WO2020262139A1 - Rotary electrical machine - Google Patents

Rotary electrical machine Download PDF

Info

Publication number
WO2020262139A1
WO2020262139A1 PCT/JP2020/023739 JP2020023739W WO2020262139A1 WO 2020262139 A1 WO2020262139 A1 WO 2020262139A1 JP 2020023739 W JP2020023739 W JP 2020023739W WO 2020262139 A1 WO2020262139 A1 WO 2020262139A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
thermal resistance
stator core
circumferential direction
electric machine
Prior art date
Application number
PCT/JP2020/023739
Other languages
French (fr)
Japanese (ja)
Inventor
健佑 田中
茂昌 加藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020262139A1 publication Critical patent/WO2020262139A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine

Definitions

  • This disclosure relates to a rotary electric machine.
  • a functional part such as a mounting part is provided on the outer peripheral surface of the housing in addition to the heat dissipation part.
  • the thermal resistance tends to be higher in the part where the functional part such as the mounting part is located than in other parts without the functional part, that is, the thermal resistance tends to be higher in the circumferential direction of the housing. It was found to be non-uniform. Therefore, the inventor has found a problem that the cooling of the stator may differ depending on the setting of the circumferential position of the stator with respect to the housing.
  • the purpose of the present disclosure is to provide a rotary electric machine that enables efficient cooling of the stator.
  • the rotary electric machine includes a tubular housing and a stator core having an annular shape along the circumferential direction of the housing and fixed to the inner peripheral surface of the housing. ..
  • the housing has a first thermal resistance portion (25) partially provided in the circumferential direction.
  • the first thermal resistance portion has a higher thermal resistance than the portion (21a) other than the first thermal resistance portion in the circumferential direction of the housing.
  • the stator core has a second thermal resistance portion (34, 41) partially provided in the circumferential direction.
  • the second thermal resistance portion has a higher thermal resistance than the portion (32a) other than the second thermal resistance portion in the circumferential direction of the stator core.
  • the second thermal resistance portion is located inside the first thermal resistance portion in the radial direction.
  • the first thermal resistance portion which is a portion having a high thermal resistance of the housing
  • the second thermal resistance portion which is a portion having a high thermal resistance of the stator core
  • FIG. 1 is a schematic cross-sectional view of a rotary electric machine according to an embodiment.
  • FIG. 2A is a plan view of the stator in the same form, and FIG. 2B is an enlarged plan view showing a part of the stator in the same form.
  • FIG. 3A is a plan view of the stator in the modified example, and FIG. 3B is an enlarged plan view showing a part of the stator in the modified example.
  • the rotary electric machine 11 of the present embodiment includes a housing 12 having a substantially bottomed cylindrical shape and a cover 13 attached to the housing 12. Further, the rotary electric machine 11 includes a substantially cylindrical stator 14 fixed to the inner peripheral surface of the housing 12, and a rotor 15 rotatably supported inside the stator 14.
  • the rotary electric machine 11 of the present embodiment is used, for example, as a drive source for a ventilation fan or a blower for a radiator of a vehicle.
  • the rotor 15 is a permanent magnet fixed to a stator core fixed to a rotating shaft 16.
  • the rotating shaft 16 is rotatably supported by bearings 17 fixed to the bottom 22 of the housing 12 and the cover 13, respectively. Further, one side of the rotating shaft 16 in the axial direction is provided so as to project outward.
  • the output unit 18 is fixed to one side of the rotating shaft 16 in the axial direction.
  • a propeller fan as an output unit 18 is fixed to the rotary shaft 16.
  • the housing 12 includes a cylindrical peripheral wall 21 and a bottom portion 22 that closes one end of the peripheral wall 21 in the axial direction.
  • the cover 13 closes the open end 23, which is the axial end of the peripheral wall 21 opposite to the bottom 22.
  • each screw engaging portion 25 has a thickness in the radial direction that is thicker than a portion other than the screw engaging portion 25 in the circumferential direction of the peripheral wall 21. Further, each screw engaging portion 25 is formed along the axial direction from the open end portion 23 to an intermediate position in the axial direction (see FIG. 1).
  • each screw engaging portion 25 is also formed along the axial direction.
  • the screw member 24 is inserted into the screw insertion hole 13a formed through the cover 13 and is screwed into the screw hole 25a of the housing 12.
  • the cover 13 is fixed to the peripheral wall 21 of the housing 12.
  • each screw engaging portion 25 Since each screw engaging portion 25 has a screw hole 25a, it has a higher thermal resistance than a portion other than the screw engaging portion 25 in the circumferential direction of the peripheral wall 21 (hereinafter, referred to as a low thermal resistance portion 21a). .. That is, each screw engaging portion 25 corresponds to the first thermal resistance portion.
  • the low thermal resistance portion 21a of the present embodiment is a portion between the screw engaging portions 25 in the circumferential direction of the peripheral wall 21. Further, each screw engaging portion 25 of the present embodiment has a thickness in the radial direction thicker than that of the low thermal resistance portion 21a, and therefore has a higher thermal resistance than the low thermal resistance portion 21a.
  • the housing 12 is provided with a plurality of heat radiation fins 26 protruding outward in the radial direction from the outer peripheral surface of the peripheral wall 21.
  • the plurality of heat radiation fins 26 are provided at equal angular intervals in the circumferential direction. Further, the plurality of heat radiation fins 26 are provided radially.
  • the heat radiation fin 26 of this embodiment is integrally molded with the peripheral wall 21. Further, the heat radiation fins 26 are formed from one end in the axial direction to the other end in the axial direction of the peripheral wall 21.
  • each heat radiation fin 26 is configured to be located on the same circle centered on the axis of the rotating shaft 16. Further, some of the heat radiation fins 26 are formed at the same positions as the screw engaging portion 25 in the circumferential direction. That is, a part of the heat radiating fin 26 formed at the same position as the screw engaging portion 25 in the axial direction protrudes from the outer surface of the screw engaging portion 25. Therefore, in the portion of the heat radiating fin 26 protruding from the screw engaging portion 25, the protruding length in the radial direction is short (that is, the surface area is small), and the heat radiating performance is lower than that of other parts.
  • the stator 14 has a substantially annular stator core 31 fixed to the inner peripheral surface of the peripheral wall 21 of the housing 12.
  • the stator core 31 is made of a magnetic material.
  • the stator core 31 has a configuration in which a plurality of core sheets 31a (see FIG. 1) formed by press working from a metal plate are laminated in the axial direction.
  • Each core sheet 31a of the present embodiment is made of an electromagnetic steel plate.
  • the stator core 31 includes a base portion 32 forming an annular shape along the circumferential direction of the rotating shaft 16, and a plurality of teeth 33 extending radially inward from the inner peripheral surface of the base portion 32.
  • the plurality of teeth 33 are provided at equal angular intervals in the circumferential direction. Windings (not shown) are mounted on the plurality of teeth 33.
  • a welding groove 34 extending along the axial direction from one end to the other end in the axial direction of the base portion 32 is formed on the outer peripheral surface of the base portion 32.
  • four welding grooves 34 are formed at equal angular intervals in the circumferential direction.
  • Each welding groove 34 has a welded portion 34a formed by welding for fixing each core sheet 31a constituting the stator core 31 to each other.
  • the welded portion 34a is a weld mark and has a shape protruding outward in the radial direction in the welded groove 34.
  • Each welding groove 34 has a higher thermal resistance than a portion other than the welding groove 34 (hereinafter referred to as a low thermal resistance portion 32a) in the circumferential direction of the base portion 32. That is, each welding groove 34 corresponds to the second thermal resistance portion and the outer peripheral groove.
  • the plurality of core sheets 31a of the present embodiment are laminated one by one or a plurality of core sheets while rotating at an angle interval between the welding grooves 34 adjacent to each other in the circumferential direction (that is, 90 degrees in the present embodiment). ing.
  • each welding groove 34 coincides with the circumferential position of one corresponding screw engaging portion 25. That is, each weld groove 34 is located radially inside one corresponding screw engaging portion 25.
  • the center line of the welding groove 34 overlaps the center of the screw hole 25a in the circumferential direction of the stator 14. That is, the welding groove 34 is located inside the screw hole 25a in the radial direction.
  • the circumferential width of the welding groove 34 (in other words, the opening angle) is set smaller than the circumferential width of the screw hole 25a (in other words, the opening angle).
  • the entire circumferential direction of the welding groove 34 is configured to be located inside the screw hole 25a in the radial direction.
  • the portion of the stator core 31 where the weld groove 34 of the base portion 32 is formed is not in contact with the inner peripheral surface of the peripheral wall 21 of the housing 12, heat is not easily transferred from the base portion 32 to the peripheral wall 21.
  • the low heat resistance portion 32a of the base portion 32 is in contact with the inner peripheral surface of the peripheral wall 21, so that heat is easily transferred to the peripheral wall 21.
  • the screw engaging portion 25, which is a portion of the housing 12 having a high thermal resistance, and the portion of the stator core 31 having a high thermal resistance (that is, a portion having a low thermal resistance to the housing 12) are welded.
  • the positions of the grooves 34 are aligned in the circumferential direction.
  • the heat transferred to the peripheral wall 21 of the housing 12 is efficiently dissipated from each heat radiating fin 26. Then, in the present embodiment, the wind generated by the propeller fan as the output unit 18 flows in the axial direction of the rotary electric machine 11 and passes in the vicinity of each heat radiation fin 26 to dissipate heat from each heat radiation fin 26 to the outside. Is being promoted.
  • the screw engaging portion 25 of the present embodiment has a shape that protrudes outward in the radial direction from the peripheral wall 21, there is a risk of hindering a suitable flow of wind passing in the vicinity of the heat radiating fin 26, which may interfere with this. This is one of the causes of deterioration of heat dissipation in the screw engaging portion 25. Therefore, by adopting a structure in which the low thermal resistance portions 21a and 32a efficiently dissipate heat from the locations where they overlap in the radial direction, the effect of improving the heat dissipation of the rotating electric machine 11 as a whole can be obtained more remarkably.
  • the housing 12 includes a screw engaging portion 25 having a screw hole 25a into which the screw member 24 is screwed. That is, by providing the screw engaging portion 25, the stator 14 can be efficiently cooled in a configuration in which the heat dissipation performance of the housing 12 is not uniform in the circumferential direction.
  • the stator core 31 includes a weld groove 34 in which a welded portion 34a for fixing a plurality of core sheets 31a to each other is formed. That is, by providing the welding groove 34, the stator 14 can be efficiently cooled in a configuration in which the heat dissipation performance of the stator core 31 is not uniform in the circumferential direction.
  • the housing 12 includes a tubular peripheral wall 21 in which the stator core 31 is fixed to the inner peripheral surface, and a plurality of heat radiating fins 26 protruding from the outer peripheral surface of the peripheral wall 21. As a result, the heat transferred to the peripheral wall 21 of the housing 12 can be efficiently dissipated from each heat radiating fin 26.
  • This embodiment can be modified and implemented as follows.
  • the present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
  • the number of screw engaging portions 25 and the number of welding grooves 34 are not limited to the above embodiment, and can be appropriately changed depending on the configuration. Further, the number of screw engaging portions 25 and the number of welding grooves 34 do not have to be the same.
  • the welding groove 34 is located inside the screw hole 25a in the radial direction as in the above embodiment, but it is not necessarily inside the screw hole 25a in the radial direction but at a position inside the screw engaging portion 25 in the radial direction. It suffices if it is set.
  • the configuration of the second thermal resistance portion of the stator core 31 is not limited to the above embodiment.
  • FIGS. 3 (a) and 3 (b) An example of changing the second thermal resistance portion of the stator core 31 will be described with reference to FIGS. 3 (a) and 3 (b).
  • FIGS. 3A and 3B the same reference numerals as those in the above embodiment indicate the same configuration, and the preceding description will be referred to.
  • the stator 14 shown in FIGS. 3A and 3B is provided with a key groove 41 on the outer peripheral surface of the base portion 32.
  • Four key grooves 41 are formed at equal angular intervals in the circumferential direction.
  • Each keyway 41 extends along the axial direction from one end in the axial direction of the base 32 to the other end.
  • the stator core 31 is provided with four welding grooves 34 at equal angular intervals in the circumferential direction.
  • the welding grooves 34 and the key grooves 41 are alternately formed at equal angular intervals in the circumferential direction.
  • Each key groove 41 has a higher thermal resistance than a portion other than the weld groove 34 and the key groove 41 in the circumferential direction of the base portion 32 (that is, a portion between the weld groove 34 and the key groove 41 adjacent to each other in the circumferential direction). That is, each key groove 41 corresponds to the second thermal resistance portion and the outer peripheral groove.
  • One of the four key grooves 41 is aligned in the circumferential direction with respect to the groove 43 formed on the inner peripheral surface of the peripheral wall 21 of the housing 12. Then, by fitting the key member 42 into the hole formed by the key groove 41 and the groove 43 of the housing 12, the housing 12 and the stator core 31 are positioned in the circumferential direction to prevent them from rotating. ..
  • the core sheet 31a described in the above embodiment has a rotationally laminated structure, there is a key member 42 to which the key member 42 is not fitted.
  • each key groove 41 coincides with the circumferential position of one corresponding screw engaging portion 25. That is, each keyway 41 is located radially inside one corresponding screw engaging portion 25. More specifically, the key groove 41 is preferably located inside the screw hole 25a in the radial direction.
  • the portions of the rotary electric machine 11 having low heat dissipation are concentrated in the circumferential direction, so that the rotary electric machine 11 as a whole It is possible to improve the heat dissipation of the. As a result, the stator 14 can be efficiently cooled.
  • the number of key grooves 41 is not limited to four, and can be appropriately changed depending on the configuration.
  • the welding groove 34 is not arranged inside the screw engaging portion 25 in the radial direction, but the present invention is not limited to this, and both the welding groove 34 and the key groove 41 are the same or individual screw engaging portions. It may be arranged inside 25 in the radial direction.
  • the screw member 24 is screwed into the screw hole 25a of the screw engaging portion 25, but in addition to this, for example, a screw engaging portion having a hole through which a through bolt is inserted may be used. ..
  • the screw engaging portion 25 is configured as a portion for fixing the cover 13 to the housing 12, but in addition to this, for example, the screw engaging portion 25 is configured as a portion for fixing the rotary electric machine 11 to the mounted portion. You may.
  • the screw engaging portion 25 projects radially outward from the outer peripheral surface of the peripheral wall 21, but the present invention is not limited to this, and the peripheral wall 21 may have a uniform thickness over the entire circumferential direction. Even with this configuration, since the screw hole 25a serves as a thermal resistance in the peripheral wall 21, the second thermal resistance portion (that is, the welding groove 34 or the key groove 41) of the stator core 31 is provided inside the screw hole 25a in the radial direction. By arranging the arrangement, the same effect as that of the above embodiment can be obtained.
  • the heat radiation fin 26 of the above embodiment is integrally molded with the peripheral wall 21, but the present invention is not limited to this, and the heat radiation fin 26 may be configured as a separate body from the peripheral wall 21.
  • the housing 12 of the above embodiment may be configured by omitting the heat radiation fins 26.
  • a cooling structure for circulating a cooling liquid may be added inside.
  • the output unit 18 is not limited to the propeller fan, and the configuration of the output unit 18 can be appropriately changed according to the application of the rotary electric machine 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

A rotary electrical machine (11) is provided with: a cylindrical housing (12); and a stator core (31) that is formed annularly along the circumferential direction of the housing and fixed to the inner circumferential surface of the housing. The housing has first heat resistant parts (25) partially provided in the circumferential direction. The first heat resistant parts have heat resistances higher than that of a portion (21a) that is a part other than the first heat resistant parts in the circumferential direction of the housing. The stator core has second heat resistant parts (34, 41) partially provided in the circumferential direction. The second heat resistant parts have heat resistances higher than that of a portion (32a) that is a part other than the second heat resistant parts in the circumferential direction of the stator core. The second heat resistant parts are located radially inside of the first heat resistant parts.

Description

回転電機Rotating machine 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年6月27日に出願された日本出願番号2019-119522号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2019-119522 filed on June 27, 2019, and the contents of the description are incorporated herein by reference.
 本開示は、回転電機に関するものである。 This disclosure relates to a rotary electric machine.
 回転電機の駆動時の固定子の発熱対策として、例えば固定子が内接するハウジングの外周面にフィン形状の放熱部を備えるものが周知である(例えば特許文献1参照)。 As a measure against heat generation of the stator when driving a rotary electric machine, for example, it is well known that a fin-shaped heat radiating portion is provided on the outer peripheral surface of a housing inscribed with the stator (see, for example, Patent Document 1).
特開2019-22250号公報JP-A-2019-22250
 ハウジングの外周面には、放熱部とは別に取付部等の機能部が設けられることが多い。発明者の詳細な検討の結果、取付部等の機能部が位置する部位では、機能部のない他の部位と比べて熱抵抗が高くなりがちである、つまり、ハウジングの周方向において熱抵抗が一様でないことが見出された。このため、発明者は、ハウジングに対する固定子の周方向位置の設定によっては、固定子の冷却に差が生じ得るという課題を見出した。 In many cases, a functional part such as a mounting part is provided on the outer peripheral surface of the housing in addition to the heat dissipation part. As a result of detailed examination by the inventor, the thermal resistance tends to be higher in the part where the functional part such as the mounting part is located than in other parts without the functional part, that is, the thermal resistance tends to be higher in the circumferential direction of the housing. It was found to be non-uniform. Therefore, the inventor has found a problem that the cooling of the stator may differ depending on the setting of the circumferential position of the stator with respect to the housing.
 本開示の目的は、固定子の効率的な冷却を可能とした回転電機を提供することにある。 The purpose of the present disclosure is to provide a rotary electric machine that enables efficient cooling of the stator.
 上記課題を解決するため、本開示の一態様による回転電機は、筒状のハウジングと、前記ハウジングの周方向に沿う環状をなし前記ハウジングの内周面に固定された固定子コアと、を備える。前記ハウジングは周方向において部分的に設けられた第1熱抵抗部(25)を有する。該第1熱抵抗部は、前記ハウジングの周方向における前記第1熱抵抗部以外の部位(21a)よりも高い熱抵抗を有する。前記固定子コアは周方向において部分的に設けられた第2熱抵抗部(34,41)を有する。該第2熱抵抗部は、前記固定子コアの周方向における前記第2熱抵抗部以外の部位(32a)よりも高い熱抵抗を有する。前記第2熱抵抗部が前記第1熱抵抗部の径方向内側に位置する。 In order to solve the above problems, the rotary electric machine according to one aspect of the present disclosure includes a tubular housing and a stator core having an annular shape along the circumferential direction of the housing and fixed to the inner peripheral surface of the housing. .. The housing has a first thermal resistance portion (25) partially provided in the circumferential direction. The first thermal resistance portion has a higher thermal resistance than the portion (21a) other than the first thermal resistance portion in the circumferential direction of the housing. The stator core has a second thermal resistance portion (34, 41) partially provided in the circumferential direction. The second thermal resistance portion has a higher thermal resistance than the portion (32a) other than the second thermal resistance portion in the circumferential direction of the stator core. The second thermal resistance portion is located inside the first thermal resistance portion in the radial direction.
 上記態様によれば、ハウジングの熱抵抗が高い部位である第1熱抵抗部と、固定子コアの熱抵抗が高い部位である第2熱抵抗部の位置を周方向に合わせることで、第1及び第2熱抵抗部の位置合わせ部分以外の箇所から効率的に放熱することが可能となる。その結果、回転電機全体としての放熱性を向上させることが可能となり、固定子の効率的な冷却が可能となる。 According to the above aspect, the first thermal resistance portion, which is a portion having a high thermal resistance of the housing, and the second thermal resistance portion, which is a portion having a high thermal resistance of the stator core, are aligned in the circumferential direction. And, it becomes possible to efficiently dissipate heat from a place other than the alignment part of the second thermal resistance part. As a result, it is possible to improve the heat dissipation of the rotating electric machine as a whole, and it is possible to efficiently cool the stator.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参酌しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態における回転電機の模式断面図。 図2(a)は、同形態における固定子の平面図、図2(b)は、同形態における固定子の一部を拡大して示す平面図。 図3(a)は、変更例における固定子の平面図、図3(b)は、同変更例における固定子の一部を拡大して示す平面図。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a schematic cross-sectional view of a rotary electric machine according to an embodiment. FIG. 2A is a plan view of the stator in the same form, and FIG. 2B is an enlarged plan view showing a part of the stator in the same form. FIG. 3A is a plan view of the stator in the modified example, and FIG. 3B is an enlarged plan view showing a part of the stator in the modified example.
 以下、回転電機の一実施形態について説明する。 Hereinafter, an embodiment of the rotary electric machine will be described.
 図1及び図2(a)に示すように、本実施形態の回転電機11は、略有底円筒状のハウジング12と、ハウジング12に取り付けられたカバー13とを備える。また、回転電機11は、ハウジング12の内周面に固定された略円筒状の固定子14と、固定子14の内側で回転可能に支持された回転子15とを備える。なお、本実施形態の回転電機11は、例えば、換気扇や車両のラジエータ用の送風機の駆動源として用いられるものである。 As shown in FIGS. 1 and 2A, the rotary electric machine 11 of the present embodiment includes a housing 12 having a substantially bottomed cylindrical shape and a cover 13 attached to the housing 12. Further, the rotary electric machine 11 includes a substantially cylindrical stator 14 fixed to the inner peripheral surface of the housing 12, and a rotor 15 rotatably supported inside the stator 14. The rotary electric machine 11 of the present embodiment is used, for example, as a drive source for a ventilation fan or a blower for a radiator of a vehicle.
 回転子15は、回転軸16に固定された固定子鉄心に永久磁石が固定されたものである。回転軸16は、ハウジング12の底部22及びカバー13にそれぞれ固定された軸受17によって回転可能に支持されている。また、回転軸16の軸方向一方側が外部に突出した状態で設けられる。その回転軸16の軸方向一方側に出力部18が固定される。回転電機11を換気扇や車両のラジエータ用の送風機として用いる場合には、出力部18としてのプロペラファンが回転軸16に固定される。 The rotor 15 is a permanent magnet fixed to a stator core fixed to a rotating shaft 16. The rotating shaft 16 is rotatably supported by bearings 17 fixed to the bottom 22 of the housing 12 and the cover 13, respectively. Further, one side of the rotating shaft 16 in the axial direction is provided so as to project outward. The output unit 18 is fixed to one side of the rotating shaft 16 in the axial direction. When the rotary electric machine 11 is used as a blower for a ventilation fan or a radiator of a vehicle, a propeller fan as an output unit 18 is fixed to the rotary shaft 16.
 ハウジング12は、円筒状の周壁21と、周壁21の軸方向の一端部を閉塞する底部22を備えている。カバー13は、周壁21における底部22とは反対側の軸方向端部である開放端部23を塞いでいる。 The housing 12 includes a cylindrical peripheral wall 21 and a bottom portion 22 that closes one end of the peripheral wall 21 in the axial direction. The cover 13 closes the open end 23, which is the axial end of the peripheral wall 21 opposite to the bottom 22.
 図1及び図2(a)(b)に示すように、周壁21の開放端部23には、ねじ部材24が螺着されるねじ孔25aをそれぞれ有する複数のねじ係合部25が形成されている。本実施形態では、ねじ係合部25は、周方向において等角度間隔に4つ形成されている。各ねじ係合部25は、周壁21の外周面から径方向外側に突出するように形成されている。すなわち、各ねじ係合部25は、周壁21の周方向におけるねじ係合部25以外の部位よりも厚い径方向の厚さを有する。また、各ねじ係合部25は、開放端部23から軸方向の中間位置まで軸方向に沿って形成されている(図1参照)。各ねじ係合部25のねじ孔25aも、軸方向に沿って形成されている。ねじ部材24は、カバー13に貫通形成されたねじ挿通孔13aに挿通されるとともに、ハウジング12のねじ孔25aに螺着されている。これにより、カバー13がハウジング12の周壁21に対して固定されている。 As shown in FIGS. 1 and 2A and 2B, a plurality of screw engaging portions 25 having screw holes 25a into which the screw member 24 is screwed are formed on the open end portion 23 of the peripheral wall 21. ing. In the present embodiment, four screw engaging portions 25 are formed at equal angular intervals in the circumferential direction. Each screw engaging portion 25 is formed so as to project radially outward from the outer peripheral surface of the peripheral wall 21. That is, each screw engaging portion 25 has a thickness in the radial direction that is thicker than a portion other than the screw engaging portion 25 in the circumferential direction of the peripheral wall 21. Further, each screw engaging portion 25 is formed along the axial direction from the open end portion 23 to an intermediate position in the axial direction (see FIG. 1). The screw holes 25a of each screw engaging portion 25 are also formed along the axial direction. The screw member 24 is inserted into the screw insertion hole 13a formed through the cover 13 and is screwed into the screw hole 25a of the housing 12. As a result, the cover 13 is fixed to the peripheral wall 21 of the housing 12.
 各ねじ係合部25は、ねじ孔25aを有していることから、周壁21の周方向におけるねじ係合部25以外の部位(以下、低熱抵抗部21aと言う)よりも高い熱抵抗を有する。すなわち、各ねじ係合部25は第1熱抵抗部に相当する。なお、本実施形態の低熱抵抗部21aは、周壁21の周方向におけるねじ係合部25間の部位である。また、本実施形態の各ねじ係合部25は、低熱抵抗部21aよりも厚い径方向の厚さを有することからも、低熱抵抗部21aよりも高い熱抵抗を有する。 Since each screw engaging portion 25 has a screw hole 25a, it has a higher thermal resistance than a portion other than the screw engaging portion 25 in the circumferential direction of the peripheral wall 21 (hereinafter, referred to as a low thermal resistance portion 21a). .. That is, each screw engaging portion 25 corresponds to the first thermal resistance portion. The low thermal resistance portion 21a of the present embodiment is a portion between the screw engaging portions 25 in the circumferential direction of the peripheral wall 21. Further, each screw engaging portion 25 of the present embodiment has a thickness in the radial direction thicker than that of the low thermal resistance portion 21a, and therefore has a higher thermal resistance than the low thermal resistance portion 21a.
 また、ハウジング12は、周壁21の外周面から径方向外側に突出する複数の放熱フィン26を備えている。複数の放熱フィン26は、周方向において等角度間隔に設けられている。また、複数の放熱フィン26は、放射状に設けられている。なお、本実施形態の放熱フィン26は、周壁21に一体成形されている。また、放熱フィン26は、周壁21の軸方向一端から軸方向他端まで形成されている。 Further, the housing 12 is provided with a plurality of heat radiation fins 26 protruding outward in the radial direction from the outer peripheral surface of the peripheral wall 21. The plurality of heat radiation fins 26 are provided at equal angular intervals in the circumferential direction. Further, the plurality of heat radiation fins 26 are provided radially. The heat radiation fin 26 of this embodiment is integrally molded with the peripheral wall 21. Further, the heat radiation fins 26 are formed from one end in the axial direction to the other end in the axial direction of the peripheral wall 21.
 軸方向視において、回転軸16の軸線を中心とする同一円上に各放熱フィン26の先端が位置するように構成されている。また、一部の放熱フィン26は、ねじ係合部25と周方向において同位置に形成されている。すなわち、ねじ係合部25と同位置に形成された放熱フィン26の軸方向の一部分は、ねじ係合部25の外側面から突出している。このため、放熱フィン26のねじ係合部25から突出する部分においては、径方向への突出長さが短く(すなわち、表面積が少なく)、放熱性能が他部位に比べて低くなっている。 In the axial direction, the tip of each heat radiation fin 26 is configured to be located on the same circle centered on the axis of the rotating shaft 16. Further, some of the heat radiation fins 26 are formed at the same positions as the screw engaging portion 25 in the circumferential direction. That is, a part of the heat radiating fin 26 formed at the same position as the screw engaging portion 25 in the axial direction protrudes from the outer surface of the screw engaging portion 25. Therefore, in the portion of the heat radiating fin 26 protruding from the screw engaging portion 25, the protruding length in the radial direction is short (that is, the surface area is small), and the heat radiating performance is lower than that of other parts.
 固定子14は、ハウジング12の周壁21の内周面に固定された略円環状の固定子コア31を有している。固定子コア31は磁性体からなる。固定子コア31は、金属板からプレス加工により成形された複数のコアシート31a(図1参照)を軸方向に積層した構成をなしている。なお、本実施形態の各コアシート31aは電磁鋼板からなる。 The stator 14 has a substantially annular stator core 31 fixed to the inner peripheral surface of the peripheral wall 21 of the housing 12. The stator core 31 is made of a magnetic material. The stator core 31 has a configuration in which a plurality of core sheets 31a (see FIG. 1) formed by press working from a metal plate are laminated in the axial direction. Each core sheet 31a of the present embodiment is made of an electromagnetic steel plate.
 固定子コア31は、回転軸16の周方向に沿う円環状をなす基部32と、基部32の内周面から径方向内側に延びる複数のティース33とを備えている。複数のティース33は、周方向において等角度間隔に設けられている。複数のティース33には、図示しない巻線が装着される。 The stator core 31 includes a base portion 32 forming an annular shape along the circumferential direction of the rotating shaft 16, and a plurality of teeth 33 extending radially inward from the inner peripheral surface of the base portion 32. The plurality of teeth 33 are provided at equal angular intervals in the circumferential direction. Windings (not shown) are mounted on the plurality of teeth 33.
 基部32の外周面には、該基部32の軸方向一端から他端まで軸方向に沿って延びる溶接溝34が形成されている。本実施形態では、溶接溝34は、周方向において等角度間隔に4つ形成されている。各溶接溝34は、固定子コア31を構成する各コアシート31aを互いに固定するための溶接により形成された溶接部34aを有している。溶接部34aは溶接痕であり、溶接溝34内において径方向外側に突出する形状をなしている。 A welding groove 34 extending along the axial direction from one end to the other end in the axial direction of the base portion 32 is formed on the outer peripheral surface of the base portion 32. In the present embodiment, four welding grooves 34 are formed at equal angular intervals in the circumferential direction. Each welding groove 34 has a welded portion 34a formed by welding for fixing each core sheet 31a constituting the stator core 31 to each other. The welded portion 34a is a weld mark and has a shape protruding outward in the radial direction in the welded groove 34.
 各溶接溝34は、基部32の周方向における溶接溝34以外の部位(以下、低熱抵抗部32aと言う)よりも高い熱抵抗を有する。すなわち、各溶接溝34は、第2熱抵抗部及び外周溝に相当する。 Each welding groove 34 has a higher thermal resistance than a portion other than the welding groove 34 (hereinafter referred to as a low thermal resistance portion 32a) in the circumferential direction of the base portion 32. That is, each welding groove 34 corresponds to the second thermal resistance portion and the outer peripheral groove.
 なお、本実施形態の複数のコアシート31aは、1枚ずつまたは複数枚ずつ、周方向に隣り合う溶接溝34の間の角度間隔だけ(すなわち、本実施形態では90度)回転しつつ積層されている。 The plurality of core sheets 31a of the present embodiment are laminated one by one or a plurality of core sheets while rotating at an angle interval between the welding grooves 34 adjacent to each other in the circumferential direction (that is, 90 degrees in the present embodiment). ing.
 各溶接溝34の周方向位置は、対応する1つのねじ係合部25の周方向位置と一致している。すなわち、各溶接溝34は、対応する1つのねじ係合部25の径方向内側に位置している。本実施形態では、固定子14の周方向において溶接溝34の中心線がねじ孔25aの中心と重なっている。すなわち、溶接溝34は、ねじ孔25aの径方向内側に位置している。また、溶接溝34の周方向幅(換言すると開角度)は、ねじ孔25aの周方向幅(換言すると開角度)よりも小さく設定されている。これにより、溶接溝34の周方向の全体がねじ孔25aの径方向内側に位置するように構成されている。 The circumferential position of each welding groove 34 coincides with the circumferential position of one corresponding screw engaging portion 25. That is, each weld groove 34 is located radially inside one corresponding screw engaging portion 25. In the present embodiment, the center line of the welding groove 34 overlaps the center of the screw hole 25a in the circumferential direction of the stator 14. That is, the welding groove 34 is located inside the screw hole 25a in the radial direction. Further, the circumferential width of the welding groove 34 (in other words, the opening angle) is set smaller than the circumferential width of the screw hole 25a (in other words, the opening angle). As a result, the entire circumferential direction of the welding groove 34 is configured to be located inside the screw hole 25a in the radial direction.
 次に、上記のように構成された回転電機11の作用について説明する。 Next, the operation of the rotary electric machine 11 configured as described above will be described.
 固定子14の巻線に駆動電流が供給されると、固定子14にて回転磁界が発生されて回転子15が回転駆動され、回転子15の回転軸16と共に出力部18(本実施形態ではプロペラファン)が回転する。このとき、巻線への通電により固定子14で生じた熱はハウジング12に伝わり、ハウジング12から外部に放熱される。 When a drive current is supplied to the windings of the stator 14, a rotating magnetic field is generated in the stator 14, the rotor 15 is rotationally driven, and the output unit 18 (in the present embodiment) together with the rotating shaft 16 of the rotor 15. Propeller fan) rotates. At this time, the heat generated by the stator 14 due to the energization of the winding is transferred to the housing 12, and is dissipated from the housing 12 to the outside.
 ここで、固定子コア31における基部32の溶接溝34が形成された部位は、ハウジング12の周壁21の内周面に接していないため、基部32から周壁21に熱が伝わりにくい。それに対し、基部32の低熱抵抗部32aは、周壁21の内周面に接しており、周壁21に熱が伝わりやすくなっている。 Here, since the portion of the stator core 31 where the weld groove 34 of the base portion 32 is formed is not in contact with the inner peripheral surface of the peripheral wall 21 of the housing 12, heat is not easily transferred from the base portion 32 to the peripheral wall 21. On the other hand, the low heat resistance portion 32a of the base portion 32 is in contact with the inner peripheral surface of the peripheral wall 21, so that heat is easily transferred to the peripheral wall 21.
 また、ハウジング12の周壁21におけるねじ係合部25が形成された部位では、内周側から外周側にかけて熱が伝わりにくい。それに対し、周壁21の低熱抵抗部21aでは、内周側から外周側にかけて熱が伝わりやすい。 Further, in the portion of the peripheral wall 21 of the housing 12 where the screw engaging portion 25 is formed, it is difficult for heat to be transferred from the inner peripheral side to the outer peripheral side. On the other hand, in the low thermal resistance portion 21a of the peripheral wall 21, heat is easily transferred from the inner peripheral side to the outer peripheral side.
 そして、本実施形態では、ハウジング12の熱抵抗が高い部位であるねじ係合部25と、固定子コア31の熱抵抗が高い部位(すなわち、ハウジング12への伝熱性が低い部位)である溶接溝34の位置を周方向において合わせている。これにより、ねじ係合部25と溶接溝34の位置合わせ部分以外の箇所(すなわち、ハウジング12の低熱抵抗部21aと固定子コア31の低熱抵抗部32aとが径方向に重なっている箇所)から効率的に放熱することが可能となっている。その結果、回転電機11全体としての放熱性が向上されるようになっている。 Then, in the present embodiment, the screw engaging portion 25, which is a portion of the housing 12 having a high thermal resistance, and the portion of the stator core 31 having a high thermal resistance (that is, a portion having a low thermal resistance to the housing 12) are welded. The positions of the grooves 34 are aligned in the circumferential direction. As a result, from a portion other than the alignment portion between the screw engaging portion 25 and the welding groove 34 (that is, the portion where the low thermal resistance portion 21a of the housing 12 and the low thermal resistance portion 32a of the stator core 31 overlap in the radial direction). It is possible to dissipate heat efficiently. As a result, the heat dissipation of the rotary electric machine 11 as a whole is improved.
 なお、ハウジング12の周壁21に伝わった熱は、各放熱フィン26から効率的に放熱される。そして、本実施形態では、出力部18としてのプロペラファンによって発生される風が回転電機11の軸方向に流れて各放熱フィン26の近傍を通過することで、各放熱フィン26から外部への放熱が促進されるようになっている。 The heat transferred to the peripheral wall 21 of the housing 12 is efficiently dissipated from each heat radiating fin 26. Then, in the present embodiment, the wind generated by the propeller fan as the output unit 18 flows in the axial direction of the rotary electric machine 11 and passes in the vicinity of each heat radiation fin 26 to dissipate heat from each heat radiation fin 26 to the outside. Is being promoted.
 ここで、本実施形態のねじ係合部25は、周壁21から径方向外側に突出する形状をなすため、放熱フィン26の近傍を通過する風の好適な流れを妨げるおそれがあり、このことが、ねじ係合部25における放熱性の悪化の一因となっている。従って、各低熱抵抗部21a,32aが径方向に重なっている箇所から効率的に放熱させる構造とすることで、回転電機11全体としての放熱性を向上させる効果をより顕著に得ることができる。 Here, since the screw engaging portion 25 of the present embodiment has a shape that protrudes outward in the radial direction from the peripheral wall 21, there is a risk of hindering a suitable flow of wind passing in the vicinity of the heat radiating fin 26, which may interfere with this. This is one of the causes of deterioration of heat dissipation in the screw engaging portion 25. Therefore, by adopting a structure in which the low thermal resistance portions 21a and 32a efficiently dissipate heat from the locations where they overlap in the radial direction, the effect of improving the heat dissipation of the rotating electric machine 11 as a whole can be obtained more remarkably.
 本実施形態の効果について説明する。 The effect of this embodiment will be described.
 (1)回転電機11における放熱性の低い箇所を周方向に集中させることで、回転電機11全体としての放熱性を向上させることが可能となり、その結果、固定子14の効率的な冷却が可能となる。 (1) By concentrating the parts of the rotary electric machine 11 having low heat dissipation in the circumferential direction, it is possible to improve the heat dissipation of the rotary electric machine 11 as a whole, and as a result, the stator 14 can be efficiently cooled. It becomes.
 (2)ハウジング12は、ねじ部材24が螺着されるねじ孔25aを有するねじ係合部25を備える。すなわち、ねじ係合部25を備えることでハウジング12の放熱性能が周方向において一様にならない構成において、固定子14の効率的な冷却が可能となる。 (2) The housing 12 includes a screw engaging portion 25 having a screw hole 25a into which the screw member 24 is screwed. That is, by providing the screw engaging portion 25, the stator 14 can be efficiently cooled in a configuration in which the heat dissipation performance of the housing 12 is not uniform in the circumferential direction.
 (3)ハウジング12の軸方向の一端部を閉塞するカバー13を備えた構成において、固定子14の効率的な冷却が可能となる。 (3) Efficient cooling of the stator 14 is possible in a configuration provided with a cover 13 that closes one end of the housing 12 in the axial direction.
 (4)固定子コア31は、複数のコアシート31aを互いに固定するための溶接部34aが形成された溶接溝34を備える。すなわち、溶接溝34を備えることで固定子コア31の放熱性能が周方向において一様にならない構成において、固定子14の効率的な冷却が可能となる。 (4) The stator core 31 includes a weld groove 34 in which a welded portion 34a for fixing a plurality of core sheets 31a to each other is formed. That is, by providing the welding groove 34, the stator 14 can be efficiently cooled in a configuration in which the heat dissipation performance of the stator core 31 is not uniform in the circumferential direction.
 (5)ハウジング12は、固定子コア31が内周面に固定される筒状の周壁21と、周壁21の外周面から突出する複数の放熱フィン26とを備える。これにより、ハウジング12の周壁21に伝わった熱を、各放熱フィン26から効率的に放熱させることができる。 (5) The housing 12 includes a tubular peripheral wall 21 in which the stator core 31 is fixed to the inner peripheral surface, and a plurality of heat radiating fins 26 protruding from the outer peripheral surface of the peripheral wall 21. As a result, the heat transferred to the peripheral wall 21 of the housing 12 can be efficiently dissipated from each heat radiating fin 26.
 本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。 This embodiment can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・ねじ係合部25の数、及び溶接溝34の数は上記実施形態に限定されるものではなく、構成に応じて適宜変更可能である。また、ねじ係合部25と溶接溝34とが互いに同数でなくてもよい。 -The number of screw engaging portions 25 and the number of welding grooves 34 are not limited to the above embodiment, and can be appropriately changed depending on the configuration. Further, the number of screw engaging portions 25 and the number of welding grooves 34 do not have to be the same.
 ・上記実施形態のように溶接溝34がねじ孔25aの径方向内側に位置することが好ましいが、ねじ孔25aの径方向内側でなくても、ねじ係合部25の径方向内側の位置に設定されていればよい。 It is preferable that the welding groove 34 is located inside the screw hole 25a in the radial direction as in the above embodiment, but it is not necessarily inside the screw hole 25a in the radial direction but at a position inside the screw engaging portion 25 in the radial direction. It suffices if it is set.
 ・固定子コア31の第2熱抵抗部の構成は上記実施形態に限定されるものではない。 -The configuration of the second thermal resistance portion of the stator core 31 is not limited to the above embodiment.
 固定子コア31の第2熱抵抗部の変更例を図3(a)(b)を参照して説明する。なお、以下の説明及び図3(a)(b)において上記実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。 An example of changing the second thermal resistance portion of the stator core 31 will be described with reference to FIGS. 3 (a) and 3 (b). In the following description and FIGS. 3A and 3B, the same reference numerals as those in the above embodiment indicate the same configuration, and the preceding description will be referred to.
 図3(a)(b)に示す固定子14は、基部32の外周面にキー溝41を備えている。キー溝41は、周方向において等角度間隔に4つ形成されている。各キー溝41は、基部32の軸方向一端から他端まで軸方向に沿って延びている。また、固定子コア31は、4つの溶接溝34を周方向において等角度間隔に備えている。溶接溝34とキー溝41とは、周方向において等角度間隔に交互に形成されている。各キー溝41は、基部32の周方向における溶接溝34及びキー溝41以外の部位(すなわち、周方向に隣り合う溶接溝34とキー溝41の間の部位)よりも高い熱抵抗を有する。すなわち、各キー溝41は、第2熱抵抗部及び外周溝に相当する。 The stator 14 shown in FIGS. 3A and 3B is provided with a key groove 41 on the outer peripheral surface of the base portion 32. Four key grooves 41 are formed at equal angular intervals in the circumferential direction. Each keyway 41 extends along the axial direction from one end in the axial direction of the base 32 to the other end. Further, the stator core 31 is provided with four welding grooves 34 at equal angular intervals in the circumferential direction. The welding grooves 34 and the key grooves 41 are alternately formed at equal angular intervals in the circumferential direction. Each key groove 41 has a higher thermal resistance than a portion other than the weld groove 34 and the key groove 41 in the circumferential direction of the base portion 32 (that is, a portion between the weld groove 34 and the key groove 41 adjacent to each other in the circumferential direction). That is, each key groove 41 corresponds to the second thermal resistance portion and the outer peripheral groove.
 4つのキー溝41のうちの1つは、ハウジング12の周壁21の内周面に形成された溝43に対して周方向に位置合わせされている。そして、当該キー溝41とハウジング12の溝43からなる孔にキー部材42が嵌合されることで、ハウジング12と固定子コア31同士が周方向に位置決めされ、それらの回り止めとなっている。なお、この例では、上記実施形態で説明したコアシート31aの回転積層構造を有するため、キー部材42が嵌合されないキー部材42が存在する。 One of the four key grooves 41 is aligned in the circumferential direction with respect to the groove 43 formed on the inner peripheral surface of the peripheral wall 21 of the housing 12. Then, by fitting the key member 42 into the hole formed by the key groove 41 and the groove 43 of the housing 12, the housing 12 and the stator core 31 are positioned in the circumferential direction to prevent them from rotating. .. In this example, since the core sheet 31a described in the above embodiment has a rotationally laminated structure, there is a key member 42 to which the key member 42 is not fitted.
 各キー溝41の周方向位置は、対応する1つのねじ係合部25の周方向位置と一致している。すなわち、各キー溝41は、対応する1つのねじ係合部25の径方向内側に位置している。また、詳しくは、キー溝41は、ねじ孔25aの径方向内側に位置することが好ましい。 The circumferential position of each key groove 41 coincides with the circumferential position of one corresponding screw engaging portion 25. That is, each keyway 41 is located radially inside one corresponding screw engaging portion 25. More specifically, the key groove 41 is preferably located inside the screw hole 25a in the radial direction.
 上記のような構成によれば、回り止め用のキー溝41を固定子コア31に備えた構成において、回転電機11における放熱性の低い箇所を周方向に集中させることで、回転電機11全体としての放熱性を向上させることが可能となる。その結果、固定子14の効率的な冷却が可能となる。なお、キー溝41の数は4つに限定されるものではなく、構成に応じて適宜変更可能である。また、上記の例では、溶接溝34をねじ係合部25の径方向内側に配置していないが、これに限らず、溶接溝34とキー溝41の両方を同一または個別のねじ係合部25の径方向内側に配置してもよい。 According to the above configuration, in the configuration in which the key groove 41 for preventing rotation is provided in the stator core 31, the portions of the rotary electric machine 11 having low heat dissipation are concentrated in the circumferential direction, so that the rotary electric machine 11 as a whole It is possible to improve the heat dissipation of the. As a result, the stator 14 can be efficiently cooled. The number of key grooves 41 is not limited to four, and can be appropriately changed depending on the configuration. Further, in the above example, the welding groove 34 is not arranged inside the screw engaging portion 25 in the radial direction, but the present invention is not limited to this, and both the welding groove 34 and the key groove 41 are the same or individual screw engaging portions. It may be arranged inside 25 in the radial direction.
 ・上記実施形態では、ねじ係合部25のねじ孔25aにねじ部材24が螺着される構成としたが、これ以外に例えば、スルーボルトが挿通される孔を有するねじ係合部としてもよい。 -In the above embodiment, the screw member 24 is screwed into the screw hole 25a of the screw engaging portion 25, but in addition to this, for example, a screw engaging portion having a hole through which a through bolt is inserted may be used. ..
 ・上記実施形態では、ねじ係合部25を、ハウジング12にカバー13を固定するための部位として構成したが、これ以外に例えば、回転電機11を被取付部に固定するための部位として構成してもよい。 -In the above embodiment, the screw engaging portion 25 is configured as a portion for fixing the cover 13 to the housing 12, but in addition to this, for example, the screw engaging portion 25 is configured as a portion for fixing the rotary electric machine 11 to the mounted portion. You may.
 ・上記実施形態では、ねじ係合部25が周壁21の外周面から径方向外側に突出するが、これに限らず、周壁21を周方向全体に亘って一様な厚さとしてもよい。この構成であっても、ねじ孔25aが周壁21における熱抵抗となるため、ねじ孔25aの径方向内側に固定子コア31の第2熱抵抗部(すなわち、溶接溝34またはキー溝41)を配置することで、上記実施形態と略同様の効果が得られる。 -In the above embodiment, the screw engaging portion 25 projects radially outward from the outer peripheral surface of the peripheral wall 21, but the present invention is not limited to this, and the peripheral wall 21 may have a uniform thickness over the entire circumferential direction. Even with this configuration, since the screw hole 25a serves as a thermal resistance in the peripheral wall 21, the second thermal resistance portion (that is, the welding groove 34 or the key groove 41) of the stator core 31 is provided inside the screw hole 25a in the radial direction. By arranging the arrangement, the same effect as that of the above embodiment can be obtained.
 ・放熱フィン26に軸方向における抜き勾配をつけることで、成形の際の型抜きが容易となる。 -By giving the heat radiation fin 26 a draft in the axial direction, die cutting during molding becomes easy.
 ・上記実施形態の放熱フィン26は周壁21に一体成形されたが、これに限らず、周壁21とは別体として構成してもよい。 -The heat radiation fin 26 of the above embodiment is integrally molded with the peripheral wall 21, but the present invention is not limited to this, and the heat radiation fin 26 may be configured as a separate body from the peripheral wall 21.
 ・上記実施形態のハウジング12から放熱フィン26を省略した構成としてもよい。 -The housing 12 of the above embodiment may be configured by omitting the heat radiation fins 26.
 ・上記実施形態のハウジング12において、内部に冷却液を循環させる冷却構造を加えてもよい。 -In the housing 12 of the above embodiment, a cooling structure for circulating a cooling liquid may be added inside.
 ・出力部18はプロペラファンに限定されるものではなく、回転電機11の用途に応じて出力部18の構成を適宜変更可能である。 -The output unit 18 is not limited to the propeller fan, and the configuration of the output unit 18 can be appropriately changed according to the application of the rotary electric machine 11.
 ・本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 -Although this disclosure has been described in accordance with the examples, it is understood that the disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and modifications within an equal range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.

Claims (7)

  1.  筒状のハウジング(12)と、
     前記ハウジングの周方向に沿う環状をなし前記ハウジングの内周面に固定された固定子コア(31)と、を備えた回転電機であって、
     前記ハウジングは周方向において部分的に設けられた第1熱抵抗部(25)を有し、該第1熱抵抗部は、前記ハウジングの周方向における前記第1熱抵抗部以外の部位(21a)よりも高い熱抵抗を有し、
     前記固定子コアは周方向において部分的に設けられた第2熱抵抗部(34,41)を有し、該第2熱抵抗部は、前記固定子コアの周方向における前記第2熱抵抗部以外の部位(32a)よりも高い熱抵抗を有し、
     前記第2熱抵抗部が前記第1熱抵抗部の径方向内側に位置する、回転電機。
    Cylindrical housing (12) and
    A rotary electric machine having an annular shape along the circumferential direction of the housing and a stator core (31) fixed to the inner peripheral surface of the housing.
    The housing has a first thermal resistance portion (25) partially provided in the circumferential direction, and the first thermal resistance portion is a portion (21a) other than the first thermal resistance portion in the circumferential direction of the housing. Has higher thermal resistance than
    The stator core has a second thermal resistance portion (34, 41) partially provided in the circumferential direction, and the second thermal resistance portion is the second thermal resistance portion in the circumferential direction of the stator core. Has higher thermal resistance than other parts (32a),
    A rotary electric machine in which the second thermal resistance portion is located inside the first thermal resistance portion in the radial direction.
  2.  前記ハウジングの前記第1熱抵抗部は、ねじ部材(24)が挿通又は螺着される孔(25a)を有するねじ係合部(25)を含む、請求項1に記載の回転電機。 The rotary electric machine according to claim 1, wherein the first thermal resistance portion of the housing includes a screw engaging portion (25) having a hole (25a) through which a screw member (24) is inserted or screwed.
  3.  前記ハウジングの軸方向の一端部を閉塞するカバー(13)をさらに備え、
     前記カバーは、前記ねじ部材によって前記ハウジングに固定されている、請求項2に記載の回転電機。
    A cover (13) for closing one end of the housing in the axial direction is further provided.
    The rotary electric machine according to claim 2, wherein the cover is fixed to the housing by the screw member.
  4.  前記固定子コアの前記第2熱抵抗部は、前記固定子コアの外周面に形成された軸方向に沿って延びる外周溝(34,41)を含む、請求項1から請求項3のいずれか1項に記載の回転電機。 Any of claims 1 to 3, wherein the second thermal resistance portion of the stator core includes an outer peripheral groove (34, 41) formed on the outer peripheral surface of the stator core and extending along the axial direction. The rotary electric machine according to item 1.
  5.  前記固定子コアは、軸方向に積層された複数のコアシート(31a)からなり、
     前記固定子コアの前記外周溝は、前記複数のコアシートを互いに固定するための溶接部(34a)が形成された溶接溝(34)を含む、請求項4に記載の回転電機。
    The stator core is composed of a plurality of core sheets (31a) laminated in the axial direction.
    The rotary electric machine according to claim 4, wherein the outer peripheral groove of the stator core includes a welding groove (34) in which a welded portion (34a) for fixing the plurality of core sheets to each other is formed.
  6.  前記固定子コアの前記外周溝は、前記ハウジングと前記固定子コア同士を周方向に位置決めするキー部材(42)が嵌合されるキー溝(41)を含む、請求項4又は請求項5に記載の回転電機。 According to claim 4 or 5, the outer peripheral groove of the stator core includes a key groove (41) into which a key member (42) for positioning the housing and the stator core in the circumferential direction is fitted. The rotary electric machine described.
  7.  前記ハウジングは、前記固定子コアが内周面に固定される筒状の周壁(21)と、前記周壁の外周面から突出する放熱フィン(26)とを含む、請求項1から請求項6のいずれか1項に記載の回転電機。 A 1 to 6 claim, the housing includes a tubular peripheral wall (21) in which the stator core is fixed to an inner peripheral surface, and heat radiation fins (26) protruding from the outer peripheral surface of the peripheral wall. The rotary electric machine according to any one item.
PCT/JP2020/023739 2019-06-27 2020-06-17 Rotary electrical machine WO2020262139A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019119522A JP7251355B2 (en) 2019-06-27 2019-06-27 Rotating electric machine
JP2019-119522 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020262139A1 true WO2020262139A1 (en) 2020-12-30

Family

ID=74060121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023739 WO2020262139A1 (en) 2019-06-27 2020-06-17 Rotary electrical machine

Country Status (2)

Country Link
JP (1) JP7251355B2 (en)
WO (1) WO2020262139A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082935A (en) * 2014-02-13 2014-05-08 Hitachi Automotive Systems Ltd Stator of rotary electric machine, and rotary electric machine having the same
JP2019022250A (en) * 2017-07-11 2019-02-07 三菱電機株式会社 Electric motor case component, electric motor, ventilator and extrusion molding component
WO2019043767A1 (en) * 2017-08-29 2019-03-07 三菱電機株式会社 Motor and air conditioning device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4864229B2 (en) 2001-05-17 2012-02-01 株式会社鶴見製作所 Stator core detent structure for submersible motors
JP5773056B2 (en) 2012-02-27 2015-09-02 日産自動車株式会社 Stator core locking structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082935A (en) * 2014-02-13 2014-05-08 Hitachi Automotive Systems Ltd Stator of rotary electric machine, and rotary electric machine having the same
JP2019022250A (en) * 2017-07-11 2019-02-07 三菱電機株式会社 Electric motor case component, electric motor, ventilator and extrusion molding component
WO2019043767A1 (en) * 2017-08-29 2019-03-07 三菱電機株式会社 Motor and air conditioning device

Also Published As

Publication number Publication date
JP7251355B2 (en) 2023-04-04
JP2021005970A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
US10250106B2 (en) Stator and motor provided with outer cylinder
US6943473B2 (en) Electric rotating machine
US9077230B2 (en) Electric motor with heat dissipating device
JP5156223B2 (en) Rotating electric machine
JP5861109B2 (en) Brushless motor cooling structure
US20170353085A1 (en) Motor and electric tool equipped with the same
JP2013539348A (en) Magnetic rotor with built-in bridge for promoting cooling
JP6160690B2 (en) Induction machine
JP2015192474A (en) Rotary electric machine device
JP2009278838A (en) Outer rotor type permanent magnet type motor
JP6472765B2 (en) Rotating electric machine
WO2020145219A1 (en) Motor and rotating blade apparatus
JP2010057309A (en) Rotating electrical machine
JPH08205438A (en) Motor
JPWO2019180921A1 (en) Rotating electric machine with brush
WO2020262139A1 (en) Rotary electrical machine
JP6172877B2 (en) Rotating electrical machine unit
CN108155756B (en) External rotation type rotating electric machine
JP7293807B2 (en) Electric motor
JP4101607B2 (en) Bearing with power generation function
JP5508704B2 (en) Rotating electric machine
JP6119086B2 (en) Brushless motor cooling structure
WO2018131197A1 (en) Motor
JP2006014463A (en) Stator core and rotary electric machine
CN219268583U (en) Outer rotor motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831681

Country of ref document: EP

Kind code of ref document: A1