JP2021005599A - Substrate cleaning method - Google Patents

Substrate cleaning method Download PDF

Info

Publication number
JP2021005599A
JP2021005599A JP2019117604A JP2019117604A JP2021005599A JP 2021005599 A JP2021005599 A JP 2021005599A JP 2019117604 A JP2019117604 A JP 2019117604A JP 2019117604 A JP2019117604 A JP 2019117604A JP 2021005599 A JP2021005599 A JP 2021005599A
Authority
JP
Japan
Prior art keywords
cleaning
substrate
component
present disclosure
agent composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019117604A
Other languages
Japanese (ja)
Other versions
JP7316112B2 (en
Inventor
由佳 山澤
Yuka Yamazawa
由佳 山澤
哲史 山口
Tetsushi Yamaguchi
哲史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2019117604A priority Critical patent/JP7316112B2/en
Publication of JP2021005599A publication Critical patent/JP2021005599A/en
Application granted granted Critical
Publication of JP7316112B2 publication Critical patent/JP7316112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Detergent Compositions (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

To provide a substrate cleaning method which is excellent in cleanability against ceria remaining on a substrate surface of a substrate for a semiconductor device whose surface is partially silicon oxide.SOLUTION: A substrate cleaning method comprises the following steps (1) and (2) in one embodiment: (1) a step of cleaning a cleaning target substrate by using a cleaning agent composition having pH of 5 or less which contains a compound (component A) having two or more carboxyl groups in a molecule and water, and (2) A step of cleaning the substrate obtained in step (1) by using a cleaning agent composition having pH of 10 or more which contains an alkaline agent and water. However, the cleaning target substrate is a substrate for a semiconductor device which has been polished by using a polishing liquid composition containing cerium oxide particles, a part of the surface of the substrate being silicon oxide.SELECTED DRAWING: None

Description

本開示は、基板の洗浄方法及び半導体デバイス用基板の製造方法に関する。 The present disclosure relates to a method for cleaning a substrate and a method for manufacturing a substrate for a semiconductor device.

近年、半導体集積回路等の半導体デバイスは、処理能力向上に伴い微細化が進んでいる。微細化が進むにしたがって、基板各層における平坦性の高い精度が求められている。さらに、配線等が描かれた、硬さや性質の異なる複数種類の表面を同時に平坦化することが生産効率の面等から求められようになってきている。 In recent years, semiconductor devices such as semiconductor integrated circuits have been miniaturized as the processing capacity has been improved. As miniaturization progresses, high accuracy of flatness in each layer of the substrate is required. Further, it has been required from the viewpoint of production efficiency to simultaneously flatten a plurality of types of surfaces having different hardness and properties on which wiring or the like is drawn.

半導体デバイス用基板の平坦性を確保する技術として化学機械研磨(CMP)が一般的に行われている。CMPでは、研磨砥粒を含む研磨剤(スラリー)を供給しながら研磨パッドを用いて基板表面を研磨し、平坦化する。研磨剤としてシリカスラリーが広く用いられているが、酸化セリウム粒子(セリア)スラリーも用いられている。シリカスラリーは、主に銅等の金属部と二酸化シリコン(SiO2)部を有する基板表面の研磨に利用され、セリアスラリーは、主にSiO2部と窒化ケイ素(Si34)部を有する基板表面の研磨に利用されている。そして、シリカスラリーやセリアスラリーを用いたCMPの後は、基板表面に残存する研磨くずや砥粒由来の異物(パーティクル)を除去するために、洗浄が必要である。 Chemical mechanical polishing (CMP) is generally performed as a technique for ensuring the flatness of a substrate for a semiconductor device. In CMP, the surface of a substrate is polished and flattened by using a polishing pad while supplying a polishing agent (slurry) containing polishing abrasive grains. Silica slurry is widely used as an abrasive, but cerium oxide particle (ceria) slurry is also used. The silica slurry is mainly used for polishing the surface of a substrate having a metal part such as copper and a silicon dioxide (SiO 2 ) part, and the ceria slurry mainly has a SiO 2 part and a silicon nitride (Si 3 N 4 ) part. It is used for polishing the surface of the substrate. After CMP using silica slurry or ceria slurry, cleaning is required to remove polishing debris and foreign matter (particles) derived from abrasive grains remaining on the substrate surface.

例えば、特許文献1には、アニオン性界面活性剤、水及びpH調整剤を含有し、CMP処理後の基板洗浄用である洗浄液が提案されている。 For example, Patent Document 1 proposes a cleaning liquid containing an anionic surfactant, water, and a pH adjuster, which is used for cleaning a substrate after CMP treatment.

特開2017−103466号公報JP-A-2017-103466

セリアスラリーを用いたCMPの後には、基板表面に残留する研磨砥粒であるセリアの除去を目的として、通常フッ酸洗浄が行われている。一方で、近年、半導体デバイス分野では微細化目的で配線幅を狭くする傾向にあるため、下地を形成している二酸化シリコン等の熱酸化膜のスクラッチや表面荒れの影響が大きくなっている。さらに、フッ酸洗浄では熱酸化膜に対する溶解性が強すぎるためにスクラッチの発生や表面粗さといった課題が発生し、洗浄後の工程に影響し、半導体デバイスの収率の低下及び品質の低下を招いている。そのため、フッ酸に代わり、平坦性を低下させることなく、基板表面に残留するセリアに対する洗浄性に優れる洗浄剤が求められている。しかし、上記特許文献に開示されている洗浄剤組成物では、表面の一部が酸化珪素である半導体デバイス用基板の基板表面に残留するセリアに対する洗浄性が十分ではなかった。 After CMP using the ceria slurry, hydrofluoric acid cleaning is usually performed for the purpose of removing ceria, which is polishing abrasive grains remaining on the substrate surface. On the other hand, in recent years, in the field of semiconductor devices, the wiring width tends to be narrowed for the purpose of miniaturization, so that the influence of scratches and surface roughness of the thermal oxide film such as silicon dioxide forming the base is increasing. Furthermore, hydrofluoric acid cleaning is too soluble in the thermal oxide film, which causes problems such as scratches and surface roughness, which affects the post-cleaning process and reduces the yield and quality of semiconductor devices. I'm inviting you. Therefore, instead of hydrofluoric acid, there is a demand for a cleaning agent having excellent detergency against ceria remaining on the substrate surface without lowering the flatness. However, in the cleaning agent composition disclosed in the above patent document, the cleaning property against ceria remaining on the substrate surface of the semiconductor device substrate whose surface is partially silicon oxide is not sufficient.

そこで、本開示は、表面の一部が酸化珪素である半導体デバイス用基板の基板表面に残留するセリアに対する洗浄性に優れる基板の洗浄方法及び半導体デバイス用基板の製造方法を提供する。 Therefore, the present disclosure provides a method for cleaning a substrate having excellent detergency against ceria remaining on the substrate surface of a substrate for a semiconductor device whose surface is partially silicon oxide, and a method for manufacturing a substrate for a semiconductor device.

本開示は、一態様において、下記工程(1)及び(2)を含む、基板の洗浄方法に関する。
(1)被洗浄基板を、分子内にカルボキシル基を2個以上有する化合物(成分A)及び水を含むpH5以下の洗浄剤組成物を用いて洗浄する工程。
(2)工程(1)で得られた基板を、アルカリ剤及び水を含むpH10以上の洗浄剤組成物を用いて洗浄する工程。
ただし、前記被洗浄基板は、酸化セリウム粒子を含む研磨液組成物を用いて研磨された、表面の一部が酸化珪素である半導体デバイス用基板である。
The present disclosure relates to a method for cleaning a substrate, which comprises the following steps (1) and (2) in one aspect.
(1) A step of cleaning a substrate to be cleaned with a cleaning agent composition having a pH of 5 or less containing a compound (component A) having two or more carboxyl groups in the molecule and water.
(2) A step of cleaning the substrate obtained in step (1) with a cleaning agent composition having a pH of 10 or higher containing an alkaline agent and water.
However, the substrate to be cleaned is a substrate for a semiconductor device whose surface is partially silicon oxide, which has been polished using a polishing liquid composition containing cerium oxide particles.

本開示は、一態様において、本開示の洗浄方法を用いて被洗浄基板を洗浄する工程を含む、半導体デバイス用基板の製造方法に関する。 The present disclosure relates to a method for manufacturing a substrate for a semiconductor device, which comprises, in one aspect, a step of cleaning the substrate to be cleaned using the cleaning method of the present disclosure.

本開示によれば、一実施形態において、表面の一部が酸化珪素である半導体デバイス用基板の基板表面に残留するセリアに対する洗浄性に優れる基板の洗浄方法を提供できる。 According to the present disclosure, in one embodiment, it is possible to provide a method for cleaning a substrate having excellent detergency against ceria remaining on the substrate surface of a substrate for a semiconductor device whose surface is partially silicon oxide.

本開示は、セリアを含む研磨液組成物を用いて研磨された、表面の一部が酸化珪素である半導体デバイス用基板を、分子内にカルボキシル基を2個以上有する化合物(成分A)を含む酸性洗浄組成物を用いて洗浄を行い、次いでアルカリ性洗浄剤組成物を用いて洗浄を行うと、基板表面に残留するセリアを効率よく洗浄できるという知見に基づく。 The present disclosure includes a substrate for a semiconductor device whose surface is partially silicon oxide, which has been polished using a polishing liquid composition containing ceria, and a compound (component A) having two or more carboxyl groups in the molecule. It is based on the finding that ceria remaining on the substrate surface can be efficiently cleaned by cleaning with an acidic cleaning composition and then with an alkaline cleaning agent composition.

すなわち、本開示は、一態様において、下記工程(1)及び(2)を含む、基板の洗浄方法(以下、「本開示の洗浄方法」ともいう)に関する。
(1)被洗浄基板を、分子内にカルボキシル基を2個以上有する化合物(成分A)及び水を含むpH5以下の洗浄剤組成物を用いて洗浄する工程。
(2)工程(1)で得られた基板を、アルカリ剤及び水を含むpH10以上の洗浄剤組成物を用いて洗浄する工程。
ただし、前記被洗浄基板は、酸化セリウム粒子を含む研磨液組成物を用いて研磨された、表面の一部が酸化珪素である半導体デバイス用基板である。
That is, the present disclosure relates to a substrate cleaning method (hereinafter, also referred to as “the cleaning method of the present disclosure”) including the following steps (1) and (2) in one aspect.
(1) A step of cleaning a substrate to be cleaned with a cleaning agent composition having a pH of 5 or less containing a compound (component A) having two or more carboxyl groups in the molecule and water.
(2) A step of cleaning the substrate obtained in step (1) with a cleaning agent composition having a pH of 10 or higher containing an alkaline agent and water.
However, the substrate to be cleaned is a substrate for a semiconductor device whose surface is partially silicon oxide, which has been polished using a polishing liquid composition containing cerium oxide particles.

本開示の洗浄方法における効果の作用メカニズムの詳細は不明な部分があるが、以下のように推定される。
セリアスラリーを用いたCMPの後には、基板表面に研磨砥粒であるセリアが残留する。本開示の洗浄方法では、まず、セリアが付着した基板を、分子内にカルボキシル基を2個以上有する化合物(成分A)を含むpH5以下の洗浄剤組成物を用いて洗浄することにより、基板に付着したセリアに成分Aが吸着する。次いで、アルカリ剤を含むpH10以上の洗浄剤組成物で洗浄すると、成分Aのカルボン酸基が解離し、基板表面からのセリアの除去が促進されると考えられる。
但し、本開示はこのメカニズムに限定して解釈されなくてもよい。
The details of the mechanism of action of the effect in the cleaning method of the present disclosure are unknown, but it is presumed as follows.
After CMP using the ceria slurry, ceria, which is an abrasive grain, remains on the surface of the substrate. In the cleaning method of the present disclosure, first, the substrate to which ceria is attached is cleaned with a cleaning agent composition having a pH of 5 or less containing a compound (component A) having two or more carboxyl groups in the molecule, thereby forming the substrate. Component A is adsorbed on the attached ceria. Next, when washed with a cleaning agent composition having a pH of 10 or more containing an alkaline agent, it is considered that the carboxylic acid group of the component A is dissociated and the removal of ceria from the substrate surface is promoted.
However, the present disclosure may not be construed as being limited to this mechanism.

以下、上記工程(1)及び(2)の詳細を説明する。 The details of the above steps (1) and (2) will be described below.

[工程(1):酸性洗浄工程]
本開示の洗浄方法における工程(1)は、被洗浄基板を、分子内にカルボキシル基を2個以上有する化合物(成分A)及び水を含むpH5以下の洗浄剤組成物(以下、「本開示の酸性洗浄剤組成物」ともいう)を用いて洗浄する工程(酸性洗浄工程)である。工程(1)は、一又は複数の実施形態において、被洗浄基板に本開示の酸性洗浄剤組成物を接触させる工程を含むことができる。工程(1)は、一又は複数の実施形態において、被洗浄剤基板を本開示の酸性洗浄剤組成物に接触させた後、水でリンスし、乾燥する工程をさらに含むことができる。
[Step (1): Acidic cleaning step]
In the step (1) of the cleaning method of the present disclosure, a cleaning agent composition having a pH of 5 or less containing a compound (component A) having two or more carboxyl groups in the molecule and water in the substrate to be cleaned (hereinafter, "the present disclosure" This is a step (acidic cleaning step) of cleaning using a "acidic cleaning agent composition"). In one or more embodiments, step (1) may include contacting the substrate to be cleaned with the acidic cleaning agent composition of the present disclosure. The step (1) may further include, in one or more embodiments, a step of contacting the substrate to be cleaned with the acidic cleaning composition of the present disclosure, rinsing with water and drying.

<被洗浄基板>
被洗浄基板は、一又は複数の実施形態において、酸化セリウム粒子(セリア)を含む研磨液組成物を用いて研磨された、表面の一部が酸化珪素である半導体デバイス用基板である。半導体デバイス用基板は、一又は複数の実施形態において、半導体デバイス用基板の製造に用いられる基板である。表面の一部が酸化珪素である半導体デバイス用基板としては、例えば、酸化珪素膜を有するシリコン基板が挙げられる。
<Substrate to be cleaned>
The substrate to be cleaned is a substrate for a semiconductor device whose surface is partially silicon oxide, which is polished with a polishing liquid composition containing cerium oxide particles (ceria) in one or more embodiments. A semiconductor device substrate is a substrate used in the manufacture of a semiconductor device substrate in one or more embodiments. Examples of the substrate for a semiconductor device whose surface is partially silicon oxide include a silicon substrate having a silicon oxide film.

<工程(1)で使用する洗浄剤組成物(酸性洗浄剤組成物)>
本開示の酸性洗浄剤組成物の洗浄時のpHは、洗浄性向上の観点から、5以下であって、4以下が好ましく、3.5以下がより好ましい。本開示において「洗浄時のpH」とは、25℃における洗浄剤組成物の使用時のpHであり、pHメータを用いて測定できる。具体的には実施例に記載の方法により測定できる。pHの調整は、例えば、硝酸、硫酸等の無機酸;オキシカルボン酸、多価カルボン酸、アミノポリカルボン酸、アミノ酸等の有機酸;及びそれらの金属塩やアンモニウム塩、アンモニア、水酸化ナトリウム、水酸化カリウム、アミン等の塩基性物質;等を用いて行うことができる。
<Cleaning agent composition used in step (1) (acidic cleaning agent composition)>
The pH of the acidic cleaning agent composition of the present disclosure at the time of washing is 5 or less, preferably 4 or less, and more preferably 3.5 or less from the viewpoint of improving detergency. In the present disclosure, the "pH at the time of washing" is the pH at the time of using the cleaning agent composition at 25 ° C., and can be measured using a pH meter. Specifically, it can be measured by the method described in Examples. For pH adjustment, for example, inorganic acids such as nitric acid and sulfuric acid; organic acids such as oxycarboxylic acid, polyvalent carboxylic acid, aminopolycarboxylic acid and amino acids; and metal salts and ammonium salts thereof, ammonia and sodium hydroxide, etc. It can be carried out using a basic substance such as potassium hydroxide or amine;

本開示の酸性洗浄剤組成物に含まれる成分Aは、一又は複数の実施形態において、分子内にカルボキシル基を2個以上有する化合物である。成分Aは、1種単独でもよいし、2種以上の組合せでもよい。
成分Aの一実施形態としては、例えば、酒石酸、クエン酸等が挙げられる。
成分Aは、ポリマーであってもよく、成分Aがポリマーである場合の一実施形態としては、例えば、ポリアクリル酸;不飽和カルボン酸由来の構成単位a1、及び、カルボン酸基以外の官能基を有するモノマー由来の構成単位a2を含む共重合体(以下、単に「構成単位a1及び構成単位a2を含む共重合体」ともいう);等が挙げられる。成分Aがポリアクリル酸である場合、本開示の酸性洗浄剤組成物を室温以下の低温で長期間(例えば、1か月)保存すると、酸性洗浄剤組成物の透過率が低下し、白濁化する傾向にある。一方、成分Aが構成単位a1及び構成単位a2を含む共重合体である場合は、長期間保存しても酸性洗浄剤組成物の透過率の低下を抑制できる。よって、成分Aがポリマーである場合、成分Aは、保存安定性の観点から、構成単位a1及び構成単位a2を含む共重合体が好ましい。構成単位a1を形成するモノマーである不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸及びそれらの塩から選ばれる少なくとも1種が挙げられる。構成単位a2を形成するモノマーとしては、例えば、分子内にリン酸基、ホスホン酸基、スルホン酸基及びオキシアルキル基を有するモノマーが挙げられ、具体的には、2−アクリルアミド−2−メチルプロパンスルホン酸、エチレングリコールアリルエーテル、(2−ヒドロキシエチルメタクリレート)ホスフェート等が挙げられる。構成単位a1及び構成単位a2を含む共重合体としては、保存安定性の観点から、不飽和カルボン酸由来の構成単位a1、並びに、分子内にリン酸基、ホスホン酸基、スルホン酸基及びオキシアルキル基を有するモノマー由来の構成単位a2を含む共重合体が好ましく、アクリル酸/2−アクリルアミド−2−メチルプロパンスルホン酸共重合体(AA/AMPS)、及びアクリル酸/エチレングリコールアリルエーテル共重合体(AA/PEGAE)から選ばれる少なくとも1種がより好ましい。
The component A contained in the acidic cleaning agent composition of the present disclosure is a compound having two or more carboxyl groups in the molecule in one or more embodiments. The component A may be one kind alone or a combination of two or more kinds.
Examples of the embodiment of the component A include tartaric acid, citric acid and the like.
The component A may be a polymer, and in one embodiment when the component A is a polymer, for example, polyacrylic acid; a structural unit a1 derived from an unsaturated carboxylic acid, and a functional group other than the carboxylic acid group. A copolymer containing a structural unit a2 derived from a monomer having the above (hereinafter, also simply referred to as “a copolymer containing a structural unit a1 and a structural unit a2”); and the like. When the component A is polyacrylic acid, when the acidic cleaning agent composition of the present disclosure is stored at a low temperature of room temperature or lower for a long period of time (for example, one month), the transmittance of the acidic cleaning agent composition decreases and it becomes cloudy. Tend to do. On the other hand, when the component A is a copolymer containing the structural unit a1 and the structural unit a2, it is possible to suppress a decrease in the transmittance of the acidic cleaning agent composition even if it is stored for a long period of time. Therefore, when the component A is a polymer, the component A is preferably a copolymer containing the structural unit a1 and the structural unit a2 from the viewpoint of storage stability. Examples of the unsaturated carboxylic acid which is a monomer forming the structural unit a1 include at least one selected from acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid and salts thereof. Examples of the monomer forming the structural unit a2 include a monomer having a phosphoric acid group, a phosphonic acid group, a sulfonic acid group and an oxyalkyl group in the molecule, and specifically, 2-acrylamide-2-methylpropane. Examples thereof include sulfonic acid, ethylene glycol allyl ether, and (2-hydroxyethyl methacrylate) phosphate. As the copolymer containing the structural unit a1 and the structural unit a2, from the viewpoint of storage stability, the structural unit a1 derived from unsaturated carboxylic acid and the phosphoric acid group, phosphonic acid group, sulfonic acid group and oxy in the molecule. A copolymer containing a structural unit a2 derived from a monomer having an alkyl group is preferable, and an acrylic acid / 2-acrylamide-2-methylpropansulfonic acid copolymer (AA / AMPS) and an acrylic acid / ethylene glycol allyl ether copolymer weight are preferable. At least one selected from coalescence (AA / PEGAE) is more preferred.

成分Aが構成単位a1及び構成単位a2を含む共重合体である場合、成分Aの全構成単位中の構成単位a1の含有量(モル部)は、保存安定性と洗浄性向上の観点から、成分Aの全構成単位(100モル部)に対して、10モル部以上が好ましく、50モル部以上がより好ましく、80モル部以上が更に好ましく、そして、同様の観点から、99モル部以下が好ましく、95モル部以下がより好ましく、90モル部以下が更に好ましい。より具体的には、構成単位a1の含有量(モル部)は、成分Aの全構成単位(100モル部)に対して、10モル部以上99モル部以下が好ましく、50モル部以上95モル部以下がより好ましく、80モル部以上90モル部以下が更に好ましい。 When the component A is a copolymer containing the structural unit a1 and the structural unit a2, the content (molar portion) of the structural unit a1 in all the structural units of the component A is determined from the viewpoint of storage stability and improvement in detergency. With respect to all the constituent units (100 mol parts) of the component A, 10 mol parts or more is preferable, 50 mol parts or more is more preferable, 80 mol parts or more is further preferable, and from the same viewpoint, 99 mol parts or less is preferable. Preferably, 95 mol parts or less is more preferable, and 90 mol parts or less is further preferable. More specifically, the content (molar portion) of the structural unit a1 is preferably 10 mol parts or more and 99 mol parts or less, and 50 mol parts or more and 95 mol parts or more, with respect to all the structural units (100 mol parts) of the component A. More preferably, 80 parts or more and 90 parts or less are more preferable.

成分Aが構成単位a1及び構成単位a2を含む共重合体である場合、成分Aの全構成単位中の構成単位a2の含有量(モル部)は、保存安定性と洗浄性向上の観点から、成分Aの全構成単位(100モル部)に対して、1モル部以上が好ましく、3モル部以上がより好ましく、5モル部以上が更に好ましく、そして、同様の観点から、90モル部以下が好ましく、50モル部以下がより好ましく、10モル部以下が更に好ましい。より具体的には、構成単位a2の含有量(モル部)は、成分Aの全構成単位(100モル部)に対して、1モル部以上90モル部以下が好ましく、3モル部以上50モル部以下がより好ましく、5モル部以上10モル部以下が更に好ましい。 When the component A is a copolymer containing the structural unit a1 and the structural unit a2, the content (molar portion) of the structural unit a2 in all the structural units of the component A is determined from the viewpoint of storage stability and improvement in detergency. With respect to all the structural units (100 mol parts) of the component A, 1 mol part or more is preferable, 3 mol parts or more is more preferable, 5 mol parts or more is further preferable, and from the same viewpoint, 90 mol parts or less is preferable. Preferably, 50 mol parts or less is more preferable, and 10 mol parts or less is further preferable. More specifically, the content (molar portion) of the structural unit a2 is preferably 1 mol part or more and 90 mol parts or less, and 3 mol parts or more and 50 mol parts with respect to all the structural units (100 mol parts) of the component A. It is more preferably 5 parts or more and 10 parts or less.

成分Aが構成単位a1及び構成単位a2を含む共重合体である場合、成分Aの全構成単位中の構成単位a1と構成単位a2とのモル比(a1/a2)は、保存安定性と洗浄性向上の観点から、10/90以上が好ましく、50/50以上がより好ましく、60/40以上が更に好ましく、90/10以上が更に好ましく、そして、同様の観点から、99/1以下が好ましく、98/2以下がより好ましく、97/3以下が更に好ましく、95/5以下が更に好ましい。より具体的には、モル比(a1/a2)は、10/90以上99/1以下が好ましく、50/50以上98/2以下がより好ましく、60/40以上98/2以下が更に好ましく、90/10以上95/5以下が更に好ましい。 When the component A is a copolymer containing the structural unit a1 and the structural unit a2, the molar ratio (a1 / a2) of the structural unit a1 and the structural unit a2 in all the structural units of the component A is the storage stability and washing. From the viewpoint of improving the properties, 10/90 or more is preferable, 50/50 or more is more preferable, 60/40 or more is further preferable, 90/10 or more is further preferable, and 99/1 or less is preferable from the same viewpoint. , 98/2 or less is more preferable, 97/3 or less is further preferable, and 95/5 or less is further preferable. More specifically, the molar ratio (a1 / a2) is preferably 10/90 or more and 99/1 or less, more preferably 50/50 or more and 98/2 or less, and further preferably 60/40 or more and 98/2 or less. More preferably, it is 90/10 or more and 95/5 or less.

成分Aが構成単位a1及び構成単位a2を含む共重合体である場合、成分Aの全構成単位中の構成単位a1、a2の合計含有量(モル部)は、保存安定性と洗浄性向上の観点から、成分Aの全構成単位(100モル部)に対して、10モル部以上が好ましく、50モル部以上がより好ましく、80モル部以上が更に好ましい。 When the component A is a copolymer containing the structural unit a1 and the structural unit a2, the total content (molar portion) of the structural units a1 and a2 in all the structural units of the component A improves storage stability and detergency. From the viewpoint, 10 mol parts or more is preferable, 50 mol parts or more is more preferable, and 80 mol parts or more is further preferable with respect to all the constituent units (100 mol parts) of component A.

成分Aが構成単位a1及び構成単位a2を含む共重合体である場合、成分Aは、構成単位a1、a2以外のその他の構成単位をさらに含有することができる。その他の構成単位としては、例えば、ベンゼン環もしくはアルキル鎖等を分子内に含む疎水性モノマーが挙げられる。 When the component A is a copolymer containing the structural unit a1 and the structural unit a2, the component A can further contain other structural units other than the structural units a1 and a2. Examples of other structural units include hydrophobic monomers containing a benzene ring, an alkyl chain, or the like in the molecule.

成分Aが構成単位a1及び構成単位a2を含む共重合体である場合、成分Aは、例えば、モノマーa1及びモノマーa2を含むモノマー混合物を溶液重合法で重合させる等の公知の方法により得ることができる。溶液重合に用いられる溶媒としては、水;トルエン、キシレン等の芳香族系炭化水素;エタノール、2−プロパノール等のアルコール;アセトン、メチルエチルケトン等のケトン;テトラヒドロフラン、ジエチレングリコールジメチルエーテル等のエーテル;等が挙げられる。重合に用いられる重合開始剤としては、公知のラジカル開始剤を用いることができ、例えば、過硫酸アンモニウム塩が挙げられる。重合の際、連鎖移動剤をさらに用いることができ、例えば、2−メルカプトエタノール、β−メルカプトプロピオン酸等のチオール系連鎖移動剤が挙げられる。本開示において、成分Aの全構成単位中の各構成単位の含有量は、重合に用いるモノマー全量に対する各モノマーの使用量の割合とみなすことができる。 When the component A is a copolymer containing the structural unit a1 and the structural unit a2, the component A can be obtained by a known method such as polymerizing a monomer mixture containing the monomer a1 and the monomer a2 by a solution polymerization method. it can. Examples of the solvent used for solution polymerization include water; aromatic hydrocarbons such as toluene and xylene; alcohols such as ethanol and 2-propanol; ketones such as acetone and methyl ethyl ketone; and ethers such as tetrahydrofuran and diethylene glycol dimethyl ether; .. As the polymerization initiator used for the polymerization, a known radical initiator can be used, and examples thereof include ammonium persulfate salt. A chain transfer agent can be further used during the polymerization, and examples thereof include thiol-based chain transfer agents such as 2-mercaptoethanol and β-mercaptopropionic acid. In the present disclosure, the content of each structural unit in all the structural units of component A can be regarded as the ratio of the amount of each monomer used to the total amount of monomers used for polymerization.

成分Aが構成単位a1及び構成単位a2を含む共重合体である場合、成分Aを構成する各構成単位の配列は、ランダム、ブロック、又はグラフトのいずれでもよい。 When the component A is a copolymer containing the structural unit a1 and the structural unit a2, the sequence of each structural unit constituting the component A may be random, block, or graft.

成分Aがポリマーである場合、成分Aの重量平均分子量は、洗浄性向上の観点から、1,000以上が好ましく、5,000以上がより好ましく、10,000以上が更に好ましく、そして、同様の観点から、1,000,000以下が好ましく、100,000以下がより好ましく、50,000以下が更に好ましい。より具体的には、成分Aの重量平均分子量は、1,000以上1,000,000以下が好ましく、5,000以上100,000以下がより好ましく、10,000以上50,000以下が更に好ましい。本開示において成分Aの重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(ポリエチレングリコール換算)によるものであり、具体的には、実施例に記載の方法により測定できる。 When the component A is a polymer, the weight average molecular weight of the component A is preferably 1,000 or more, more preferably 5,000 or more, further preferably 10,000 or more, and the same, from the viewpoint of improving detergency. From the viewpoint, it is preferably 1,000,000 or less, more preferably 100,000 or less, and even more preferably 50,000 or less. More specifically, the weight average molecular weight of the component A is preferably 1,000 or more and 1,000,000 or less, more preferably 5,000 or more and 100,000 or less, and further preferably 10,000 or more and 50,000 or less. .. In the present disclosure, the weight average molecular weight of component A is based on a gel permeation chromatography method (polyethylene glycol equivalent), and can be specifically measured by the method described in Examples.

本開示の酸性洗浄剤組成物の洗浄時における成分Aの含有量は、洗浄性向上の観点から、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、そして、洗浄性向上及び排水処理負荷低減の観点から、1質量%以下が好ましく、0.75質量%以下がより好ましく、0.5質量%以下が更に好ましい。より具体的には、成分Aの含有量は、0.01質量%以上1質量%以下が好ましく、0.05質量%以上0.75質量%以下がより好ましく、0.1質量%以上0.5質量%以下が更に好ましい。成分Aが2種以上の組合せの場合、成分Aの含有量はそれらの合計含有量である。 The content of component A at the time of cleaning of the acidic cleaning agent composition of the present disclosure is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and 0.1% by mass, from the viewpoint of improving detergency. The above is more preferable, and from the viewpoint of improving detergency and reducing the wastewater treatment load, 1% by mass or less is preferable, 0.75% by mass or less is more preferable, and 0.5% by mass or less is further preferable. More specifically, the content of the component A is preferably 0.01% by mass or more and 1% by mass or less, more preferably 0.05% by mass or more and 0.75% by mass or less, and 0.1% by mass or more and 0. More preferably, it is 5% by mass or less. When the component A is a combination of two or more kinds, the content of the component A is the total content thereof.

本開示の酸性洗浄剤組成物に含まれる水としては、イオン交換水、RO水、蒸留水、純水、超純水が使用されうる。本開示の洗浄剤組成物の洗浄時における水の含有量は、本開示の成物A及び必要に応じて配合される後述する任意成分を除いた残余とすることができる。 As the water contained in the acidic cleaning agent composition of the present disclosure, ion-exchanged water, RO water, distilled water, pure water, and ultrapure water can be used. The water content of the cleaning agent composition of the present disclosure at the time of washing can be the residue excluding the product A of the present disclosure and optional components to be blended as necessary.

本開示の酸性洗浄剤組成物は、上述した成分A及び水以外に、必要に応じてその他の成分を含有することができる。その他の成分としては、成分A以外の酸、pH調整剤、キレート剤、可溶化剤、防腐剤、防錆剤、殺菌剤、抗菌剤、シリコーン系消泡剤、酸化防止剤、エステル類、アルコール類等が挙げられる。本開示の酸性洗浄剤組成物の洗浄時におけるその他の成分の含有量は、本開示の効果を妨げない観点から、0質量%以上2質量%以下が好ましく、0質量%以上1.5質量%以下がより好ましく、0質量%以上1質量%以下が更に好ましい。 The acidic cleaning agent composition of the present disclosure may contain other components, if necessary, in addition to the above-mentioned component A and water. Other components include acids other than component A, pH adjusters, chelating agents, solubilizers, preservatives, rust inhibitors, fungicides, antibacterial agents, silicone defoamers, antioxidants, esters, alcohols. Kind and the like. The content of other components during cleaning of the acidic cleaning agent composition of the present disclosure is preferably 0% by mass or more and 2% by mass or less, preferably 0% by mass or more and 1.5% by mass, from the viewpoint of not hindering the effects of the present disclosure. The following is more preferable, and 0% by mass or more and 1% by mass or less is further preferable.

本開示の酸性洗浄剤組成物は、例えば、前記成分A、水及び必要に応じてその他の成分を公知の方法で配合することにより製造できる。したがって、本開示は、一態様において、少なくとも前記成分A及び水を配合する工程を含む、洗浄剤組成物の製造方法に関する。本開示において「配合する」とは、成分A、水及び必要に応じてその他の成分を同時に又は任意の順に混合することを含む。本開示の酸性洗浄剤組成物の製造方法において、各成分の配合量は、上述した本開示の酸性洗浄剤組成物の各成分の含有量と同じとすることができる。 The acidic cleaning agent composition of the present disclosure can be produced, for example, by blending the above-mentioned component A, water and, if necessary, other components by a known method. Therefore, the present disclosure relates to a method for producing a cleaning agent composition, which comprises, in one embodiment, at least a step of blending the component A and water. In the present disclosure, "blending" includes mixing component A, water and, if necessary, other components simultaneously or in any order. In the method for producing the acidic cleaning agent composition of the present disclosure, the blending amount of each component can be the same as the content of each component of the acidic cleaning agent composition of the present disclosure described above.

本開示において「洗浄剤組成物の洗浄時における各成分の含有量」とは、一又は複数の実施形態において、洗浄工程に使用される、すなわち、洗浄への使用を開始する時点(使用時)での洗浄剤組成物の各成分の含有量をいう。 In the present disclosure, the "content of each component at the time of cleaning of the cleaning agent composition" is used in the cleaning step in one or more embodiments, that is, at the time when the use for cleaning is started (at the time of use). Refers to the content of each component of the cleaning agent composition in.

本開示の酸性洗浄剤組成物は、分離や析出等を起こして保管安定性を損なわない範囲で水の量を減らした濃縮物として調製してもよい。本開示の酸性洗浄剤組成物の濃縮物は、輸送及び貯蔵の観点、保存安定性の観点から、希釈倍率10倍以上100倍以下の濃縮物とすることが好ましい。本開示の酸性洗浄剤組成物の濃縮物は、使用時に各成分が上述した含有量(すなわち、洗浄時の含有量)になるよう水で希釈して使用できる。本開示の酸性洗浄剤組成物の濃縮物は、使用時に各成分を別々に添加して使用することもできる。本開示において洗浄剤組成物の濃縮物の「使用時」又は「洗浄時」とは、洗浄剤組成物の濃縮物が希釈された状態をいう。本開示の酸性洗浄剤組成物が濃縮物である場合、本開示の洗浄方法は、酸性洗浄剤組成物の濃縮物を希釈する希釈工程をさらに含むことができる。 The acidic cleaning agent composition of the present disclosure may be prepared as a concentrate in which the amount of water is reduced as long as the storage stability is not impaired by causing separation, precipitation or the like. The concentrate of the acidic cleaning agent composition of the present disclosure is preferably a concentrate having a dilution ratio of 10 times or more and 100 times or less from the viewpoint of transportation and storage and storage stability. The concentrate of the acidic cleaning agent composition of the present disclosure can be diluted with water so that each component has the above-mentioned content (that is, the content at the time of cleaning) at the time of use. The concentrate of the acidic cleaning agent composition of the present disclosure can also be used by adding each component separately at the time of use. In the present disclosure, "at the time of use" or "at the time of cleaning" of the concentrate of the cleaning agent composition means a state in which the concentrate of the cleaning agent composition is diluted. When the acidic cleaning composition of the present disclosure is a concentrate, the cleaning method of the present disclosure may further include a dilution step of diluting the concentrate of the acidic cleaning composition.

工程(1)の洗浄方式としては、例えば、ブラシ洗浄やパッドを用いた洗浄が挙げられる。
ブラシ洗浄とは、一又は複数の実施形態において、基板表面に洗浄剤組成物を供給しながら、基板表面に洗浄ブラシを押し当てて基板と洗浄ブラシとを相対的に動かして基板表面を洗浄する方法である。洗浄ブラシとしては、例えば、ロールブラシ、ペンシルブラシ等が挙げられる。
パッドを用いた洗浄とは、一又は複数の実施形態において、基板表面にパッドを押し当て、基板とパッドとの間に洗浄剤組成物を供給しながら、基板とパッドとを相対的に動かすことにより基板表面を洗浄する方法である。パッドとしては、例えば、一般的なCMP研磨で用いられる発砲ポリウレタン製パッド、不織布、フッ素樹脂、スエードパッド(バフ)等が挙げられる。スエードパッドを用いた洗浄は、バフ洗浄ともよばれている。
上述したブラシ洗浄やパッドを用いた洗浄以外にも、例えば、浸漬洗浄、超音波洗浄、揺動洗浄、スプレー洗浄、スピンナー等の回転を利用した洗浄等が挙げられる。
上述した洗浄方式は、単独で実施してもよいし、複数組み合わせて実施してもよい。
Examples of the cleaning method in the step (1) include brush cleaning and cleaning using a pad.
In one or more embodiments, brush cleaning is to clean the substrate surface by pressing the cleaning brush against the substrate surface and moving the substrate and the cleaning brush relative to each other while supplying the cleaning agent composition to the substrate surface. The method. Examples of the cleaning brush include a roll brush and a pencil brush.
Cleaning using a pad is, in one or more embodiments, pressing the pad against the surface of the substrate and relatively moving the substrate and the pad while supplying a cleaning agent composition between the substrate and the pad. This is a method of cleaning the surface of the substrate. Examples of the pad include a foamed polyurethane pad, a non-woven fabric, a fluororesin, and a suede pad (buff) used in general CMP polishing. Cleaning with a suede pad is also called buff cleaning.
In addition to the above-mentioned brush cleaning and cleaning using a pad, for example, immersion cleaning, ultrasonic cleaning, rocking cleaning, spray cleaning, cleaning using rotation of a spinner or the like can be mentioned.
The above-mentioned cleaning method may be carried out individually or in combination of two or more.

[工程(2):アルカリ洗浄工程]
本開示の洗浄方法における工程(2)は、工程(1)で得られた基板を、アルカリ剤及び水を含むpH10以上の洗浄剤組成物(以下、「本開示のアルカリ性洗浄剤組成物」ともいう)を用いて洗浄する工程(アルカリ洗浄工程)である。工程(2)は、一又は複数の実施形態において、工程(1)で得られた基板に本開示のアルカリ性洗浄剤組成物を接触させる工程を含むことができる。工程(2)は、一又は複数の実施形態において、工程(1)で得られた基板に本開示のアルカリ性洗浄剤組成物を接触させた後、水でリンスし、乾燥する工程をさらに含んでもよい。
[Step (2): Alkaline cleaning step]
In the step (2) of the cleaning method of the present disclosure, the substrate obtained in the step (1) is used as a cleaning agent composition having a pH of 10 or more containing an alkaline agent and water (hereinafter, also referred to as "alkaline cleaning agent composition of the present disclosure"). This is a step of cleaning using (referred to as) (alkaline cleaning step). In one or more embodiments, step (2) can include contacting the substrate obtained in step (1) with the alkaline cleaning agent composition of the present disclosure. In one or more embodiments, the step (2) may further include a step of contacting the substrate obtained in the step (1) with the alkaline cleaning agent composition of the present disclosure, rinsing with water, and drying. Good.

<工程(2)で使用する洗浄剤組成物(アルカリ性洗浄剤組成物)>
本開示のアルカリ性洗浄剤組成物は、洗浄性能の観点から、25℃におけるpHは10以上であって、10.5以上が好ましく、11以上がより好ましく、12以上更に好ましい。
<Cleaning agent composition used in step (2) (alkaline cleaning agent composition)>
From the viewpoint of cleaning performance, the alkaline cleaning agent composition of the present disclosure has a pH of 10 or more at 25 ° C., preferably 10.5 or more, more preferably 11 or more, and even more preferably 12 or more.

本開示のアルカリ性洗浄剤組成物に含まれるアルカリ剤としては、無機アルカリ及び有機アルカリの少なくとも一方が挙げられる。無機アルカリとしては、例えば、アンモニア、水酸化カリウム、及び水酸化ナトリウム等が挙げられる。有機アルカリとしては、例えば、ジメチルアミン、テトラメチルアンモニウムハイドロオキサイド(TMAH)等が挙げられる。これらのアルカリ剤は、1種単独でもよいし、2種以上の組合せでもよい。 Examples of the alkaline agent contained in the alkaline cleaning agent composition of the present disclosure include at least one of an inorganic alkali and an organic alkali. Examples of the inorganic alkali include ammonia, potassium hydroxide, sodium hydroxide and the like. Examples of the organic alkali include dimethylamine, tetramethylammonium hydroxide (TMAH) and the like. These alkaline agents may be used alone or in combination of two or more.

本開示のアルカリ性洗浄剤組成物の洗浄時におけるアルカリ剤の含有量は、洗浄性向上の観点から、0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上が更に好ましく、そして、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下が更に好ましい。より具体的には、アルカリ剤の含有量は、0.01質量%以上1質量%以下が好ましく、0.05質量%以上0.5質量%以下がより好ましく、0.05質量%以上0.1質量%以下が更に好ましい。アルカリ剤が2種以上の組合せである場合、アルカリ剤の含有量はそれらの合計含有量をいう。 The content of the alkaline agent in the cleaning of the alkaline cleaning agent composition of the present disclosure is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, and 0.05% by mass, from the viewpoint of improving the cleaning property. The above is more preferable, 1% by mass or less is preferable, 0.5% by mass or less is more preferable, and 0.1% by mass or less is further preferable. More specifically, the content of the alkaline agent is preferably 0.01% by mass or more and 1% by mass or less, more preferably 0.05% by mass or more and 0.5% by mass or less, and 0.05% by mass or more and 0. It is more preferably 1% by mass or less. When the alkaline agent is a combination of two or more kinds, the content of the alkaline agent means the total content thereof.

本開示のアルカリ性洗浄剤組成物に含まれる水としては、イオン交換水、RO水、蒸留水、純水、超純水が使用されうる。本開示の洗浄剤組成物の洗浄時における水の含有量は、本開示のアルカリ剤及び必要に応じて配合される後述する任意成分を除いた残余とすることができる。 As the water contained in the alkaline cleaning agent composition of the present disclosure, ion-exchanged water, RO water, distilled water, pure water, and ultrapure water can be used. The water content of the cleaning agent composition of the present disclosure at the time of cleaning can be the residue excluding the alkaline agent of the present disclosure and optional components to be blended as necessary.

本開示のアルカリ性洗浄剤組成物には、上述したアルカリ剤及び水以外に、界面活性剤、キレート剤、エーテルカルボキシレート、脂肪酸、消泡剤、アルコール類、防腐剤、酸化防止剤等のその他の成分が含まれていていてもよい。本開示のアルカリ性洗浄剤組成物の洗浄時におけるその他の成分の含有量は、本開示の効果を妨げない観点から、0質量%以上2質量%以下が好ましく、0質量%以上1.5質量%以下がより好ましく、0質量%以上1質量%以下が更に好ましい。 In addition to the above-mentioned alkaline agents and water, the alkaline cleaning agent compositions of the present disclosure include other agents such as surfactants, chelating agents, ether carboxylates, fatty acids, antifoaming agents, alcohols, preservatives and antioxidants. Ingredients may be included. The content of other components in the cleaning of the alkaline cleaning agent composition of the present disclosure is preferably 0% by mass or more and 2% by mass or less, preferably 0% by mass or more and 1.5% by mass, from the viewpoint of not hindering the effect of the present disclosure. The following is more preferable, and 0% by mass or more and 1% by mass or less is further preferable.

本開示のアルカリ性洗浄剤組成物は、例えば、アルカリ剤、水及び必要に応じてその他の成分を公知の方法で配合することにより製造できる。また、本開示のアルカリ性洗浄剤組成物は、保管安定性を損なわない範囲で水の量を減らした濃縮物として調製してもよい。アルカリ性洗浄剤組成物の濃縮物の希釈倍率は、例えば、10〜100倍が挙げられる。アルカリ性洗浄剤組成物の濃縮物は、使用時に各成分が上述した含有量(すなわち、洗浄時の含有量)になるよう水で希釈して使用できる。本開示のアルカリ性洗浄剤組成物が濃縮物である場合、本開示の洗浄方法は、アルカリ性洗浄剤組成物の濃縮物を希釈する希釈工程をさらに含むことができる。 The alkaline cleaning composition of the present disclosure can be produced, for example, by blending an alkaline agent, water and, if necessary, other components by a known method. Further, the alkaline cleaning agent composition of the present disclosure may be prepared as a concentrate in which the amount of water is reduced as long as the storage stability is not impaired. The dilution ratio of the concentrate of the alkaline cleaning agent composition is, for example, 10 to 100 times. The concentrate of the alkaline cleaning agent composition can be diluted with water so that each component has the above-mentioned content (that is, the content at the time of cleaning) at the time of use. When the alkaline cleaning composition of the present disclosure is a concentrate, the cleaning method of the present disclosure may further include a dilution step of diluting the concentrate of the alkaline cleaning composition.

工程(2)の洗浄方式としては、上述の工程(1)と同じ洗浄方式が挙げられる。 Examples of the cleaning method in the step (2) include the same cleaning method as in the above-mentioned step (1).

[半導体デバイス用基板の製造方法]
本開示は、一態様において、本開示の洗浄方法を用いて、被洗浄基板を洗浄する洗浄工程を含む、半導体デバイス用基板の製造方法(以下、「本開示の基板製造方法」ともいう)に関する。被洗浄基板としては、上述した基板を用いることができる。本開示の基板製造方法の洗浄工程における洗浄方法や洗浄条件は、上述した本開示の洗浄方法と同じとすることができる。本開示の基板製造方法は、一又は複数の実施形態において、セリアを含む研磨液組成物を用いてCMPを行う工程、及び本開示の洗浄方法を用いて被洗浄基板を洗浄する工程を含むことができる。
[Manufacturing method of substrates for semiconductor devices]
The present disclosure relates to a method for manufacturing a substrate for a semiconductor device (hereinafter, also referred to as "the substrate manufacturing method of the present disclosure"), which comprises a cleaning step of cleaning the substrate to be cleaned by using the cleaning method of the present disclosure in one aspect. .. As the substrate to be cleaned, the above-mentioned substrate can be used. The cleaning method and cleaning conditions in the cleaning step of the substrate manufacturing method of the present disclosure can be the same as the cleaning method of the present disclosure described above. The substrate manufacturing method of the present disclosure includes, in one or more embodiments, a step of performing CMP using a polishing liquid composition containing ceria and a step of cleaning the substrate to be cleaned using the cleaning method of the present disclosure. Can be done.

ここで、CMPを行う工程の具体例を以下に示す。
まず、シリコン基板を酸化炉内で酸素に晒して二酸化シリコン層を含むシリコン基板を形成する。次いで、シリコン基板の二酸化シリコン層側、例えば二酸化シリコン層上に、窒化珪素(Si34)膜を、例えばCVD法(化学気相成長法)にて形成する。次に、このようにして得られたシリコン基板と前記シリコン基板の一方の主面側に配置された窒化珪素膜とを含む基板、例えば、シリコン基板とシリコン基板の一方の主面上に配置された窒化珪素膜とを含む基板、又はシリコン基板とシリコン基板の一方の主面上に配置された窒化珪素膜とからなる基板に、フォトリソグラフィー技術を用いて窒化珪素膜を貫通し溝底がシリコン基板内に達したトレンチを形成する。次いで、例えばシランガスと酸素ガスを用いたCVD法により、トレンチ埋め込み用の酸化珪素(SiO2)膜を形成し、前記トレンチに酸化珪素が埋め込まれ、トレンチ及び窒化珪素膜が酸化珪素膜で覆われた被研磨基板を得る。酸化珪素膜の形成により、前記トレンチは酸化珪素膜の酸化珪素で満たされ、窒化珪素膜の前記シリコン基板側の面の反対面は酸化珪素膜によって被覆される。このようにして形成された酸化珪素膜のシリコン基板側の面の反対面は、下層の凸凹に対応して形成された、段差を有する。次いで、CMP法により、酸化珪素膜を、少なくとも窒化珪素膜のシリコン基板側の面の反対面が露出するまでセリアスラリーで研磨し、より好ましくは、酸化珪素膜の表面と窒化珪素膜の表面とが面一になるまで酸化珪素膜を研磨する。
Here, a specific example of the process of performing CMP is shown below.
First, the silicon substrate is exposed to oxygen in an oxidation furnace to form a silicon substrate containing a silicon dioxide layer. Next, a silicon nitride (Si 3 N 4 ) film is formed on the silicon dioxide layer side of the silicon substrate, for example, on the silicon dioxide layer by, for example, a CVD method (chemical vapor deposition method). Next, a substrate containing the silicon substrate thus obtained and a silicon nitride film arranged on one main surface side of the silicon substrate, for example, arranged on one main surface of the silicon substrate and the silicon substrate. A silicon nitride film is used to penetrate a substrate including a silicon nitride film or a substrate composed of a silicon substrate and a silicon nitride film arranged on one main surface of the silicon substrate, and the groove bottom is silicon. It forms a trench that reaches the inside of the substrate. Next, for example, a silicon oxide (SiO 2 ) film for embedding a trench is formed by a CVD method using silane gas and oxygen gas, silicon oxide is embedded in the trench, and the trench and the silicon nitride film are covered with the silicon oxide film. Obtain a substrate to be polished. By forming the silicon oxide film, the trench is filled with the silicon oxide of the silicon oxide film, and the opposite surface of the silicon nitride film on the silicon substrate side is covered with the silicon oxide film. The opposite surface of the surface of the silicon oxide film formed in this manner on the silicon substrate side has a step formed corresponding to the unevenness of the lower layer. Then, by the CMP method, the silicon oxide film is polished with a ceria slurry until at least the opposite surface of the silicon nitride film on the silicon substrate side is exposed, and more preferably, the surface of the silicon oxide film and the surface of the silicon nitride film are formed. Polish the silicon oxide film until is flush.

本開示の基板製造方法は、被洗浄基板の洗浄に本開示の洗浄方法を用いることにより、CMP後の基板表面に残留する砥粒や研磨屑等の異物が低減され、異物が残留することに起因する後工程における不良発生が抑制されるから、信頼性の高い半導体デバイス用基板の製造が可能になる。さらに、本開示の洗浄方法を行うことにより、CMP後の基板表面の砥粒や研磨屑等の残渣の洗浄が容易になることから、洗浄時間が短縮化でき、半導体デバイス用基板の製造効率を向上できる。 In the substrate manufacturing method of the present disclosure, by using the cleaning method of the present disclosure for cleaning the substrate to be cleaned, foreign substances such as abrasive grains and polishing debris remaining on the substrate surface after CMP are reduced, and the foreign substances remain. Since the occurrence of defects in the subsequent process due to this is suppressed, it becomes possible to manufacture a highly reliable substrate for a semiconductor device. Further, by performing the cleaning method of the present disclosure, it becomes easy to clean the residue such as abrasive grains and polishing debris on the substrate surface after CMP, so that the cleaning time can be shortened and the manufacturing efficiency of the substrate for semiconductor devices can be improved. Can be improved.

以下に、実施例により本開示を具体的に説明するが、本開示はこれらの実施例によって何ら限定されるものではない。 Hereinafter, the present disclosure will be specifically described with reference to Examples, but the present disclosure is not limited to these Examples.

1.酸性洗浄剤組成物及びアルカリ性洗浄剤組成物の調製(実施例1〜17及び比較例1〜8)
表1に示す成分A又は非成分Aを水に配合して混合し、表1に示すpHとなるように必要に応じてpH調整を行い、実施例1〜17及び比較例1〜8の酸性洗浄剤組成物を調製した。pH調整には、1%硝酸水溶液を用いた。表1に示す成分A又は非成分Aの含有量は、質量%であり、有効分で示す。
また、表1に示すアルカリ剤を水に配合して混合し、実施例1〜17及び比較例1〜8のアルカリ性洗浄剤組成物を調製した。表1に示すアルカリ剤の含有量は、質量%であり、有効分で示す。
表1中のpHは、25℃における洗浄剤組成物のpHであり、pHメータ(東亜ディーケーケー株式会社製、HM−30G)を用いて測定し、電極を洗浄剤組成物に浸漬して1分後の数値である。
1. 1. Preparation of Acid Cleaning Agent Composition and Alkaline Cleaning Agent Composition (Examples 1 to 17 and Comparative Examples 1 to 8)
The component A or non-component A shown in Table 1 is mixed with water, and the pH is adjusted as necessary so as to have the pH shown in Table 1, and the acidity of Examples 1 to 17 and Comparative Examples 1 to 8 is obtained. A cleaning composition was prepared. A 1% aqueous nitric acid solution was used for pH adjustment. The content of the component A or the non-component A shown in Table 1 is mass% and is shown as an effective component.
Further, the alkaline agents shown in Table 1 were mixed with water to prepare alkaline cleaning agent compositions of Examples 1 to 17 and Comparative Examples 1 to 8. The content of the alkaline agent shown in Table 1 is mass%, and is shown as an effective component.
The pH in Table 1 is the pH of the cleaning agent composition at 25 ° C., measured using a pH meter (HM-30G, manufactured by DKK-TOA CORPORATION), and the electrode is immersed in the cleaning agent composition for 1 minute. It is a later number.

表1に示す実施例1〜17及び比較例1〜8の酸性洗浄剤組成物及びアルカリ性洗浄剤組成物の調製には以下の成分を用いた。
(成分A)
ポリアクリル酸[重量平均分子量21000、花王製]
AA/AMPS共重合体(モル比90/10)[重量平均分子量2000、東亜合成製]
AA/AMPS共重合体(モル比75/25)[重量平均分子量2000、東亜合成製]
AA/AMPS共重合体(モル比55/45)[重量平均分子量1500、東亜合成製]
AA/AMPS共重合体(モル比15/85)[重量平均分子量1500、東亜合成製]
AA/PEGAE共重合体(モル比84/16)[重量平均分子量22000、花王製]
L(+)−酒石酸[富士フィルム和光純薬製]
クエン酸[富士フィルム和光純薬製]
(非成分A)
塩酸[関東化学社製]
酢酸[富士フィルム和光純薬製]
乳酸[富士フィルム和光純薬製]
(アルカリ剤)
TMAH[多摩化学工業社製]
ジメチルアミン[富士フィルム和光純薬製]
NH3:アンモニア[関東化学社製]
KOH:水酸化カリウム[富士フィルム和光純薬製]
NaOH:水酸化ナトリウム[富士フィルム和光純薬製]
(水)
栗田工業株式会社製の連続純水製造装置(ピュアコンティ PC-2000VRL型)とサブシステム(マクエース KC-05H型)を用いて製造した超純水
The following components were used to prepare the acidic cleaning agent compositions and alkaline cleaning agent compositions of Examples 1 to 17 and Comparative Examples 1 to 8 shown in Table 1.
(Component A)
Polyacrylic acid [Weight average molecular weight 21000, made by Kao]
AA / AMPS copolymer (molar ratio 90/10) [Weight average molecular weight 2000, manufactured by Toagosei]
AA / AMPS copolymer (molar ratio 75/25) [Weight average molecular weight 2000, manufactured by Toagosei]
AA / AMPS copolymer (molar ratio 55/45) [Weight average molecular weight 1500, manufactured by Toagosei]
AA / AMPS copolymer (molar ratio 15/85) [Weight average molecular weight 1500, manufactured by Toagosei]
AA / PEGAE copolymer (molar ratio 84/16) [Weight average molecular weight 22000, manufactured by Kao]
L (+)-tartaric acid [manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.]
Citric acid [manufactured by Fuji Film Wako Pure Chemical Industries]
(Non-component A)
Hydrochloric acid [manufactured by Kanto Chemical Co., Inc.]
Acetic acid [manufactured by Fuji Film Wako Pure Chemical Industries]
Lactic acid [manufactured by Fuji Film Wako Pure Chemical Industries]
(Alkaline agent)
TMAH [manufactured by Tama Chemical Industry Co., Ltd.]
Dimethylamine [manufactured by Fuji Film Wako Pure Chemical Industries]
NH 3 : Ammonia [manufactured by Kanto Chemical Co., Inc.]
KOH: Potassium hydroxide [manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.]
NaOH: Sodium hydroxide [manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.]
(water)
Ultrapure water produced using a continuous pure water production device (Pure Conti PC-2000VRL type) and subsystem (McAce KC-05H type) manufactured by Kurita Water Industries, Ltd.

[重量平均分子量の測定]
ポリマーの重量平均分子量は、液体クロマトグラフィー(株式会社日立製作所製、L−6000型高速液体クロマトグラフィー)を使用し、ゲルパーミエーションクロマトグラフィー(以下「GPC」ともいう)法を用いて下記条件で測定した。測定結果を表1に示した。
<GPC条件>
カラム:G4000PWXL+G2500PWXL(東ソー株式会社製)
溶離液:0.2Mリン酸バッファ/CH3CN=9/1(体積比)
流量:1.0mL/min
カラム温度:40℃
検出:RI
サンプル濃度:0.5mg/mL
標準物質:ポリエチレングリコール換算
[Measurement of weight average molecular weight]
The weight average molecular weight of the polymer is determined by using liquid chromatography (manufactured by Hitachi, Ltd., L-6000 type high performance liquid chromatography) and gel permeation chromatography (hereinafter also referred to as "GPC") under the following conditions. It was measured. The measurement results are shown in Table 1.
<GPC conditions>
Column: G4000PWXL + G2500PWXL (manufactured by Tosoh Corporation)
Eluent: 0.2M phosphate buffer / CH 3 CN = 9/1 (volume ratio)
Flow rate: 1.0 mL / min
Column temperature: 40 ° C
Detection: RI
Sample concentration: 0.5 mg / mL
Standard substance: Polyethylene glycol equivalent

2.洗浄剤組成物の評価
調製した実施例1〜17及び比較例1〜8の酸性洗浄剤組成物及びアルカリ性洗浄剤組成物を用いて下記の評価を行った。
2. 2. Evaluation of Cleaning Agent Composition The following evaluations were carried out using the prepared acidic cleaning agent compositions and alkaline cleaning agent compositions of Examples 1 to 17 and Comparative Examples 1 to 8.

[洗浄評価用試験片の作製]
水に正帯電のセリア(平均一次粒径:45nm)及び2−ヒドロキシピリジン−N−オキシドを混合し、アンモニア水を用いることにより、pHを5に調整し、各濃度が0.15質量%、0.015質量%である研磨液組成物を調製した。研磨前の試験片として、シリコンウエハ(12インチ)の片面に、TEOS−プラズマCVD法で厚さ2000nmの酸化珪素膜を形成したものから、40mm×40mmに切り出した酸化珪素膜試験片を用いた。また、研磨装置には定盤径380mmのテクノライズ社製「R15M−TRK1」を、研磨パッドにはニッタ・ハース株式会社製の積層パッド「IC1000/SUBA400」を用いた。研磨装置の定盤に、研磨パッドを貼り付け、試験片をホルダーにセットし、試験片の酸化珪素膜を形成した面が下になるように、すなわち酸化珪素膜が研磨パッドに接するように、ホルダーを研磨パッドに載せた。さらに、試験片にかかる荷重が300g重/cm2となるように、錘をホルダーに載せ、研磨パッドを貼り付けた定盤の中心に、研磨液組成物を50mL/分の速度で滴下しながら、定盤及びホルダーのそれぞれを同じ回転方向に90回転/分で30秒間回転させて、酸化珪素膜試験片の研磨を行い、洗浄評価用試験片を作製した。
[Preparation of test pieces for cleaning evaluation]
The pH was adjusted to 5 by mixing positively charged ceria (average primary particle size: 45 nm) and 2-hydroxypyridine-N-oxide with water and using aqueous ammonia, and each concentration was 0.15% by mass. A polishing liquid composition having an amount of 0.015% by mass was prepared. As a test piece before polishing, a silicon oxide film test piece cut out to a size of 40 mm × 40 mm was used from a silicon wafer (12 inches) having a silicon oxide film having a thickness of 2000 nm formed on one side by the TEOS-plasma CVD method. .. Further, "R15M-TRK1" manufactured by Technorise Co., Ltd. having a surface plate diameter of 380 mm was used as the polishing device, and "IC1000 / SUBA400" manufactured by Nitta Hearth Co., Ltd. was used as the polishing pad. Attach the polishing pad to the surface plate of the polishing device, set the test piece in the holder, and make sure that the surface of the test piece on which the silicon oxide film is formed faces down, that is, the silicon oxide film is in contact with the polishing pad. The holder was placed on the polishing pad. Further, the weight is placed on the holder so that the load applied to the test piece is 300 g weight / cm 2, and the polishing liquid composition is dropped on the center of the surface plate to which the polishing pad is attached at a rate of 50 mL / min. , Each of the surface plate and the holder was rotated at 90 rotations / minute for 30 seconds in the same rotation direction to polish the silicon oxide film test piece, and a test piece for cleaning evaluation was prepared.

[洗浄性の評価]
まず、洗浄評価用試験片を酸性洗浄剤組成物に浸漬し、マグネチックスターラーを用いて回転数500rpmで30秒間攪拌し、水ですすぐ。次いで、アルカリ洗浄剤組成物に浸漬し、マグネチックスターラーを用いて回転数500rpmで30秒間攪拌し、水ですすぐ。
その後、試験片を、硫酸:20質量%及び過酸化水素:12質量%を含む混合液に浸漬する(浸漬温度:60℃、浸漬時間:12時間)。そして、混合液中のセリウム(Ce)イオン濃度をICP発光分光分析装置(アジレント・テクノロジー社製の“Afilent 5110”)を用いて測定する。測定したセリウムイオン濃度からセリア(CeO2)溶解量(ppb)を算出する。算出結果を表1に示す。セリア溶解量から洗浄性を評価できる。セリア溶解量が少ないほど、洗浄性に優れることを示す。
[Evaluation of detergency]
First, the test piece for cleaning evaluation is immersed in an acidic cleaning agent composition, stirred using a magnetic stirrer at a rotation speed of 500 rpm for 30 seconds, and rinsed with water. Then, it is immersed in an alkaline cleaning agent composition, stirred with a magnetic stirrer at a rotation speed of 500 rpm for 30 seconds, and rinsed with water.
Then, the test piece is immersed in a mixed solution containing sulfuric acid: 20% by mass and hydrogen peroxide: 12% by mass (immersion temperature: 60 ° C., immersion time: 12 hours). Then, the cerium (Ce) ion concentration in the mixture is measured using an ICP emission spectroscopic analyzer (“Afilent 5110” manufactured by Agilent Technologies). The amount of ceria (CeO 2 ) dissolved (ppb) is calculated from the measured cerium ion concentration. The calculation results are shown in Table 1. Detergency can be evaluated from the amount of ceria dissolved. The smaller the amount of ceria dissolved, the better the detergency.

[保存安定性の評価]
酸性洗浄剤組成物の200倍濃縮液100mLを、100mL容量のガラス瓶に入れて密封し、低温(1℃)で1週間保存した。保存前後の酸性洗浄剤組成物の透過率を測定した。透過率の測定にはUV−vis透過率測定装置(島津製作所社製の“UV−2550”)を用いた。そして、下記評価基準に基づいて評価を行った。Aは、酸性洗浄剤組成物が白濁化しておらず、保存安定性が良好であると判断し、Bは、酸性洗浄剤組成物が白濁化し、保存安定性が良好ではないと判断した。結果を表1に示す。
<評価基準>
A:保存前後の透過率の差が10%以下
B:保存前後の透過率の差が10%超
[Evaluation of storage stability]
100 mL of a 200-fold concentrated solution of the acidic cleaning agent composition was placed in a glass bottle having a capacity of 100 mL, sealed, and stored at a low temperature (1 ° C.) for 1 week. The transmittance of the acidic cleaning agent composition before and after storage was measured. A UV-vis transmittance measuring device (“UV-2550” manufactured by Shimadzu Corporation) was used for measuring the transmittance. Then, the evaluation was performed based on the following evaluation criteria. A judged that the acidic cleaning agent composition was not clouded and the storage stability was good, and B judged that the acidic cleaning agent composition was clouded and the storage stability was not good. The results are shown in Table 1.
<Evaluation criteria>
A: Difference in transmittance before and after storage is 10% or less B: Difference in transmittance before and after storage is more than 10%

Figure 2021005599
Figure 2021005599

表1に示すとおり、実施例1〜17の洗浄方法は、比較例1〜8の洗浄方法に比べて、セリアに対する洗浄性に優れていた。また、実施例5〜11で用いた酸性洗浄剤組成物は、保存安定性が良好であった。 As shown in Table 1, the cleaning methods of Examples 1 to 17 were superior in cleaning properties to ceria as compared with the cleaning methods of Comparative Examples 1 to 8. In addition, the acidic cleaning agent compositions used in Examples 5 to 11 had good storage stability.

本開示の洗浄方法は、セリアが付着した基板の洗浄工程の短縮化及び製造される半導体デバイス用基板の性能・信頼性の向上が可能となり、半導体装置の生産性を向上できる。 The cleaning method of the present disclosure can shorten the cleaning process of a substrate to which ceria is attached and improve the performance and reliability of the substrate for a semiconductor device to be manufactured, and can improve the productivity of a semiconductor device.

Claims (6)

下記工程(1)及び(2)を含む、基板の洗浄方法。
(1)被洗浄基板を、分子内にカルボキシル基を2個以上有する化合物(成分A)及び水を含むpH5以下の洗浄剤組成物を用いて洗浄する工程。
(2)工程(1)で得られた基板を、アルカリ剤及び水を含むpH10以上の洗浄剤組成物を用いて洗浄する工程。
ただし、前記被洗浄基板は、酸化セリウム粒子を含む研磨液組成物を用いて研磨された、表面の一部が酸化珪素である半導体デバイス用基板である。
A method for cleaning a substrate, which comprises the following steps (1) and (2).
(1) A step of cleaning a substrate to be cleaned with a cleaning agent composition having a pH of 5 or less containing a compound (component A) having two or more carboxyl groups in the molecule and water.
(2) A step of cleaning the substrate obtained in step (1) with a cleaning agent composition having a pH of 10 or higher containing an alkaline agent and water.
However, the substrate to be cleaned is a substrate for a semiconductor device whose surface is partially silicon oxide, which has been polished using a polishing liquid composition containing cerium oxide particles.
前記成分Aは、不飽和カルボン酸由来の構成単位a1、及び、カルボン酸基以外の官能基を有するモノマー由来の構成単位a2を含む共重合体である、請求項1に記載の洗浄方法。 The washing method according to claim 1, wherein the component A is a copolymer containing a structural unit a1 derived from an unsaturated carboxylic acid and a structural unit a2 derived from a monomer having a functional group other than a carboxylic acid group. 前記成分Aは、不飽和カルボン酸由来の構成単位a1、並びに、分子内にリン酸基、ホスホン酸基、スルホン酸基及びオキシアルキル基から選ばれる少なくとも1種を有するモノマー由来の構成単位a2を含む共重合体である、請求項1に記載の洗浄方法。 The component A contains a structural unit a1 derived from an unsaturated carboxylic acid and a structural unit a2 derived from a monomer having at least one selected from a phosphoric acid group, a phosphonic acid group, a sulfonic acid group and an oxyalkyl group in the molecule. The washing method according to claim 1, wherein the copolymer contains a copolymer. 前記成分Aの全構成単位中の構成単位a1と構成単位a2とのモル比(a1/a2)は、60/40以上98/2以下である、請求項2又は3に記載の洗浄方法。 The cleaning method according to claim 2 or 3, wherein the molar ratio (a1 / a2) of the structural unit a1 and the structural unit a2 in all the structural units of the component A is 60/40 or more and 98/2 or less. 前記成分Aの重量平均分子量が、1,000以上である、請求項1から4のいずれかに記載の洗浄方法。 The cleaning method according to any one of claims 1 to 4, wherein the component A has a weight average molecular weight of 1,000 or more. 請求項1から5のいずれかに記載の洗浄方法を用いて被洗浄基板を洗浄する工程を含む、半導体デバイス用基板の製造方法。 A method for manufacturing a substrate for a semiconductor device, which comprises a step of cleaning the substrate to be cleaned by using the cleaning method according to any one of claims 1 to 5.
JP2019117604A 2019-06-25 2019-06-25 Substrate cleaning method Active JP7316112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019117604A JP7316112B2 (en) 2019-06-25 2019-06-25 Substrate cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019117604A JP7316112B2 (en) 2019-06-25 2019-06-25 Substrate cleaning method

Publications (2)

Publication Number Publication Date
JP2021005599A true JP2021005599A (en) 2021-01-14
JP7316112B2 JP7316112B2 (en) 2023-07-27

Family

ID=74097753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019117604A Active JP7316112B2 (en) 2019-06-25 2019-06-25 Substrate cleaning method

Country Status (1)

Country Link
JP (1) JP7316112B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206141A (en) * 2008-02-26 2009-09-10 Fujitsu Microelectronics Ltd Manufacturing method of semiconductor device
JP2010163608A (en) * 2008-12-18 2010-07-29 Sanyo Chem Ind Ltd Cleaning agent for electronic material
JP2012248247A (en) * 2011-05-26 2012-12-13 Kao Corp Method for manufacturing hard disk
JP2013035935A (en) * 2011-08-08 2013-02-21 Mitsubishi Chemicals Corp Cleaning liquid and cleaning method of substrate for semiconductor device
WO2014080917A1 (en) * 2012-11-22 2014-05-30 旭硝子株式会社 Glass substrate cleaning method
JP2017098368A (en) * 2015-11-20 2017-06-01 日立化成株式会社 Semiconductor substrate manufacturing method and cleaning solution
JP2018024745A (en) * 2016-08-09 2018-02-15 株式会社フジミインコーポレーテッド Surface-treatment composition and cleaning method using the same
JP2018046153A (en) * 2016-09-14 2018-03-22 花王株式会社 Detergent composition for semiconductor device substrate
JP2018109086A (en) * 2016-12-28 2018-07-12 花王株式会社 Detergent composition for substrate of semiconductor device
WO2018180256A1 (en) * 2017-03-31 2018-10-04 関東化學株式会社 Cleaning solution composition
JP2019059915A (en) * 2017-09-26 2019-04-18 株式会社フジミインコーポレーテッド Surface treatment composition, manufacturing method therefor, and surface treatment method using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206141A (en) * 2008-02-26 2009-09-10 Fujitsu Microelectronics Ltd Manufacturing method of semiconductor device
JP2010163608A (en) * 2008-12-18 2010-07-29 Sanyo Chem Ind Ltd Cleaning agent for electronic material
JP2012248247A (en) * 2011-05-26 2012-12-13 Kao Corp Method for manufacturing hard disk
JP2013035935A (en) * 2011-08-08 2013-02-21 Mitsubishi Chemicals Corp Cleaning liquid and cleaning method of substrate for semiconductor device
WO2014080917A1 (en) * 2012-11-22 2014-05-30 旭硝子株式会社 Glass substrate cleaning method
JP2017098368A (en) * 2015-11-20 2017-06-01 日立化成株式会社 Semiconductor substrate manufacturing method and cleaning solution
JP2018024745A (en) * 2016-08-09 2018-02-15 株式会社フジミインコーポレーテッド Surface-treatment composition and cleaning method using the same
JP2018046153A (en) * 2016-09-14 2018-03-22 花王株式会社 Detergent composition for semiconductor device substrate
JP2018109086A (en) * 2016-12-28 2018-07-12 花王株式会社 Detergent composition for substrate of semiconductor device
WO2018180256A1 (en) * 2017-03-31 2018-10-04 関東化學株式会社 Cleaning solution composition
JP2019059915A (en) * 2017-09-26 2019-04-18 株式会社フジミインコーポレーテッド Surface treatment composition, manufacturing method therefor, and surface treatment method using the same

Also Published As

Publication number Publication date
JP7316112B2 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
KR101427417B1 (en) Polishing composition and polishing process
KR101465829B1 (en) Preparation of synthetic quartz glass substrates
JP6892434B2 (en) Polishing composition and polishing method using it
JP6422325B2 (en) Polishing liquid composition for semiconductor substrate
JP6847657B2 (en) Cleaning agent composition for substrates for semiconductor devices
WO2012161270A1 (en) Cleaning agent and method for cleaning glass substrate
JP6582567B2 (en) Slurry and manufacturing method thereof, and polishing method
JP5819638B2 (en) Acid detergent composition for electronic material substrate
JP6594201B2 (en) Acid cleaning composition for semiconductor device substrate
JP5711589B2 (en) Magnetic disk substrate cleaning agent
TW201137095A (en) Polishing composition and polishing method using the same
JP7464432B2 (en) Cleaning composition for semiconductor device substrates
JP2005014206A (en) Metallic abrasive composition
JP6713887B2 (en) Cleaning agent composition for semiconductor device substrate
TW201905124A (en) Aqueous cerium oxide slurry composition for shallow trench isolation and method of use thereof
JP5086450B2 (en) Magnetic disk substrate cleaning agent
JP7316113B2 (en) Detergent composition used for substrates for semiconductor devices
JP7316112B2 (en) Substrate cleaning method
JP7502267B2 (en) Method for polishing object containing material having silicon-silicon bond
JP2013151677A (en) Detergent for electronic material
JP7021014B2 (en) Detergent composition for substrates for semiconductor devices
JP2011097045A (en) Polishing composition
KR20200118556A (en) Surface treatment composition and surface treatment method using the same
JP7349897B2 (en) Immersion liquid composition for semiconductor substrates
KR20200115822A (en) Surface treatment composition and surface treatment method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230714

R151 Written notification of patent or utility model registration

Ref document number: 7316112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151