JP2021005970A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2021005970A
JP2021005970A JP2019119522A JP2019119522A JP2021005970A JP 2021005970 A JP2021005970 A JP 2021005970A JP 2019119522 A JP2019119522 A JP 2019119522A JP 2019119522 A JP2019119522 A JP 2019119522A JP 2021005970 A JP2021005970 A JP 2021005970A
Authority
JP
Japan
Prior art keywords
thermal resistance
housing
electric machine
rotary electric
stator core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019119522A
Other languages
Japanese (ja)
Other versions
JP7251355B2 (en
Inventor
健佑 田中
Kensuke Tanaka
健佑 田中
茂昌 加藤
Shigemasa Kato
茂昌 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019119522A priority Critical patent/JP7251355B2/en
Priority to PCT/JP2020/023739 priority patent/WO2020262139A1/en
Publication of JP2021005970A publication Critical patent/JP2021005970A/en
Application granted granted Critical
Publication of JP7251355B2 publication Critical patent/JP7251355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

To provide a rotary electric machine that enables efficient cooling of a stator.SOLUTION: A screw engaging portion 25 of a housing 12 is configured to have higher thermal resistance than a portion other than a screw engaging portion 25 (that is, a low thermal resistance portion 21a) in a circumferential direction of the housing 12. Further, a welding groove 34 of a stator core 31 is configured to have higher thermal resistance than a portion other than the welding groove 34 (that is, a low thermal resistance portion 32a) in the circumferential direction of the stator core 31. The welding groove 34 is located inside the screw engaging portion 25 in a radial direction.SELECTED DRAWING: Figure 2

Description

本発明は、回転電機に関するものである。 The present invention relates to a rotary electric machine.

回転電機の駆動時の固定子の発熱対策として、例えば固定子が内接するハウジングの外周面にフィン形状の放熱部を備えるものが周知である(例えば特許文献1参照)。 As a measure against heat generation of the stator when driving a rotary electric machine, for example, a housing provided with a fin-shaped heat radiating portion on the outer peripheral surface of a housing inscribed with the stator is well known (see, for example, Patent Document 1).

特開2019−22250号公報JP-A-2019-22250

ハウジングの外周面には、放熱部とは別に取付部等の機能部が設けられることが多い。すると、取付部等の機能部が位置する部位は、機能部のない他の部位と比べて熱抵抗が高くなりがちである。つまり、ハウジングの周方向において熱抵抗が一様でないため、ハウジングに対する固定子の周方向位置の設定によっては、固定子の冷却に差が生じ得るといったことが課題としてあった。 On the outer peripheral surface of the housing, a functional portion such as a mounting portion is often provided in addition to the heat radiating portion. Then, the part where the functional part such as the mounting part is located tends to have a higher thermal resistance than the other part without the functional part. That is, since the thermal resistance is not uniform in the circumferential direction of the housing, there is a problem that the cooling of the stator may differ depending on the setting of the circumferential position of the stator with respect to the housing.

本発明は、上記課題を解決するためになされたものであって、その目的は、固定子の効率的な冷却を可能とした回転電機を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a rotary electric machine capable of efficiently cooling a stator.

上記課題を解決する回転電機は、筒状のハウジング(12)と、前記ハウジングの周方向に沿う環状をなし前記ハウジングの内周面に固定された固定子コア(31)と、を備えた回転電機であって、前記ハウジングは周方向において部分的に第1熱抵抗部(25)を有し、該第1熱抵抗部は、前記ハウジングの周方向における前記第1熱抵抗部以外の部位(21a)よりも熱抵抗が高く構成され、前記固定子コアは周方向において部分的に第2熱抵抗部(34,41)を有し、該第2熱抵抗部は、前記固定子コアの周方向における前記第2熱抵抗部以外の部位(32a)よりも熱抵抗が高く構成され、前記第2熱抵抗部が前記第1熱抵抗部の径方向内側に位置する。 A rotary electric machine that solves the above problems is a rotary electric machine that includes a tubular housing (12) and a stator core (31) that forms an annular shape along the circumferential direction of the housing and is fixed to the inner peripheral surface of the housing. In the electric machine, the housing partially has a first thermal resistance portion (25) in the circumferential direction, and the first thermal resistance portion is a portion other than the first thermal resistance portion in the circumferential direction of the housing ( It is configured to have a higher thermal resistance than 21a), the stator core has a second thermal resistance portion (34, 41) partially in the circumferential direction, and the second thermal resistance portion is the circumference of the stator core. The thermal resistance is configured to be higher than the portion (32a) other than the second thermal resistance portion in the direction, and the second thermal resistance portion is located inside the first thermal resistance portion in the radial direction.

上記態様によれば、ハウジング側の熱抵抗が高い部位である第1熱抵抗部と、固定子コア側の熱抵抗が高い部位である第2熱抵抗部の位置を周方向に合わせることで、第1及び第2熱抵抗部の位置合わせ部分以外の箇所から効率的に放熱することが可能となる。その結果、回転電機全体としての放熱性を向上させることが可能となり、固定子の効率的な冷却が可能となる。 According to the above aspect, by aligning the positions of the first thermal resistance portion, which is a portion having a high thermal resistance on the housing side, and the second thermal resistance portion, which is a portion having a high thermal resistance on the stator core side, in the circumferential direction. It is possible to efficiently dissipate heat from locations other than the alignment portions of the first and second thermal resistance portions. As a result, it is possible to improve the heat dissipation of the rotating electric machine as a whole, and it is possible to efficiently cool the stator.

実施形態における回転電機の模式断面図。Schematic cross-sectional view of a rotary electric machine according to an embodiment. (a)同形態における固定子の平面図、(b)同形態における固定子の一部を拡大して示す平面図。(A) A plan view of the stator in the same form, and (b) a plan view showing a part of the stator in the same form in an enlarged manner. (a)変更例における固定子の平面図、(b)同変更例における固定子の一部を拡大して示す平面図。(A) A plan view of the stator in the modified example, and (b) a plan view showing a part of the stator in the modified example in an enlarged manner.

以下、回転電機の一実施形態について説明する。
図1及び図2(a)に示すように、本実施形態の回転電機11は、略有底円筒状のハウジング12と、ハウジング12に取り付けられたカバー13とを備える。また、回転電機11は、ハウジング12の内周面に固定された略円筒状の固定子14と、固定子14の内側で回転可能に支持された回転子15とを備える。なお、本実施形態の回転電機11は、例えば、換気扇や車両のラジエータ用の送風機の駆動源として用いられるものである。
Hereinafter, an embodiment of the rotary electric machine will be described.
As shown in FIGS. 1 and 2A, the rotary electric machine 11 of the present embodiment includes a housing 12 having a substantially bottomed cylindrical shape and a cover 13 attached to the housing 12. Further, the rotary electric machine 11 includes a substantially cylindrical stator 14 fixed to the inner peripheral surface of the housing 12, and a rotor 15 rotatably supported inside the stator 14. The rotary electric machine 11 of the present embodiment is used, for example, as a drive source for a ventilation fan or a blower for a radiator of a vehicle.

回転子15は、回転軸16に固定された固定子鉄心に永久磁石が固定されたものである。回転軸16は、ハウジング12の底部22及びカバー13にそれぞれ固定された軸受17によって回転可能に支持されている。また、回転軸16は、軸方向一方側が外部に突出した状態で設けられ、その軸方向一方側に出力部18が固定される。回転電機11を換気扇や車両のラジエータ用の送風機として用いる場合には、出力部18としてのプロペラファンが回転軸16に固定される。 The rotor 15 has a permanent magnet fixed to a stator core fixed to a rotating shaft 16. The rotating shaft 16 is rotatably supported by bearings 17 fixed to the bottom 22 of the housing 12 and the cover 13, respectively. Further, the rotating shaft 16 is provided with one side in the axial direction protruding to the outside, and the output unit 18 is fixed to the one side in the axial direction. When the rotary electric machine 11 is used as a blower for a ventilation fan or a radiator of a vehicle, a propeller fan as an output unit 18 is fixed to the rotary shaft 16.

ハウジング12は、円筒状の周壁21と、周壁21の軸方向の一端部を閉塞する底部22を備えている。カバー13は、周壁21における底部22とは反対側の軸方向端部である開放端部23を塞いでいる。 The housing 12 includes a cylindrical peripheral wall 21 and a bottom portion 22 that closes one end of the peripheral wall 21 in the axial direction. The cover 13 closes the open end 23, which is the axial end of the peripheral wall 21 opposite to the bottom 22.

図1及び図2(a)(b)に示すように、周壁21の開放端部23には、ねじ部材24が螺着されるねじ孔25aをそれぞれ有する複数のねじ係合部25が形成されている。本実施形態では、ねじ係合部25は、周方向において等角度間隔に4つ形成されている。各ねじ係合部25は、周壁21の外周面から径方向外側に突出するように形成されている。すなわち、各ねじ係合部25は、周壁21の周方向におけるねじ係合部25以外の部位よりも径方向の厚さが厚く形成されている。また、各ねじ係合部25は、開放端部23から軸方向の中間位置まで軸方向に沿って形成されている(図1参照)。各ねじ係合部25のねじ孔25aも、軸方向に沿って形成されている。ねじ部材24は、カバー13に貫通形成されたねじ挿通孔13aに挿通されるとともに、ハウジング12側のねじ孔25aに螺着されている。これにより、カバー13がハウジング12の周壁21に対して固定されている。 As shown in FIGS. 1 and 2 (a) and 2 (b), a plurality of screw engaging portions 25 having screw holes 25 a into which the screw member 24 is screwed are formed on the open end portion 23 of the peripheral wall 21. ing. In the present embodiment, four screw engaging portions 25 are formed at equal angular intervals in the circumferential direction. Each screw engaging portion 25 is formed so as to project radially outward from the outer peripheral surface of the peripheral wall 21. That is, each screw engaging portion 25 is formed to be thicker in the radial direction than a portion other than the screw engaging portion 25 in the circumferential direction of the peripheral wall 21. Further, each screw engaging portion 25 is formed along the axial direction from the open end portion 23 to an intermediate position in the axial direction (see FIG. 1). The screw holes 25a of each screw engaging portion 25 are also formed along the axial direction. The screw member 24 is inserted into the screw insertion hole 13a formed through the cover 13 and is screwed into the screw hole 25a on the housing 12 side. As a result, the cover 13 is fixed to the peripheral wall 21 of the housing 12.

各ねじ係合部25は、ねじ孔25aを有していることから、周壁21の周方向におけるねじ係合部25以外の部位(以下、低熱抵抗部21aと言う)よりも熱抵抗が高くなっている。すなわち、各ねじ係合部25は第1熱抵抗部に相当する。なお、本実施形態の低熱抵抗部21aは、周壁21の周方向におけるねじ係合部25間の部位である。また、本実施形態の各ねじ係合部25は、低熱抵抗部21aよりも径方向の厚さが厚いことからも、低熱抵抗部21aよりも熱抵抗が高くなっている。 Since each screw engaging portion 25 has a screw hole 25a, the thermal resistance is higher than that of a portion other than the screw engaging portion 25 in the circumferential direction of the peripheral wall 21 (hereinafter, referred to as a low thermal resistance portion 21a). ing. That is, each screw engaging portion 25 corresponds to the first thermal resistance portion. The low thermal resistance portion 21a of the present embodiment is a portion between the screw engaging portions 25 in the circumferential direction of the peripheral wall 21. Further, since each screw engaging portion 25 of the present embodiment is thicker in the radial direction than the low thermal resistance portion 21a, the thermal resistance is higher than that of the low thermal resistance portion 21a.

また、ハウジング12は、周壁21の外周面から径方向外側に突出する複数の放熱フィン26を備えている。複数の放熱フィン26は、周方向において等角度間隔に設けられている。また、複数の放熱フィン26は、放射状に設けられている。なお、本実施形態の放熱フィン26は、周壁21に一体成形されている。また、放熱フィン26は、周壁21の軸方向一端から軸方向他端まで形成されている。 Further, the housing 12 includes a plurality of heat radiating fins 26 that project radially outward from the outer peripheral surface of the peripheral wall 21. The plurality of heat radiation fins 26 are provided at equal angular intervals in the circumferential direction. Further, the plurality of heat radiation fins 26 are provided radially. The heat radiation fin 26 of this embodiment is integrally molded with the peripheral wall 21. Further, the heat radiation fins 26 are formed from one end in the axial direction to the other end in the axial direction of the peripheral wall 21.

軸方向視において、回転軸16の軸線を中心とする同一円上に各放熱フィン26の先端が位置するように構成されている。また、一部の放熱フィン26は、ねじ係合部25と周方向において同位置に形成されている。すなわち、ねじ係合部25と同位置に形成された放熱フィン26の軸方向の一部分は、ねじ係合部25の外側面から突出している。このため、放熱フィン26のねじ係合部25から突出する部分においては、径方向への突出長さが短く(すなわち、表面積が少なく)、放熱性能が他部位に比べて低くなっている。 In the axial direction, the tips of the heat radiating fins 26 are located on the same circle centered on the axis of the rotating shaft 16. Further, some of the heat radiation fins 26 are formed at the same positions as the screw engaging portion 25 in the circumferential direction. That is, a part of the heat radiating fin 26 formed at the same position as the screw engaging portion 25 in the axial direction protrudes from the outer surface of the screw engaging portion 25. Therefore, in the portion of the heat radiating fin 26 protruding from the screw engaging portion 25, the protruding length in the radial direction is short (that is, the surface area is small), and the heat radiating performance is lower than that of other parts.

固定子14は、ハウジング12の周壁21の内周面に固定された略円環状の固定子コア31を有している。固定子コア31は磁性体からなる。固定子コア31は、金属板からプレス加工により成形された複数のコアシート31a(図1参照)を軸方向に積層した構成をなしている。なお、本実施形態の各コアシート31aは電磁鋼板からなる。 The stator 14 has a substantially annular stator core 31 fixed to the inner peripheral surface of the peripheral wall 21 of the housing 12. The stator core 31 is made of a magnetic material. The stator core 31 has a configuration in which a plurality of core sheets 31a (see FIG. 1) formed by press working from a metal plate are laminated in the axial direction. Each core sheet 31a of the present embodiment is made of an electromagnetic steel sheet.

固定子コア31は、回転軸16の周方向に沿う円環状をなす基部32と、基部32の内周面から径方向内側に延びる複数のティース33とを備えている。複数のティース33は、周方向において等角度間隔に設けられている。複数のティース33には、図示しない巻線が装着される。 The stator core 31 includes a base portion 32 forming an annular shape along the circumferential direction of the rotating shaft 16, and a plurality of teeth 33 extending radially inward from the inner peripheral surface of the base portion 32. The plurality of teeth 33 are provided at equal angular intervals in the circumferential direction. Windings (not shown) are mounted on the plurality of teeth 33.

基部32の外周面には、該基部32の軸方向一端から他端まで軸方向に沿って延びる溶接溝34が形成されている。本実施形態では、溶接溝34は、周方向において等角度間隔に4つ形成されている。各溶接溝34は、固定子コア31を構成する各コアシート31aを互いに固定するための溶接により形成された溶接部34aを有している。溶接部34aは溶接痕であり、溶接溝34内において径方向外側に突出する形状をなしている。 On the outer peripheral surface of the base portion 32, a welding groove 34 extending along the axial direction from one end to the other end in the axial direction of the base portion 32 is formed. In the present embodiment, four welding grooves 34 are formed at equal angular intervals in the circumferential direction. Each welding groove 34 has a welded portion 34a formed by welding for fixing each core sheet 31a constituting the stator core 31 to each other. The welded portion 34a is a welding mark and has a shape that protrudes outward in the radial direction in the welding groove 34.

各溶接溝34は、基部32の周方向における溶接溝34以外の部位(以下、低熱抵抗部32aと言う)よりも熱抵抗が高くなっている。すなわち、各溶接溝34は、第2熱抵抗部及び外周溝に相当する。 Each welding groove 34 has a higher thermal resistance than a portion other than the welding groove 34 (hereinafter, referred to as a low thermal resistance portion 32a) in the circumferential direction of the base portion 32. That is, each welding groove 34 corresponds to the second thermal resistance portion and the outer peripheral groove.

なお、本実施形態の複数のコアシート31aは、1枚ずつまたは複数枚ずつ、周方向に隣り合う溶接溝34の間の角度間隔だけ(すなわち、本実施形態では90度)回転しつつ積層されている。 The plurality of core sheets 31a of the present embodiment are laminated one by one or a plurality of core sheets while rotating at an angle interval between the welding grooves 34 adjacent to each other in the circumferential direction (that is, 90 degrees in the present embodiment). ing.

各溶接溝34の周方向位置は、各ねじ係合部25の周方向位置と一致している。すなわち、各溶接溝34は、各ねじ係合部25の径方向内側に位置している。本実施形態では、固定子14の周方向における溶接溝34の中心線がねじ孔25aの中心と重なっている。すなわち、溶接溝34は、ねじ孔25aの径方向内側に位置している。また、溶接溝34の周方向幅(換言すると開角度)は、ねじ孔25aの周方向幅(換言すると開角度)よりも小さく設定されている。これにより、溶接溝34の周方向の全体がねじ孔25aの径方向内側に位置するように構成されている。 The circumferential position of each welding groove 34 coincides with the circumferential position of each screw engaging portion 25. That is, each welding groove 34 is located inside each screw engaging portion 25 in the radial direction. In the present embodiment, the center line of the weld groove 34 in the circumferential direction of the stator 14 overlaps with the center of the screw hole 25a. That is, the welding groove 34 is located inside the screw hole 25a in the radial direction. Further, the circumferential width of the welding groove 34 (in other words, the opening angle) is set smaller than the circumferential width of the screw hole 25a (in other words, the opening angle). As a result, the entire circumferential direction of the welding groove 34 is configured to be located inside the screw hole 25a in the radial direction.

次に、上記のように構成された回転電機11の作用について説明する。
固定子14の巻線に駆動電流が供給されると、固定子14にて回転磁界が発生されて回転子15が回転駆動され、回転子15の回転軸16と共に出力部18(本実施形態ではプロペラファン)が回転する。このとき、巻線への通電により固定子14で生じた熱はハウジング12に伝わり、ハウジング12から外部に放熱される。
Next, the operation of the rotary electric machine 11 configured as described above will be described.
When a drive current is supplied to the windings of the stator 14, a rotating magnetic field is generated in the stator 14, the rotor 15 is rotationally driven, and the output unit 18 (in the present embodiment) together with the rotating shaft 16 of the rotor 15. Propeller fan) rotates. At this time, the heat generated by the stator 14 due to the energization of the winding is transferred to the housing 12, and is dissipated from the housing 12 to the outside.

ここで、固定子コア31における基部32の溶接溝34が形成された部位は、ハウジング12の周壁21の内周面に接していないため、基部32から周壁21に熱が伝わりにくい。それに対し、基部32の低熱抵抗部32aは、周壁21の内周面に接しており、周壁21に熱が伝わりやすくなっている。 Here, since the portion of the stator core 31 where the weld groove 34 of the base portion 32 is formed is not in contact with the inner peripheral surface of the peripheral wall 21 of the housing 12, heat is not easily transferred from the base portion 32 to the peripheral wall 21. On the other hand, the low heat resistance portion 32a of the base portion 32 is in contact with the inner peripheral surface of the peripheral wall 21, so that heat is easily transferred to the peripheral wall 21.

また、ハウジング12の周壁21におけるねじ係合部25が形成された部位では、内周側から外周側にかけて熱が伝わりにくい。それに対し、周壁21の低熱抵抗部21aでは、内周側から外周側にかけて熱が伝わりやすい。 Further, in the portion of the peripheral wall 21 of the housing 12 where the screw engaging portion 25 is formed, heat is not easily transferred from the inner peripheral side to the outer peripheral side. On the other hand, in the low thermal resistance portion 21a of the peripheral wall 21, heat is easily transferred from the inner peripheral side to the outer peripheral side.

そして、本実施形態では、ハウジング12側の熱抵抗が高い部位であるねじ係合部25と、固定子コア31側の熱抵抗が高い部位(すなわち、ハウジング12側への伝熱性が低い部位)である溶接溝34の位置を周方向に合わせている。これにより、ねじ係合部25と溶接溝34の位置合わせ部分以外の箇所(すなわち、ハウジング12側の低熱抵抗部21aと固定子コア31側の低熱抵抗部32aとが径方向に重なっている箇所)から効率的に放熱することが可能となっている。その結果、回転電機11全体としての放熱性が向上されるようになっている。 In the present embodiment, the screw engaging portion 25, which is a portion having a high thermal resistance on the housing 12 side, and the portion having a high thermal resistance on the stator core 31 side (that is, a portion having a low thermal resistance to the housing 12 side). The position of the welding groove 34 is aligned with the circumferential direction. As a result, a portion other than the alignment portion between the screw engaging portion 25 and the welding groove 34 (that is, a portion where the low thermal resistance portion 21a on the housing 12 side and the low thermal resistance portion 32a on the stator core 31 side overlap in the radial direction). ), It is possible to dissipate heat efficiently. As a result, the heat dissipation of the rotary electric machine 11 as a whole is improved.

なお、ハウジング12の周壁21に伝わった熱は、各放熱フィン26から効率的に放熱される。そして、本実施形態では、出力部18としてのプロペラファンによって発生される風が回転電機11の軸方向に流れて各放熱フィン26の近傍を通過することで、各放熱フィン26から外部への放熱が促進されるようになっている。 The heat transferred to the peripheral wall 21 of the housing 12 is efficiently dissipated from each heat radiating fin 26. Then, in the present embodiment, the wind generated by the propeller fan as the output unit 18 flows in the axial direction of the rotary electric machine 11 and passes in the vicinity of each heat radiation fin 26 to dissipate heat from each heat radiation fin 26 to the outside. Is being promoted.

ここで、本実施形態のねじ係合部25は、周壁21から径方向外側に突出する形状をなすため、放熱フィン26の近傍を通過する風の好適な流れを妨げるおそれがあり、このことが、ねじ係合部25における放熱性の悪化の一因となっている。従って、各低熱抵抗部21a,32aが径方向に重なっている箇所から効率的に放熱させる構造とすることで、回転電機11全体としての放熱性を向上させる効果をより顕著に得ることができる。 Here, since the screw engaging portion 25 of the present embodiment has a shape that protrudes outward in the radial direction from the peripheral wall 21, there is a risk of hindering a suitable flow of wind passing in the vicinity of the heat radiating fin 26. This is one of the causes of deterioration of heat dissipation in the screw engaging portion 25. Therefore, by adopting a structure in which the low heat resistance portions 21a and 32a efficiently dissipate heat from the locations where they overlap in the radial direction, the effect of improving the heat dissipation of the rotating electric machine 11 as a whole can be obtained more remarkably.

本実施形態の効果について説明する。
(1)回転電機11における放熱性の低い箇所を周方向に集中させることで、回転電機11全体としての放熱性を向上させることが可能となり、その結果、固定子14の効率的な冷却が可能となる。
The effect of this embodiment will be described.
(1) By concentrating the parts of the rotary electric machine 11 having low heat dissipation in the circumferential direction, it is possible to improve the heat dissipation of the rotary electric machine 11 as a whole, and as a result, the stator 14 can be efficiently cooled. It becomes.

(2)ハウジング12は、ねじ部材24が螺着されるねじ孔25aを有するねじ係合部25を備える。すなわち、ねじ係合部25を備えることでハウジング12の放熱性能が周方向において一様にならない構成において、固定子14の効率的な冷却が可能となる。 (2) The housing 12 includes a screw engaging portion 25 having a screw hole 25a into which the screw member 24 is screwed. That is, by providing the screw engaging portion 25, the stator 14 can be efficiently cooled in a configuration in which the heat dissipation performance of the housing 12 is not uniform in the circumferential direction.

(3)ハウジング12の軸方向の一端部を閉塞するカバー13を備えた構成において、固定子14の効率的な冷却が可能となる。
(4)固定子コア31は、複数のコアシート31aを互いに固定するための溶接部34aが形成された溶接溝34を備える。すなわち、溶接溝34を備えることで固定子コア31の放熱性能が周方向において一様にならない構成において、固定子14の効率的な冷却が可能となる。
(3) In a configuration provided with a cover 13 that closes one end of the housing 12 in the axial direction, the stator 14 can be efficiently cooled.
(4) The stator core 31 includes a weld groove 34 in which a welded portion 34a for fixing the plurality of core sheets 31a to each other is formed. That is, by providing the welding groove 34, the stator 14 can be efficiently cooled in a configuration in which the heat dissipation performance of the stator core 31 is not uniform in the circumferential direction.

(5)ハウジング12は、固定子コア31が内周面に固定される筒状の周壁21と、周壁21の外周面から突出する放熱フィン26とを備える。これにより、ハウジング12の周壁21に伝わった熱を、各放熱フィン26から効率的に放熱させることができる。 (5) The housing 12 includes a tubular peripheral wall 21 in which the stator core 31 is fixed to the inner peripheral surface, and heat radiation fins 26 protruding from the outer peripheral surface of the peripheral wall 21. As a result, the heat transferred to the peripheral wall 21 of the housing 12 can be efficiently dissipated from each heat radiating fin 26.

本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・ねじ係合部25の数、及び溶接溝34の数は上記実施形態に限定されるものではなく、構成に応じて適宜変更可能である。また、ねじ係合部25と溶接溝34とが互いに同数でなくてもよい。
This embodiment can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
The number of screw engaging portions 25 and the number of welding grooves 34 are not limited to the above embodiment, and can be appropriately changed depending on the configuration. Further, the number of screw engaging portions 25 and the number of welding grooves 34 do not have to be the same.

・上記実施形態のように溶接溝34がねじ孔25aの径方向内側に位置することが好ましいが、ねじ孔25aの径方向内側でなくても、ねじ係合部25の径方向内側の位置に設定されていればよい。 It is preferable that the welding groove 34 is located inside the screw hole 25a in the radial direction as in the above embodiment, but it is not necessarily inside the screw hole 25a in the radial direction but at a position inside the screw engaging portion 25 in the radial direction. It suffices if it is set.

・固定子コア31の第2熱抵抗部の構成は上記実施形態に限定されるものではない。
固定子コア31の第2熱抵抗部の変更例を図3(a)(b)を参照して説明する。なお、以下の説明及び図3(a)(b)において上記実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
The configuration of the second thermal resistance portion of the stator core 31 is not limited to the above embodiment.
An example of changing the second thermal resistance portion of the stator core 31 will be described with reference to FIGS. 3A and 3B. In addition, in the following description and FIGS. 3A and 3B, the same reference numerals as those in the above-described embodiment indicate the same configuration, and the preceding description will be referred to.

図3(a)(b)に示す固定子14は、基部32の外周面にキー溝41を備えている。キー溝41は、周方向において等角度間隔に4つ形成されている。各キー溝41は、基部32の軸方向一端から他端まで軸方向に沿って延びている。また、固定子コア31は、4つの溶接溝34を周方向において等角度間隔に備えている。溶接溝34とキー溝41とは、周方向において等角度間隔に交互に形成されている。各キー溝41は、基部32の周方向における溶接溝34及びキー溝41以外の部位(すなわち、周方向に隣り合う溶接溝34とキー溝41の間の部位)よりも熱抵抗が高くなっている。すなわち、各キー溝41は、第2熱抵抗部及び外周溝に相当する。 The stator 14 shown in FIGS. 3A and 3B is provided with a key groove 41 on the outer peripheral surface of the base portion 32. Four key grooves 41 are formed at equal angular intervals in the circumferential direction. Each keyway 41 extends along the axial direction from one end in the axial direction of the base 32 to the other end. Further, the stator core 31 is provided with four welding grooves 34 at equal angular intervals in the circumferential direction. The welding grooves 34 and the key grooves 41 are alternately formed at equal angular intervals in the circumferential direction. Each key groove 41 has a higher thermal resistance than a portion other than the weld groove 34 and the key groove 41 in the circumferential direction of the base 32 (that is, a portion between the weld groove 34 and the key groove 41 adjacent to each other in the circumferential direction). There is. That is, each key groove 41 corresponds to the second thermal resistance portion and the outer peripheral groove.

4つのキー溝41のうちの1つは、ハウジング12の周壁21の内周面に形成された溝43に対して周方向に位置合わせされている。そして、当該キー溝41とハウジング12側の溝43からなる孔にキー部材42が嵌合されることで、ハウジング12と固定子コア31同士が周方向に位置決めされ、それらの回り止めとなっている。なお、この例では、上記実施形態で説明したコアシート31aの回転積層構造を有するため、キー部材42が嵌合されないキー部材42が存在する。 One of the four key grooves 41 is aligned in the circumferential direction with respect to the groove 43 formed on the inner peripheral surface of the peripheral wall 21 of the housing 12. Then, by fitting the key member 42 into the hole formed by the key groove 41 and the groove 43 on the housing 12 side, the housing 12 and the stator core 31 are positioned in the circumferential direction and serve as a detent for them. There is. In this example, since the core sheet 31a described in the above embodiment has a rotationally laminated structure, there is a key member 42 to which the key member 42 is not fitted.

各キー溝41の周方向位置は、各ねじ係合部25の周方向位置と一致している。すなわち、各キー溝41は、各ねじ係合部25の径方向内側に位置している。また、詳しくは、キー溝41は、ねじ孔25aの径方向内側に位置することが好ましい。 The circumferential position of each keyway 41 coincides with the circumferential position of each screw engaging portion 25. That is, each key groove 41 is located inside each screw engaging portion 25 in the radial direction. More specifically, the key groove 41 is preferably located inside the screw hole 25a in the radial direction.

上記のような構成によれば、回り止め用のキー溝41を固定子コア31に備えた構成において、回転電機11における放熱性の低い箇所を周方向に集中させることで、回転電機11全体としての放熱性を向上させることが可能となる。その結果、固定子14の効率的な冷却が可能となる。なお、キー溝41の数は4つに限定されるものではなく、構成に応じて適宜変更可能である。また、上記の例では、溶接溝34をねじ係合部25の径方向内側に配置していないが、これに限らず、溶接溝34とキー溝41の両方を同一または個別のねじ係合部25の径方向内側に配置してもよい。 According to the above configuration, in the configuration in which the key groove 41 for preventing rotation is provided in the stator core 31, the portions of the rotary electric machine 11 having low heat dissipation are concentrated in the circumferential direction, so that the rotary electric machine 11 as a whole It is possible to improve the heat dissipation of the. As a result, the stator 14 can be efficiently cooled. The number of key grooves 41 is not limited to four, and can be appropriately changed depending on the configuration. Further, in the above example, the welding groove 34 is not arranged inside the screw engaging portion 25 in the radial direction, but the present invention is not limited to this, and both the welding groove 34 and the key groove 41 are the same or individual screw engaging portions. It may be arranged inside 25 in the radial direction.

・上記実施形態では、ねじ係合部25のねじ孔25aにねじ部材24が螺着される構成としたが、これ以外に例えば、スルーボルトが挿通される孔を有するねじ係合部としてもよい。 -In the above embodiment, the screw member 24 is screwed into the screw hole 25a of the screw engaging portion 25, but in addition to this, for example, a screw engaging portion having a hole through which a through bolt is inserted may be used. ..

・上記実施形態では、ねじ係合部25を、ハウジング12にカバー13を固定するための部位として構成したが、これ以外に例えば、回転電機11を被取付部に固定するための部位として構成してもよい。 -In the above embodiment, the screw engaging portion 25 is configured as a portion for fixing the cover 13 to the housing 12, but in addition to this, for example, the screw engaging portion 25 is configured as a portion for fixing the rotary electric machine 11 to the mounted portion. You may.

・上記実施形態では、ねじ係合部25が周壁21の外周面から径方向外側に突出するが、これに限らず、周壁21を周方向全体に亘って一様な厚さとしてもよい。この構成であっても、ねじ孔25aが周壁21における熱抵抗となるため、ねじ孔25aの径方向内側に固定子コア31側の第2熱抵抗部(すなわち、溶接溝34またはキー溝41)を配置することで、上記実施形態と略同様の効果が得られる。 In the above embodiment, the screw engaging portion 25 projects radially outward from the outer peripheral surface of the peripheral wall 21, but the present invention is not limited to this, and the peripheral wall 21 may have a uniform thickness over the entire circumferential direction. Even with this configuration, since the screw hole 25a serves as a thermal resistance in the peripheral wall 21, the second thermal resistance portion (that is, the welding groove 34 or the key groove 41) on the stator core 31 side is inside the screw hole 25a in the radial direction. By arranging, the same effect as that of the above embodiment can be obtained.

・放熱フィン26に軸方向における抜き勾配をつけることで、成形の際の型抜きが容易となる。
・上記実施形態の放熱フィン26は周壁21に一体成形されたが、これに限らず、周壁21とは別体として構成してもよい。
-By providing the heat radiating fin 26 with a draft in the axial direction, die cutting during molding becomes easy.
The heat radiation fin 26 of the above embodiment is integrally molded with the peripheral wall 21, but the present invention is not limited to this, and the heat radiation fin 26 may be configured as a separate body from the peripheral wall 21.

・上記実施形態のハウジング12から放熱フィン26を省略した構成としてもよい。
・上記実施形態のハウジング12において、内部に冷却液を循環させる冷却構造を加えてもよい。
The heat radiation fins 26 may be omitted from the housing 12 of the above embodiment.
-In the housing 12 of the above embodiment, a cooling structure for circulating a cooling liquid may be added inside.

・出力部18はプロペラファンに限定されるものではなく、回転電機11の用途に応じて出力部18の構成を適宜変更可能である。 The output unit 18 is not limited to the propeller fan, and the configuration of the output unit 18 can be appropriately changed according to the application of the rotary electric machine 11.

11…回転電機、12…ハウジング、13…カバー、21…周壁、21a…低熱抵抗部、24…ねじ部材、25…ねじ係合部(第1熱抵抗部)、25a…ねじ孔、26…放熱フィン、31…固定子コア、31a…コアシート、32a…低熱抵抗部、34…溶接溝(第2熱抵抗部、外周溝)、34a…溶接部、41…キー溝、42…キー部材。 11 ... Rotating electric machine, 12 ... Housing, 13 ... Cover, 21 ... Peripheral wall, 21a ... Low thermal resistance part, 24 ... Screw member, 25 ... Screw engaging part (first thermal resistance part), 25a ... Screw hole, 26 ... Heat dissipation Fins, 31 ... Fixture core, 31a ... Core sheet, 32a ... Low thermal resistance portion, 34 ... Welding groove (second thermal resistance portion, outer peripheral groove), 34a ... Welding portion, 41 ... Key groove, 42 ... Key member.

Claims (7)

筒状のハウジング(12)と、
前記ハウジングの周方向に沿う環状をなし前記ハウジングの内周面に固定された固定子コア(31)と、を備えた回転電機であって、
前記ハウジングは周方向において部分的に第1熱抵抗部(25)を有し、該第1熱抵抗部は、前記ハウジングの周方向における前記第1熱抵抗部以外の部位(21a)よりも熱抵抗が高く構成され、
前記固定子コアは周方向において部分的に第2熱抵抗部(34,41)を有し、該第2熱抵抗部は、前記固定子コアの周方向における前記第2熱抵抗部以外の部位(32a)よりも熱抵抗が高く構成され、
前記第2熱抵抗部が前記第1熱抵抗部の径方向内側に位置する、回転電機。
Cylindrical housing (12) and
A rotary electric machine having an annular shape along the circumferential direction of the housing and a stator core (31) fixed to the inner peripheral surface of the housing.
The housing partially has a first thermal resistance portion (25) in the circumferential direction, and the first thermal resistance portion is hotter than a portion (21a) other than the first thermal resistance portion in the circumferential direction of the housing. High resistance,
The stator core partially has a second thermal resistance portion (34, 41) in the circumferential direction, and the second thermal resistance portion is a portion other than the second thermal resistance portion in the circumferential direction of the stator core. It is configured to have a higher thermal resistance than (32a).
A rotary electric machine in which the second thermal resistance portion is located inside the first thermal resistance portion in the radial direction.
前記ハウジングは、ねじ部材(24)が挿通又は螺着される孔(25a)を有する前記第1熱抵抗部としてのねじ係合部(25)を備える、請求項1に記載の回転電機。 The rotary electric machine according to claim 1, wherein the housing includes a screw engaging portion (25) as the first thermal resistance portion having a hole (25a) through which the screw member (24) is inserted or screwed. 前記ハウジングの軸方向の一端部を閉塞するカバー(13)を備え、
前記カバーは、前記ねじ部材によって前記ハウジングに固定されている、請求項2に記載の回転電機。
A cover (13) for closing one end of the housing in the axial direction is provided.
The rotary electric machine according to claim 2, wherein the cover is fixed to the housing by the screw member.
前記固定子コアの外周面には、軸方向に沿って延びる前記第2熱抵抗部としての外周溝(34,41)が形成されている、請求項1から請求項3のいずれか1項に記載の回転電機。 According to any one of claims 1 to 3, an outer peripheral groove (34, 41) as the second thermal resistance portion extending along the axial direction is formed on the outer peripheral surface of the stator core. The rotary electric machine described. 前記固定子コアは、軸方向に積層された複数のコアシート(31a)からなり、
前記固定子コアは、前記複数のコアシートを互いに固定するための溶接部(34a)が形成された前記外周溝としての溶接溝(34)を備える、請求項4に記載の回転電機。
The stator core is composed of a plurality of core sheets (31a) laminated in the axial direction.
The rotary electric machine according to claim 4, wherein the stator core includes a welding groove (34) as the outer peripheral groove in which a welded portion (34a) for fixing the plurality of core sheets to each other is formed.
前記固定子コアは、前記ハウジングと前記固定子コア同士を周方向に位置決めするキー部材(42)が嵌合される前記外周溝としてのキー溝(41)を備える、請求項4又は請求項5に記載の回転電機。 4. The stator core includes the key groove (41) as the outer peripheral groove into which the housing and the key member (42) for positioning the stator cores in the circumferential direction are fitted. The rotary electric machine described in. 前記ハウジングは、前記固定子コアが内周面に固定される筒状の周壁(21)と、前記周壁の外周面から突出する放熱フィン(26)とを備える、請求項1から請求項6のいずれか1項に記載の回転電機。 The housing has a tubular peripheral wall (21) in which the stator core is fixed to an inner peripheral surface, and heat radiation fins (26) protruding from the outer peripheral surface of the peripheral wall, according to claims 1 to 6. The rotary electric machine according to any one item.
JP2019119522A 2019-06-27 2019-06-27 Rotating electric machine Active JP7251355B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019119522A JP7251355B2 (en) 2019-06-27 2019-06-27 Rotating electric machine
PCT/JP2020/023739 WO2020262139A1 (en) 2019-06-27 2020-06-17 Rotary electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019119522A JP7251355B2 (en) 2019-06-27 2019-06-27 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2021005970A true JP2021005970A (en) 2021-01-14
JP7251355B2 JP7251355B2 (en) 2023-04-04

Family

ID=74060121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019119522A Active JP7251355B2 (en) 2019-06-27 2019-06-27 Rotating electric machine

Country Status (2)

Country Link
JP (1) JP7251355B2 (en)
WO (1) WO2020262139A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345185A (en) * 2001-05-17 2002-11-29 Tsurumi Mfg Co Ltd Rotation stopper structure of stator core in submerged motor
WO2013129372A1 (en) * 2012-02-27 2013-09-06 日産自動車株式会社 Engagement structure for stator core
JP2014082935A (en) * 2014-02-13 2014-05-08 Hitachi Automotive Systems Ltd Stator of rotary electric machine, and rotary electric machine having the same
JP2019022250A (en) * 2017-07-11 2019-02-07 三菱電機株式会社 Electric motor case component, electric motor, ventilator and extrusion molding component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6765542B2 (en) * 2017-08-29 2020-10-07 三菱電機株式会社 Motor and air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345185A (en) * 2001-05-17 2002-11-29 Tsurumi Mfg Co Ltd Rotation stopper structure of stator core in submerged motor
WO2013129372A1 (en) * 2012-02-27 2013-09-06 日産自動車株式会社 Engagement structure for stator core
JP2014082935A (en) * 2014-02-13 2014-05-08 Hitachi Automotive Systems Ltd Stator of rotary electric machine, and rotary electric machine having the same
JP2019022250A (en) * 2017-07-11 2019-02-07 三菱電機株式会社 Electric motor case component, electric motor, ventilator and extrusion molding component

Also Published As

Publication number Publication date
WO2020262139A1 (en) 2020-12-30
JP7251355B2 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
US10826351B2 (en) Motor rotor holder and motor
JP5367258B2 (en) Rotating electric machine
JP5156223B2 (en) Rotating electric machine
JP5861109B2 (en) Brushless motor cooling structure
JP2013539348A (en) Magnetic rotor with built-in bridge for promoting cooling
WO2014174721A1 (en) Induction machine
JP2015192474A (en) Rotary electric machine device
JP6472765B2 (en) Rotating electric machine
JP6638427B2 (en) Outer rotor type rotary electric machine
WO2020145219A1 (en) Motor and rotating blade apparatus
JP2016220375A (en) Axial gap type motor generator
JP2008220054A (en) Vehicle driving totally-enclosed motor
WO2020262139A1 (en) Rotary electrical machine
CN108155756B (en) External rotation type rotating electric machine
JP2017017787A (en) motor
WO2014155914A1 (en) Dynamo-electric machine
JP6540023B2 (en) fan
CN210889384U (en) Air supply device and hot water supply device
JP3220488U (en) Inverter-integrated motor cooling structure
JP6119086B2 (en) Brushless motor cooling structure
JP2017200354A (en) Brushless rotary electric machine
JP6762238B2 (en) motor
JP5508704B2 (en) Rotating electric machine
JP2006014463A (en) Stator core and rotary electric machine
JP2019161786A (en) Permanent magnet type rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R151 Written notification of patent or utility model registration

Ref document number: 7251355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151