JP2020521637A5 - - Google Patents

Download PDF

Info

Publication number
JP2020521637A5
JP2020521637A5 JP2019564943A JP2019564943A JP2020521637A5 JP 2020521637 A5 JP2020521637 A5 JP 2020521637A5 JP 2019564943 A JP2019564943 A JP 2019564943A JP 2019564943 A JP2019564943 A JP 2019564943A JP 2020521637 A5 JP2020521637 A5 JP 2020521637A5
Authority
JP
Japan
Prior art keywords
induction coil
electromagnetic field
electromagnetic
less
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019564943A
Other languages
Japanese (ja)
Other versions
JP2020521637A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2018/034389 external-priority patent/WO2018218022A1/en
Publication of JP2020521637A publication Critical patent/JP2020521637A/en
Publication of JP2020521637A5 publication Critical patent/JP2020521637A5/ja
Pending legal-status Critical Current

Links

Description

好ましい実施形態を参照して例示の実施形態を説明した。明らかなこととして、先の詳細な説明を読んで理解すると、改造および変形が他者に想到されよう。例示の実施形態は、かかる全ての改造および変形が特許請求の範囲に記載された本発明の範囲またはその均等範囲に属する限り、かかる全ての変形および改造を含むものとして解されるべきである。
なお、好ましい構成態様として、本発明を次のように構成することもできる。
1.鋳造中の金属の電磁微細化方法であって、電磁閉じ込め場が溶融金属に対して凝固中に作用し、前記方法が、単相磁場を前記金属にかけるステップを含み、前記単相磁場は、前記金属の一方の側にのみ配置された低周波誘導コイルによってかけられる、方法。
2.前記低周波は、0.1〜120Hzである、上記1記載の方法。
3.前記低周波は、準正弦波(quasi-sinusoidal)である、上記2記載の方法。
4.前記低周波は、パルスDCである、上記1記載の方法。
5.前記誘導コイルは、関連の前記電磁場が前記鋳物の全ての区分に浸透して該区分中に電流を誘起するよう形作られるとともに位置決めされている、上記1記載の方法。
6.前記電磁場は、2テスラ未満および6〜60Hzのうちの少なくとも一方を満たす、上記1記載の方法。
7.前記誘導コイルは、800アンペア未満の電力で動作する、上記1記載の方法。
8.軽金属の電磁鋳造方法であって、電磁場が溶融金属に対して凝固中に作用し、前記電磁場は、誘導コイルによって提供され、前記誘導コイルは、前記凝固中、約2テスラ未満の電磁場をもたらす、方法。
9.印加される電流は、単相の交流電流である、上記8記載の方法。
10.前記誘導コイルは、単層コイルまたは多層コイルである、上記8記載の方法。
11.周波数および/または電力および/または電流は、凝固プロセス中に変更される、上記8記載の方法。
12.印加される周波数は、0.1〜120Hz或いは240Hzである、上記8記載の方法。
13.前記誘導コイルは、関連の前記電磁場が加えられる最も低い周波数について最初の2つの浸透深さ内で前記鋳物の全ての区分中に浸透して該区分中に電流を誘起することができるよう形作られるとともに位置決めされている、上記8記載の方法。
14.前記誘導コイルは、800A未満の電流で動作する、上記8記載の方法。
15.凝固中の前記溶融金属の表面速度は、前記方法の少なくとも一部分の間、約0〜12cm/sである、上記8記載の方法。
16.前記方法は、連続鋳造法である、上記8記載の方法。
17.鋳造中の前記軽金属は、合金から成り、前記電磁場は、前記凝固プロセス中、維持されるが弱められる、上記8記載の方法。
18.前記電磁場は、少なくとも実質的に静止している、上記8記載の方法。
19.前記電磁場は、正弦波または準正弦波である、上記8記載の方法。
20.前記電磁場は、パルスDCである、上記8記載の方法。
21.インバータが用いられる、上記8記載の方法。
22.電磁場を生じさせるシステムに供給される電力は、鋳造中の前記金属の温度について10%未満の増大分を生じさせる、上記8記載の方法。
23.前記誘導コイルへの周波数は、凝固中、維持されるが低くされる、上記8記載の方法。
24.前記誘導コイルへの電流は、凝固中、高くされる、上記8記載の方法。
An exemplary embodiment has been described with reference to preferred embodiments. Obviously, if you read and understand the detailed explanation above, modifications and transformations will come to your mind. Illustrative embodiments should be construed as including all such modifications and modifications, as long as all such modifications and modifications fall within the scope of the invention described in the claims or equivalents thereof.
In addition, as a preferable configuration mode, the present invention can also be configured as follows.
1. 1. A method of electromagnetically refining a metal during casting, wherein the electromagnetic confinement field acts on the molten metal during solidification, the method comprising applying a single-phase magnetic field to the metal, wherein the single-phase magnetic field is: A method of being applied by a low frequency induction coil located on only one side of the metal.
2. The method according to 1 above, wherein the low frequency is 0.1 to 120 Hz.
3. 3. 2. The method according to 2 above, wherein the low frequency is a quasi-sinusoidal.
4. The method according to 1 above, wherein the low frequency is a pulse DC.
5. The method according to 1 above, wherein the induction coil is shaped and positioned such that the relevant electromagnetic field penetrates all sections of the casting to induce an electric current in the section.
6. The method according to 1 above, wherein the electromagnetic field satisfies at least one of less than 2 tesla and 6-60 Hz.
7. The method according to 1 above, wherein the induction coil operates at a power of less than 800 amperes.
8. A method of electromagnetic casting of light metals, wherein the electromagnetic field acts on the molten metal during solidification, the electromagnetic field is provided by an induction coil, which provides an electromagnetic field of less than about 2 tesla during the solidification. Method.
9. 8. The method according to 8 above, wherein the applied current is a single-phase alternating current.
10. 8. The method according to 8 above, wherein the induction coil is a single-layer coil or a multi-layer coil.
11. 8. The method of 8 above, wherein the frequency and / or power and / or current is changed during the solidification process.
12. 8. The method according to 8 above, wherein the applied frequency is 0.1 to 120 Hz or 240 Hz.
13. The induction coil is shaped so that it can penetrate through all sections of the casting within the first two penetration depths for the lowest frequency to which the relevant electromagnetic field is applied and induce a current in the section. 8. The method according to 8 above, which is positioned together with.
14. 8. The method according to 8 above, wherein the induction coil operates at a current of less than 800 A.
15. 8. The method of 8 above, wherein the surface velocity of the molten metal during solidification is about 0-12 cm / s for at least a portion of the method.
16. The method according to 8 above, wherein the method is a continuous casting method.
17. 8. The method of 8 above, wherein the light metal during casting is made of an alloy and the electromagnetic field is maintained but weakened during the solidification process.
18. 8. The method of 8 above, wherein the electromagnetic field is at least substantially stationary.
19. 8. The method according to 8 above, wherein the electromagnetic field is a sine wave or a quasi-sine wave.
20. 8. The method according to 8 above, wherein the electromagnetic field is a pulse DC.
21. The method according to 8 above, wherein an inverter is used.
22. 8. The method of 8 above, wherein the power supplied to the system that creates the electromagnetic field produces an increase of less than 10% with respect to the temperature of the metal during casting.
23. 8. The method of 8 above, wherein the frequency to the induction coil is maintained but lowered during solidification.
24. 8. The method according to 8 above, wherein the current to the induction coil is increased during solidification.

Claims (9)

鋳造中のアルミニウム、マグネシウムおよびチタンならびにこれらの合金から選択された金属の電磁微細化方法であって、電磁閉じ込め場が溶融金属に対して凝固中に作用し、前記方法が、単相磁場を前記金属にかけるステップを含み、前記単相磁場は、前記金属の一方の側にのみ配置された、0.1〜120Hzの低周波誘導コイルによってかけられる、方法。 A method of electromagnetic miniaturization of metals selected from aluminum, magnesium and titanium during casting and alloys thereof, wherein an electromagnetic confinement field acts on the molten metal during solidification, the method of creating a single-phase magnetic field. A method comprising the step of applying to a metal, wherein the single-phase magnetic field is applied by a low frequency induction coil of 0.1-120 Hz, located only on one side of the metal. 前記低周波は、パルスDCである、請求項1記載の方法。 The method according to claim 1, wherein the low frequency is a pulse DC. 前記誘導コイルは、関連の前記電磁場が前記鋳物の全ての区分に浸透して該区分中に電流を誘起するよう形作られるとともに位置決めされている、請求項1記載の方法。 The method of claim 1, wherein the induction coil is shaped and positioned such that the associated electromagnetic field permeates all sections of the casting and induces an electric current in the sections. 前記電磁場は、2テスラ未満および6〜60Hzのうちの少なくとも一方を満たす、請求項1記載の方法。 The method of claim 1, wherein the electromagnetic field satisfies at least one of less than 2 tesla and 6-60 Hz. 前記誘導コイルは、800アンペア未満の電力で動作する、請求項1記載の方法。 The method of claim 1, wherein the induction coil operates at a power of less than 800 amperes. 凝固中の前記溶融金属の表面速度は、前記方法の少なくとも一部分の間、約0〜12cm/sである、請求項記載の方法。 The method of claim 3 , wherein the surface velocity of the molten metal during solidification is about 0-12 cm / s for at least a portion of the method. 電磁場を生じさせるシステムに供給される電力は、鋳造中の前記金属の温度について10%未満の増大分を生じさせる、請求項記載の方法。 Power supplied to the system to generate an electromagnetic field causes the increment of less than 10% for a temperature of the metal during casting, the process of claim 1. 前記誘導コイルへの周波数は、凝固中、維持されるが低くされる、請求項記載の方法。 Frequency to the induction coil, during solidification, but is maintained is lowered, the method of claim 1. 前記誘導コイルへの電流は、凝固中、高くされる、請求項記載の方法。 Current to the induction coil, during solidification, it is high, the method of claim 1.
JP2019564943A 2017-05-24 2018-05-24 Electromagnetic metal casting method Pending JP2020521637A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762510472P 2017-05-24 2017-05-24
US62/510,472 2017-05-24
PCT/US2018/034389 WO2018218022A1 (en) 2017-05-24 2018-05-24 Electromagnetic modified metal casting process

Publications (2)

Publication Number Publication Date
JP2020521637A JP2020521637A (en) 2020-07-27
JP2020521637A5 true JP2020521637A5 (en) 2021-07-26

Family

ID=64397057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019564943A Pending JP2020521637A (en) 2017-05-24 2018-05-24 Electromagnetic metal casting method

Country Status (8)

Country Link
US (1) US20210162491A1 (en)
EP (1) EP3630388A4 (en)
JP (1) JP2020521637A (en)
KR (1) KR20200000848A (en)
CN (1) CN110944769A (en)
CA (1) CA3064757A1 (en)
RU (1) RU2019141258A (en)
WO (1) WO2018218022A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB910900A (en) * 1958-11-24 1962-11-21 Salzgitter Huettenwerk Ag Improvements in or relating to the vacuum degassing of fluid metals
FR2530511B1 (en) * 1982-07-23 1985-07-05 Cegedur PROCESS FOR CASTING METALS IN WHICH MAGNETIC FIELDS ARE OPERATED
SE470435B (en) * 1992-08-07 1994-03-07 Asea Brown Boveri Methods and apparatus for stirring a metal melt
SE9503898D0 (en) * 1995-11-06 1995-11-06 Asea Brown Boveri Methods and apparatus for casting metal
SE512692C2 (en) * 1998-03-02 2000-05-02 Abb Ab Method and apparatus for continuous casting
CA2325808C (en) * 2000-07-10 2010-01-26 Kawasaki Steel Corporation Method and apparatus for continuous casting of metals
CN1425519A (en) * 2002-10-25 2003-06-25 东北大学 Aluminium alloy low frequency electromagnetic oscillation semicontinuous casting crystal grain fining method and device
CN100357047C (en) * 2005-11-25 2007-12-26 上海大学 Apparatus for refining grain by electromagnetic oscillation of steel billet
CN101391291B (en) * 2008-11-05 2010-12-08 江苏大学 Metal matrix composition home-position synthesizing method in combined electric magnetic field
CN101391290B (en) * 2008-11-05 2010-12-08 江苏大学 Method for synthesizing metal matrix composition using metal reaction under the coupling action of magnetic field and ultrasonic field

Similar Documents

Publication Publication Date Title
Wang et al. Preparation of an Mg–Gd–Zn alloy semisolid slurry by low frequency electro-magnetic stirring
Zeng et al. Effect of permanent magnet stirring on solidification of Sn-Pb alloy
Guo et al. Microstructural refinement of DC cast AZ80 Mg billets by low frequency electromagnetic vibration
JP2020521637A5 (en)
ATE249900T1 (en) USE OF AN INDUCTION CRUCBLE FURNACE FOR LOW-PRESSURE CASTING OF ALUMINUM AND MAGNESIUM ALLOY CASTINGS
JP2007522425A (en) Cold crucible induction furnace
WO2005097400A1 (en) Member attaching/detaching device
Wang et al. Effect of current on solute transport in electroslag remelting dual alloy ingot
US20210220905A1 (en) Method for producing sheet ingots by vertical casting of an aluminium alloy
Zhao et al. Effect of low-frequency magnetic field on microstructures of horizontal direct chill casting 2024 aluminum alloy
RU2019141258A (en) Modified method of casting metals in an electromagnetic field
Musaeva et al. Experimental investigation of Al-alloy directional solidification in pulsed electromagnetic field
Prodhan Effect of electric current (plasma) treatment on LM-6 Al-Si alloy
JPS6011585B2 (en) Molten metal electromagnetic stirring method
Seyboldt et al. Numerical simulation of the induction heating of hybrid semi-finished materials into the semi-solid state
UA131179U (en) METHOD OF PREPARATION OF ALUMINUM LIGATURES IN MAGNETIC HYDRODYNAMIC INSTALLATIONS
JP3205018B2 (en) Manufacturing method of continuous cast slab with excellent surface properties
US20180177001A1 (en) Enhanced Coreless Induction Furnace Stirring
Lorenzen et al. Electromagnetic Casting of Aluminium: Analyzing the Effect of EM Fields on Al and Al-Si Alloy Compared to Commercial Grain Refiners
JP2005150066A (en) Efficient heater coil for induction heating
SU396165A1 (en) METHOD OF CONTINUOUS METAL CASTING
DE3668124D1 (en) DEVICE AND METHOD FOR CONTINUOUSLY CASTING METALS.
RU2578879C1 (en) Method for production of titanium-corrosion-resistant steel by electroslag remelting
JP2940942B2 (en) Electromagnetic casting of molten metal and its equipment.
Wang et al. Effect of magneto-acoustic waves on solidification structures of metal