JP2021001787A - レーザ距離測定装置 - Google Patents

レーザ距離測定装置 Download PDF

Info

Publication number
JP2021001787A
JP2021001787A JP2019115137A JP2019115137A JP2021001787A JP 2021001787 A JP2021001787 A JP 2021001787A JP 2019115137 A JP2019115137 A JP 2019115137A JP 2019115137 A JP2019115137 A JP 2019115137A JP 2021001787 A JP2021001787 A JP 2021001787A
Authority
JP
Japan
Prior art keywords
light
laser
light receiving
signal
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019115137A
Other languages
English (en)
Inventor
尚平 塚本
Shohei Tsukamoto
尚平 塚本
浩 坂之上
Hiroshi Sakanoue
浩 坂之上
勝治 今城
Masaharu Imaki
勝治 今城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019115137A priority Critical patent/JP2021001787A/ja
Priority to US16/833,025 priority patent/US11567178B2/en
Priority to DE102020207370.8A priority patent/DE102020207370A1/de
Publication of JP2021001787A publication Critical patent/JP2021001787A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4868Controlling received signal intensity or exposure of sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

【課題】近距離及び遠距離のいずれの場合においても、測定性能が劣化しないレーザ距離測定装置を提供することを目的とする。【解決手段】レーザ光L1を出射するレーザ光出射部11と、レーザ光L1の出射角度を変化させて走査する走査機構12と、レーザ光L1の物体40からの反射光L2を受光し、受光信号を出力する受光部13と、出射角度が小さい場合の反射光L2の受光感度を出射角度が大きい場合の反射光L2の受光感度よりも高く設定して、受光信号を出力させる光検出器制御回路132と、受光信号に基づいて物体40までの距離を算出する距離算出部15とを備え、近距離及び遠距離のいずれにおいても距離の測定性能を向上させる。【選択図】図1

Description

本願は、レーザ距離測定装置に関する。
従来、レーザ光などの光ビームを測定対象に照射し、物体からの反射される反射光に基づいて物体までの距離を測定するレーザ距離測定装置が知られている。このようなレーザ距離測定装置には、光源のレーザ光を走査手段によって特定の走査範囲を走査させる走査型の装置がある。しかしながら、従来のレーザ距離測定装置の多くは、ある既定の装置条件で動作しており、例えば、近距離では距離分解の要求が高いため、広帯域アンプを用いるが、遠距離では、受信光は弱いため、広帯域アンプの雑音を落として微弱光を検知したい、といった、異なる要求がある。一般的に、固定位置に設置する2D測距センサの場合には、走査角に応じて、近距離と遠距離が決まっている場合がある。
この問題を解決するために、特許文献1の技術では、車両の前方にレーザ光を照射し、水平方向のそれぞれ異なる方向からの反射光を複数の受光素子により同時に受光し、さらに任意の組合せで複数の受光素子を選択し、選択した受光素子から出力される受光信号を加算して出力することにより、受光感度を上げる。
また、特許文献2の技術では、レーザ距離測定装置を車両に搭載し、複数の受光素子で構成し、受光信号が検出されていない方向に関し、車両速度に応じて受光信号の積算回数を増加させることで、受光信号のSNR(Signal to Noise Ratio)を向上させて、受光感度を適切に設定する。
特開平7−191148号公報(段落0032〜0036、図1〜図3) 特開2015−135272号公報(段落0013〜0015、図1)
しかしながら、遠距離の微弱光を検知するために帯域を狭くした場合、高周波成分の雑音を落とせるため雑音レベルが下がり信号レベルも上がるが、近距離(パルス幅相当分の)測距に適用できないという問題があった。また、車速が所定の速度以上の場合、近距離からの信号を分離することが可能となるが、遠距離での測定性能が劣化するという問題があった。
本願は、上記のような課題を解決するための技術を開示するものであり、近距離測距に適用できるだけでなく、遠距離での測定性能が劣化しないレーザ距離測定装置を提供することを目的とする。
本願に開示されるレーザ距離測定装置は、レーザ光を出射するレーザ光出射部と、前記レーザ光の出射角度を変化させて走査する走査部と、前記レーザ光の反射体からの反射光を受光し、受光信号を出力する受光部と、前記出射角度が小さい場合の反射光の受光感度を前記出射角度が大きい場合の反射光の受光感度よりも高く設定して、前記受光信号を出力させる制御部と、前記受光信号に基づいて前記反射体までの距離を算出する距離算出部と、を備えたことを特徴とする。
本願によれば、出射角度に応じて反射光の受光感度を変化させることで、近距離及び遠距離のいずれの場合においても、距離の測定性能を向上させることができる。
実施の形態1に係るレーザ距離測定装置の構成の概略を示すブロック図である。 実施の形態1に係るレーザ距離測定装置の模式図である。 実施の形態1に係るレーザ距離測定装置の可動ミラーの構成を示す平面図である。 実施の形態1に係るレーザ距離測定装置の可動ミラーの駆動電流を説明するためのタイムチャートである。 実施の形態1に係るレーザ距離測定装置の上下方向及び左右方向の照射範囲を説明するための図である。 実施の形態1に係るレーザ距離測定装置の制御装置のハードウェア構成図である。 実施の形態1に係るレーザ距離測定装置による測定での物体までの距離の検出を説明するための図である。 実施の形態1に係るレーザ距離測定装置による測定での光源信号と受光信号とを説明するタイムチャート図である。 実施の形態1に係るレーザ距離測定装置による測定でのレーザ光を上下に走査した場合の受光信号の挙動を説明するための図である。 比較例に係るレーザ距離測定装置による測定での受光信号の挙動を説明するためのタイムチャートである。 実施の形態1に係るレーザ距離測定装置のゲイン・帯域変化回路の構成を示す回路図である。 実施の形態1に係るレーザ距離測定装置のゲイン・帯域変化回路での変換ゲイン及び帯域幅の設定データを説明するための図である。 実施の形態1に係るレーザ距離測定装置のゲイン・帯域変化回路の他の構成を示す回路図である。 実施の形態1に係るレーザ距離測定装置のゲイン・帯域変化回路の他の構成を示す回路図である。
1.実施の形態1
実施の形態1に係るレーザ距離測定装置について図面を参照して説明する。図1は、レーザ距離測定装置10の構成の概略を示すブロック図である。図2は、レーザ距離測定装置10の光学系の概略配置構成を示す模式図である。レーザ距離測定装置10は、LiDAR(Light Detection and Ranging)又はレーザレーダとも呼ばれる。レーザ距離測定装置10は、移動体としての車両に搭載され、移動体の前方にレーザ光L1を2次元走査して照射し、レーザ距離測定装置10(移動体)から移動体の前方に存在する物体までの距離を測定する。
図1に示すように、レーザ距離測定装置10は、レーザ光出射部11、走査機構12、受光部13、走査制御部14、及び距離算出部15等を備えている。後述するように、走査制御部14、及び距離算出部15は、制御装置20に備えられている。レーザ光出射部11は、レーザ光L1を出射する。走査機構12は、レーザ光L1の出射角度を変化させる機構である。走査制御部14は、走査機構12によりレーザ光L1の出射角度を制御してレーザ光L1を走査させる。受光部13は、物体に反射したレーザ光の反射光L2を受光し、受光信号を出力する。距離算出部15は、出射したレーザ光L1及び受光信号に基づいて物体までの距離である物体距離を算出する。
1−1.レーザ光出射部11
レーザ光出射部11は、レーザ光L1を出射する。レーザ光出射部11は、レーザ光源111、及びレーザ光源駆動回路112を備えている。レーザ光源駆動回路112は、後述する送受光制御部16からの指令信号に基づいて、パルス状の出力信号を生成する。レーザ光源111は、レーザ光源駆動回路112から伝達された出力信号がオンになったときに、近赤外波長のレーザ光L1を発生し、走査機構12に向かって出射する。なお、レーザ光源111から出射されたレーザ光L1は、レーザ光源111と走査機構12との間に配置された集光ミラー133を透過する。
1−2.走査機構12
走査機構12は、レーザ光L1の出射角度を変化させる。本実施の形態では、走査機構12は、移動体の前方に照射するレーザ光L1の出射角度を、移動体の進行方向(照射中心線)に対して左右方向X及び上下方向Yに変化させる。走査機構12は、可動ミラー121、及びミラー駆動回路122を備えている。図2に示すように、レーザ光源111から出射したレーザ光L1は、集光ミラー133を透過した後、可動ミラー121に反射し、筐体9に設けられた透過窓19を透過して、可動ミラー121の角度に応じた出射角度で移動体の前方に照射される。
本実施の形態では、可動ミラー121は、MEMS(Micro Electro Mechanical Systems)ミラー121とされている。図3に、実施の形態1に係るレーザ距離測定装置10の可動ミラーであるMEMSミラー121の平面図を示す。図3に示すように、MEMSミラー121は、互いに直交する第1軸C1と第2軸C2の回りにミラー121aを回転させる回転機構を備えている。MEMSミラー121は、ミラー121aが設けられた矩形板状の内側フレーム121bと、内側フレーム121bの外側に配置された矩形環板状の中間フレーム121cと、中間フレーム121cの外側に配置され矩形板状の外側フレーム121dと、を備えている。外側フレーム121dは、MEMSミラー121の本体に固定されている。
外側フレーム121dと中間フレーム121cとは、ねじり弾性を有する左右2つの第1トーションバー121eにより連結されている。中間フレーム121cは、外側フレーム121dに対して、2つの第1トーションバー121eを結ぶ第1軸C1回りに捩れる。第1軸C1回りに一方側又は他方側に捩れると、レーザ光L1の出射角度が上側又は下側に変化する。中間フレーム121cと内側フレーム121bとは、弾性を有する上下2つの第2トーションバー121fにより連結されている。内側フレーム121bは、中間フレーム121cに対して、2つの第2トーションバー121fを結ぶ第2軸C2回りに捩れる。第2軸C2回りに一方側又は他方側に捩れると、レーザ光L1の出射角度が左側又は右側に変化する。
中間フレーム121cには、フレームに沿った環状の第1コイル121gが設けられており、第1コイル121gに接続された第1電極パット121hが、外側フレーム121dに設けられている。内側フレーム121bには、フレームに沿った環状の第2コイル121iが設けられており、第2コイル121iに接続された第2電極パット121jが、外側フレーム121dに設けられている。MEMSミラー121には、不図示の永久磁石が設けられている。第1コイル121gに正側又は負側の電流が流れると、中間フレーム121cを第1軸C1回りに一方側又は他方側にねじるローレンツ力が生じ、捩れ角度は、電流の大きさに比例する。第2コイル121iに正側又は負側の電流が流れると、内側フレーム121bを第2軸C2回りに一方側又は他方側にねじるローレンツ力が生じ、捩れ角度は、電流の大きさに比例する。
図4は、実施の形態1に係るレーザ距離測定装置10のMEMSミラー121の駆動電流を説明するためのタイムチャートである。図4(a)は第1コイル121gでの駆動電流のタイムチャート図であり、図4(b)は第2コイル121iでの駆動電流のタイムチャート図である。
ミラー駆動回路122は、走査制御部14の指令信号に従って、図4(a)に示すように、正の第1最大電流値Imx1と負の第1最小電流値Imn1との間を、第1周期T1で振動する電流を、第1電極パット121hを介して第1コイル121gに供給する。第1周期T1は、2次元走査の1フレーム分の周期となる。電流の振動波形は、のこぎり波又は三角波等とされる。
図5に、実施の形態1に係るレーザ距離測定装置10の上下方向(垂直方向)Y及び左右方向(水平方向)Xの照射範囲40aを説明するための図を示す。この2次元の走査範囲である照射範囲40aの1回の走査を、1フレームという。
上下方向(垂直方向)Yについては、レーザ光L1は、図5に示すように、1フレーム開始点F1の位置(正の第1最大電流値Imx1に対応する上下方向Yの最大照射角度θUDmx)と、1フレーム終了点F2(負の第1最小電流値Imn1に対応する上下方向Yの最小照射角度θUDmn)との間を、左右方向Xに振動しながら第1周期T1で振動して、走査する。第1最大電流値Imx1と第1最小電流値Imn1の間を、運転条件に応じて変化してもよい。
また、ミラー駆動回路122は、走査制御部14の指令信号に従って、図4(b)に示すように、正の第2最大電流値Imx2と負の第2最小電流値Imn2との間を、第2周期T2で振動する電流を、第2電極パット121jを介して第2コイル121iに供給する。第2周期T2は、第1周期T1よりも短い値に設定されており、第1周期T1を、1フレームにおける左右方向Xの往復走査回数Nで除算した値に設定される。電流の振動波形は、正弦波又は矩形波等とされる。
左右方向(水平方向)Xについては、レーザ光L1は、図5に示すように、1フレーム/Nの開始点f1(負の第2最小電流値Imn2に対応する左右方向Xの最小照射角度θLRmn)と、1フレーム/2Nの中間点f1/2(正の第2最大電流値Imx2に対応する左右方向Xの最大照射角度θLRmx)との間を振動して、1フレーム/Nの終了点f2(負の第2最小電流値Imn2に対応する左右方向Xの最小照射角度θLRmn)に戻る、第2周期T2を繰り返して、上下方向(垂直方向)Yの1フレーム終了点F2まで走査する。第2最大電流値Imx2と第2最小電流値Imn2の間を、運転条件に応じて変化してもよい。このように、走査機構12によりレーザ光L1を、照射範囲40aに走査させることができる。
1−3.受光部13
受光部13は、移動体(レーザ距離測定装置10)の前方の物体40(照射範囲40a)に反射したレーザ光の反射光L2を受光する。受光部13は、光検出器131、光検出器制御回路132、及び集光ミラー133を備えている。図2に示すように、移動体の前方にある物体40に反射した反射光L2は、透過窓19を透過し、可動ミラー121に反射した後、集光ミラー133に反射し、光検出器131に入射する。
光検出器131は、APD(Avalanche Photo Diode)等を受光素子として備え、受光した反射光L2に応じた受光信号を出力する。光検出器制御回路132は、送受光制御部16からの指令信号に基づいて、光検出器131の動作を制御する。また光検出器制御回路132には、光検出器131の受光素子に印加する電源回路を含む。光検出器131が出力した受光信号は、制御装置20(距離算出部15)に入力される。
1−4.制御装置20
レーザ距離測定装置10は、制御装置20を備えている。制御装置20は、走査制御部14、距離算出部15、及び送受光制御部16等の機能部を備えている。制御装置20の各機能は、制御装置20が備えた処理回路により実現される。図6に、実施の形態1に係るレーザ距離測定装置10の制御装置20のハードウェア構成図を示す。図6に示すように、制御装置20は、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りをする記憶装置91、演算処理装置90に外部の信号を入出力する入出力装置92、及びレーザ距離測定装置10の外部の装置とデータ通信を行う外部通信装置93等を備えている。
演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)91a、演算処理装置90からデータを読み出し可能に構成されたROM(Read Only Memory)91b等が備えられている。なお、記憶装置91として、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)等の各種の記憶装置が用いられてもよい。
入出力装置92は、レーザ光源駆動回路112、ミラー駆動回路122、光検出器131、及び光検出器制御回路132等が接続され、これらと演算処理装置90との間でデータ及び制御指令の送受信を行う通信回路、A/D変換器、D/A変換器、及び入出力ポート等を備えている。また、入出力装置92は、各回路を制御する演算処理装置を備えている。外部通信装置93は、カーナビゲーション装置30、外部演算処理装置31等の外部装置と通信を行う。
そして、制御装置20が備える各機能部14〜16等の各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入出力装置92、及び外部通信装置93等の制御装置20の他のハードウェアと協働することにより実現される。なお、各機能部14〜16等が用いる処理回数等の設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。以下、制御装置20の各機能について詳細に説明する。
<送受光制御部16>
送受光制御部16は、レーザ光源駆動回路112に指令信号を伝達し、パルス周期Tpで、パルス幅を有するパルス状のレーザ光L1を出力させる。また、送受光制御部16は、光検出器制御回路132に指令信号を伝達し、光検出器131に受光信号を出力させる。
<走査制御部14>
走査制御部14は、走査機構12を制御してレーザ光L1を走査させる。本実施の形態では、走査制御部14は、移動体の進行方向に対する左右方向Xの照射範囲でレーザ光L1を走査させると共に、移動体の進行方向に対する上下方向Yの照射範囲でレーザ光L1を走査させる2次元走査を行う。
走査制御部14は、レーザ光L1の出射角度を、上下方向Yの照射範囲及び第1周期T1で走査させる指令信号を、ミラー駆動回路122に伝達する。具体的には、走査制御部14は、第1コイル121gに供給する電流の正の第1最大電流値Imx1及び負の第1最小電流値Imn1、及び第1周期T1の指令信号を、ミラー駆動回路122に伝達する。
また、走査制御部14は、レーザ光L1の出射角度を、左右方向Xの照射範囲及び第2周期T2で走査させる指令信号を、ミラー駆動回路122に伝達する。具体的には、走査制御部14は、第2コイル121iに供給する電流の正の第2最大電流値Imx2及び負の第2最小電流値Imn2、及び第2周期T2の指令信号を、ミラー駆動回路122に伝達する。走査制御部14は、第1周期T1を、1フレームにおける左右方向Xの往復走査回数で除算した値を、第2周期T2に設定する。
<距離算出部15>
距離算出部15は、出射したレーザ光及び受光信号に基づいて、照射範囲40aに存在する物体40までの距離を算出する。図7は、実施の形態1に係るレーザ距離測定装置による測定での物体40までの距離の検出を説明するための図であり、図8は、光源信号と受光信号とを説明するタイムチャート図である。
図7に示すように、レーザ光源111から出射したレーザ光L1は、距離Lだけ前方にある物体40に反射し、反射光L2は、距離Lだけ後方にある光検出器131に入射する。図8は、レーザ光源111から出射したレーザ光L1の光源信号と、光検出器131で受光した反射光L2の受光信号との関係を示している。レーザ光源駆動回路112は、パルス周期Tpでオンになるパルス状の出力信号(光源信号)を生成する。光源信号の立ち上がりから受光信号のピークまで時間Tcntは、レーザ光源111及び光検出器131と物体40との間の距離Lをレーザ光が往復する時間である。よって、時間Tcntに光速を乗算し、2で除算すれば、物体40までの距離Lを算出することができる。
距離算出部15には、レーザ光源駆動回路112からレーザ光源111への出力信号(光源信号)が入力されており、レーザ光出射部11がパルス状のレーザ光を発光し始めた時点を検出できる。距離算出部15は、レーザ光出射部11がレーザ光を発光し始めてから、受光部13が受光信号を出力する時点までの時間Tcntを受光時間として計測する。そして、距離算出部15は、受光時間Tcntに光速c0を乗算し、2で除算した値を、レーザ光の発光時点の出射角度に存在する物体までの距離Lとして算出する(L=Tcnt×c0/2)。なお、距離算出部15は、受光部13が受光信号を出力していない場合は、その時点の照射範囲40aに存在する物体40を検出できないと判定して、距離Lを算出しない。距離算出部15は、距離の算出結果を外部演算処理装置31に伝達する。
<受光信号の強度の課題>
図9は、実施の形態1に係るレーザ距離測定装置による測定でのレーザ光を上下に走査した場合の受光信号の挙動を説明するための図である。図9においては、レーザ光の出射角度を上から下に走査した時の各照射位置P1、P2、P3を示し、照射位置P1において、レーザ光が物体40に当った箇所を黒丸で示している。また、照射位置P2、P3において、地上面41に当った箇所を黒丸で示している。
図10に、比較例に係るレーザ距離測定装置による測定での受光信号の挙動を説明するためのタイムチャートである。比較例に係るレーザ距離測定装置では、図10に示すように、パルス状のレーザ光が照射位置P1、P2、P3の時点で出射され、照射位置P1において物体40に反射し、P2、P3において地上面41に反射した反射光が光検出器131に入射し、受光信号R1、R2、R3が出力されている。受光信号R3は、閾値Sを超えているので、パルス状の受光検出信号が出力されている。しかし、受光信号R1、R2は、信号のピークが低く、閾値Sを超えていないため、受光検出信号が出力されていない。よって、距離の測定ができていない。
このような受光信号のピークが低下する現象は、雨又は霧などの悪天候の場合にレーザ光が往復する間に雨又は霧に当たり、光が散乱することで起こる。また、空気中を浮遊する塵にレーザ光が当たり、光が散乱する場合もある。雨、霧、又は塵等への接触は、不規則に生じるので、予測し難い。また、物体が遠距離にあるほど、雨、霧、又は塵等に当たる確率が高くなり、受光信号のピークが低下する現象の頻度が高くなる。また、地上面、壁および屋根などの移動体から近距離の場所においてレーザ光が雨、霧、又は塵等への接触が少なく信号の減衰が少ないため受光信号のピークが大きくなる。
<受光感度の変化>
本実施の形態では、光検出器制御回路132は、レーザ光L1の出射角度に基づいて、反射光の受光感度を変化させる。光検出器制御回路132は、反射光の受光感度を変化させるための制御信号を光検出器131に送信し、光検出器131は、受光感度を変化させるように構成されている。
具体的には、受光部13において光検出器131は、受光素子163の出力信号から受光信号への変換ゲインを変化させ、受光信号の帯域幅を変化させるゲイン・帯域変換回路を有している。図11は、実施の形態1に係るレーザ距離測定装置10のゲイン・帯域変化回路168の構成を示す回路図である。図11に示すように、光検出器131は、ゲイン・帯域変化回路168に、ゲイン切り替え機能付きの電流−電圧変換アンプ164(Transfer Impedance Amplifier:TIA)を備えている。光検出器131では、APDである受光素子163は、動作のために電源167が接続されており、受光素子163は受光した反射光を電流に変換する。変換された電流は、負帰還増幅回路構成のオペアンプである電流−電圧変換アンプ164の負入力側に流れ、帰還抵抗166を介して電圧に変換される。
複数の帰還抵抗166(本例では4つ)は、電流−電圧変換アンプ164に対してそれぞれ並列に接続されている。各帰還抵抗166には、スイッチ165がそれぞれ直列に接続されており、各スイッチ165のオンオフにより、各帰還抵抗166の動作のオンオフが切り替えられる(ゲイン変化回路)。ゲイン・帯域変化回路168は、光検出器制御回路132からの信号によって各スイッチ165がオンオフされることにより、帰還抵抗166全体の抵抗値が変更され、電流が電圧に変換されるときの変換ゲインが変更される。
なお、光検出器131は、ゲイン・帯域変化回路168の帰還抵抗166全体の抵抗値が大きくなるに従って、変換ゲインが大きくなり、受光感度が増加する。帰還抵抗166には並列して帰還コンデンサ161が接続されており、帰還抵抗166と帰還コンデンサ161により信号通過できる帯域幅がきまる。
各帰還コンデンサ161(本例では4つ)にはスイッチ162がそれぞれ並列に接続されており、各スイッチ162のオンオフにより、各帰還コンデンサ161の動作のオンオフが切り替えられる(帯域変化回路)。ゲイン・帯域変化回路168は、光検出器制御回路132からの信号によって各スイッチ162がオンオフされることにより、帰還コンデンサ161全体の容量値が変更され、帰還抵抗166と帰還コンデンサ161との値によって信号帯域が変更される。
次に、実施の形態1に係るレーザ距離測定装置のゲイン・帯域変化回路での変換ゲイン及び帯域幅の設定データを説明する。図12は、変換ゲインと帯域幅のコンデンサ容量の設定データの例を示す。図12では、移動体からレーザ光L1の照射角度は、下側角度(照射位置P3)、中央角度(照射位置P2)、上側角度(照射位置P1)の3つの領域に分割され、各領域に各スイッチ165とスイッチ162のオンオフ指令(図12には、帰還抵抗166全体の抵抗値と帰還コンデンサ166全体の容量値を示している)が設定されている。
図12に示すように、下側角度、中央角度、上側角度のように角度方向に従って、帰還抵抗166を38kΩ、42kΩ、46kΩと変換ゲインが増加されている。また、帰還コンデンサ161を0.2pF、0.4pF、0.6pFと帰還抵抗166とのフィルタ定数で帯域幅が狭くなっている。
これにより、移動体において下側角度のように比較的に近距離になる場合においてはゲインを低下させて、帯域を広くし、上側角度の長距離ではゲインを上昇させて帯域を狭くしてより受光信号と雑音との関係性を改善することにより、測定性能を改善することができる。
以上のように、実施の形態1に係るレーザ距離測定装置10によれば、レーザ光L1を出射するレーザ光出射部11と、レーザ光L1の出射角度を変化させて走査する走査機構12と、レーザ光L1の物体40からの反射光L2を受光し、受光信号を出力する受光部13と、出射角度が小さい場合の反射光L2の受光感度を出射角度が大きい場合の反射光L2の受光感度よりも高く設定して、受光信号を出力させる光検出器制御回路132と、受光信号に基づいて物体40までの距離を算出する距離算出部15と、を備えるようにしたので、近距離及び遠距離のいずれの場合においても、距離の測定性能を向上させることができる。
なお、上記の実施の形態1において、光検出器制御回路132は、変換ゲイン及び帯域幅を変化させるように構成されている場合を例に説明した。しかし、光検出器制御回路132は、変換ゲイン及び帯域幅の一方を変化させるように構成してもよい。
また、上記の各実施の形態においては、光検出器131の変換ゲインと帯域幅を帰還抵抗166と帰還コンデンサ161とのスイッチのオンオフで変化させていたが、図13のように、電流−電圧変換アンプ164、帰還抵抗166及び帰還コンデンサ161を組み合わせたそれぞれの回路をスイッチによって切り替える構成、又は図14のように電流−電圧変換アンプ164の後段に変換ゲインの帯域幅を決めるフィルタアンプ等のような構成にしてもよい。
また、上記の各実施の形態においては、走査機構12は、MEMSミラー121を備えている場合を例に説明した。しかし、走査機構12は、MEMSミラー121以外の走査機構を備えてもよい。例えば、走査機構12は、可動ミラーとして回転ポリゴンミラーを備え、上下方向の照射範囲が上側又は下側に移動するように、回転ポリゴンミラーの回転軸を傾ける機構等を備えていてもよい。
また、上記の各実施の形態においては、微小ミラーは、ローレンツ力により可動される場合を例に説明した。しかし、微小ミラーの可動機構は、ローレンツ力のような電磁方式に限られるものではなく、圧電素子を利用した圧電方式、又はミラーと電極間の電位差による静電力を利用した静電方式としてもよい。
また、上記の各実施の形態においては、MEMSミラー121を用い、図5に示すような走査を行って2次元走査を行う場合を例に説明した。しかし、MEMSミラー121を用い、リサージュ走査又はラスタ走査を行って、2次元走査を行ってもよく、球面ミラーを用いて、歳差走査を行ってもよい。
また、上記の各実施の形態においては、2つの回転軸回りにミラーを回転させるMEMSミラー121を用いて2次元走査させる場合を例に説明した。しかし、1つの回転軸回りにミラーを回転させるMEMSミラーを2つ用いて、2次元走査させるように構成してもよい。
また、上記の各実施の形態においては、1つのレーザ光源111のレーザ光を、MEMSミラー121に反射させる場合を例に説明した。しかし、複数のレーザ光源111のレーザ光をMEMSミラー121に反射させるように構成されてもよい。
また、上記の各実施の形態においては、光検出器131は、MEMSミラー121及び集光ミラー133に反射した反射光L2を受光する場合を例に説明した。しかし、光検出器131は、物体に反射した反射光L2を直接受光するように構成してもよい。
また、上記の各実施の形態においては、インコヒーレント検波方式を用いてパルス光を送受するタイプであったが、コヒーレント検波方式を用いてパルス光を送受するタイプであってもよい。また、正弦波で強度変調されたレーザ光を送受するタイプであってもよく、インコヒーレントFMCW(Frequency Modulated Continuous Waves)方式であっても、コヒーレントFMCW方式であってもよい。正弦波で強度変調された光を送受するタイプであれば、レーザ光のパルス幅を可変とする代わりに正弦波の変調周波数を可変とし、インコヒーレントFMCW又はコヒーレントFMCWのタイプであれば、レーザ光のパルス幅を可変とする代わりに、変調周波数の掃引周波数幅を可変とする。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
11 レーザ光出射部、12 走査機構(走査部)、13 受光部、15 距離算出部、132 光検出器制御回路(制御部)、10 レーザ距離測定装置。

Claims (6)

  1. レーザ光を出射するレーザ光出射部と、
    前記レーザ光の出射角度を変化させて走査する走査部と、
    前記レーザ光の反射体からの反射光を受光し、受光信号を出力する受光部と、
    前記出射角度が小さい場合の反射光の受光感度を前記出射角度が大きい場合の反射光の受光感度よりも高く設定して、前記受光信号を出力させる制御部と、
    前記受光信号に基づいて前記反射体までの距離を算出する距離算出部と、
    を備えたことを特徴とするレーザ距離測定装置。
  2. 前記受光部は、受光素子の出力信号から前記受光信号への変換ゲインを変化させるゲイン変化回路を備え、前記制御部は、前記ゲイン変化回路により、前記反射光の受光感度を設定することを特徴とする請求項1に記載のレーザ距離測定装置。
  3. 前記受光部は、前記受光信号への信号帯域幅を変化させる帯域変換回路を備え、前記制御部は、前記帯域変換回路により、前記反射光の受光感度を設定することを特徴とする請求項1に記載のレーザ距離測定装置。
  4. 前記受光部は、受光素子の出力信号から前記受光信号への変換ゲインを変化させるゲイン変化回路と、前記受光信号への信号帯域幅を変化させる帯域変換回路と、を備え、前記制御部は、前記ゲイン変化回路と前記帯域変換回路により、前記反射光の受光感度を設定することを特徴とする請求項1に記載のレーザ距離測定装置。
  5. 前記走査部は、可変ミラーにより前記出射角度を変化させることを特徴とする請求項1から請求項4のいずれか1項に記載のレーザ距離測定装置。
  6. 前記可変ミラーは、MEMSミラー、回転ポリゴンミラー及び球面ミラーのいずれか1を用いることを特徴とする請求項5に記載のレーザ距離測定装置。
JP2019115137A 2019-06-21 2019-06-21 レーザ距離測定装置 Pending JP2021001787A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019115137A JP2021001787A (ja) 2019-06-21 2019-06-21 レーザ距離測定装置
US16/833,025 US11567178B2 (en) 2019-06-21 2020-03-27 Laser distance measuring device
DE102020207370.8A DE102020207370A1 (de) 2019-06-21 2020-06-15 Laserabstandsmessvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019115137A JP2021001787A (ja) 2019-06-21 2019-06-21 レーザ距離測定装置

Publications (1)

Publication Number Publication Date
JP2021001787A true JP2021001787A (ja) 2021-01-07

Family

ID=73654518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019115137A Pending JP2021001787A (ja) 2019-06-21 2019-06-21 レーザ距離測定装置

Country Status (3)

Country Link
US (1) US11567178B2 (ja)
JP (1) JP2021001787A (ja)
DE (1) DE102020207370A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169583U (ja) * 1984-04-18 1985-11-11 三菱電機株式会社 レ−ダ装置
JP2002040139A (ja) * 2000-07-28 2002-02-06 Denso Corp 物体認識方法及び装置、記録媒体
WO2012117542A1 (ja) * 2011-03-02 2012-09-07 トヨタ自動車株式会社 レーザレーダ装置
JP2019007879A (ja) * 2017-06-27 2019-01-17 株式会社ヨコオ マニュアルアクチュエータ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3813140A (en) * 1971-12-13 1974-05-28 Bendix Corp Rotating prism scanning system having range compensation
JPH07191148A (ja) 1993-12-27 1995-07-28 Mitsubishi Electric Corp 広角レーザレーダ装置
WO2011138895A1 (ja) * 2010-05-07 2011-11-10 三菱電機株式会社 レーザレーダ装置
JP6207407B2 (ja) 2014-01-17 2017-10-04 オムロンオートモーティブエレクトロニクス株式会社 レーザレーダ装置、物体検出方法、及び、プログラム
DE102015200224A1 (de) * 2015-01-09 2016-07-14 Robert Bosch Gmbh 3D-LIDAR-Sensor
US11940565B2 (en) * 2019-08-20 2024-03-26 Luminar Technologies, Inc. Coherent pulsed lidar system
JP7463767B2 (ja) * 2020-03-02 2024-04-09 株式会社リコー 受光装置及び距離計測装置
US20220043127A1 (en) * 2020-08-10 2022-02-10 Luminar, Llc Lidar system with input optical element
US20220043115A1 (en) * 2020-08-10 2022-02-10 Luminar, Llc Master-oscillator power-amplifier (mopa) light source with optical isolator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169583U (ja) * 1984-04-18 1985-11-11 三菱電機株式会社 レ−ダ装置
JP2002040139A (ja) * 2000-07-28 2002-02-06 Denso Corp 物体認識方法及び装置、記録媒体
WO2012117542A1 (ja) * 2011-03-02 2012-09-07 トヨタ自動車株式会社 レーザレーダ装置
JP2019007879A (ja) * 2017-06-27 2019-01-17 株式会社ヨコオ マニュアルアクチュエータ

Also Published As

Publication number Publication date
US11567178B2 (en) 2023-01-31
US20200400787A1 (en) 2020-12-24
DE102020207370A1 (de) 2020-12-24

Similar Documents

Publication Publication Date Title
JP6824236B2 (ja) レーザ距離測定装置
CN108885263B (zh) 具有可变脉冲重复的基于lidar的3d成像
KR102506579B1 (ko) 잡음 적응형 솔리드-스테이트 lidar 시스템
CN108291968B (zh) 具有目标视场的三维lidar系统
CN112020660A (zh) 具有分层功率控制的基于lidar的距离测量
JP2016057141A (ja) 距離測定装置、移動体装置及び距離測定方法
JP2011059111A (ja) 光電スキャナ
US20220113378A1 (en) Methods and Systems for Dithering Active Sensor Pulse Emissions
JP2017062169A (ja) 回路装置、光検出器、物体検出装置、センシング装置、移動体装置、光検出方法、及び物体検出方法
CN112799080A (zh) 深度感测装置及方法
US20210255289A1 (en) Light detection method, light detection device, and mobile platform
US11592513B2 (en) Laser distance measuring apparatus
JP2021001787A (ja) レーザ距離測定装置
JP2021139625A (ja) 物体検知装置
JP6930415B2 (ja) 距離測定装置、移動体装置及び距離測定方法
JP6723307B2 (ja) レーザ距離測定装置
CN210639281U (zh) 一种微型固态激光雷达
JP6804619B1 (ja) レーザ距離測定装置
JP6908015B2 (ja) 光学的測距装置および光学的測距方法
WO2020187677A1 (en) Lidar device for a vehicle and method for increasing the detection range of a corresponding lidar device
JP2019007892A (ja) 情報取得装置、プログラムおよび情報取得システム
CN115166693A (zh) 一种混合固态式激光雷达及激光雷达扫描方法
CN117434551A (zh) 非同轴激光雷达系统及其配置方法
CN117169918A (zh) 激光装置、探测系统及车辆
JPWO2018139525A1 (ja) 検出装置、対象物までの距離を検出する方法、プログラム及び記憶媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302