン10のスロットル開度や燃料噴射時期、燃料噴射量、点火時期等を制御する。   The engine 10 is controlled by the electronic control unit 11. The electronic control unit 11 receives detection signals such as the engine speed and the intake air amount detected by various sensors installed in the engine 10. The electronic control unit 11 controls the throttle opening, the fuel injection timing, the fuel injection amount, the ignition timing, and the like of the engine 10 based on these detection signals.

また、電子制御ユニット11は、エンジン10の燃焼気筒比率の可変制御を行う燃焼気筒比率可変制御部12を備える。本実施形態の燃焼気筒比率の可変制御装置は、この燃焼気筒比率可変制御部12により構成されている。燃焼気筒比率は、燃焼気筒及び休止気筒の総数に対する燃焼気筒数の比率[=燃焼気筒数/(燃焼気筒数+休止気筒数)]を表しており、燃焼気筒比率の可変制御は、そうしたエンジン10の燃焼気筒比率を同エンジン10の出力要求に応じて変更する制御となっている。   The electronic control unit 11 includes a combustion cylinder ratio variable control unit 12 that performs variable control of the combustion cylinder ratio of the engine 10. The combustion cylinder ratio variable control device of the present embodiment is configured by the combustion cylinder ratio variable control unit 12. The combustion cylinder ratio represents the ratio of the number of combustion cylinders to the total number of combustion cylinders and idle cylinders [= the number of combustion cylinders / (the number of combustion cylinders + the number of idle cylinders)]. The combustion cylinder ratio of the engine is changed in accordance with the output request of the engine 10.

燃焼気筒比率可変制御部12は、エンジン10の運転状態に応じて、燃焼気筒比率の目標値である目標燃焼気筒比率を演算する目標燃焼気筒比率演算部13と、目標燃焼気筒比率に基づき、エンジン10の気筒休止パターンを決定する気筒休止パターン決定部14とを備えている。そして、燃焼気筒比率可変制御部12は、決定された気筒休止パターンに従って気筒休止が行われるようにエンジン10を制御する。   The combustion cylinder ratio variable control unit 12 calculates a target combustion cylinder ratio that is a target value of the combustion cylinder ratio according to the operating state of the engine 10, and an engine based on the target combustion cylinder ratio. And a cylinder deactivation pattern determining unit 14 that determines ten cylinder deactivation patterns. And the combustion cylinder ratio variable control part 12 controls the engine 10 so that cylinder deactivation is performed according to the determined cylinder deactivation pattern.

(目標燃焼気筒比率の決定)
ここで、目標燃焼気筒比率演算部13による目標燃焼気筒比率の演算について説明する。目標燃焼気筒比率演算部13は、規定の制御周期毎に、エンジン10の回転数(以下、エンジン回転数と記載する)と、運転者のアクセルペダルの踏込量などから求められたエンジン10の要求トルクとを読込むとともに、それら要求トルク、エンジン回転数から目標燃焼気筒比率を演算する。
(Determination of target combustion cylinder ratio)
Here, calculation of the target combustion cylinder ratio by the target combustion cylinder ratio calculation unit 13 will be described. The target combustion cylinder ratio calculation unit 13 requests the engine 10 obtained from the rotation speed of the engine 10 (hereinafter referred to as engine rotation speed), the amount of depression of the accelerator pedal, and the like at every specified control cycle. The torque is read, and the target combustion cylinder ratio is calculated from the required torque and the engine speed.

図2に、目標燃焼気筒比率演算部13が演算する目標燃焼気筒比率の値と、要求トルク、エンジン回転数との関係を示す。同図に示すように、目標燃焼気筒比率は、値が50%、67%、75%、80%、100%のいずれかとなるように演算される。   FIG. 2 shows the relationship between the target combustion cylinder ratio value calculated by the target combustion cylinder ratio calculation unit 13, the required torque, and the engine speed. As shown in the figure, the target combustion cylinder ratio is calculated such that the value is 50%, 67%, 75%, 80%, or 100%.

同図に示すように、本実施形態では、要求トルクが既定値αを超えるエンジン10の運転域、及びエンジン回転数が既定値βを下回るエンジン10の運転域では、目標燃焼気筒比率が100%に固定される。燃焼気筒比率が100%の場合のエンジン10は、すべての気筒で燃焼を行う全気筒燃焼で運転される。このときのエンジン10では、吸気行程において気筒が吸入する空気の流量(シリンダ流入空気量)を調整することで、要求出力が実現されている。以下、こうした全気筒燃焼運転を行うエンジン10の運転域を全気筒燃焼運転域と記載する。   As shown in the figure, in the present embodiment, the target combustion cylinder ratio is 100% in the operating range of the engine 10 where the required torque exceeds the predetermined value α and the operating range of the engine 10 where the engine speed is lower than the predetermined value β. Fixed to. When the combustion cylinder ratio is 100%, the engine 10 is operated by all cylinder combustion in which combustion is performed in all cylinders. In the engine 10 at this time, the required output is realized by adjusting the flow rate of the air taken in by the cylinder in the intake stroke (cylinder inflow air amount). Hereinafter, the operating range of the engine 10 that performs such all-cylinder combustion operation is referred to as an all-cylinder combustion operation region.

これに対して、要求トルクが既定値α以下、且つエンジン回転数が既定値β以上の運転域では、目標燃焼気筒比率が要求トルクに応じて50%〜80%の範囲で変更される。こうした運転域では、間欠的に気筒休止が行われ、シリンダ流入空気量の調整と燃焼気筒比率の変更とにより、エンジン10の要求出力が実現されている。以下、こうした間欠的な気筒休止を行うエンジン10の運転域を、間欠休止運転域と記載する。   On the other hand, in the operating range where the required torque is equal to or less than the predetermined value α and the engine speed is equal to or higher than the predetermined value β, the target combustion cylinder ratio is changed in a range of 50% to 80% according to the required torque. In such an operating range, cylinder deactivation is intermittently performed, and the required output of the engine 10 is realized by adjusting the cylinder inflow air amount and changing the combustion cylinder ratio. Hereinafter, the operation region of the engine 10 that performs such intermittent cylinder deactivation is referred to as an intermittent deactivation operation region.

ちなみに、全気筒燃焼運転域と間欠休止運転域とを分ける要求トルクの閾値となっている上記既定値αの値には、燃焼気筒比率を80%とした状態でも達成可能なエンジントルクの最大値が設定されている。これに対して、全気筒燃焼運転域と間欠休止運転域とを分けるエンジン回転数の閾値となっている上記既定値βの値には、次のような値が設定されている。すなわち、間欠休止運転中のエンジン10では、気筒休止が行われる毎にエンジン回転数が一時的落ち込むため、気筒休止間隔を周期とした振動や騒音が発生する。気筒休止の間隔が一定の場合、エンジン回転数が低いほど、気筒休止に伴う振動や騒音の周波数も低くなる。一方、乗員は、ある程度よりも低い周波数の振動や騒音を不快と感じ易い。そこで、上記既定値βには、気筒休止による振動や騒音の周波数が、乗員が不快に感じるほどの低い周波数とならないエンジン回転数の下限値が値として設定されている。   Incidentally, the value of the predetermined value α, which is a threshold value of the required torque that separates the all-cylinder combustion operation region and the intermittent rest operation region, is the maximum value of the engine torque that can be achieved even when the combustion cylinder ratio is 80%. Is set. On the other hand, the following value is set as the value of the predetermined value β, which is a threshold value of the engine speed that divides the all-cylinder combustion operation region and the intermittent rest operation region. In other words, in the engine 10 during intermittent pause operation, the engine speed temporarily drops every time the cylinder is paused, so that vibration and noise with a cycle of the cylinder pause interval occur. When the cylinder deactivation interval is constant, the lower the engine speed, the lower the vibration and noise frequencies associated with cylinder deactivation. On the other hand, passengers tend to feel uncomfortable with vibrations and noise having a frequency lower than a certain level. Therefore, the predetermined value β is set as a lower limit value of the engine speed at which the frequency of vibration and noise due to cylinder deactivation is not low enough to make the passenger feel uncomfortable.

(気筒休止パターンの決定)
続いて、気筒休止パターン決定部14による気筒休止パターンの決定について説明する。表1には、燃焼気筒比率の可変制御において使用される燃焼気筒比率の値のそれぞれにおける、気筒の燃焼、休止の順序が示されている。同表に示されるように、燃焼気筒比率の可変制御では、0%、50%、67%、75%、80%、83%、86%、88%、100%の9通りの燃焼気筒比率が使用される。ちなみに、燃料カット時やアイドルストップ時など、一時的に全ての気筒で燃焼を休止する全気筒休止の場合が、燃焼気筒比率が0%の場合となる。
(Determination of cylinder deactivation pattern)
Subsequently, determination of the cylinder deactivation pattern by the cylinder deactivation pattern determination unit 14 will be described. Table 1 shows the order of combustion and deactivation of the cylinder in each value of the combustion cylinder ratio used in the variable control of the combustion cylinder ratio. As shown in the table, in the variable control of the combustion cylinder ratio, nine combustion cylinder ratios of 0%, 50%, 67%, 75%, 80%, 83%, 86%, 88%, and 100% are set. used. Incidentally, the case where all cylinders are temporarily stopped, such as when the fuel is cut or when idling is stopped, is when the combustion cylinder ratio is 0%.

上記9通りの燃焼気筒比率のうち、0%は全気筒休止の場合の比率であり、100%は全気筒燃焼の場合の比率である。よって、表1に示される燃焼気筒比率のうちで、エンジン10の間欠休止運転中に使用される比率は、50%、67%、75%、80%、83%、86%、及び88%の7通りとなる。これらの燃焼気筒比率では、燃焼行程を迎える気筒の順にN(1以上の整数)個の気筒を続けて燃焼させた後に1個の気筒の燃焼を休止するパターンで気筒休止が繰り返される。すなわち、間欠休止運転中に使用される燃焼気筒比率はすべて、上記パターンの気筒休止の繰り返しによって、すなわち一定の間隔での気筒休止の繰り返しによって実現可能な比率となっている。そして、目標燃焼気筒比率演算部13が間欠休止運転中の目標燃焼気筒比率として演算する、50%、67%、75%、及び80%の各燃焼気筒比率も、一定の間隔での気筒休止の繰り返しによって実現可能な燃焼気筒比率となっている。 Of the nine combustion cylinder ratios, 0% is a ratio when all cylinders are deactivated, and 100% is a ratio when all cylinders are combusted. Therefore, of the combustion cylinder ratios shown in Table 1, the ratios used during intermittent operation of the engine 10 are 50%, 67%, 75%, 80%, 83%, 86%, and 88%. There are 7 ways. With these combustion cylinder ratios, cylinder deactivation is repeated in a pattern in which N (integer greater than or equal to 1) cylinders are successively burned in the order of the cylinders in the combustion stroke and then the combustion of one cylinder is deactivated. In other words, all the combustion cylinder ratios used during the intermittent pause operation are ratios that can be realized by repeating the cylinder pause of the above pattern, that is, by repeating the cylinder pause at a constant interval. Further, the combustion cylinder ratios of 50%, 67%, 75%, and 80%, which the target combustion cylinder ratio calculation unit 13 calculates as the target combustion cylinder ratio during the intermittent deactivation operation, are also used for cylinder deactivation at regular intervals. The combustion cylinder ratio can be realized by repetition.

本実施形態では、上記気筒休止パターンのそれぞれに、各パターンにおいて続けて燃焼する気筒の数(N)を値とする識別番号(ID)を付している。さらに、本実施形態では、後述する気筒休止パターン決定ルーチンにおける、全気筒燃焼運転から間欠休止運転への移行時、及び全気筒休止運転から間欠休止運転への移行時における処理の都合上、燃焼気筒比率が0%(全気筒休止)及び100%(全気筒燃焼)の場合については、次の扱いとしている。すなわち、気筒休止のみが繰り返される燃焼気筒比率が0%(全気筒休止)の場合については、1回の気筒休止からなるパターンを便宜上の気筒休止パターンとし、その識別番号を「0」としている。また、燃焼のみが繰り返される燃焼気筒比率が100%の場合については、1回の燃焼からなるパターンを便宜上の気筒休止パターンとし、その識別番号を「8」としている。   In the present embodiment, each of the cylinder deactivation patterns is given an identification number (ID) whose value is the number of cylinders (N) that are continuously burned in each pattern. Further, in the present embodiment, in the cylinder deactivation pattern determination routine described later, for the convenience of processing at the time of transition from the all cylinder combustion operation to the intermittent deactivation operation and at the time of transition from the all cylinder deactivation operation to the intermittent deactivation operation, the combustion cylinder The cases where the ratio is 0% (all cylinders deactivated) and 100% (all cylinders combusted) are handled as follows. That is, when the combustion cylinder ratio in which only cylinder deactivation is repeated is 0% (all cylinder deactivation), a pattern consisting of one cylinder deactivation is used as a cylinder deactivation pattern for convenience and its identification number is “0”. When the combustion cylinder ratio in which only combustion is repeated is 100%, a pattern consisting of one combustion is set as a cylinder deactivation pattern for convenience, and its identification number is “8”.

さらに、本実施形態では、気筒休止パターンを変更する際には、変更前の気筒休止パターンを最後まで行ってから、変更後の気筒休止パターンを最初から開始するようにしている。また、本実施形態では、変更前の気筒休止パターンの最後に気筒休止を行ってから、変更後の気筒休止パターンを開始するようにしている。そのため、識別番号が1〜7の各気筒休止パターンは、末尾に当たる気筒が休止気筒となるように設定されている。さらに、気筒休止を含んでいない全気筒燃焼に対応する識別番号が8の気筒休止パターンについては、他の気筒休止パターンへの変更の直前の場合に限り、1個の気筒で燃焼した後に1個の気筒の燃焼を休止するパターンとするようにしている。   Furthermore, in this embodiment, when changing the cylinder deactivation pattern, the cylinder deactivation pattern before the change is performed to the end, and then the changed cylinder deactivation pattern is started from the beginning. Further, in the present embodiment, the cylinder deactivation pattern after the change is started after the cylinder deactivation is performed at the end of the cylinder deactivation pattern before the change. Therefore, each cylinder deactivation pattern with identification numbers 1 to 7 is set so that the cylinder corresponding to the end is a deactivation cylinder. Further, with respect to the cylinder deactivation pattern with an identification number of 8 corresponding to all cylinder combustion not including cylinder deactivation, one cylinder is burned in one cylinder only immediately before the change to another cylinder deactivation pattern. The pattern is such that the combustion of the cylinders is stopped.

気筒休止パターン決定部14は、目標燃焼気筒比率演算部13が演算した目標燃焼気筒比率に基づき、上記識別番号0〜8の気筒休止パターンのいずれかを、実際にエンジン10で行う気筒休止のパターンとして決定する。図3に、気筒休止パターン決定部14が気筒休止パターンの決定に際して実行する気筒休止パターン決定ルーチンのフローチャートを示す。気筒休止パターン決定部14は、同ルーチンの処理を、エンジン10の燃焼周期毎に実行する。   The cylinder deactivation pattern determining unit 14 is a cylinder deactivation pattern in which any one of the cylinder deactivation patterns with the identification numbers 0 to 8 is actually performed by the engine 10 based on the target combustion cylinder ratio calculated by the target combustion cylinder ratio calculation unit 13. Determine as. FIG. 3 shows a flowchart of a cylinder deactivation pattern determination routine executed by the cylinder deactivation pattern determination unit 14 when determining the cylinder deactivation pattern. The cylinder deactivation pattern determining unit 14 executes the process of this routine for each combustion cycle of the engine 10.

図3に示すように、本ルーチンの処理が開始されると、まずステップS100において、目標燃焼気筒比率演算部13が演算した目標燃焼気筒比率の気筒休止パターンの識別番号(以下、目標パターンNtと記載する)と、エンジン10において現在行われている気筒休止パターンの識別番号(以下、現在パターンNcと記載する)と、が読み込まれる。続いて、ステップS110において、目標パターンNt、現在パターンNcの両値が一致しているか否かが判定される。そして、両値が一致していれば(YES)、ステップS120に処理が進められ、一致していなければ(NO)、ステップS130に処理が進められる。   As shown in FIG. 3, when the processing of this routine is started, first, in step S100, the cylinder deactivation pattern identification number (hereinafter referred to as target pattern Nt) of the target combustion cylinder ratio calculated by the target combustion cylinder ratio calculation unit 13 is obtained. And the identification number of the cylinder deactivation pattern currently performed in the engine 10 (hereinafter referred to as the current pattern Nc) are read. Subsequently, in step S110, it is determined whether or not both values of the target pattern Nt and the current pattern Nc match. If both values match (YES), the process proceeds to step S120, and if they do not match (NO), the process proceeds to step S130.

ステップS120に処理が進められると、そのステップS120において、現在パターンNcの値が次回パターンNnの値として設定される。そして、ステップS160において、現在の気筒休止パターンが終了してから行われる次回の気筒休止パターンとして、次回パターンNnの値を識別番号とする気筒休止パターンが設定された後、本ルーチンの処理が終了される。すなわち、このときのエンジン10では、次回も現在と同じ気筒休止パターンで気筒休止が行われる。   When the process proceeds to step S120, the value of the current pattern Nc is set as the value of the next pattern Nn in step S120. Then, in step S160, a cylinder deactivation pattern having the identification number as the value of the next pattern Nn is set as the next cylinder deactivation pattern performed after the current cylinder deactivation pattern is completed, and then the processing of this routine is terminated. Is done. That is, in the engine 10 at this time, cylinder deactivation is performed in the same cylinder deactivation pattern next time.

これに対して、現在パターンNc及び目標パターンNtの両値が一致しておらず(S110:NO)、ステップS130に処理が進められると、そのステップS130において、両値の大小関係が判定される。そして、目標パターンNtの値が現在パターンNcの値よりも大きい値である場合には(S130:YES)、ステップS140において、現在パターンNcの値に1を加えた値が、次回パターンNnの値として設定される(Nn←Nc+1)。一方、目標パターンNtの値が現在パターンNcの値よりも小さい値である場合には(S130:NO)、ステップS150において、現在パターンNcの値から1を引いた値が次回パターンNnの値として設定される(Nn←Nc−1)。そして、上述のステップS160において、ステップS140又はステップS150で設定した次回パターンNnの値を識別番号とする気筒休止パターンが次回に行う気筒休止パターンとして設定された後、本ルーチンの処理が終了される。   On the other hand, if the values of the current pattern Nc and the target pattern Nt do not match (S110: NO) and the process proceeds to step S130, the magnitude relationship between the two values is determined in step S130. . If the value of the target pattern Nt is larger than the value of the current pattern Nc (S130: YES), the value obtained by adding 1 to the value of the current pattern Nc is the value of the next pattern Nn in step S140. (Nn ← Nc + 1). On the other hand, when the value of the target pattern Nt is smaller than the value of the current pattern Nc (S130: NO), a value obtained by subtracting 1 from the value of the current pattern Nc as the value of the next pattern Nn in step S150. It is set (Nn ← Nc−1). In step S160 described above, after the cylinder deactivation pattern having the identification number as the next pattern Nn set in step S140 or S150 is set as the cylinder deactivation pattern to be performed next time, the processing of this routine is terminated. .

ここで、現在の燃焼気筒比率を実現する間隔で気筒休止を行ってからその次に気筒休止を行うまでの気筒休止の間隔を次回休止間隔と記載する。上記のように間欠休止運転中に使用される識別番号1〜7の各気筒休止パターンは、その末尾が気筒休止とされている。よって、次回休止間隔は、現在の気筒休止パターンが終了してから行われる次回の気筒休止パターンにおける燃焼気筒数に相当する。   Here, the cylinder deactivation interval from the cylinder deactivation at the interval for realizing the current combustion cylinder ratio to the cylinder deactivation next is described as the next deactivation interval. As described above, each cylinder deactivation pattern with identification numbers 1 to 7 used during intermittent deactivation operation has a cylinder deactivation at the end. Therefore, the next deactivation interval corresponds to the number of combustion cylinders in the next cylinder deactivation pattern performed after the current cylinder deactivation pattern ends.

上記気筒休止パターン決定ルーチンでは、目標燃焼気筒比率に対応する気筒休止パターンの識別番号(目標パターンNt)と実行中の気筒休止パターンの識別番号(現在パターンNc)とが一致する場合(S110:YES)には、実行中の気筒休止パターンが次回も継続される。目標パターンNtと現在パターンNcとが一致する場合とは、目標燃焼気筒比率と現在の燃焼気筒比率とが一致している場合であり、このときの気筒休止間隔は、目標燃焼気筒比率を実現可能な間隔となっている。よって、気筒休止パターン決定部14は、目標燃焼気筒比率と現在の燃焼気筒比率とが一致しているときには、目標燃焼気筒比率を実現可能な間隔を次回休止間隔とするように、気筒休止のパターンを決定していることになる。   In the cylinder deactivation pattern determination routine, when the cylinder deactivation pattern identification number (target pattern Nt) corresponding to the target combustion cylinder ratio matches the cylinder deactivation pattern identification number (current pattern Nc) being executed (S110: YES) ), The cylinder deactivation pattern being executed is continued the next time. The case where the target pattern Nt matches the current pattern Nc is the case where the target combustion cylinder ratio and the current combustion cylinder ratio match, and the cylinder deactivation interval at this time can realize the target combustion cylinder ratio. The interval is long. Therefore, when the target combustion cylinder ratio matches the current combustion cylinder ratio, the cylinder deactivation pattern determination unit 14 sets the cylinder deactivation pattern so that the interval at which the target combustion cylinder ratio can be achieved is set as the next deactivation interval. It will be decided.

これに対して、目標パターンNtと現在パターンNcとが一致しない場合には(S110:NO)、目標パターンNtに近づく側に現在パターンNcの値に1を加減算した値を識別番号とする気筒休止パターンが次回に実行する気筒休止パターンとされる。こうした場合、次回の気筒休止パターンの燃焼気筒数は、現在の気筒休止パターンの燃焼気筒数よりも目標燃焼気筒比率を実現する気筒休止パターンの燃焼気筒数に1気筒分近い値となる。すなわち、このときの次回休止間隔は、現在の燃焼気筒比率を実現する間隔よりも目標燃焼気筒比率を実現可能な間隔に1気筒分近い間隔とされる。   On the other hand, when the target pattern Nt and the current pattern Nc do not match (S110: NO), the cylinder deactivation with the value obtained by adding or subtracting 1 to the value of the current pattern Nc closer to the target pattern Nt is an identification number. The pattern is a cylinder deactivation pattern to be executed next time. In such a case, the number of combustion cylinders in the next cylinder deactivation pattern is closer to one cylinder than the number of combustion cylinders in the cylinder deactivation pattern that realizes the target combustion cylinder ratio than the number of combustion cylinders in the current cylinder deactivation pattern. That is, the next stop interval at this time is set to an interval closer to one cylinder than the interval at which the target combustion cylinder ratio can be realized, compared to the interval at which the current combustion cylinder ratio is realized.

(作用効果)
続いて、こうした本実施形態の燃焼気筒比率の可変制御方法及び可変制御装置の作用、効果を説明する。
(Function and effect)
Next, the operation and effect of the variable control method and variable control apparatus for the combustion cylinder ratio according to this embodiment will be described.

図4に、全気筒燃焼運転域から間欠休止運転域における目標燃焼気筒比率が50%の領域にエンジン10の運転域が移行したときの燃焼気筒比率、気筒休止パターン、及び噴射信号の推移を示す。なお、噴射信号は、気筒での燃焼を行う際にその気筒への燃料噴射を指令する信号であり、同図にはエンジン10の4つの気筒#1〜#4に対する噴射信号をマージしたものが示されている。ちなみに、噴射信号は、気筒休止を行うときには出力されないため、同図に示す噴射信号のパルスの間隔が他の部分よりも開いた部分が気筒休止を行っている部分となる。   FIG. 4 shows changes in the combustion cylinder ratio, cylinder deactivation pattern, and injection signal when the operation range of the engine 10 is shifted from the all-cylinder combustion operation range to the region where the target combustion cylinder ratio is 50% in the intermittent deactivation operation range. . The injection signal is a signal for instructing fuel injection into the cylinder when combustion is performed in the cylinder. In the figure, the injection signals for the four cylinders # 1 to # 4 of the engine 10 are merged. It is shown. Incidentally, since the injection signal is not output when the cylinder is deactivated, the part where the pulse interval of the injection signal shown in the figure is wider than the other part is the part where the cylinder is deactivated.

目標燃焼気筒比率が100%から50%に変更されると、まず88%の燃焼気筒比率に対応する識別番号が7の気筒休止パターンが実行される。エンジン10は、このときに、全気筒燃焼運転から間欠休止運転へと切り替わる。   When the target combustion cylinder ratio is changed from 100% to 50%, a cylinder deactivation pattern with an identification number of 7 corresponding to a combustion cylinder ratio of 88% is first executed. At this time, the engine 10 switches from the all-cylinder combustion operation to the intermittent pause operation.

以後、順番に、86%の燃焼気筒比率に対応する識別番号が6の気筒休止パターン、83%の燃焼気筒比率に対応する識別番号が5の気筒休止パターン、80%の燃焼気筒比率に対応する識別番号が4の気筒休止パターン、75%の燃焼気筒比率に対応する識別番号が3の気筒休止パターン、67%の燃焼気筒比率に対応する識別番号が2の気筒休止パターンを1回ずつ実行した後、このときの目標燃焼気筒比率である50%の燃焼気筒比率に対応する識別番号が1のパターンに気筒休止パターンが変更される。上述のように、識別番号が1〜7の各気筒休止パターンでは、識別番号の値が、気筒休止までに連続して燃焼を行う気筒の数、すなわち気筒休止間隔に対応している。よって、このときの燃焼気筒比率の変更は、気筒休止間隔が1気筒分ずつ変化するように気筒休止パターンを順番に変化させていくことで行われている。   Thereafter, in order, the cylinder deactivation pattern with an identification number of 6 corresponding to the combustion cylinder ratio of 86%, the cylinder deactivation pattern with an identification number of 5 corresponding to the combustion cylinder ratio of 83%, and the combustion cylinder ratio of 80% are corresponded. A cylinder deactivation pattern with an identification number of 4, a cylinder deactivation pattern with an identification number of 3 corresponding to a combustion cylinder ratio of 75%, and a cylinder deactivation pattern with an identification number of 2 corresponding to a combustion cylinder ratio of 67% were executed once. Thereafter, the cylinder deactivation pattern is changed to a pattern having an identification number of 1 corresponding to the combustion cylinder ratio of 50%, which is the target combustion cylinder ratio at this time. As described above, in each cylinder deactivation pattern with the identification numbers 1 to 7, the value of the identification number corresponds to the number of cylinders that continuously burn until the cylinder deactivation, that is, the cylinder deactivation interval. Therefore, the change of the combustion cylinder ratio at this time is performed by sequentially changing the cylinder deactivation pattern so that the cylinder deactivation interval is changed by one cylinder at a time.

なお、間欠休止運転域において目標燃焼気筒比率の値が変更された場合にも、同様に、気筒休止間隔が1気筒分ずつ変化するように気筒休止パターンを変化させていくことで、燃焼気筒比率が変更される。このように、間欠休止運転域での燃焼気筒比率の変更は、気筒休止間隔が1気筒分ずつ変化するように気筒休止パターンを変化させていくことで行われる。   In addition, when the value of the target combustion cylinder ratio is changed in the intermittent deactivation operation region, similarly, the combustion cylinder ratio is changed by changing the cylinder deactivation pattern so that the cylinder deactivation interval is changed by one cylinder at a time. Is changed. As described above, the change of the combustion cylinder ratio in the intermittent stop operation region is performed by changing the cylinder stop pattern so that the cylinder stop interval changes by one cylinder at a time.

ちなみに、エンジン10の運転域が間欠休止運転域から全気筒燃焼運転域に移行した際には、88%の燃焼気筒比率に対応する識別番号が7の気筒休止パターンとなるまで、気筒休止間隔が1気筒分ずつ変化するように気筒休止パターンを順番に変化させる。そして、上記識別番号が7の気筒休止パターンを実行した後、100%の燃焼気筒比率に対応する識別番号が8の気筒休止パターンに、すなわち全気筒燃焼運転に移行する。この場合、エンジン10の運転域が全気筒燃焼運転域に入っていても、識別番号が7の気筒休止パターンから識別番号が8の気筒休止パターンに切り替えられるまでは、間欠休止運転が続けられることになる。   Incidentally, when the operating range of the engine 10 is shifted from the intermittent deactivation operation range to the all-cylinder combustion operation range, the cylinder deactivation interval is set until the cylinder deactivation pattern corresponding to the combustion cylinder ratio of 88% becomes the cylinder deactivation pattern. The cylinder deactivation pattern is sequentially changed so as to change by one cylinder. Then, after executing the cylinder deactivation pattern with the identification number of 7, the process proceeds to the cylinder deactivation pattern with the identification number of 8 corresponding to the combustion cylinder ratio of 100%, that is, the all-cylinder combustion operation. In this case, even if the operating range of the engine 10 is in the all-cylinder combustion operating range, the intermittent pause operation is continued until the cylinder pause pattern with the identification number 7 is switched to the cylinder pause pattern with the identification number 8. become.

また、上記実施形態では、燃焼気筒比率が目標燃焼気筒比率と同じ値となっている場合には、目標燃焼気筒比率に対応した気筒休止パターンが繰り返される。すなわち、この場合には、気筒休止間隔が一定に保たれる。   In the above embodiment, when the combustion cylinder ratio is the same value as the target combustion cylinder ratio, the cylinder deactivation pattern corresponding to the target combustion cylinder ratio is repeated. That is, in this case, the cylinder deactivation interval is kept constant.

本実施形態では、上記態様で燃焼気筒比率の可変制御が行われている。こうした燃焼気筒比率の可変制御は、エンジン10の間欠休止運転中の気筒休止の頻度を変更することで実現される。間欠休止運転中のエンジン10では、エンジン回転数は、気筒休止に応じて一旦落ち込み、その後の気筒での燃焼に応じて上昇する。このときのエンジン回転数の上昇量は、次の気筒休止までの燃焼気筒数が多いほど、すなわち、気筒休止間隔が長いほど大きくなる。そのため、気筒休止間隔が長い区間と短い区間とが混在すると、エンジンの回転変動が大きくなる。   In the present embodiment, the variable control of the combustion cylinder ratio is performed in the above manner. Such variable control of the combustion cylinder ratio is realized by changing the frequency of cylinder deactivation during the intermittent deactivation operation of the engine 10. In the engine 10 in the intermittent rest operation, the engine speed temporarily drops in response to cylinder deactivation and rises in response to subsequent combustion in the cylinder. The amount of increase in the engine speed at this time increases as the number of combustion cylinders until the next cylinder deactivation increases, that is, as the cylinder deactivation interval increases. For this reason, if a section with a long cylinder deactivation interval and a section with a short cylinder coexist, engine rotation fluctuations increase.

これに対して、本実施形態では、燃焼気筒比率を一定としている間は、気筒の休止間隔が一定に保たれる。また、燃焼気筒比率を変更する際にも、気筒の休止間隔は1気筒分ずつしか変化しない。そのため、気筒休止間隔の変化に伴うエンジンの回転変動を抑制することができる。   On the other hand, in this embodiment, while the combustion cylinder ratio is constant, the cylinder pause interval is kept constant. Also, when changing the combustion cylinder ratio, the cylinder pause interval changes only by one cylinder. For this reason, it is possible to suppress the engine rotation fluctuation accompanying the change in the cylinder deactivation interval.

なお、気筒休止間隔の変化に伴うエンジンの回転変動は、気筒毎の個別のトルク管理により、抑制を図ることができる。すなわち、各気筒のシリンダ吸入空気量や点火時期などの調整により、気筒休止間隔が短い区間では燃焼を行う各気筒のトルク発生量を同間隔が長い区間よりも大きくして、次の気筒休止までのエンジン回転数の上昇量を揃えるようにすれば、気筒休止間隔の変化に伴うエンジンの回転変動を抑えることができる。   It should be noted that fluctuations in engine rotation accompanying changes in the cylinder deactivation interval can be suppressed by individual torque management for each cylinder. That is, by adjusting the cylinder intake air amount and ignition timing of each cylinder, the torque generation amount of each cylinder that performs combustion is made larger in the section where the cylinder deactivation interval is short than in the section where the same interval is long, and until the next cylinder deactivation If the increase amount of the engine rotation speed is made uniform, the engine rotation fluctuation accompanying the change in the cylinder deactivation interval can be suppressed.

本実施形態でも、燃焼気筒比率の変更に際しては、気筒休止間隔も変更されるため、エンジン10の回転変動を十分に抑えるには、気筒毎の個別のトルク管理が必要となる場合がある。そうした場合にも、本実施形態では、気筒休止間隔を1気筒分ずつ段階的に変化させて燃焼気筒比率を変更しているため、気筒毎のトルク発生量の小幅な調整だけで、エンジン10の回転変動が抑えられる。   Also in this embodiment, when the combustion cylinder ratio is changed, the cylinder deactivation interval is also changed. Therefore, individual torque management for each cylinder may be required to sufficiently suppress the rotational fluctuation of the engine 10. Even in such a case, in this embodiment, the cylinder deactivation interval is changed step by step by one cylinder to change the combustion cylinder ratio, so that the engine 10 can be adjusted only by a small adjustment of the torque generation amount for each cylinder. Rotational fluctuation can be suppressed.

なお、上記実施形態は、次のように変更して実施することもできる。
・エンジン10の運転域における全気筒燃焼運転域と間欠休止運転域との区分けや、間欠運転休止運転域内での目標燃焼気筒比率の区分けを、図2のものとは異なる区分けとしてもよい。
In addition, the said embodiment can also be changed and implemented as follows.
The division between the all-cylinder combustion operation region and the intermittent operation stop region in the operation region of the engine 10 and the target combustion cylinder ratio within the intermittent operation operation region may be different from those in FIG.

・上記実施形態では、燃焼気筒比率の可変制御での同燃焼気筒比率の変更に際して使用する気筒休止パターンとして、気筒休止間隔が1〜7気筒の7つのパターンを設定していた。各パターンの気筒休止間隔の気筒数が連続しているのであれば、こうした気筒休止パターンの数や種類は適宜に変更してもよい。   In the above-described embodiment, as the cylinder deactivation pattern used when changing the combustion cylinder ratio in the variable control of the combustion cylinder ratio, seven patterns having a cylinder deactivation interval of 1 to 7 cylinders are set. If the number of cylinders in the cylinder deactivation interval of each pattern is continuous, the number and types of such cylinder deactivation patterns may be changed as appropriate.

(第2実施形態)
次に、燃焼気筒比率の可変制御方法、及び可変制御装置の第2実施形態を、図5及び図6を併せ参照して詳細に説明する。
(Second Embodiment)
Next, a second embodiment of the variable control method of the combustion cylinder ratio and the variable control device will be described in detail with reference to FIGS.

図5に示すように、本実施形態の可変制御装置は、第1バンクB1及び第2バンクB2の2つのバンクにそれぞれ3つの気筒が設けられたV型6気筒のエンジン10’に適用される。以下の説明では、第1バンクB1に設けられた3つの気筒をそれぞれ気筒#1、気筒#3、気筒#5と記載し、第2バンクB2に設けられた3つの気筒をそれぞれ気筒#2、気筒#4、気筒#6と記載する。このとき、同エンジン10’での気筒#1〜#6の点火順序は、気筒#1、気筒#2、気筒#3、気筒#4、気筒#5、気筒#6の順となっている。   As shown in FIG. 5, the variable control device of the present embodiment is applied to a V-type 6-cylinder engine 10 ′ in which three cylinders are provided in two banks, the first bank B1 and the second bank B2. . In the following description, the three cylinders provided in the first bank B1 are referred to as cylinder # 1, cylinder # 3, and cylinder # 5, respectively, and the three cylinders provided in the second bank B2 are referred to as cylinder # 2, respectively. It describes as cylinder # 4 and cylinder # 6. At this time, the firing order of cylinders # 1 to # 6 in the engine 10 'is in the order of cylinder # 1, cylinder # 2, cylinder # 3, cylinder # 4, cylinder # 5, and cylinder # 6.

エンジン10’を制御する電子制御ユニット11’は、燃焼気筒比率の可変制御装置としての燃焼気筒比率可変制御部12’を備える。燃焼気筒比率可変制御部12’は、エンジン10’の運転状態に応じて目標燃焼気筒比率を演算する目標燃焼気筒比率演算部13’と、目標燃焼気筒比率に基づき、エンジン10’の気筒休止パターンを決定する気筒休止パターン決定部14’とを備えている。そして、燃焼気筒比率可変制御部12’は、決定された気筒休止パターンに従って気筒休止が行われるようにエンジン10’を制御する。   The electronic control unit 11 ′ for controlling the engine 10 ′ includes a combustion cylinder ratio variable control unit 12 ′ as a combustion cylinder ratio variable control device. The combustion cylinder ratio variable control unit 12 ′ is a target combustion cylinder ratio calculation unit 13 ′ that calculates a target combustion cylinder ratio according to the operating state of the engine 10 ′, and a cylinder deactivation pattern of the engine 10 ′ based on the target combustion cylinder ratio. And a cylinder deactivation pattern determination unit 14 ′ for determining Then, the combustion cylinder ratio variable control unit 12 'controls the engine 10' so that cylinder deactivation is performed according to the determined cylinder deactivation pattern.

図6に、目標燃焼気筒比率演算部13’が演算する目標燃焼気筒比率の値と、要求トルク、エンジン回転数との関係を示す。目標燃焼気筒比率演算部13’は、規定の制御周期毎に、エンジン回転数と要求トルクとを読込むとともに、それらエンジン回転数、要求トルクから目標燃焼気筒比率を演算する。同図に示すように本実施形態では、目標燃焼気筒比率は、値が33%、50%、67%、71%、75%、100%のいずれかとなるように演算される。具体的には、要求トルクが既定値γを超えるエンジン10’の運転域、及びエンジン回転数が既定値εを下回るエンジン10’の運転域では、目標燃焼気筒比率が100%に固定される。これに対して、要求トルクが既定値γ以下、且つエンジン回転数が既定値ε以上となるエンジン10’の運転域では、目標燃焼気筒比率が要求トルクに応じて33%〜75%の範囲で変更される。   FIG. 6 shows the relationship between the target combustion cylinder ratio value calculated by the target combustion cylinder ratio calculation unit 13 ', the required torque, and the engine speed. The target combustion cylinder ratio calculation unit 13 'reads the engine speed and the required torque for each prescribed control cycle, and calculates the target combustion cylinder ratio from the engine speed and the required torque. As shown in the figure, in the present embodiment, the target combustion cylinder ratio is calculated such that the value is 33%, 50%, 67%, 71%, 75%, or 100%. Specifically, the target combustion cylinder ratio is fixed at 100% in the operating range of the engine 10 ′ where the required torque exceeds the predetermined value γ and the operating range of the engine 10 ′ where the engine speed is lower than the predetermined value ε. On the other hand, in the operating range of the engine 10 ′ where the required torque is equal to or less than the predetermined value γ and the engine speed is equal to or higher than the predetermined value ε, the target combustion cylinder ratio is in the range of 33% to 75% depending on the required torque. Be changed.

一方、本実施形態においても、気筒休止パターン決定部14’は、目標燃焼気筒比率に基づき、エンジン10’で行う気筒休止パターンを決定する。本実施形態において気筒休止パターン決定部14’は、表2に示される12通りの気筒休止パターンのいずれかを、エンジン10’で行う気筒休止パターンとして選んでいる。   On the other hand, also in the present embodiment, the cylinder deactivation pattern determining unit 14 'determines a cylinder deactivation pattern to be performed by the engine 10' based on the target combustion cylinder ratio. In the present embodiment, the cylinder deactivation pattern determining unit 14 'selects any one of the 12 cylinder deactivation patterns shown in Table 2 as the cylinder deactivation pattern performed by the engine 10'.

同表に示すように、本実施形態で使用する12通りの気筒休止パターンは、0%、33%、50%、60%、67%、71%、75%、78%、80%、82%、83%、100%の燃焼気筒比率にそれぞれ対応している。このうち、全気筒休止を表す0%、全気筒燃焼を表す100%の両燃焼気筒比率に対応する気筒休止パターンを除く、10通りの気筒休止パターンでは、燃焼行程を迎える気筒の順にN(1以上の整数)個の気筒を続けて燃焼させた後に2気筒続けて燃焼を休止するパターンで気筒休止が繰り返される。すなわち、間欠休止運転中に使用される気筒休止パターンはすべて、上記パターンの気筒休止の繰り返しによって、すなわち一定の間隔での気筒休止の繰り返しによって実現可能な比率となっている。 As shown in the table, the 12 cylinder deactivation patterns used in this embodiment are 0%, 33%, 50%, 60%, 67%, 71%, 75%, 78%, 80%, 82%. , 83%, and 100% combustion cylinder ratios, respectively. Of these, 10 cylinder deactivation patterns, excluding the cylinder deactivation pattern corresponding to the ratio of both combustion cylinders of 0% representing all cylinder deactivation and 100% representing all cylinder combustion, N (1 The cylinder pause is repeated in a pattern in which combustion is stopped for two cylinders after the number of cylinders) is continuously burned. That is, all the cylinder deactivation patterns used during the intermittent deactivation operation have a ratio that can be realized by repeating the cylinder deactivation in the above pattern, that is, by repeating the cylinder deactivation at regular intervals.

本実施形態では、上記12通りの気筒休止パターンのそれぞれに、各パターンにおいて続けて燃焼する気筒の数(N)を値とする識別番号(ID)を付している。また、本実施形態では、燃焼気筒比率が0%(全気筒休止)の場合については、2気筒続けての気筒休止からなるパターンを便宜上の気筒休止パターンとし、その識別番号を「0」としている。さらに、本実施形態では、燃焼のみが繰り返される燃焼気筒比率が100%(全気筒燃焼)の場合については、2気筒続けての燃焼からなるパターンを便宜上の気筒休止パターンとし、その識別番号を「11」としている。   In the present embodiment, each of the 12 cylinder deactivation patterns is given an identification number (ID) whose value is the number of cylinders (N) that are continuously burned in each pattern. Further, in this embodiment, when the combustion cylinder ratio is 0% (all cylinders deactivated), a pattern consisting of cylinder deactivation for two consecutive cylinders is used as a cylinder deactivation pattern for convenience, and its identification number is “0”. . Furthermore, in the present embodiment, when the combustion cylinder ratio in which only combustion is repeated is 100% (all cylinder combustion), a pattern consisting of two cylinders in succession is used as a cylinder deactivation pattern for convenience, and its identification number is “ 11 ".

そして、気筒休止パターン決定部14’は、目標燃焼気筒比率演算部13が演算した目標燃焼気筒比率に基づき、上記識別番号0〜11の気筒休止パターンのいずれかを、実際にエンジン10’で行う気筒休止のパターンとして決定する。本実施形態の気筒休止パターン決定部14’も、図3の気筒休止パターン決定ルーチンに従って気筒休止パターンを決定している。すなわち、本実施形態においても、燃焼気筒比率の変更は、識別番号が1ずつ変化するように気筒休止パターンを順番に変化させていくことで行われる。また、本実施形態においても、間欠休止運転中に使用される気筒休止パターンの識別番号の値は、該当気筒休止パターンを繰り返したときの気筒休止間隔に対応している。よって、本実施形態においても、気筒休止パターン決定部14’は、目標燃焼気筒比率と現在の燃焼気筒比率とが一致しているときには、目標燃焼気筒比率を実現可能な間隔を次回休止間隔とし、目標燃焼気筒比率と現在の燃焼気筒比率とが一致していないときには、現在の燃焼気筒比率を実現する間隔よりも目標燃焼気筒比率を実現可能な間隔に1気筒分近い間隔を次回休止間隔としている。   Then, the cylinder deactivation pattern determination unit 14 ′ actually performs any one of the cylinder deactivation patterns of the identification numbers 0 to 11 on the engine 10 ′ based on the target combustion cylinder ratio calculated by the target combustion cylinder ratio calculation unit 13. This is determined as a cylinder deactivation pattern. The cylinder deactivation pattern determining unit 14 'of this embodiment also determines the cylinder deactivation pattern according to the cylinder deactivation pattern determination routine of FIG. That is, also in this embodiment, the change of the combustion cylinder ratio is performed by sequentially changing the cylinder deactivation pattern so that the identification number changes by one. Also in the present embodiment, the value of the cylinder deactivation pattern identification number used during intermittent deactivation operation corresponds to the cylinder deactivation interval when the corresponding cylinder deactivation pattern is repeated. Therefore, also in the present embodiment, when the target combustion cylinder ratio and the current combustion cylinder ratio coincide with each other, the cylinder deactivation pattern determination unit 14 ′ sets the interval at which the target combustion cylinder ratio can be realized as the next deactivation interval, When the target combustion cylinder ratio and the current combustion cylinder ratio do not match, the next pause interval is set to an interval that is closer to the interval at which the target combustion cylinder ratio can be achieved than the interval at which the current combustion cylinder ratio is realized by one cylinder. .

以上のように構成された本実施形態でも、燃焼気筒比率を一定としている間は、気筒の休止間隔が一定に保たれる。また、燃焼気筒比率の変更の際に、気筒の休止間隔は1気筒分ずつしか変化しない。そのため、本実施形態の可変制御方法及び可変制御装置によっても、燃焼気筒比率の可変制御を行う際の気筒休止間隔の変化に伴うエンジンの回転変動を抑制することができる。   Also in the present embodiment configured as described above, the cylinder pause interval is kept constant while the combustion cylinder ratio is constant. Further, when changing the combustion cylinder ratio, the cylinder pause interval changes only by one cylinder. Therefore, even with the variable control method and the variable control device of the present embodiment, it is possible to suppress the engine rotation fluctuation accompanying the change in the cylinder deactivation interval when performing the variable control of the combustion cylinder ratio.

ここで、第1実施形態におけるような、N個の気筒を続けて燃焼させた後に1個の気筒の燃焼を休止するパターンの気筒休止の繰り返しによる間欠燃焼運転を、V型気筒配列のエンジンで行うことを考える。こうした場合、上記Nの値が奇数となるパターンで間欠燃焼を行うと、燃焼を休止する気筒が、2つのバンクのうちの一方に集中してしまう。そしてその結果、両バンクの排気性状に偏りが生じ、エミッションコントロールが困難となる虞がある。これに対して、本実施形態では、第1バンクB1と第2バンクB2との間で交番に燃焼を行うように点火順序が設定されたエンジン10’において、間欠燃焼運転中の燃焼休止を2気筒ずつ連続して行うようにしている。そのため、第1バンクB1、第2バンクB2でそれぞれ1気筒ずつ燃焼が休止されることになり、バンク間の排気性状の偏りを抑制できる。   Here, as in the first embodiment, intermittent combustion operation by repeating cylinder deactivation in a pattern in which combustion of one cylinder is deactivated after N cylinders are continuously burned is performed with an engine of a V-type cylinder arrangement. Think about what to do. In such a case, if intermittent combustion is performed in a pattern in which the value of N is an odd number, the cylinders that stop the combustion are concentrated in one of the two banks. As a result, there is a possibility that the exhaust properties of both banks are biased, making it difficult to control emissions. On the other hand, in the present embodiment, in the engine 10 ′ in which the ignition order is set so as to alternately burn between the first bank B1 and the second bank B2, the combustion pause during the intermittent combustion operation is 2 This is done continuously for each cylinder. Therefore, the combustion is stopped by one cylinder at each of the first bank B1 and the second bank B2, and the deviation of the exhaust property between the banks can be suppressed.

なお、2気筒続けて燃焼を休止する気筒休止パターンを採用すれば、1個の気筒だけで燃焼を休止する気筒休止パターンを採用する場合よりも、間欠燃焼運転中のエンジントルクの変動は大きくなる。ここで、2気筒続けて燃焼を休止したときのエンジントルクの無発生期間は、4気筒エンジンでは360°CAとなるが、6気筒エンジンでは240°CAとなる。このようにエンジンの気筒数が多いほど、2気筒続けて燃焼を休止したときのエンジントルクの無発生期間は短くなる。よって、気筒数の多いエンジンでは、2気筒続けて燃焼を休止する気筒休止パターンを採用しても、エンジントルクの変動を許容可能な範囲内に留め易い。   If a cylinder deactivation pattern in which combustion is suspended after two cylinders is employed, fluctuations in engine torque during intermittent combustion operation will be greater than when a cylinder deactivation pattern in which combustion is halted by only one cylinder is employed. . Here, the non-occurrence period of the engine torque when the combustion is stopped for two cylinders continuously is 360 ° CA for the four-cylinder engine, but is 240 ° CA for the six-cylinder engine. Thus, as the number of cylinders of the engine increases, the non-occurrence period of engine torque when the combustion is stopped for two cylinders in succession becomes shorter. Therefore, in an engine having a large number of cylinders, even if a cylinder deactivation pattern is employed in which combustion is suspended for two cylinders in succession, it is easy to keep engine torque fluctuations within an allowable range.

10,10’…エンジン、11,11’…電子制御ユニット、12,12’…燃焼気筒比率可変制御部(燃焼気筒比率の可変制御装置)、13,13’…目標燃焼気筒比率演算部、14,14’…気筒休止パターン決定部。   DESCRIPTION OF SYMBOLS 10, 10 '... Engine, 11, 11' ... Electronic control unit, 12, 12 '... Combustion cylinder ratio variable control part (combustion cylinder ratio variable control apparatus), 13, 13' ... Target combustion cylinder ratio calculating part, 14 , 14 '... Cylinder deactivation pattern determining unit.

Claims (3)

気筒休止を間欠的に行う間欠休止運転中にエンジンの燃焼気筒比率の可変制御を行う方法であって、
Nを1以上の任意の整数としたとき、燃焼行程を迎える気筒の順にN個の気筒を続けて燃焼させた後に1個の気筒の燃焼を休止するパターンで気筒休止を繰り返すとともに、前記Nの値が1ずつ変化するように前記パターンを変化させて燃焼気筒比率を変更する
燃焼気筒比率の可変制御方法。
A method of performing variable control of a combustion cylinder ratio of an engine during intermittent pause operation in which cylinder pause is intermittently performed,
When N is an arbitrary integer equal to or greater than 1, the cylinder is repeatedly stopped in a pattern in which combustion of one cylinder is stopped after the N cylinders are continuously burned in the order of the cylinders in the combustion stroke. A combustion cylinder ratio variable control method, wherein the combustion cylinder ratio is changed by changing the pattern so that the value changes by one.
気筒休止を間欠的に行う間欠休止運転中にエンジンの燃焼気筒比率の可変制御を行う方法であって、
Nを1以上の任意の整数としたとき、燃焼行程を迎える気筒の順にN個の気筒を続けて燃焼させた後に2気筒続けて燃焼を休止するパターンで気筒休止を繰り返すとともに、前記Nの値が1ずつ変化するように前記パターンを変化させて燃焼気筒比率を変更する
燃焼気筒比率の可変制御方法。
A method of performing variable control of a combustion cylinder ratio of an engine during intermittent pause operation in which cylinder pause is intermittently performed,
When N is an arbitrary integer equal to or greater than 1, the cylinder is repeatedly deactivated in a pattern in which N cylinders are continuously burned in the order of the cylinders in the combustion stroke, and then two cylinders are continuously stopped. A variable control method of a combustion cylinder ratio, wherein the combustion cylinder ratio is changed by changing the pattern so that the value changes by one.
気筒休止を間欠的に行う間欠休止運転中にエンジンの燃焼気筒比率の可変制御を行う燃焼気筒比率の可変制御装置において、
一定の間隔での気筒休止の繰り返しにより実現可能な燃焼気筒比率を目標燃焼気筒比率として演算する目標燃焼気筒比率演算部と、
現在の燃焼気筒比率を実現する間隔で気筒休止を行ってからその次に気筒休止を行うまでの気筒休止の間隔を次回休止間隔としたとき、前記目標燃焼気筒比率と現在の燃焼気筒比率とが一致しているときには、前記目標燃焼気筒比率を実現可能な間隔を前記次回休止間隔とし、前記目標燃焼気筒比率と現在の燃焼気筒比率とが一致していないときには、現在の燃焼気筒比率を実現する間隔よりも前記目標燃焼気筒比率を実現可能な間隔に1気筒分近い間隔を前記次回休止間隔とする気筒休止パターン決定部と、
を備える燃焼気筒比率の可変制御装置。
In the variable control device for the combustion cylinder ratio that performs variable control of the combustion cylinder ratio of the engine during intermittent pause operation in which cylinder pause is intermittently performed,
A target combustion cylinder ratio calculation unit that calculates a combustion cylinder ratio that can be realized by repeating cylinder deactivation at regular intervals as a target combustion cylinder ratio;
When the cylinder deactivation interval from the cylinder deactivation at the interval for realizing the current combustion cylinder ratio to the next cylinder deactivation is the next deactivation interval, the target combustion cylinder ratio and the current combustion cylinder ratio are When they match, the interval at which the target combustion cylinder ratio can be realized is set as the next pause interval, and when the target combustion cylinder ratio does not match the current combustion cylinder ratio, the current combustion cylinder ratio is realized. A cylinder deactivation pattern determining unit that sets an interval close to one cylinder to an interval that can realize the target combustion cylinder ratio than the interval as the next deactivation interval;
A combustion cylinder ratio variable control device comprising:
JP2017133752A 2016-12-16 2017-07-07 Variable control method of combustion cylinder ratio Active JP6881105B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/813,875 US11149661B2 (en) 2016-12-16 2017-11-15 Variable combustion cylinder ratio control method and variable combustion cylinder ratio control device
RU2017142951A RU2683339C1 (en) 2016-12-16 2017-12-08 Method of variable control of ratio of cylinders to combustion and device for variable control of ratio of cylinders to combustion
EP17206206.9A EP3336336B1 (en) 2016-12-16 2017-12-08 Variable combustion cylinder ratio control method and variable combustion cylinder ratio control device
CN201711317564.8A CN108223149A (en) 2016-12-16 2017-12-12 The variable control method and changeable controller of combustion cylinders ratio

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016244468 2016-12-16
JP2016244468 2016-12-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020178875A Division JP2021006720A (en) 2016-12-16 2020-10-26 Combusting-cylinder ratio variation control apparatus

Publications (2)

Publication Number Publication Date
JP2018100658A true JP2018100658A (en) 2018-06-28
JP6881105B2 JP6881105B2 (en) 2021-06-02

Family

ID=62714188

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017133752A Active JP6881105B2 (en) 2016-12-16 2017-07-07 Variable control method of combustion cylinder ratio
JP2020178875A Pending JP2021006720A (en) 2016-12-16 2020-10-26 Combusting-cylinder ratio variation control apparatus
JP2022137679A Active JP7435674B2 (en) 2016-12-16 2022-08-31 Combustion cylinder ratio variable control device

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2020178875A Pending JP2021006720A (en) 2016-12-16 2020-10-26 Combusting-cylinder ratio variation control apparatus
JP2022137679A Active JP7435674B2 (en) 2016-12-16 2022-08-31 Combustion cylinder ratio variable control device

Country Status (2)

Country Link
JP (3) JP6881105B2 (en)
RU (1) RU2683339C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3441596A1 (en) * 2017-08-08 2019-02-13 Toyota Jidosha Kabushiki Kaisha Variable combustion cylinder ratio control device and method
JP2022164815A (en) * 2016-12-16 2022-10-27 トヨタ自動車株式会社 Combusting-cylinder ratio variation control apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082334A (en) * 1996-09-06 1998-03-31 Honda Motor Co Ltd Control device of cylinder resting engine
JP2005256664A (en) * 2004-03-10 2005-09-22 Toyota Motor Corp Output-control device of internal combustion engine
JP2008115714A (en) * 2006-11-01 2008-05-22 Toyota Motor Corp Vehicle exhaust sound control device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958132A (en) * 1982-09-28 1984-04-03 Isuzu Motors Ltd Engine with variable number of cylinders in operation
SU1312210A1 (en) * 1984-12-05 1987-05-23 Хабаровский политехнический институт Method for controlling internal combustion engine
JPH0579364A (en) * 1991-03-06 1993-03-30 Aisin Seiki Co Ltd Variable cylinder control device
JPH08246910A (en) * 1995-03-09 1996-09-24 Sanshin Ind Co Ltd Cylinder cut-off control device for two-cycle engine
RU2108472C1 (en) * 1996-07-16 1998-04-10 Акционерное общество закрытого типа "Зил-КАР" Dump truck diesel engine operation method
JP2007009779A (en) * 2005-06-29 2007-01-18 Toyota Motor Corp Control device for internal combustion engine
JP2008215185A (en) 2007-03-05 2008-09-18 Denso Corp Fuel injection control unit and fuel injection control system
JP2011196357A (en) 2010-03-24 2011-10-06 Denso Corp Engine control device
JP2011202610A (en) * 2010-03-26 2011-10-13 Toyota Motor Corp Control device for vehicle
US9458780B2 (en) * 2012-09-10 2016-10-04 GM Global Technology Operations LLC Systems and methods for controlling cylinder deactivation periods and patterns
JP6881105B2 (en) * 2016-12-16 2021-06-02 トヨタ自動車株式会社 Variable control method of combustion cylinder ratio
JP6812897B2 (en) * 2017-04-28 2021-01-13 トヨタ自動車株式会社 Intermittent combustion operation method of engine and engine control device
JP6863166B2 (en) * 2017-08-08 2021-04-21 トヨタ自動車株式会社 Variable control device for combustion cylinder ratio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082334A (en) * 1996-09-06 1998-03-31 Honda Motor Co Ltd Control device of cylinder resting engine
JP2005256664A (en) * 2004-03-10 2005-09-22 Toyota Motor Corp Output-control device of internal combustion engine
JP2008115714A (en) * 2006-11-01 2008-05-22 Toyota Motor Corp Vehicle exhaust sound control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022164815A (en) * 2016-12-16 2022-10-27 トヨタ自動車株式会社 Combusting-cylinder ratio variation control apparatus
JP7435674B2 (en) 2016-12-16 2024-02-21 トヨタ自動車株式会社 Combustion cylinder ratio variable control device
EP3441596A1 (en) * 2017-08-08 2019-02-13 Toyota Jidosha Kabushiki Kaisha Variable combustion cylinder ratio control device and method
US11384702B2 (en) 2017-08-08 2022-07-12 Toyota Jidosha Kabushiki Kaisha Variable combustion cylinder ratio control device and method

Also Published As

Publication number Publication date
JP2022164815A (en) 2022-10-27
JP7435674B2 (en) 2024-02-21
RU2683339C1 (en) 2019-03-28
JP6881105B2 (en) 2021-06-02
JP2021006720A (en) 2021-01-21

Similar Documents

Publication Publication Date Title
JP7435674B2 (en) Combustion cylinder ratio variable control device
EP3336336B1 (en) Variable combustion cylinder ratio control method and variable combustion cylinder ratio control device
JP6863166B2 (en) Variable control device for combustion cylinder ratio
CN108798912B (en) Method for operating an engine in an intermittent combustion mode and engine control device
CN113153550B (en) Control device and control method for internal combustion engine
CN109863291B (en) Method of changing phase of firing sequence and skip fire engine controller
CN109630296B (en) Control device and control method for internal combustion engine
CN113175385B (en) Control device and control method for internal combustion engine
CN112166244B (en) Vehicle control device and control method
JP2019138206A (en) Engine controller
WO2012114495A1 (en) Internal combustion engine control apparatus
US10443518B2 (en) Optimal firing patterns for cylinder deactivation control with limited deactivation mechanisms
JP2009264314A (en) Fuel injection control device of engine
JP2016128662A (en) Control device of internal combustion engine
JP2019138205A (en) Engine control device
US11761395B2 (en) Dynamic skip fire transitions for fixed CDA engines
JP3740897B2 (en) Control device for internal combustion engine
JP2019206961A (en) Vehicle system
US8515646B2 (en) Control apparatus for internal combustion engine
JP2005264814A (en) Fuel injection control device of multi-cylinder diesel engine
BR102017026284A2 (en) VARIABLE COMBUSTION CYLINDER RATE CONTROL METHOD AND VARIABLE COMBUSTION CYLINDER RATE CONTROL DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R151 Written notification of patent or utility model registration

Ref document number: 6881105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151