JP2021002897A - 電動機制御装置、電動機システム、回転子巻線二次抵抗値の演算方法、回転子巻線温度推定方法 - Google Patents

電動機制御装置、電動機システム、回転子巻線二次抵抗値の演算方法、回転子巻線温度推定方法 Download PDF

Info

Publication number
JP2021002897A
JP2021002897A JP2019113972A JP2019113972A JP2021002897A JP 2021002897 A JP2021002897 A JP 2021002897A JP 2019113972 A JP2019113972 A JP 2019113972A JP 2019113972 A JP2019113972 A JP 2019113972A JP 2021002897 A JP2021002897 A JP 2021002897A
Authority
JP
Japan
Prior art keywords
motor
temperature
induction motor
rotor winding
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019113972A
Other languages
English (en)
Inventor
絃貴 齋藤
Genki Saito
絃貴 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2019113972A priority Critical patent/JP2021002897A/ja
Publication of JP2021002897A publication Critical patent/JP2021002897A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】二次抵抗値を用いた各種演算を精度良く行いたいユーザの利便性が高められた電動機制御装置、電動機システム、回転子巻線二次抵抗値の演算方法、回転子巻線温度推定方法を提供する。【解決手段】電動機制御装置は、固定子巻線を有する交流誘導電動機を制御する電動機制御装置であって、直流電圧を交流誘導電動機に印加することで発生した逆起電力に基づくモータ一次電圧値とモータ二次電流値とから交流誘導電動機の二次抵抗値を演算するように構築されている。電動機制御装置は、交流誘導電動機の駆動前と駆動後とのそれぞれの固定子巻線温度と交流誘導電動機の駆動前と駆動後との二次抵抗値の変化量とから算出される温度係数を記憶し、温度係数を用いて固定子巻線の温度を回転子巻線推定温度へ換算するように構築されている。【選択図】図1

Description

本出願は、電動機制御装置、電動機システム、回転子巻線二次抵抗値の演算方法、回転子巻線温度推定方法に関するものである。
従来、例えば下記の特許文献1(特開2004−266944号公報)に開示されているように、固定子温度検出値に基づいて回転子温度を推定するように構築された誘導機の駆動システムが知られている。
特許文献1の例えば段落0007には、固定子温度に基づいて誘導機の回転子温度を推定することが記載されている。同じく段落0007には、推定された回転子温度に基づいて誘導機の回転子抵抗値が推定され、この抵抗値が電流指令値の演算の補正に用いられることが記載されている。
特開2004−266944号公報 特開平5−91781号公報 特開平6−303791号公報 特開平7−298700号公報 特開平7−59399号公報
上記従来の技術にかかる回転子温度の推定は、特許文献1の段落0019などに説明されているように、一次遅れフィルタで固定子温度を回転子温度に変換することで実現されている。特許文献1の段落0021および段落0022によれば、一次遅れフィルタの設計パラメータを予め定めておくことが記載されている。
しかしながら、現実には、製品仕様の異なる多種多様な誘導電動機が設置されている。特許文献1における一次遅れフィルタを全ての製品仕様に対応できるように設計することは、現実的に無理がある。既存の誘導機にも様々な製品が存在しており、特注仕様の誘導機が用いられるケースもありうるからである。このため、上記従来の技術にかかる一次遅れフィルタは、一部の製品には十分に適応可能であっても、他の製品には十分な推定精度を確保できないおそれがある。
固定子巻線温度の推定精度が低ければ、特許文献1の段落0023で回転子抵抗推定値を推定する精度も低下してしまう。従って、特許文献1の技術では、現実的には、製品仕様ごとに一次遅れフィルタの設計を細かくやり直す必要がある。このように、特許文献1の技術は、二次抵抗値および固定子巻線温度を含む各種パラメータを用いて演算処理を実施したいユーザにとって、利便性が低いものであった。
本出願は、上述のような課題を解決するためになされたもので、二次抵抗値を用いた各種演算を精度良く行いたいユーザの利便性が高められた電動機制御装置、電動機システム、回転子巻線二次抵抗値の演算方法、回転子巻線温度推定方法を提供することを目的とする。
また、従来、固定子巻線温度よりも回転子巻線温度のほうが低くなることが技術常識であった。これに対し、本願発明者は、鋭意研究を行ったところ、上記技術常識とは異なるケースがあることを見出した。そのようなケースで従来の技術常識に則って温度係数を定めると、実温度と乖離した温度推定値が算出されてしまうという問題があった。
本出願の他の目的は、回転子巻線推定温度を精度良く推定することができるように改良された電動機システムを提供することである。
本出願にかかる電動機制御装置は、
固定子巻線を有する交流誘導電動機を制御する電動機制御装置であって、
直流電圧を前記交流誘導電動機に印加することで発生した逆起電力に基づくモータ一次電圧値とモータ二次電流値とから前記交流誘導電動機の二次抵抗値を演算するように構築されたものである。
本出願にかかる第一の電動機システムは、
回転子巻線および固定子巻線を備える交流誘導電動機と、
前記交流誘導電動機に駆動電源を与える電力変換回路と、
前記電力変換回路を制御する制御装置と、
前記交流誘導電動機のモータ一次電圧を計測する電圧センサと、
前記交流誘導電動機のモータ二次電流を計測する電流センサと、
を備え、
前記制御装置は、前記電力変換回路で前記交流誘導電動機に予め定めた直流電圧の印加および解除を行うことで逆起電力を発生させるとともに、前記逆起電力で前記回転子巻線に生じたモータ一次電圧値およびモータ二次電流値に基づいて回転子巻線の二次抵抗値を演算するように構築されたものである。
本出願にかかる第二の電動機システムは、
回転子巻線および固定子巻線を備える交流誘導電動機と、
前記交流誘導電動機に駆動電源を与える電力変換回路と、
前記電力変換回路を制御する制御装置と、
前記交流誘導電動機のモータ一次電圧を計測する電圧センサと、
前記交流誘導電動機のモータ二次電流を計測する電流センサと、
前記交流誘導電動機の固定子巻線温度を計測する温度センサと、
を備え、
前記制御装置は、予め定めた温度係数と前記温度センサによる前記固定子巻線の温度計測値とに基づいて、前記交流誘導電動機の回転子巻線推定温度を推定するように構築され、
前記交流誘導電動機の駆動前における駆動前回転子巻線二次抵抗値および駆動前固定子巻線温度と、前記交流誘導電動機の駆動後における駆動後回転子巻線二次抵抗値および駆動後固定子巻線温度と、を予め定めた回転子巻線温度係数計算式に代入することで前記温度係数が計算され、
前記交流誘導電動機を駆動する前において、前記電力変換回路で前記交流誘導電動機に予め定めた直流電圧の印加および解除を行うことで第一逆起電力を発生させるとともに、前記第一逆起電力で前記回転子巻線に生じたモータ一次電圧値およびモータ二次電流値に基づいて前記駆動前回転子巻線二次抵抗値が演算され、
前記交流誘導電動機を駆動させることで前記回転子巻線の温度を上昇させた後に前記交流誘導電動機の駆動を停止させた場合において、前記電力変換回路で前記交流誘導電動機に対する前記直流電圧の印加および解除を行うことで第二逆起電力を発生させるとともに、前記第二逆起電力で前記回転子巻線に生じたモータ一次電圧値およびモータ二次電流値に基づき前記駆動後回転子巻線二次抵抗値が演算されたものである。
本出願にかかる回転子巻線二次抵抗値の演算方法は、
回転子巻線および固定子巻線を備える交流誘導電動機と、前記交流誘導電動機に駆動電源を与える電力変換回路と、前記電力変換回路を制御する制御装置と、前記交流誘導電動機のモータ一次電圧を計測する電圧センサと、前記交流誘導電動機のモータ二次電流を計測する電流センサと、を備える電動機システムの固定子巻線二次抵抗値を演算する演算方法であって、
前記電力変換回路で前記交流誘導電動機に予め定めた直流電圧の印加および解除を行うことで逆起電力を発生させるステップと、
前記逆起電力で前記回転子巻線に生じたモータ一次電圧値およびモータ二次電流値に基づいて回転子巻線の二次抵抗値を演算するステップと、
を備える。
本出願にかかる回転子巻線温度推定方法は、
回転子巻線および固定子巻線を備える交流誘導電動機と、前記交流誘導電動機に駆動電源を与える電力変換回路と、前記電力変換回路を制御する制御装置と、前記交流誘導電動機に発生する電流及び電圧を検知するセンサと、前記交流誘導電動機の固定子巻線の温度を検知する温度センサと、を備える電動機システムの回転子巻線温度推定方法であって、
前記交流誘導電動機を駆動する前において、前記電力変換回路で前記交流誘導電動機に予め定めた直流電圧の印加および解除を行うことで第一逆起電力を発生させるステップと、
前記第一逆起電力で前記回転子巻線に生じたモータ一次電圧値およびモータ二次電流値に基づいて駆動前回転子巻線二次抵抗値を演算するステップと、
前記交流誘導電動機を駆動させることで前記回転子巻線の温度を上昇させた後に前記交流誘導電動機の駆動を停止させるステップと、
前記回転子巻線の温度を上昇させた後の前記交流誘導電動機の駆動停止中に、前記電力変換回路で前記交流誘導電動機に対する前記直流電圧の印加および解除を行うことで第二逆起電力を発生させるステップと、
前記第二逆起電力で前記回転子巻線に生じたモータ一次電圧値およびモータ二次電流値に基づいて駆動後回転子巻線二次抵抗値を演算するステップと、
前記駆動前回転子巻線二次抵抗値と、前記交流誘導電動機の駆動前における駆動前固定子巻線温度と、駆動後回転子巻線二次抵抗値と、前記交流誘導電動機の駆動後における駆動後固定子巻線温度と、に基づいて温度係数を計算するステップと、
前記温度係数と前記温度センサで検知した前記固定子巻線の温度計測値とに基づいて、前記交流誘導電動機の回転子巻線推定温度を推定するステップと、
を備える。
本出願にかかる第三の電動機システムは、
回転子巻線および固定子巻線を備える交流誘導電動機と、
前記交流誘導電動機に駆動電源を与える電力変換回路と、
前記電力変換回路を制御する制御装置と、
前記交流誘導電動機のモータ一次電圧を計測する電圧センサと、
前記交流誘導電動機のモータ二次電流を計測する電流センサと、
前記交流誘導電動機の固定子巻線温度を計測する温度センサと、
を備え、
前記制御装置は、予め定めた温度係数と前記温度センサによる前記固定子巻線の温度計測値とに基づいて、前記交流誘導電動機の回転子巻線推定温度を推定するように構築され、
前記回転子巻線の材質がアルミニウムであり、前記温度係数は、1.0よりも大きく設定されたものである。
本出願にかかる電動機制御装置と第一の電動機システムと第二の電動機システムと回転子巻線二次抵抗値の演算方法と回転子巻線温度推定方法とによれば、電動機の二次抵抗値を精度良く計測することができるとともに、その二次抵抗値を用いて回転子巻線の温度係数を実際の電動機ごとに精度よく決定することもできる。二次抵抗値を含むパラメータ取得を容易に行うことができ、二次抵抗値を用いた各種演算を精度良く行いたいユーザの利便性が高まるという利点がある。
また、本出願にかかる第三の電動機システムは、回転子巻線の材質に合わせて正しく温度係数を決定しているので、回転子巻線推定温度を精度良く推定することができる。
実施の形態にかかる電動機制御装置を含む電動機駆動装置と、これらを備える電動機システムの構成図である。 実施の形態にかかる二次抵抗補償制御回路の構成を示す図である。 交流誘導電動機の等価回路図であり、印加電圧および電流を表した図である。 実施の形態にかかる回転子巻線二次抵抗値の演算方法を説明するための図である。 交流誘導電動機の温度測定箇所と温度測定グラフとを表した図であり、固定子巻線実温度と回転子巻線実温度を表したグラフである。 交流誘導電動機の巻線温度変化に伴う電動機出力トルクを表した図であり、実際の電動機出力実トルクの特性を表した図である。 回転子温度係数を用いた回転子巻線推定温度と回転子巻線実温度の特性図である。 回転子温度係数を用いた電動機出力実トルクの特性図であり、回転子温度係数の使用時と不使用時との比較説明をするためのグラフである。 実施の形態にかかる電動機制御装置および電動機システムにおいて実施される回転子巻線温度推定方法を説明するためのフローチャートである。 回転子巻線の材質がアルミニウムである場合の巻線実温度傾向を表したグラフである。
図1は、実施の形態にかかる電動機制御装置101を含む電動機駆動装置1と、これらを備える電動機システムの構成図である。電動機システムは、交流誘導電動機12と電動機駆動装置1とを備えている。電動機駆動装置1は、電動機制御装置101と、電力変換部10と、電圧電流センサ11と、を備えている。
電動機制御装置101は、電圧/電流/速度制御回路2と、座標変換回路3と、出力トルク角度演算ブロック4と、滑り周波数演算ブロック5と、速度周波数演算ブロック6と、温度検出回路7と、二次抵抗補償制御回路8と、速度検出回路9とを備えている。
電力変換部10は、交流誘導電動機12に駆動電源を与える電力変換回路であり、具体的には三相インバータ回路である。電動機制御装置101は、電力変換部10を制御するPWM制御信号を出力する。電圧電流センサ11は、交流誘導電動機12のモータ一次電圧V1と、交流誘導電動機12のモータ二次電流i2とを計測する。
交流誘導電動機12は、回転子巻線13と、固定子巻線14と、温度センサ15とを備えている。温度センサ15は、固定子巻線14の温度を計測する。
交流誘導電動機12には、速度センサ16が設置されている。なお、図1に示す交流誘導電動機12は、図5に例示された固定子巻線用温度センサ24と回転子巻線用温度センサ25とを備えていてもよい。
電動機駆動装置1の温度検出回路7は、温度センサ15の出力信号に基づいて、固定子巻線温度を算出する。算出した固定子巻線温度は二次抵抗補償制御回路8(図2も参照)に入力され、二次抵抗補償値IM_Tの算出に用いられる。
二次抵抗補償値IM_Tは滑り周波数演算ブロック5に入力され、滑り周波数の演算に用いられる。上記滑り周波数と速度センサ16から、速度検出回路9で速度が算出される。速度検出回路9で算出された速度は、電圧/電流/速度制御回路2と速度周波数演算ブロック6とに入力される。出力トルク角度演算ブロック4は、速度周波数演算ブロック6で算出された速度周波数を用いて出力トルク角度を演算する。
速度周波数は交流誘導電動機12の速度によって変動するが、滑り周波数は設定値により決定される。滑り周波数は、設定値により可変設定できる。
出力トルク角度は電動機駆動装置1の制御上、重要な役割を果たしている。出力トルク角度は座標変換回路3で使用される。座標変換回路3は、交流信号を直流信号へ、逆に直流信号を交流信号へ変換するために必要な演算回路である。
図1の電動機制御装置101は、ベクトル制御を実施している。ベクトル制御は電動機駆動装置1において基本的な制御方式である。座標変換を誤るとベクトル制御が成立しないので、ベクトル制御を正確に行う上で座標変換回路3の演算精度は重要である。つまり座標変換回路3の演算に用いられる出力トルク角度の精度は重要である。
二次抵抗補償制御回路8は、出力トルク角度に起因する滑り周波数を補償する回路である。二次抵抗補償制御回路8により滑り周波数演算ブロック5の精度を向上させることができる。滑り周波数演算ブロック5の精度が向上することで、出力トルク角度演算ブロック4で出力トルク角度を高精度に算出することができる。出力トルク角度演算ブロック4で出力トルク角度を精度良く算出することで、電動機トルク出力を安定化させることができる。
交流誘導電動機12の回転子巻線抵抗値を、以下、「二次抵抗R2」、「モータ二次巻線抵抗R2」あるいは単に「R2」とも称する。二次抵抗R2の単位は(Ω)である。本実施の形態にかかる電動機制御装置101は、二次抵抗R2の変化に伴う出力トルク変動に対して緩和抑制を行うための補償制御を有する。
交流誘導電動機は、一般家電製品にまで普及している電動機である。交流誘導電動機は、メンテナンス性のし易さから産業プラント等でも多く納入されている。例えば紙パルププラントや製鉄プラントなどでは、製造過程において電動機出力トルクが重要視されている。出力トルクが変動すると製品品質に影響を与えてしまうからである。
交流誘導電動機12の出力トルクは下記の式(1)に基づいて算出される。
Figure 2021002897
上記式(1)において各記号の値は下記のとおりである。
Po[W] :モータ出力電力
i2 [A]:モータ二次電流
二次抵抗[Ω] :モータ二次巻線抵抗
s [%] :すべり
式(1)においてi2が一定の場合、式(1)の二次抵抗R2に応じて式(1)のPoが決まる。二次抵抗R2は、回転子巻線13の温度変化に比例して変化する。つまり、電動機を駆動すると回転子に電流が流れることで回転子巻線温度が変化する。回転子巻線温度変化に伴い、二次抵抗R2も変化する。式(1)で二次抵抗が変化することでPoも変動してしまう。仮に二次抵抗R2が増加した場合、これに比例してPoが上昇する。
Poの変化は、下記の式(2)に反映される。
Figure 2021002897
上記式(2)において各記号の値は下記のとおりである。
T[N・m] :モータ出力トルク
Po[W] :モータ出力電力
n [rpm] :回転速度
式(2)から明らかな通り、Poの変化はモータ出力トルクTに影響を及ぼす。
電動機制御装置として、二次抵抗の変化に伴いトルク変動を抑制するトルク変動抑制制御(以下、二次抵抗補償制御と称する)がある。
ここで、比較例として、実施の形態の関連技術を説明する。二次抵抗補償制御において、固定子巻線温度を二次抵抗の変化量として二次抵抗補償値を算出する関連技術がある。本来は、回転子巻線温度を二次抵抗補償制御に使用したいが、電動機駆動中には回転子が回転しているので、回転子巻線温度を実測で監視することができない。
二次抵抗補償制御の問題点は、固定子巻線温度と回転子巻線温度とが同等にならないことである。電動機の材質、構造、冷却時定数等の様々な要因で、固定子巻線温度と回転子巻線温度とは異なる。
図5は、交流誘導電動機12の温度測定箇所と温度測定グラフとを表した図であり、固定子巻線実温度と回転子巻線実温度を表したグラフである。図6は、交流誘導電動機12の巻線温度変化に伴う電動機出力トルクを表した図であり、実際の電動機出力実トルクの特性を表した図である。
図5(b)は、実際に電動機の固定子巻線と回転子巻線の温度を測定したものである。図5(b)からわかるように、電動機の固定子巻線実温度と回転子巻線実温度とが同等にならない。測定に使用した電動機は縦1600mm、横1200mm、奥行き2500mmの定格出力74kW、定格回転数44rpm、定格電圧275V、定格電流290Aのものである。
図5(a)に示すように、固定子巻線用温度センサ24を固定子巻線の三箇所に取り付けるとともに回転子巻線用温度センサ25を回転子巻線の三箇所に取り付けて、温度測定を実施した。試験時には、交流誘導電動機12が回転しないように、回転子は固定されている。試験時には、交流誘導電動機12に一定の電流が流れるように電動機駆動装置1を制御し、交流誘導電動機12が駆動される。
巻線温度は、図5(b)の温度測定グラフのようになる。図5(b)に示すように、固定子巻線実温度と回転子巻線実温度が異なる飽和カーブになることがわかる。このように固定子巻線温度と回転子巻線温度とが異なる場合、二次抵抗補償制御の補償値が合わなくなる。
二次抵抗補償制御の補償値が合わなくなるケースとして、図5(b)のように、固定子巻線実温度より回転子巻線実温度が低い場合がある。この場合、固定子巻線実温度が高いことで補償値が大きくなる。その結果、図6の電動機出力実トルク(二次抵抗補償制御使用かつ回転子巻線温度係数不使用)のように、電動機出力トルクが低下する。
図6の電動機出力実トルク(二次抵抗補償制御不使用)と電動機出力実トルク(二次抵抗補償制御使用かつ回転子巻線温度係数不使用)は、電動機の回転子にひずみゲージ式ロードセルを取り付けて、一定電流を流しつつ電動機を駆動した場合の電動機出力実トルクを測定したものである。実トルクの単位は(N・m)である。
図5とは逆に、固定子巻線温度より回転子巻線温度が高い場合には、補償値は本来の回転子巻線温度の補償値より低くなる。この場合、電動機出力トルクは上昇してしまう。
比較例として、固定子巻線温度を二次抵抗の変化量として二次抵抗補償値を算出するものがある。しかしながら、この比較例にかかる二次抵抗補償制御では、回転子巻線温度の変化に伴う電動機出力トルク変動を高精度に抑制できないという問題がある。
そこで、実施の形態では、電動機駆動装置1により回転子巻線温度を推定し、二次抵抗補償制御の精度を向上させ電動機出力トルクの更なる安定化を図る。本実施の形態の電動機駆動装置1では、二次抵抗補償制御に係る内部制御パラメータに、回転子巻線温度係数MI_TMP_Kが乗算される。回転子巻線温度係数MI_TMP_Kを変数として可変設定操作できるように、二次抵抗補償制御回路8が構築されている。
回転子巻線温度係数MI_TMP_Kを求める方法の一例として、回転子巻線温度を実測し固定子巻線温度と比較することで回転子巻線温度係数MI_TMP_Kを算出することができる。しかし、このような方法では、実際に回転子巻線温度を測定するためには回転子巻線に温度センサを取り付けなくてはならない。その結果、手間と時間を要するという欠点がある。また、多種多様の電動機に対して、毎回のように回転子巻線温度を採取するのは現実的に不可能である。
そこで本実施の形態では、直流電圧22(図4参照)を交流誘導電動機12に印加し、その後の電圧フィードバック値と電流フィードバック値を用いて交流誘導電動機12の二次抵抗R2を算出する。交流誘導電動機12を駆動する前後の二次抵抗変化量から温度変化における定質量金属抵抗率を使用し、上昇した回転子巻線温度を算出する。上記温度変化における定質量金属抵抗率の単位は(Ω/1℃)で表され、数値は金属の種類ごとに異なる。
固定子巻線14の温度センサ15(白金測温抵抗体)から上記二次抵抗測定と同様に、駆動前後の固定子巻線温度を測定する。交流誘導電動機12を駆動する前後の固定子巻線温度と温度上昇した回転子巻線温度とから回転子巻線温度係数MI_TMP_Kを算出する。
算出した回転子巻線温度係数MI_TMP_Kを用い、二次抵抗補償制御に使用している固定子巻線温度を回転子巻線推定温度として換算することが可能となる。回転子巻線推定温度を使用することで電動機駆動装置1の二次抵抗補償制御が回転子巻線温度係数MI_TMP_Kにより出力トルクが安定し、従来の二次抵抗補償制御を用いても出力トルクが変動する現象を抑えることができる。
図2は、実施の形態にかかる二次抵抗補償制御回路8の構成を示す図である。図2に示すように、電動機制御装置101が含む二次抵抗補償制御回路8は、回転子巻線推定温度MI_TMP_Eと予め定めた抵抗率R2C_G_Tとを含む各種パラメータに基づいて二次抵抗補償値IM_Tを算出するように構築されている。
固定子巻線温度M_TMPは、温度検出回路7の出力信号である。回転子巻線温度係数MI_TMP_Kと基準温度MI_T75_BIASと定質量金属抵抗率R2C_G_Tは、二次抵抗補償制御回路8の内部に保持された所定パラメータ値である。これらの所定パラメータ値は、二次抵抗補償制御回路8がアナログ回路であればアナログ値として例えば電圧値等の形態で提供され、二次抵抗補償制御回路8がデジタル回路であれば内部不揮発性メモリにデジタル値として保存される。二次抵抗補償制御回路8は、図2に示す回路ブロックの演算処理を経て、二次抵抗補償値IM_Tを出力する。
固定子巻線温度M_TMPに、回転子巻線温度係数MI_TMP_Kが乗算される。これにより固定子巻線温度M_TMPを回転子巻線推定温度MI_TMP_Eに換算することができる。回転子巻線推定温度MI_TMP_Eを用いることで精度の高い二次抵抗補償制御が可能となる。
回転子巻線推定温度MI_TMP_Eは、フィルタ8aを通過する。フィルタ8aは一例として10秒程度の時定数を持っている。フィルタ8aでノイズ除去などを行うことができる。
フィルタ8aの出力から基準温度MI_T75_BIASが減算されることで、温度差ΔTが算出される。通常の電気機器は連続定格75℃で設計されるので、基準温度MI_T75_BIASは75℃としている。
温度差ΔTに、定質量金属抵抗率R2C_G_Tが乗算される。これに所定値1.0が加算されることで、二次抵抗補償値IM_Tが算出される。
図2の二次抵抗補償制御回路8では、固定子巻線温度M_TMPが75℃の場合、二次抵抗補償値IM_Tが1.0(100%)となり、補償量としてはゼロとなる。固定子巻線温度M_TMPが75℃以上、もしくは以下である場合には、滑り周波数を補償する二次抵抗補償値IM_Tが算出される。
図2に示した回転子巻線温度係数MI_TMP_Kは、以下に説明するように、まず交流誘導電動機12の二次抵抗R2を演算し、この二次抵抗値R2を用いて温度係数の計算を行うことで決定される。以下、実施の形態にかかる二次抵抗の演算方法と温度係数の計算方法とをそれぞれ説明する。
(二次抵抗の演算方法)
固定子巻線14の二次抵抗R2の値を演算する演算方法について説明する。図3は、交流誘導電動機12の等価回路図であり、印加電圧および電流を表した図である。図4は、実施の形態にかかる回転子巻線13の二次抵抗R2の値の演算方法を説明するための図である。図4には、直流電圧22と印加停止点23とが図示されている。
実施の形態の演算方法は、第一ステップと第二ステップとに区分できる。第一ステップは、電力変換部10で交流誘導電動機12に予め定めた直流電圧22(図4参照)の印加および解除を行うことで逆起電力を発生させるものである。この逆起電力発生の様子が、図3および図4に示されている。直流電圧22を交流誘導電動機12に印加することで発生した逆起電力に基づいて、モータ一次電圧V1の値とモータ二次電流i2の値とが発生する。第二ステップは、モータ一次電圧V1の値およびモータ二次電流i2の値に基づいて回転子巻線13の二次抵抗R2の値を演算するものである。
直流電圧22を発生させるための制御ロジックは、予め、電動機制御装置101の内部に設定されているものとする。すなわち、電圧/電流/速度制御回路2が、電力変換部10へ直流電圧出力指令S1を出力する。直流電圧出力指令S1を受けた電力変換部10は、図4の直流電圧22を交流誘導電動機12へ印加する。直流電圧22の大きさは予め設定されている。
図4には、印加停止点23の電圧および電流の時系列測定点が示されている。印加停止点23は、直流電圧22を印加して、その後に印加を停止した時刻である。
図3において、直流電圧22はV1で表されている。直流電圧22が交流誘導電動機12に印加されている間は、図3のインダクタンスL1とインダクタンスLmに磁束が発生する。その後、印加停止点23において、直流電圧22が交流誘導電動機12への電圧印加を停止(つまり解除)する。
印加停止点23の後におけるモータ一次電流i1は、図4に示すようにL1di/dtの傾きに従って減少する。モータ一次電流i1がL1di/dtの傾きで減少している間、モータ二次電流i2が発生し始める。
図4に示すように、印加停止点23よりも前に元々流れていたモータ一次電流i1まで、モータ二次電流i2(2)が流れる。これは元々の電力を維持しようとする逆起電力に起因して、モータ二次電流i2が発生するからである。
逆起電力により、図3のインダクタンスLmに、Lmd(i1+i2)/dtの電圧が発生する。この電圧は、直流電圧22の印加停止点23の後におけるV1(1)〜V1(12)である。
印加停止点23の後、図4に示すように、V1(1)〜V1(12)の階段状飽和グラフとi2(1)〜i2(12)の飽和カーブとが測定される。時系列測定点であるV1(1)〜V1(12)とi2(1)〜i2(12)は、電圧電流センサ11により検出されて、下記の式(3)に代入される。式(3)は、二次抵抗R2を計算するための演算式である。
Figure 2021002897
上記式(3)において各記号の値は下記のとおりである。
R2[Ω] :二次抵抗推定値(推定モータ二次巻線抵抗)
i2(k) [A] :モータ二次電流
V1(k) [V] :モータ一次電圧
ただし、kは正の整数であり時間ステップを表すものとする。
式(3)の分子は、図4のV1(3)〜V1(12)の積分値である。式(3)の分母は、図4のi1(3)〜i1(12)の積分値である。式(3)におけるV1(3)〜V1(12)およびi2(3)〜i2(12)それぞれの値は、電圧電流センサ11で取得される。
図4におけるV1(1)、V1(2)とi2(1)、i2(2)は飽和前の測定値であるため式(3)には含まないことが好ましい。図4におけるV1(3)〜V1(12)とi2(3)〜i2(12)とを式(3)に代入する。式(3)に従って、Σ(積分)したV1(3)〜V1(12)を分子とし、Σ(積分)したi2(3)〜i2(12)を分母とする分数に基づいて、二次抵抗R2を算出することができる。
実施の形態によれば、二次抵抗R2の値を精度良く計測することができるとともに、その二次抵抗R2の値を用いて回転子巻線13を精度よく推定することもできる。二次抵抗R2の値を含むパラメータ取得を容易に行うことができ、二次抵抗R2の値を用いた各種演算を精度良く行いたいユーザの利便性が高まるという利点がある。交流誘導電動機12のベクトル制御に関連する演算処理に用いる二次抵抗R2の値を、容易に得ることができる利便性がある。
なお、上記のように複数の測定値を積分した値を用いることで、二次抵抗R2を良好な精度で推定することができる。しかし、必ずしもこれに限られず、式(3)の分子を一つのモータ一次電圧値とし式(3)の分母を一つのモータ二次電流値とする変形例が提供されてもよい。
(温度係数の計算方法)
次に、温度係数の計算方法を説明する。下記の説明において、各記号の値の意味は下記のとおりである。なお、便宜上、固定子巻線温度を単に固定子温度と略称することもあり、回転子巻線温度を単に回転子温度と略称することもある。
Figure 2021002897
駆動前回転子二次抵抗FRoR2と駆動後回転子二次抵抗ERoR2は、いずれも上述した式(3)によって算出される二次抵抗R2である。しかし、V1(3)〜V1(12)およびi2(3)〜i2(12)それぞれの値を取得した時の交流誘導電動機12の温度が相違している。
FRoR2は、交流誘導電動機12を駆動する前において交流誘導電動機12が常温または低温の状態にあるときに取得される二次抵抗値R2である。後述する図7における「運転開始」よりも時間的に前のタイミングである。
実施の形態では、FRoR2が下記の手順で取得される。交流誘導電動機12を駆動する前において、電力変換部10で交流誘導電動機12に予め定めた直流電圧22の印加および解除を行うことで、図4の逆起電力V1(1)を発生させる。逆起電力で回転子巻線13に生じたモータ一次電圧V1の値V1(3)〜V1(12)およびモータ二次電流i2の値i2(3)〜i2(12)に基づいて、式(3)に従って、駆動前における回転子巻線13の二次抵抗R2の値FRoR2が演算される。
ERoR2は、交流誘導電動機12を駆動した後において交流誘導電動機12が高温状態にあるときに取得される二次抵抗値R2である。ERoR2は、後述する図7における「運転停止t2」の直後に取得される二次抵抗R2の値である。
実施の形態では、ERoR2が下記の手順で取得される。交流誘導電動機12を駆動させることで回転子巻線13の温度を上昇させた後に、交流誘導電動機12の駆動を停止させる。停止直後に、電力変換部10で交流誘導電動機12に対する直流電圧22の印加および解除を行うことで、図4の逆起電力V1(1)を再び発生させる。逆起電力V1(1)で回転子巻線13に生じたモータ一次電圧V1の値V1(3)〜V1(12)およびモータ二次電流i2の値i2(3)〜i2(12)に基づいて、式(3)に従って、駆動後における回転子巻線13の二次抵抗R2の値ERoR2が演算される。
また、温度検出回路7によって、交流誘導電動機12を駆動する前の固定子巻線温度FStTと交流誘導電動機12を駆動した後の固定子巻線温度EStTとが取得される。FStTは、交流誘導電動機12を駆動する前の常温または低温の状態における固定子巻線温度M_TMPである。FStTは、上記のFRoR2を取得するタイミングに計測してもよい。EStTは、交流誘導電動機12を駆動した後の高温状態における固定子巻線温度M_TMPである。EStTは、上記のERoR2を取得するタイミングに計測してもよい。
式(4−1)は、回転子上昇温度RoRTを算出する計算式である。上述したFStTとFRoR2とERoR2とが式(4−1)に代入されることで、回転子上昇温度RoRTが算出される。
Figure 2021002897
上記式(4−1)において「CR or AR」と記載しているように、CRとARとのいずれか一つの値が式(4−1)における第一項の係数となる。式(4−1)のCRとARのうち一方が、回転子巻線13の金属材質から予め設定されている。CRとARは一般的な電気工学で使用されている定質量金属抵抗率が用いられてもよい。
次に、FStTと式(4−1)で算出したRoRTとが、下記の式(4−2)に代入される。式(4−2)に従って、駆動後回転子巻線推定温度ERoETが算出される。
Figure 2021002897
次に、EStTとERoETとが、下記の式(4−3)に代入される。式(4−3)に従って、回転子巻線温度係数MI_TMP_Kが算出される。
Figure 2021002897
以上の仕組みで計算された回転子巻線温度係数MI_TMP_Kが、電動機制御装置101に記憶されている。
以上説明したように、実施の形態では、回転子巻線温度係数MI_TMP_Kは、交流誘導電動機12の駆動前と駆動後とのそれぞれの固定子巻線温度と、交流誘導電動機12の駆動前と駆動後との二次抵抗R2の値の変化量と、から算出される。電動機制御装置101は、回転子巻線温度係数MI_TMP_Kを用いて固定子巻線14の温度を回転子巻線推定温度MI_TMP_Eへ換算するように構築されている。実施の形態によれば、直流電圧22の印加/解除により取得した電気特性値を上述した式(3)に代入することで二次抵抗R2を算出できるので、実際の交流誘導電動機12の二次抵抗R2を簡単かつ良好な精度で調べることができる。
実施の形態によれば、電動機制御装置101は、予め定めた回転子巻線温度係数MI_TMP_Kと温度センサ15による固定子巻線温度M_TMPとに基づいて、交流誘導電動機12の回転子巻線推定温度MI_TMP_Eを推定するように構築されている。回転子巻線温度係数MI_TMP_Kは、予め定めた計算式(4−1)〜式(4−3)に、複数のパラメータを代入することで計算される。
複数のパラメータは、下記の4つを含む。
FRoR2:交流誘導電動機12の駆動前における回転子巻線13の二次抵抗R2の値
FStT:交流誘導電動機12の駆動前における駆動前固定子巻線温度
ERoR2:交流誘導電動機12の駆動後における回転子巻線13の二次抵抗R2の値
EStT:交流誘導電動機12の駆動後における駆動後固定子巻線温度
これらの4つのパラメータは、交流誘導電動機12の分解あるいは専用計測器の取付などの煩雑な作業を行わなくても簡単に取得できるという利点がある。
回転子巻線温度係数MI_TMP_Kの計算式は、第一計算式と第二計算式とを含む。第一計算式は、上述した式(4−1)および式(4−2)である。第二計算式は、上述した式(4−3)である。第一計算式によれば、駆動前回転子巻線二次抵抗FRoR2と駆動前固定子巻線温度FStTと駆動後回転子巻線二次抵抗ERoR2と駆動後固定子巻線温度EStTとに基づいて、回転子巻線推定温度ERoETを計算することができる。第二計算式によれば、回転子巻線推定温度ERoETと駆動後固定子巻線温度EStTとの比に基づいて回転子巻線温度係数MI_TMP_Kを計算することができる。
実施の形態によれば、電動機制御装置101で回転子巻線推定温度MI_TMP_Eを推定するための回転子巻線温度係数MI_TMP_Kを取得する利便性も向上する。すなわち、多種多様の交流誘導電動機12に対して回転子巻線温度係数MI_TMP_K等の設計パラメータを再設計することは不便である。この点、上記電動機システムによれば、交流誘導電動機12の駆動前における低温時に、逆起電力を利用した電流電圧計測によって、駆動前における回転子巻線13の二次抵抗R2の値を取得することができる。
さらに、交流誘導電動機12の駆動後における高温時に、逆起電力V1(1)を利用した電流電圧計測によって、駆動後における回転子巻線13の二次抵抗R2の値を取得することができる。駆動前後の回転子巻線13の二次抵抗R2の値FRoR2、ERoR2がそれぞれ取得されれば、これに加えて交流誘導電動機12の駆動前後のそれぞれの固定子巻線温度FStT、EStTを用いることで、回転子巻線温度係数MI_TMP_Kを計算することができる。これにより、回転子巻線温度係数MI_TMP_Kを取得する利便性が向上する。
図7は、回転子巻線温度係数MI_TMP_Kを用いた回転子巻線推定温度と回転子巻線実温度の特性図である。図7は、回転子巻線温度係数MI_TMP_Kを用いた測定データである。図2のブロック図でも説明したように、回転子巻線温度係数MI_TMP_Kと固定子巻線温度M_TMPを乗算することで、回転子巻線推定温度MI_TMP_Eが得られる。図7に示すように、回転子巻線推定温度MI_TMP_Eと平均回転子巻線実温度とがほぼ同等である。
図8は、回転子巻線温度係数MI_TMP_Kを用いた交流誘導電動機12出力実トルクの特性図であり、回転子巻線温度係数MI_TMP_Kの使用時と不使用時との比較説明をするためのグラフである。図8(a)は、平均固定子巻線実温度と平均回転子巻線実温度とを比較したグラフである。図8(b)は、回転子巻線温度係数MI_TMP_Kを用いた場合の電動機出力実トルクを測定した結果である。
図8には、下記の4つの特性カーブが図示されている。
(i)電動機出力実トルク値(理想形)
(ii)電動機出力実トルク値(二次抵抗補償制御不使用)
(iii)電動機出力実トルク値(二次抵抗補償制御使用かつ回転子巻線温度係数不使用)
(iv)電動機出力実トルク値(二次抵抗補償制御使用かつ回転子巻線温度係数使用)
上記4つの特性カーブを比較すると、(i)電動機出力実トルク値(理想形)と(iv)電動機出力実トルク値(二次抵抗補償制御使用かつ回転子巻線温度係数使用)との偏差が最も小さい。実施の形態により二次抵抗補償制御の精度が向上することで、電動機出力トルクの安定化を図ることができる。
図9は、実施の形態にかかる電動機制御装置101および電動機システムにおいて実施される回転子巻線温度推定方法を説明するためのフローチャートである。図9に示されたルーチンは、電動機制御装置101においてハードウェアまたはソフトウェアの形態で構築されている。図9に示す各ステップのうち、全てのステップが電動機制御装置101によって自動的に処理されてもよく、一部のステップが作業員の手作業とされていてもよい。
図9のフローチャートでは、まず、ステップS100が実施される。ステップS100では、交流誘導電動機12を駆動する前において、電力変換部10で交流誘導電動機12に予め定めた直流電圧22の印加および解除を行うことで逆起電力V1(1)を発生させる。
次に、ステップS101において、逆起電力V1(1)で回転子巻線13に生じたモータ一次電圧V1の値およびモータ二次電流i2の値に基づいて、駆動前における回転子巻線13の二次抵抗R2の値FRoR2を演算する。また、このステップS101において、温度センサ15および温度検出回路7によって、駆動前固定子巻線温度FStTも測定される。
次に、ステップS102において、交流誘導電動機12の駆動が開始される。
次に、ステップS103において、交流誘導電動機12の温度飽和後(図7などの温度飽和点t1参照)に、交流誘導電動機12を停止する。これにより、回転子巻線13の温度を上昇させた後に、交流誘導電動機12の駆動を停止させる。
次に、ステップS104において電力変換部10で交流誘導電動機12に対する直流電圧22の印加および解除を行うことで逆起電力V1(1)を発生させる。これにより、回転子巻線13の温度を上昇させた後の交流誘導電動機12の駆動停止中に、逆起電力V1(1)に基づく電気特性を取得することができる。
続いて、ステップS105において、逆起電力V1(1)で回転子巻線13に生じたモータ一次電圧V1の値およびモータ二次電流i2の値に基づいて、駆動後における回転子巻線13の二次抵抗R2の値ERoR2を演算する。また、このステップS105において、温度センサ15および温度検出回路7によって、駆動後固定子巻線温度EStTも測定される。
次に、ステップS106において、前述した式(4−1)〜式(4−3)に従って、温度係数MI_TMP_Kが算出される。温度係数MI_TMP_Kは、FRoR2とFStTとERoR2とEStTとに基づいて計算される。ステップS106は作業員の手作業とされていてもよい。
次に、ステップS107において、温度係数MI_TMP_Kの値が二次抵抗補償制御回路8に設定(記憶)される。ステップS107は作業員の手作業とされていてもよい。
次に、ステップS108において、図2に示した回路ブロックのロジックに従って、回転子巻線温度係数MI_TMP_Kと温度センサ15で検知した固定子巻線温度M_TMPとに基づいて、交流誘導電動機12の回転子巻線推定温度MI_TMP_Eが算出される。二次抵抗補償制御回路8は、回転子巻線推定温度MI_TMP_Eを用いて、二次抵抗補償値IM_Tを算出する。
次に、ステップS109で、滑り周波数演算ブロック5が二次抵抗補償値IM_Tを用いて滑り周波数を演算する。次に、ステップS110で、出力トルク角度演算ブロック4が、滑り周波数を用いて、出力トルク角度を演算する。次に、ステップS111で、出力トルク角度を用いたベクトル制御が実施される。その後、今回のルーチンが終了する。
図10は、回転子巻線13の材質がアルミニウムである場合の巻線実温度傾向を表したグラフである。図5(b)とは異なり、回転子巻線実温度のほうが固定子巻線実温度よりも高くなっている。このような温度傾向は、本願発明者が独自の実験に基づいて取得した新規なデータである。従来、図5(b)のように、固定子巻線温度よりも回転子巻線温度のほうが低くなることが技術常識であったからである。
そこで、本実施の形態の変形例として、回転子巻線13の材質がアルミニウムである場合において、回転子巻線温度係数MI_TMP_Kを、1.0よりも大きく設定してもよい。回転子巻線温度係数MI_TMP_Kを、1.0よりも大きくすれば、図2の二次抵抗補償制御回路8において、固定子巻線温度M_TMPを増大補正することができる。これにより、回転子巻線の材質に合わせて正しく温度係数を決定しているので、回転子巻線推定温度を精度良く推定することができる。
1 電動機駆動装置、2 電圧/電流/速度制御回路、3 座標変換回路、4 出力トルク角度演算ブロック、5 滑り周波数演算ブロック、6 速度周波数演算ブロック、7 温度検出回路、8 二次抵抗補償制御回路、8a フィルタ、9 速度検出回路、10 電力変換部、11 電圧電流センサ、12 交流誘導電動機、13 回転子巻線、14 固定子巻線、15 温度センサ、16 速度センサ、22 直流電圧、23 印加停止点、24 固定子巻線用温度センサ、25 回転子巻線用温度センサ、101 電動機制御装置、RoRT 回転子上昇温度、FRoR2 駆動前回転子二次抵抗、ERoR2 駆動後回転子二次抵抗、FStT 駆動前固定子巻線温度、EStT 駆動後固定子巻線温度、ERoET 駆動後回転子巻線推定温度、IM_T 二次抵抗補償値、M_TMP 固定子巻線温度、MI_T75_BIAS 基準温度、MI_TMP_E 回転子巻線推定温度、MI_TMP_K 回転子巻線温度係数、R2 モータ二次巻線抵抗(電動機二次抵抗)、R2C_G_T 定質量金属抵抗率、S1 直流電圧出力指令、V1 モータ一次電圧、i2 モータ二次電流、V1(1) 逆起電力、ΔT 温度差

Claims (9)

  1. 固定子巻線を有する交流誘導電動機を制御する電動機制御装置であって、
    直流電圧を前記交流誘導電動機に印加することで発生した逆起電力に基づくモータ一次電圧値とモータ二次電流値とから前記交流誘導電動機の二次抵抗値を演算するように構築された電動機制御装置。
  2. 前記交流誘導電動機の駆動前と駆動後とのそれぞれの固定子巻線温度と前記交流誘導電動機の駆動前と駆動後との前記二次抵抗値の変化量とから算出される温度係数を記憶し、前記温度係数を用いて前記固定子巻線の温度を回転子巻線推定温度へ換算するように構築された請求項1に記載の電動機制御装置。
  3. 回転子巻線および固定子巻線を備える交流誘導電動機と、
    前記交流誘導電動機に駆動電源を与える電力変換回路と、
    前記電力変換回路を制御する制御装置と、
    前記交流誘導電動機のモータ一次電圧を計測する電圧センサと、
    前記交流誘導電動機のモータ二次電流を計測する電流センサと、
    を備え、
    前記制御装置は、前記電力変換回路で前記交流誘導電動機に予め定めた直流電圧の印加および解除を行うことで逆起電力を発生させるとともに、前記逆起電力で前記回転子巻線に生じたモータ一次電圧値およびモータ二次電流値に基づいて回転子巻線の二次抵抗値を演算するように構築された電動機システム。
  4. 回転子巻線および固定子巻線を備える交流誘導電動機と、
    前記交流誘導電動機に駆動電源を与える電力変換回路と、
    前記電力変換回路を制御する制御装置と、
    前記交流誘導電動機のモータ一次電圧を計測する電圧センサと、
    前記交流誘導電動機のモータ二次電流を計測する電流センサと、
    前記交流誘導電動機の固定子巻線温度を計測する温度センサと、
    を備え、
    前記制御装置は、予め定めた温度係数と前記温度センサによる前記固定子巻線の温度計測値とに基づいて、前記交流誘導電動機の回転子巻線推定温度を推定するように構築され、
    前記交流誘導電動機の駆動前における駆動前回転子巻線二次抵抗値および駆動前固定子巻線温度と、前記交流誘導電動機の駆動後における駆動後回転子巻線二次抵抗値および駆動後固定子巻線温度と、を予め定めた回転子巻線温度係数計算式に代入することで前記温度係数が計算され、
    前記交流誘導電動機を駆動する前において、前記電力変換回路で前記交流誘導電動機に予め定めた直流電圧の印加および解除を行うことで第一逆起電力を発生させるとともに、前記第一逆起電力で前記回転子巻線に生じたモータ一次電圧値およびモータ二次電流値に基づいて前記駆動前回転子巻線二次抵抗値が演算され、
    前記交流誘導電動機を駆動させることで前記回転子巻線の温度を上昇させた後に前記交流誘導電動機の駆動を停止させた場合において、前記電力変換回路で前記交流誘導電動機に対する前記直流電圧の印加および解除を行うことで第二逆起電力を発生させるとともに、前記第二逆起電力で前記回転子巻線に生じたモータ一次電圧値およびモータ二次電流値に基づき前記駆動後回転子巻線二次抵抗値が演算された電動機システム。
  5. 前記回転子巻線温度係数計算式は、
    前記駆動前回転子巻線二次抵抗値と前記駆動前固定子巻線温度と前記駆動後回転子巻線二次抵抗値と前記駆動後固定子巻線温度とに基づいて、前記交流誘導電動機の回転子推巻線定温度を計算する第一計算式と、
    前記回転子巻線推定温度と前記交流誘導電動機の前記駆動後における固定子巻線温度との比に基づいて前記温度係数を計算する第二計算式と、
    を含む請求項4に記載の電動機システム。
  6. 前記制御装置は、前記回転子巻線推定温度と予め定めた抵抗率とに基づいて二次抵抗補償値を算出するように構築された請求項4または5に記載の電動機システム。
  7. 回転子巻線および固定子巻線を備える交流誘導電動機と、前記交流誘導電動機に駆動電源を与える電力変換回路と、前記電力変換回路を制御する制御装置と、前記交流誘導電動機のモータ一次電圧を計測する電圧センサと、前記交流誘導電動機のモータ二次電流を計測する電流センサと、を備える電動機システムの固定子巻線二次抵抗値を演算する演算方法であって、
    前記電力変換回路で前記交流誘導電動機に予め定めた直流電圧の印加および解除を行うことで逆起電力を発生させるステップと、
    前記逆起電力で前記回転子巻線に生じたモータ一次電圧値およびモータ二次電流値に基づいて回転子巻線の二次抵抗値を演算するステップと、
    を備える回転子巻線二次抵抗値の演算方法。
  8. 回転子巻線および固定子巻線を備える交流誘導電動機と、前記交流誘導電動機に駆動電源を与える電力変換回路と、前記電力変換回路を制御する制御装置と、前記交流誘導電動機に発生する電流及び電圧を検知するセンサと、前記交流誘導電動機の固定子巻線の温度を検知する温度センサと、を備える電動機システムの回転子巻線温度推定方法であって、
    前記交流誘導電動機を駆動する前において、前記電力変換回路で前記交流誘導電動機に予め定めた直流電圧の印加および解除を行うことで第一逆起電力を発生させるステップと、
    前記第一逆起電力で前記回転子巻線に生じたモータ一次電圧値およびモータ二次電流値に基づいて駆動前回転子巻線二次抵抗値を演算するステップと、
    前記交流誘導電動機を駆動させることで前記回転子巻線の温度を上昇させた後に前記交流誘導電動機の駆動を停止させるステップと、
    前記回転子巻線の温度を上昇させた後の前記交流誘導電動機の駆動停止中に、前記電力変換回路で前記交流誘導電動機に対する前記直流電圧の印加および解除を行うことで第二逆起電力を発生させるステップと、
    前記第二逆起電力で前記回転子巻線に生じたモータ一次電圧値およびモータ二次電流値に基づいて駆動後回転子巻線二次抵抗値を演算するステップと、
    前記駆動前回転子巻線二次抵抗値と、前記交流誘導電動機の駆動前における駆動前固定子巻線温度と、駆動後回転子巻線二次抵抗値と、前記交流誘導電動機の駆動後における駆動後固定子巻線温度と、に基づいて温度係数を計算するステップと、
    前記温度係数と前記温度センサで検知した前記固定子巻線の温度計測値とに基づいて、前記交流誘導電動機の回転子巻線推定温度を推定するステップと、
    を備える回転子巻線温度推定方法。
  9. 回転子巻線および固定子巻線を備える交流誘導電動機と、
    前記交流誘導電動機に駆動電源を与える電力変換回路と、
    前記電力変換回路を制御する制御装置と、
    前記交流誘導電動機のモータ一次電圧を計測する電圧センサと、
    前記交流誘導電動機のモータ二次電流を計測する電流センサと、
    前記交流誘導電動機の固定子巻線温度を計測する温度センサと、
    を備え、
    前記制御装置は、予め定めた温度係数と前記温度センサによる前記固定子巻線の温度計測値とに基づいて、前記交流誘導電動機の回転子巻線推定温度を推定するように構築され、
    前記回転子巻線の材質がアルミニウムであり、前記温度係数は、1.0よりも大きく設定された電動機システム。
JP2019113972A 2019-06-19 2019-06-19 電動機制御装置、電動機システム、回転子巻線二次抵抗値の演算方法、回転子巻線温度推定方法 Pending JP2021002897A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019113972A JP2021002897A (ja) 2019-06-19 2019-06-19 電動機制御装置、電動機システム、回転子巻線二次抵抗値の演算方法、回転子巻線温度推定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019113972A JP2021002897A (ja) 2019-06-19 2019-06-19 電動機制御装置、電動機システム、回転子巻線二次抵抗値の演算方法、回転子巻線温度推定方法

Publications (1)

Publication Number Publication Date
JP2021002897A true JP2021002897A (ja) 2021-01-07

Family

ID=73994268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019113972A Pending JP2021002897A (ja) 2019-06-19 2019-06-19 電動機制御装置、電動機システム、回転子巻線二次抵抗値の演算方法、回転子巻線温度推定方法

Country Status (1)

Country Link
JP (1) JP2021002897A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035158B2 (ja) * 1980-11-05 1991-01-24 Tokyo Shibaura Electric Co
JPH0627791B2 (ja) * 1985-08-19 1994-04-13 株式会社明電舍 誘導電動機の定数測定方法
JPH0928100A (ja) * 1995-07-10 1997-01-28 Toyo Electric Mfg Co Ltd 誘導電動機のトルク変動補償装置
JP2707680B2 (ja) * 1989-02-09 1998-02-04 株式会社安川電機 誘導電動機の速度演算装置及び速度制御装置
WO1998040964A1 (fr) * 1997-03-11 1998-09-17 Mitsubishi Denki Kabushiki Kaisha Dispositif de commande de moteur asynchrone
JP2000078900A (ja) * 1998-08-31 2000-03-14 Kiyoshi Oishi インバータ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035158B2 (ja) * 1980-11-05 1991-01-24 Tokyo Shibaura Electric Co
JPH0627791B2 (ja) * 1985-08-19 1994-04-13 株式会社明電舍 誘導電動機の定数測定方法
JP2707680B2 (ja) * 1989-02-09 1998-02-04 株式会社安川電機 誘導電動機の速度演算装置及び速度制御装置
JPH0928100A (ja) * 1995-07-10 1997-01-28 Toyo Electric Mfg Co Ltd 誘導電動機のトルク変動補償装置
WO1998040964A1 (fr) * 1997-03-11 1998-09-17 Mitsubishi Denki Kabushiki Kaisha Dispositif de commande de moteur asynchrone
JP2000078900A (ja) * 1998-08-31 2000-03-14 Kiyoshi Oishi インバータ装置

Similar Documents

Publication Publication Date Title
US9581989B2 (en) Control device of machine tool which estimates overheating of motor
US10197986B2 (en) Control apparatus of an electric motor
JP2008029193A (ja) 同期電動機のパラメータ調整方法およびその方法を使用する可変速駆動装置
JP6973311B2 (ja) 処理装置
JP2011211768A (ja) エンコーダを有する主軸の制御装置
EP3507898B1 (en) Techniques for limiting electrical current provided to a motor in an electric power steering system
JP2021002897A (ja) 電動機制御装置、電動機システム、回転子巻線二次抵抗値の演算方法、回転子巻線温度推定方法
JP2943377B2 (ja) 誘導電動機のベクトル制御装置
US6879130B2 (en) Controller for induction motor
JP2013138548A (ja) 誘導電動機の回転速度制御装置および回転速度制御方法
JP5333411B2 (ja) 誘導電動機のベクトル制御装置
JP6767414B2 (ja) モータ冷却制御システム
JPH0759399A (ja) 誘導電動機の2次抵抗補正方式
JP2017123701A (ja) モータの保全装置およびモータシステム
JP3329672B2 (ja) 誘導電動機定数測定装置
JP4346574B2 (ja) サーボモータ制御装置
JPH0898600A (ja) モータ制御装置
JP7081346B2 (ja) モータ制御装置
CN111565000B (zh) 直流无刷电机的直流母线电流限制方法及装置
JP4006630B2 (ja) インバータで駆動される誘導電動機の制御方法
JPH0833194A (ja) 交流電動機の制御方法と異常検出方法
CN106877770B (zh) 电动机的转矩控制装置和转矩控制系统
JP2023158698A (ja) モータ磁石温度推定装置
JPS5921293A (ja) 誘導電動機のトルク制御装置
JPH07110159B2 (ja) 誘導電動機の一次電圧検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221115