JP2020515107A - 経路損失推定方法およびデバイス - Google Patents

経路損失推定方法およびデバイス Download PDF

Info

Publication number
JP2020515107A
JP2020515107A JP2019536023A JP2019536023A JP2020515107A JP 2020515107 A JP2020515107 A JP 2020515107A JP 2019536023 A JP2019536023 A JP 2019536023A JP 2019536023 A JP2019536023 A JP 2019536023A JP 2020515107 A JP2020515107 A JP 2020515107A
Authority
JP
Japan
Prior art keywords
path loss
specific
layer
downlink
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019536023A
Other languages
English (en)
Other versions
JP6938642B2 (ja
JP2020515107A5 (ja
Inventor
ゼンウェイ・ゴン
ジャヴァド・アブドリ
モハンマドハディ・バリ
Original Assignee
ホアウェイ・テクノロジーズ・カンパニー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホアウェイ・テクノロジーズ・カンパニー・リミテッド filed Critical ホアウェイ・テクノロジーズ・カンパニー・リミテッド
Publication of JP2020515107A publication Critical patent/JP2020515107A/ja
Publication of JP2020515107A5 publication Critical patent/JP2020515107A5/ja
Application granted granted Critical
Publication of JP6938642B2 publication Critical patent/JP6938642B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3911Fading models or fading generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ユーザ機器(UE)における経路損失推定の方法は、同期チャネルおよびブロードキャストチャネル復調基準信号を備えるダウンリンクセル固有信号ブロックを受信するステップと、ダウンリンクセル固有信号ブロックの信号送信電力を示す制御情報を受信するステップと、レイヤ3フィルタリング係数を使用してフィルタリングされたダウンリンクセル固有信号ブロックの信号送信電力およびダウンリンクセル固有信号ブロックの受信電力に少なくとも部分的に基づいて、UEについての推定経路損失を決定するステップと、を備える。

Description

関連する出願への相互参照
この出願は、2016年12月30日に出願された、発明の名称を「PATH LOSS ESTIMATION METHOD」とする米国仮出願第62/440,464号の利益を主張し、その出願は、これによって、その全体が参照によりここに組み込まれる。
本開示は、一般に、ワイヤレスネットワーク、詳細には、基地局とユーザ機器の間の経路損失を推定することに関する。
基地局とユーザ機器(UE)の間の経路損失(PL)推定は、UEがアップリンク送信のためにその送信電力を効率的に管理することを可能にする。そして、LTE(ロングタームエボリューション)では、PLは、常に、セル固有基準信号(CRS)に基づいて推定される。しかし、CRSのみを基にしたPL推定は、新しい無線(NR)システムについては柔軟ではない。それゆえに、より具体的な経路損失推定の測定および方法は、業界によって歓迎されるであろう。
本開示の第1の態様によれば、同期チャネルおよびブロードキャストチャネル復調基準信号を備えるダウンリンクセル固有信号ブロックを受信するステップと、ダウンリンクセル固有信号ブロックの信号送信電力を示す制御情報を受信するステップと、レイヤ3フィルタリング係数を使用してフィルタリングされたダウンリンクセル固有信号ブロックの信号送信電力およびダウンリンクセル固有信号ブロックの受信電力に少なくとも部分的に基づいて、UEについての推定経路損失を決定するステップと、を備える、ユーザ機器(UE)における経路損失推定の方法が提供される。
任意選択で、第1の態様のいくつかの実施形態では、方法は、基地局からレイヤ3フィルタリング係数を受信するステップをさらに備える。
任意選択で、第1の態様のいくつかの実施形態では、方法は、レイヤ3フィルタリング係数をデフォルト値としてUEのメモリに記憶するステップをさらに備える。
任意選択で、第1の態様のいくつかの実施形態では、方法は、少なくとも1つのダウンリンクUE固有基準信号を受信するステップをさらに備え、UEについての経路損失は、少なくとも1つのダウンリンクUE固有基準信号のいずれにも基づかない。
本開示の第2の態様によれば、1つ以上のプロセッサと、1つ以上のプロセッサによって実行されるとき、1つ以上のプロセッサに、本開示の第1の態様による方法を実行させる命令を記憶したメモリ記憶装置と、を含むワイヤレスデバイスが提供される。
本開示の第3の態様によれば、複数の別個のダウンリンクセル固有信号ブロックを受信するステップと、ダウンリンクセル固有信号ブロックの各々についての信号送信電力を示す制御情報を受信するステップと、UEについての複数の推定経路損失を決定するステップであって、各推定経路損失は、複数のダウンリンクセル固有信号ブロックのうちの1つに対応し、少なくとも部分的に、レイヤ3フィルタリング係数を使用してフィルタリングされたダウンリンクセル固有信号ブロックの信号送信電力および受信電力から導出される、ステップと、を備える、ユーザ機器(UE)における経路損失推定の方法が提供される。
任意選択で、第3の態様のいくつかの実施形態では、方法は、基地局からレイヤ3フィルタリング係数を受信するステップをさらに備える。
任意選択で、第3の態様のいくつかの実施形態では、方法は、レイヤ3フィルタリング係数をデフォルト値としてUEのメモリに記憶するステップをさらに備える。
任意選択で、第3の態様のいくつかの実施形態では、方法は、複数の推定経路損失から1つの推定経路損失をUEについての推定経路損失として選択するステップをさらに備える。
任意選択で、第3の態様のいくつかの実施形態では、方法は、少なくとも1つのダウンリンクUE固有基準信号を受信し、UEについての複数の別個の推定経路損失を決定するステップをさらに備え、推定経路損失の各々は、セル固有信号ブロックのそれぞれ1つに対応し、少なくとも1つのダウンリンクUE固有基準信号からではなく、複数の別個のダウンリンクセル固有信号ブロックから導出される。
本開示の第4の態様によれば、1つ以上のプロセッサと、1つ以上のプロセッサによって実行されるとき、1つ以上のプロセッサに、本開示の第3の態様による方法を実行させる命令を記憶したメモリ記憶装置と、を含むワイヤレスデバイスが提供される。
第5の態様によれば、ダウンリンクUE固有基準信号を受信するステップと、UE固有基準信号の信号送信電力を示す制御情報を受信するステップと、レイヤ1またはレイヤ2フィルタリング係数を使用してフィルタリングされたダウンリンクUE固有基準信号の信号送信電力および受信電力に少なくとも部分的に基づいて、UEについての推定経路損失を決定するステップと、を備える、UEにおける経路損失推定の方法が提供される。
任意選択で、第5の態様のいくつかの実施形態では、方法は、基地局からレイヤ1またはレイヤ2フィルタリング係数を受信するステップをさらに備える。
任意選択で、第5の態様のいくつかの実施形態では、方法は、レイヤ1またはレイヤ2フィルタリング係数をデフォルト値としてUEのメモリに記憶するステップをさらに備える。
本開示の第6の態様によれば、1つ以上のプロセッサと、1つ以上のプロセッサによって実行されるとき、1つ以上のプロセッサに、本開示の第5の態様による方法を実行させる命令を記憶したメモリ記憶装置と、を含むワイヤレスデバイスが提供される。
本開示の第7の態様によれば、複数の別個のダウンリンクUE固有基準信号を受信するステップと、UE固有基準信号の各々についての信号送信電力を示す制御情報を受信するステップと、UEについての複数の推定経路損失を決定するステップであって、各推定経路損失は、ダウンリンクUE固有基準信号のうちの1つに対応し、少なくとも部分的に、レイヤ1またはレイヤ2フィルタリング係数を使用してフィルタリングされたそのダウンリンクUE固有基準信号の信号送信電力および受信電力から導出される、ステップと、を備える、UE(ユーザ機器)における経路損失推定の方法が提供される。
任意選択で、第7の態様のいくつかの実施形態では、方法は、基地局からレイヤ1またはレイヤ2フィルタリング係数を受信するステップをさらに備える。
任意選択で、第7の態様のいくつかの実施形態では、方法は、レイヤ1またはレイヤ2フィルタリング係数をデフォルト値としてUEのメモリに記憶するステップをさらに備える。
任意選択で、第7の態様のいくつかの実施形態では、方法は、経路損失選択のための指示シグナリングを受信し、指示シグナリングに従って推定経路損失のうちの特定の1つを選択するステップをさらに備える。
本開示の第8の態様によれば、1つ以上のプロセッサと、1つ以上のプロセッサによって実行されるとき、1つ以上のプロセッサに、本開示の第7の態様による方法を実行させる命令を記憶したメモリ記憶装置と、を含むワイヤレスデバイスが提供される。
本開示の第9の態様によれば、複数の別個のダウンリンクUE固有基準信号セットを受信するステップであって、各セットが少なくとも1つのダウンリンクUE固有基準信号を備える、ステップと、各UE固有基準信号セット内の各UE固有基準信号についての信号送信電力を示す制御情報を受信するステップと、UEについての複数の推定経路損失を決定するステップであって、各推定経路損失は、ダウンリンクUE固有基準信号セットのそれぞれ1つに対応し、各ダウンリンクUE固有基準信号セットについて、そのUE固有基準信号セットに対応する推定経路損失は、少なくとも部分的に、そのUE固有基準信号セット内の各ダウンリンクUE固有基準信号についての信号送信電力、およびレイヤ1またはレイヤ2フィルタリング係数を使用してフィルタリングされたそのダウンリンクUE固有基準信号の受信電力から導出される、ステップと、を備える、ユーザ機器(UE)における経路損失推定の方法が提供される。
任意選択で、第9の態様のいくつかの実施形態では、方法は、経路損失選択のための指示シグナリングを受信し、指示シグナリングに従って推定経路損失のうちの特定の1つを選択するステップをさらに備える。
任意選択で、第9の態様のいくつかの実施形態では、方法は、指示シグナリングからレイヤ1またはレイヤ2フィルタリング係数を決定するステップをさらに備える。
任意選択で、第9の態様のいくつかの実施形態では、方法は、レイヤ1またはレイヤ2フィルタリング係数をデフォルト値としてUEのメモリに記憶するステップをさらに備える。
本開示の第10の態様によれば、1つ以上のプロセッサと、1つ以上のプロセッサによって実行されるとき、1つ以上のプロセッサに、本開示の第9の態様による方法を実行させる命令を記憶したメモリ記憶装置と、を含むワイヤレスデバイスが提供される。
本開示の第11の態様によれば、ダウンリンクセル固有信号ブロックを受信するステップと、ダウンリンクUE固有基準信号を受信するステップと、レイヤ3フィルタリング係数を使用してフィルタリングされたダウンリンクセル固有信号ブロックから導出された第1のフィルタリングされた経路損失と、レイヤ1またはレイヤ2フィルタリング係数を用いてフィルタリングされたUE固有基準信号セットから導出された第2のフィルタリングされた経路損失とに少なくとも部分的に基づいて、推定経路損失を決定するステップと、を備える、UEにおける経路損失推定の方法が提供される。
任意選択で、第11の態様のいくつかの実施形態では、方法は、経路損失選択のための制御シグナリングを受信し、制御シグナリングに従って、第1のフィルタリングされた経路損失と第2のフィルタリングされた経路損失の間で推定経路損失の決定を配分するステップをさらに備える。
本開示の第12の態様によれば、1つ以上のプロセッサと、1つ以上のプロセッサによって実行されるとき、1つ以上のプロセッサに、本開示の第11の態様による方法を実行させる命令を記憶したメモリ記憶装置と、を含むワイヤレスデバイスが提供される。
本開示の第13の態様によれば、ダウンリンクセル固有信号ブロックを受信するステップと、ダウンリンクUE固有基準信号を受信するステップと、UEが第1のチャネルについてセル固有信号ブロックを基にした経路損失を使用するように構成されているならば、ダウンリンクUE固有基準信号の受信電力ではなく、ダウンリンクセル固有信号ブロックの受信電力に少なくとも部分的に基づいて、第1のチャネルについての推定経路損失を決定するステップと、UEが第2のチャネルについてUE固有基準信号を基にした経路損失を使用するように構成されているならば、ダウンリンクセル固有信号ブロックの受信電力ではなく、ダウンリンクUE固有基準信号の受信電力に少なくとも部分的に基づいて、第2のチャネルについての推定経路損失を決定するステップと、を備える、ユーザ機器(UE)における経路損失推定の方法が提供される。
任意選択で、第13の態様のいくつかの実施形態では、方法は、UEが第3のチャネルについてセル固有信号ブロックとUE固有基準信号の両方を基にした経路損失を使用するように構成されているならば、ダウンリンクUE固有基準信号の受信電力とダウンリンクセル固有信号ブロックの受信電力の両方に少なくとも部分的に基づいて、第3のチャネルについての推定経路損失を決定するステップをさらに備える。
本開示の第14の態様によれば、1つ以上のプロセッサと、1つ以上のプロセッサによって実行されるとき、1つ以上のプロセッサに、本開示の第13の態様による方法を実行させる命令を記憶したメモリ記憶装置と、を含むワイヤレスデバイスが提供される。
本開示の第15の態様によれば、アクティブ状態から非アクティブ状態に入るステップであって、非アクティブ状態はアイドル状態とは異なる、ステップと、ダウンリンクセル固有信号ブロックを受信するステップと、UEが非アクティブ状態にある間に決定されたダウンリンクセル固有信号ブロックの受信電力、またはUEがアクティブ状態にあった間に決定された記憶された経路損失値に少なくとも部分的に基づいて、UEについての推定経路損失を決定するステップと、を備える、ユーザ機器(UE)における経路損失推定の方法が提供される。
任意選択で、第15の態様のいくつかの実施形態では、方法は、UEが非アクティブ状態である間に、レイヤ3フィルタリング係数を取得するステップと、UEが非アクティブ状態にある間に、ダウンリンクセル固有信号ブロックの受信電力を決定するステップと、UEが非アクティブ状態にある間に、UEについての推定経路損失を決定するために、レイヤ3フィルタリング係数を使用して、ダウンリンクセル固有信号ブロックの受信電力をフィルタリングするステップと、をさらに備える。
本開示の第16の態様によれば、1つ以上のプロセッサと、1つ以上のプロセッサによって実行されるとき、1つ以上のプロセッサに、本開示の第15の態様による方法を実行させる命令を記憶したメモリ記憶装置と、を含むワイヤレスデバイスが提供される。
添付図面において、以下の通りである。
非限定的な実施形態による、基地局、およびその基地局のカバレージエリア内の対応するUEを表す無線アクセスネットワークのブロック図である。 非限定的な実施形態による、アップリンクおよびダウンリンク通信を例示する。 非限定的な実施形態による、リソースブロックを概略的に例示する。 具体的かつ非限定的な実装の例による、経路損失を推定するためのフローチャートを例示する。 具体的かつ非限定的な実装の例による、経路損失を推定するためのフローチャートを例示する。 具体的かつ非限定的な実装の例による、経路損失を推定するためのフローチャートを例示する。 具体的かつ非限定的な実装の例による、経路損失を推定するためのフローチャートを例示する。 具体的かつ非限定的な実装の例による、経路損失を推定するためのフローチャートを例示する。 具体的かつ非限定的な実装の例による、経路損失を推定するためのフローチャートを例示する。 具体的かつ非限定的な実装の例による、経路損失を推定するためのフローチャートを例示する。 具体的かつ非限定的な実装の例による、経路損失を推定するためのフローチャートを例示する。 具体的かつ非限定的な実装の例による、経路損失を推定するためのフローチャートを例示する。 具体的かつ非限定的な実装の例による、経路損失を推定するためのフローチャートを例示する。 具体的かつ非限定的な例による、様々な基準信号を例示する。 具体的かつ非限定的な例による、ビーム識別測定のための基準信号の使用を例示する。 具体的かつ非限定的な例による、ビーム識別測定のための基準信号の使用を例示する。 具体的かつ非限定的な例による、それぞれのビームに対応する基準信号についての受信電力を例示する。 具体的かつ非限定的な例による、それぞれのビームに対応する基準信号についての受信電力を例示する。 具体的かつ非限定的な例による、ビーム識別測定のための基準信号の使用を例示する。 具体的かつ非限定的な例による、ビーム識別測定のための基準信号の使用を例示する。 具体的かつ非限定的な例による、ビーム識別測定のための基準信号の使用を例示する。 通信システムのネットワーク図である。 例示の基地局のブロック図である。 例示のユーザ機器のブロック図である。 構成要素モジュールのブロック図である。
説明および図面は、単に、発明のある実施形態の例示の目的のためのものであり、理解するための助けであることが明確に理解されるべきである。それらは、発明の限定の定義であるように意図されない。
図1を参照して、本発明の様々な非限定的な実施形態をサポートすることが可能であり得る無線アクセスネットワーク100が表されている。特に、電磁波を使用してモバイルユーザ機器(UE)と通信する基地局BS1が表されている。基地局BS1は、たとえば光ファイバーリンクのような固定大容量リンクを使用してコアネットワークに接続される。単純さのために、1つのみの基地局BS1が図1に表されているが、無線アクセスネットワーク100内の基地局の数について特別な限定はないことが理解されるべきである。
基地局BS1は、基地局BS1のカバレージエリアC1内のUEと通信する。図1における実施形態では、単純さのために表された1つのカバレージエリアC1があるが、複数のカバレージエリアがあってもよいことが認識されるべきである。各それぞれのカバレージエリアが基地局と関連付けられ得る。これに関して、UEが1つのカバレージエリアから他へ移動するとき、通信は、ハンドオフとして知られるプロセスを使用して、新しいカバレージエリアと関連付けられた基地局に切り替わる。いくつかの実施形態では、UEは、様々な動作要因に依存して、1つより多くのカバレージエリアと関連付けられた基地局と通信し得る。
UEは、2つ以上の状態で動作し得る。たとえば、UEの各々は、「IDLE」または「ACTIVE」状態で動作し得る。IDLE状態では、UEのうちの特定の1つ、たとえばUE101は、基地局BS1とアクティブに通信しない。ACTIVE状態では、UEのうちの特定の1つは、基地局BS1とアクティブに通信する。たとえば、特定のUE101が基地局BS1に接続するとき、基地局BS1とアクティブに通信する前のその状態は、IDLEであることが可能であり、そしてそれがアクティブに通信する後、その状態はACTIVEであることが可能である。具体的かつ非限定的な実装の例によれば、RRC(無線リソース制御)プロトコル層がUE101内に存在し、その機能は、UE101と基地局BS1の間のRRC接続を確立すること、維持すること、および解放することを含む。この例では、RRC接続が確立されているとき(すなわち、RRC_CONNECTED)、UE101はACTIVE状態にあり、RRC接続が確立されていないならば、UE101はIDLE状態(すなわち、RRC_IDLE)にある。様々な状態の命名法は、実際の実装では異なることがあり、それゆえに、状態名は、例示の目的のためにのみ提供される。
UEは、様々な形式をとることができる。1つの非限定的な実施形態では、UEは、スマートフォン、タブレット、ラップトップ、車載用通信デバイス、または無線アクセスネットワーク全体にわたって異なる比率での各種のそのようなデバイスであり得る。UEの各々は、各種の機能を実行するためのハードウェア、ソフトウェア、および/または制御ロジックを装備されている。たとえば、UE101は、基地局との無線リンクを確立するおよび/または維持するためのRF通信ユニット(アンテナ、復調器、プロセッサなどを含む)を装備され得る。UE101は、RF通信ユニットから受信されたシンボルをデータストリームにデコードするためのデータデコーダと、RF通信ユニットを介した基地局BS1への送信のためにデータストリームをシンボルにエンコードするためのデータエンコーダとをさらに含み得る。データストリームそれら自体は、UE101内の計算デバイスによって処理される。この目的で、計算デバイスは、プロセッサ、メモリ、1つ以上のバス(たとえばデータバス、制御バスなど)、およびI/Oインターフェースを備える。I/Oインターフェースは、データエンコーダおよびデータデコーダとインターフェースすることに加えて、タッチスクリーン、マイクロフォン、ラウドスピーカー、キーボードなどのような1つ以上の入力および/または出力デバイスを介してUE101のユーザとインターフェースする。
図2を追加で参照して、基地局BS1からUEへの通信は、ダウンリンク(DL)通信と呼ばれる。UEから基地局への通信は、アップリンク(UL)通信と呼ばれる。
基地局BS1は、「リソース要素」または「リソースブロック」として知られるRFスペクトルの部分の上でUEと通信する。図3を参照して、たとえば、時間および周波数は、それぞれ、フレームおよび搬送波に分割され得る。時間フレームは、サブフレームに分割されてもよく、サブフレームは、そしてタイムスロットにさらに分割されてもよい。特定の周波数搬送波における1つのタイムスロットは、リソースブロックと呼ばれることがある。(異なる周波数搬送波における)複数のリソースブロックは、同じタイムスロットを占有することができ、(異なるタイムスロットを占有する)複数のリソースブロックは、同じ周波数搬送波を占有することができる。特定のタイムスロットおよび特定の周波数搬送波と関連付けられたリソースブロックについて、タイムスロットは、複数のシンボルまたはスロットの他の細分に分割されてもよく、一方、周波数搬送波は、複数の副搬送波に分割されてもよい。
リソースブロックは、様々なやり方で基地局BS1とUEの間のULおよびDL通信に割り振られ得る。たとえば、UEは、ULフレームを送信してもよく、基地局BS1は、DLフレームを送信してもよい。ULフレームとDLフレームは、周波数において、または時間において分離され得る。いくつかの実施形態では、ULおよびDLサブフレームは、周波数によって分離され、連続的かつ同期的に送信される。他の実施形態では、ULサブフレームおよびDLサブフレームは、同じ周波数において送信され、時間領域において多重化されてもよい。他の実施形態では、他の様々なULおよびDL通信構成が可能である。
DLおよび/またはUL通信は、複数のアンテナポートとともに使用され得る。複数のアンテナポートは、より大きいデータ信頼性を提供し(送信ダイバーシティ)、および/またはデータレートを増加させる(空間多重化)ために使用されることができる。たとえば、送信ダイバーシティでは、1つのアンテナポートと同じ量のデータを送信するために、複数のアンテナポートが基地局BS1において使用され得る。たとえば、空間多重化は、1つより多くの受信アンテナを有するUEにデータを送信するために、基地局BS1において複数のアンテナポートを使用し得る。ビームフォーミングは、複数のアンテナポートが使用されるときに信号の送信および/または受信を方向付けるために使用される信号処理技法であり、基地局BS1および/またはUEにおいて使用され得る。プリコーディングは、送信アンテナから放射された信号が適切な位相および利得重み付けを提供されるように、ビームフォーミング技法を実装する際に使用され得る。適切な位相および利得重み付けは単に例であり、実施形態において任意の他の適した空間パラメータが適用されてもよいことが理解される。プリコーディングは、送信機および/または受信機におけるチャネル状態情報(CSI)の知識を要求し得る。特に6GHzを上回る送信周波数において、基地局BS1および/またはUEにおいて複数のアンテナが提供され得る。複数の送信および受信アンテナを使用する多入力多出力(MIMO)は、より良い信号性能および/またはより高いデータレートを提供し得ることが認識されるべきである。
DL通信は、同期および/または基準の目的のためにUEによって典型的に使用される1つ以上の物理信号を含み得る。信号は、具体的かつ様々な位置においてDLフレーム全体にわたって広がるリソースブロックにおいて送信され得る。たとえば、信号は、DL通信において基地局BS1から送信され、リソースユニットまたはリソースブロックにマッピングされた信号に対応し得る1つ以上の信号ブロック内でUEにおいて受信され得る。基地局BS1からUEに送信される1つ以上の物理信号は、基地局BS1に接続するためにUEによって典型的に使用される1つ以上の同期信号を含み得る。1つ以上の信号は、経路損失を推定するためにUEによって最終的に使用されることができる1つ以上の基準信号を含み得る。信号および/またはブロックは、セル固有であってもよく、かつ/またはUE固有であってもよい。たとえば、セル固有の信号またはブロックは、UEのいずれかによって使用されてもよく、一方、UE固有の信号またはブロックは、1つ以上の具体的なUEによる使用のために意図されてもよい。
基地局BS1からUEに送信される同期信号は、たとえば、UEによる同期目的のためにのみ従来使用されているプライマリ同期信号(PSS)およびセカンダリ同期信号(SSS)を含み得る。同期信号の数は、実際の実装では変わることがあり、前に言及した同期信号は、例示の目的のために提供される。先行する通信技法(たとえば、ロングタームエボリューション(LTE)通信)では、同期信号(たとえば、PSSおよびSSS)は、同期の目的のために使用されたが、経路損失推定の目的のために使用されなかったことが認識されるべきである。
基地局BS1からUEに送信される基準信号は、たとえば、
・チャネル周波数応答および/またはクロスチャネル効果についてDLフレームを補償するためにいずれかのUEによって使用され、および/または経路損失推定において最終的に使用され得るセル固有基準信号(CRS)、
・ハンドオーバ測定のために1つのセル内のいずれかのUEによって使用され得るモビリティ測定基準信号(MRS)、
・ビームの識別のために1つのセル内のいずれかのUEによって使用され得るビーム測定基準信号(BRS)、
・ブロードキャストチャネル(たとえばPBCH)を復調するために1つのセル内のいずれかのUEのために使用され得る、ブロードキャストチャネルのための復調された基準信号(B-DMRS)、
・チャネルリンク(たとえば、CSI-RS)を測定し、このUEのための割り振られた物理チャネル(たとえば、DMRS)を復調するために、1つのUE(たとえば、UE101)のために具体的に構成され得るUE固有基準信号、
・および/または任意の他の適した基準信号
を含み得る。
基準信号は、基準信号セットにグループ分けされてもよい。たとえば、各信号セットは、別個の基準信号のグループを有し得る。セット内の基準信号のグループ分けは、具体的な送信ビームに対応する信号に基づいてもよく、ビーム識別のために使用されてもよい。
具体的かつ非限定的な例によれば、図14は、様々な基準信号を例示する。この例では、3つのUEについて周波数単位で様々な基準信号が例示されている。加えて、様々な基準信号が、また、時間単位で例示される。3つのUEの各々は、BRS、MRS、PSS、SSS、およびPBCHのためのDMRSを含む信号を受信するであろう。
上記で述べたように、基準信号は、基準信号セットにグループ分けされてもよい。各基準信号セットは、1つのビームと関連付けられ、各基準信号セットは、図14に例示されるように、それ自体のBRS、MRS、PSS、SSS、およびPBCHのためのDMRSを含む。それゆえに、UEの各々は、BRS、MRS、PSS、SSSおよびPBCHのためのDMRSを含む基準信号を受信するであろう。
様々な基準信号の命名法は、実際の実装では異なることがあり、それゆえに、基準信号名は、例示の目的のためにのみ提供される。したがって、チャネル同期、チャネル測定、ビーム識別、ブロードキャスト/ユニキャストチャネルを復調すること、および/または任意の他の適した機能のために具体的な基準信号が提供されることができることが認識されるべきである。
前に言及した信号のいくつかは、ACTIVE状態にあるときにUEによって使用されるのみであってもよく、これは、UEが基地局とアクティブに通信することを意味するとして上記で説明されている。それは、UE101がIDLE状態にあるとき、UE101はUE固有である信号を典型的に使用しないであろう、ということになる。
具体的かつ非限定的な例によれば、図15Aおよび15Bは、ビーム識別測定のための基準信号および基準信号セットの使用を例示する。図15Aにおける例では、3つのそれぞれのワイドビームの測定のために、3つの基準信号CSI-RS1、CSI-RS2、CSI-RS3が別々に構成されることができる。ここで図15Bにおける例に移ると、3つのワイドビームが同様に測定されることができる。第2のワイドビームCSI-RS2は、3つのナロービームを使用して測定されることができる。より具体的には、この例では、3つのナロービームは、基準信号セット内の3つの基準信号CSI-RS2-1、CSI-RS2-2、CSI-RS2-3から測定されることができる。したがって、この例では、第2のワイドビームを測定するために、ナロービームを基にした測定値の3つすべてが、第2のワイドビーム測定値を決定するために組み合わされる(たとえば平均化される)ことができる。それゆえに、図15Bにおける例では、第2のワイドビーム測定値は、基準信号セットに基づく。
ここで説明される信号の少なくともいくつかは、経路損失推定の目的のために従来生成されていないことが認識されるべきである。経路損失推定のために従来使用されていない信号の、経路損失推定のための使用は、基地局送信オーバーヘッドを増加させることなく、経路損失推定が行われることを可能にすることがさらに認識されるべきである。
DL通信は、他の情報の送信を含み得る。たとえば、DLフレームは、1つ以上のチャネルを含み得る。1つ以上のチャネルは、具体的かつ様々な位置においてDLフレーム全体にわたって広がるリソースブロックにおいて送信され得る。1つ以上のチャネルは、1つ以上の制御チャネルおよび/または1つ以上のブロードキャストチャネルを含み得る。たとえば、制御チャネルは、データの送信を管理し、および/または基地局BS1に接続することを可能にするために必要な制御情報を提供し得る。たとえば、制御情報は、この文書内の他の場所で論じられるように、信号送信電力(TxP)および/またはフィルタリング係数を含み得る。一般的に言って、信号送信電力(TxP)情報は、基準信号の、ブロックまたはセット内の信号の、および/またはブロックまたはセットそれら自体の送信電力レベルのような情報を含み得る情報である。ブロードキャストチャネルは、たとえば、基地局BS1から1つ以上のUEへのデータのその送信のための前に言及したチャネルの1つ以上を含み得る。ブロードキャストチャネルは、それぞれのブロードキャストチャネルを復調することを支援する目的のために、それぞれのブロードキャストチャネル復調基準信号と関連付けら得る。
ここで特定のUE101を考えると、この例では、UE101は、特定の周波数チャネルに同調し、1つ以上の同期信号を受信することによって、基地局BS1とのアクティブな接続を確立し得る。この時点において、UE101は、IDLE状態にある。1つ以上の同期信号から、UE101は、DLフレーム内でさらなる情報を受信することができ、最終的に、基準信号の1つ以上の位置を決定することができる。1つ以上の基準信号を受信することから、UE101は、最終的に、対応する経路損失推定値を決定することができ、それはこの文書内の他の場所でさらに論じられる。経路損失推定から、UE101は、UE101から基地局BS1へのUL通信の送信電力(たとえば、ULフレームの電力)を決定することが可能であり、それは基地局BS1とのアクティブな通信を確立するために使用される。いったんUE101が基地局BS1とアクティブに通信すると、UE101の状態は、IDLE状態からACTIVE状態に遷移する。アクティブな接続を確立した後、UE101から基地局BS1へのUL通信の送信電力(たとえば、ULフレームの電力)の電力制御が存在し続け、これは「閉ループ」または「開ループ」とすることができる。開ループ電力制御では、UE101は、それ自体の電力設定アルゴリズムによってその送信電力を決定し、閉ループ電力制御では、いくつかのフィードバック入力が、調整送信電力のために基地局BS1によって提供される。
UE101は、受信電力(RxP)を決定するために受信DL通信(たとえば、DLフレーム、リソースブロック、信号、チャネル、信号セットなど)を処理し得る。RxPの決定は、様々な形式で実装され得る。たとえば、受信信号、信号ブロック、信号セット、および/またはリソースブロックは、受信電力(RxP)を取得するために、様々な動作要因に依存して、レイヤ1(L1)、レイヤ2(L2)、および/またはレイヤ3(L3)の「フィルタリング係数」を使用して処理されることが可能であり、業界で一般的に使用されるように、L1は物理(またはビット)層を指し、L2はデータリンク(またはフレーム)層を指し、L3はネットワーク(またはパケット)層を指す。さらに、ネットワーク層L3は「高レイヤ」と呼ばれることもある。L3フィルタリング係数を使用した、受信されたリソースブロック、信号、信号セット、チャネル、または同様のものの処理は、「L3フィルタリング」と呼ばれることがあり、一方、L1および/またはL2フィルタリング係数を使用した、受信されたリソースブロック、信号、信号セット、チャネル、または同様のものの処理は、「L1および/またはL2フィルタリング」と呼ばれることがある。一般に、リソースブロック、信号、信号セット、チャネル、または同様のもののうちの少なくとも1つを処理することによって決定される受信電力RxPは、基準信号受信電力(RSRP)と呼ばれることもある。L3フィルタリングに基づくRSRPはL3-RSRPであり、L1および/またはL2フィルタリングに基づくRSRPはL1-RSRP/L2-RSRPである。
さらに、レイヤ3、レイヤ2、および/またはレイヤ1フィルタリング係数についての指示は任意選択とすることができる。たとえば、RRC接続なしのUEの場合(たとえば、UEがIDLE状態および/またはINACTIVE状態にあるとき)、L3フィルタリング係数は、メモリ2208から取得され、基地局から任意の指示が提供されることなく、デフォルト値として設定され得る。同様に、ACTIVE状態にあるUEの場合、L1および/またはL2フィルタリング係数は、メモリ2208から取得され、基地局から任意の指示が提供されることなく、デフォルト値として設定され得る。これは、ここで説明される実施形態の1つ以上に適用され得る。
一実施形態によれば、L1および/またはL2フィルタリングは、UE101がACTIVE状態にあるときに生じるのみである。たとえば、UE101が、少なくとも1つのL1またはL2フィルタリング係数を用いて、少なくとも1つのUE固有基準信号の受信電力(RxP)を測定するように構成されるとき、UE101は、式
Gn=(1-β)・Gn-1+β・RxPn
によって、フィルタリングされたRxPを決定し得る。ここで、Gnは更新されたフィルタリングされた測定結果を表現し、Gn-1は古いフィルタリングされた測定結果を表現し、RxPnは最近受信された測定結果を表現し、βはフィルタリング係数、この場合、L1および/またはL2フィルタリング係数である。
L3フィルタリングは、UE101がACTIVE状態またはIDLE状態にあるときに生じ得る。たとえば、L3フィルタリングは、式
Fn=(1-α)・Fn-1+α・Mn
によって行われ得る。
Fn=これは、測定報告のために使用され、更新されたフィルタリングされた測定結果を表現し、
Fn-1=これは、古いフィルタリングされた測定結果を表現し、
Mn=物理層からの最近受信された測定結果であり、
α=1/2^(k/4)であり、kは量構成パラメータによって受信された対応する測定量についてのフィルタ係数である。パラメータαはL3フィルタリング係数である。
一般的に言って、具体的な信号の経路損失(PL)推定は、その信号の送信電力(TxP)とその信号の測定された受信電力(RxP)との間の差を計算することによって決定され得る(たとえば、PL=TxP-RxP)。より具体的には、UE101における経路損失推定は、様々な動作要因に依存して様々なやり方で決定され得る。例として、UE101における経路損失を推定するために、いくつかの例示の技法が下記で提供される。
例示の技法1-1:セル固有、1つのビーム
図4を参照すると、具体的かつ非限定的な実装の例による、経路損失を推定するためにUE101によって実装され得るプロセス400が提供される。ステップ402において、UE101は、DLセル固有信号ブロックを受信する。DLセル固有信号ブロックは、同期チャネル、ブロードキャストチャネル復調基準信号、およびビーム識別基準信号のうちの少なくとも1つを含み得る。たとえば、同期チャネル、ブロードキャストチャネル復調基準信号、およびビーム識別基準信号は、この文書内の他の場所で論じられるタイプのいずれかであり得る。ステップ404において、UE101は、DLセル固有信号ブロックの信号送信電力を示す制御情報を受信し、レイヤ3フィルタリング係数を取得する。この例では、基地局BS1からのDL通信において、DLセル固有信号ブロックの信号送信電力およびレイヤ3フィルタリング係数が提供される。代わりの実施形態では、レイヤ3フィルタリング係数は、メモリ2208に記憶されたデフォルト値であり得る。ステップ406において、UE101は、レイヤ3フィルタリング係数を使用してフィルタリングされたDLセル固有信号ブロックの信号送信電力およびDLセル固有信号ブロックの受信電力に少なくとも部分的に基づいて、UEについての推定経路損失を決定する。用語が使用される文脈から明らかになるように、いくつかの場合にそれらが互いに異なる範囲で使用され得るが、用語「同期チャネル」は一般にここで用語「同期信号」と互換的に使用されることが理解される。
受信電力(RxP)は、UE101によって決定された測定パラメータであり、信号送信電力(TxP)は、基地局BS1によって送信され、UE101によって受信された情報であることが認識されるべきである。経路損失(PL)は、次の式、PL=TxP-RxPに従って決定され得る。
プロセス400は、UE101がIDLE状態にある間にUE101によって実施され得る。
例示の技法1-2:セル固有、複数のビーム
図5を参照すると、具体的かつ非限定的な実装の例による、経路損失を推定するためにUE101によって実装され得るプロセス500が提供される。ステップ502において、UE101は、複数の別個のDLセル固有信号ブロックを受信する。DLセル固有信号ブロックは、この文書内の他の場所で論じられるタイプのものであり得る。たとえば、別個のDLセル固有信号ブロックの各々は、同期信号、ブロードキャストチャネル復調基準信号、およびビーム識別基準信号のうちの少なくとも1つを含み得る。複数の別個のDLセル固有信号ブロックは、複数の送信および/または受信アンテナポートの結果であり得る。たとえば、受信されたDLセル固有信号ブロックの各々は、基地局BS1からUE101への複数のビーム送信におけるそれぞれのビームに対応し得る。各ビームは、具体的な空間パラメータを用いて識別され、上記で言及したように、別個のDLセル固有信号ブロックの各々は、ビーム識別のための1つ以上の基準信号を含み得る。
ステップ504において、UE101は、DLセル固有信号ブロックの各々についての信号送信電力を示す制御情報を受信し、レイヤ3フィルタリング係数を取得する。DLセル固有信号ブロックの各々についての信号送信電力を示す制御情報は、DLセル固有信号ブロックのすべてが送信される電力を特徴付ける単一の値であってもよく、または、DLセル固有信号ブロックの各々がそれぞれ送信されるそれぞれの信号送信電力値であってもよい。ステップ506において、UE101は、UE101についての複数の推定経路損失を決定し、各推定経路損失は、DLセル固有信号ブロックのうちの1つに対応し、少なくとも部分的に、同じレイヤ3フィルタリング係数を使用してフィルタリングされたそのDLセル固有信号ブロックの信号送信電力および受信電力から導出される。一般に、DLセル固有信号ブロックの信号送信電力およびレイヤ3フィルタリング係数は、同じまたは異なる制御シグナリング内でUEに示されることができる。代わりの実施形態では、レイヤ3フィルタリング係数は、メモリ2208に記憶されたデフォルト値であり得る。
プロセス500は、UE101が、UEについての推定経路損失として、複数の別個のDLセル固有信号ブロックに少なくとも部分的に基づいて、1つの経路損失を推定するステップ(表されない)も含み得る。たとえば、UEについての推定経路損失を決定するために、適した組み合わせ技法が使用され得る(たとえば、等利得組み合わせ、最大比組み合わせ、選択組み合わせ、平均化、フィルタリングなど)。たとえば、等利得組み合わせ(または平均化)は、すべての別個のDLセル固有信号ブロックを1つの利得/重み付け係数を用いて組み合わせることに基づいて経路損失を決定することを指し得る。最大比組み合わせは、すべての別個のDLセル固有信号ブロックを異なる利得/重み付け係数を用いて組み合わせることに基づいて経路損失を決定することを指し得る。選択組み合わせは、現在選択されている信号が所定の閾値より下に落ちるとき、UEにおける受信機が他の信号に切り替えることを指し得る。これは「スキャン組み合わせ」とも呼ばれ得る。フィルタリングは、1つの通過規則を用いて、すべての別個のDLセル固有信号ブロックのうちの少なくとも1つを通過させることに基づいて経路損失を決定することを指し得る。
具体的かつ非限定的な例として、図16を追加で参照して、6つのビームのそれぞれの受信電力は、UEについての推定経路損失を決定する際の使用のための具体的なRxPを決定するためにフィルタリングされることができる。
プロセス500は、UE101が、複数の推定経路損失から1つの特定の推定経路損失を、UEについての推定経路損失として選択するステップ(表されない)も含み得る。たとえば、図16に表されるように、UE101は、最も高い受信電力(RxP)を有するビームに対応する経路損失を選択し得る。
プロセス500は、UE101がIDLE状態にある間にUE101によって実施され得る。代わりにまたは加えて、プロセス500は、UE101がACTIVE状態にある間にUE101によって実施され得る。
例示の技法1-3a:セル固有、1つのビーム、単一のPL
図6を参照すると、具体的かつ非限定的な実装の例による、経路損失を推定するためにUE101によって実装され得るプロセス600が提供される。ステップ602において、UE101は、DLセル固有信号ブロックを受信する。DLセル固有信号ブロックは、この文書内の他の場所で論じられるタイプのものであり得る。たとえば、DLセル固有信号ブロックは、同期信号、ブロードキャストチャネル復調基準信号、およびビーム識別基準信号のうちの少なくとも1つを含み得る。たとえば、ステップ602におけるDLセル固有信号ブロックは、プロセス400のステップ402において指定されたタイプのものであり得る。
ステップ604において、UE101は、少なくとも1つのDL UE固有基準信号を受信する。DL UE固有基準信号は、この文書内の他の場所で論じられるタイプのものであり得る。たとえば、UE固有基準信号は、UE101について固有の信号を含み得る。
ステップ606において、UE101は、DLセル固有信号ブロックの信号送信電力を示す制御情報、およびレイヤ3フィルタリング係数を受信する。制御情報およびレイヤ3フィルタリング係数は、この文書内の他の場所で論じられる通りであり得る。一般に、DLセル固有信号ブロックの信号送信電力およびレイヤ3フィルタリング係数は、同じまたは異なる制御シグナリング内でUEに示されることができる。たとえば、制御情報およびレイヤ3フィルタリング係数は、プロセス400のステップ404において指定された通りであり得る。代わりの実施形態では、レイヤ3フィルタリング係数は、メモリ2208に記憶されたデフォルト値であり得る。
ステップ608において、UE101は、レイヤ3フィルタリング係数を使用してフィルタリングされたDLセル固有信号ブロックの信号送信電力およびDLセル固有信号ブロックの受信電力に少なくとも部分的に基づいて、UE101についての推定経路損失を決定する。ステップ608の結果は、UE101についての推定経路損失が少なくとも1つのDL UE固有基準信号のいずれにも関係なく(すなわち、基づかずに)決定され得ることである、ことが認識されるべきである。言い換えれば、UE101は、経路損失推定において少なくとも1つのDL UE固有基準信号を使用することができたかもしれないが、UE101は、少なくとも1つのDL UE固有基準信号のいずれにも関係なく経路損失を推定するように意図的に構成される。UEは、ACTIVE状態における経路損失推定のためにDLセル固有信号ブロックを従来使用しておらず、むしろ、経路損失推定のためにDL UE固有基準信号を使用していること、DL UE固有基準信号に関係なく経路損失推定のためにDLセル固有信号ブロックを使用するようにUE101を構成することによって、これは、UE101がACTIVE状態にあるときに、より正確な経路損失推定を可能にし得ること、がさらに認識されるべきである。DL UE固有基準信号は、経路損失推定において使用されないが、それは他の目的のために使用され得ることに注目されたい。
プロセス600は、プロセス400の具体的かつ非限定的な実装の例であり得ることが認識されるべきである。たとえば、プロセス600は、UE101がACTIVE状態にあるとき、その間にそれが少なくとも1つのDL UE固有基準信号を受信する、プロセス400の実装であり得る。
例示の技法1-3b:セル固有、複数のビーム、複数のPL
図7を参照すると、具体的かつ非限定的な実装の例による、経路損失を推定するためにUE101によって実装され得るプロセス700が提供される。ステップ702において、UE101は、複数の別個のDLセル固有信号ブロックを受信する。複数のDLセル固有信号ブロックは、たとえば、プロセス500のステップ502で論じられるように、この文書内の他の場所で論じられる通りであり得る。ステップ704において、UE101は、DL UE固有基準信号を受信する。ステップ706において、UE101は、DLセル固有信号ブロックの各々についての信号送信電力を示す制御情報、およびレイヤ3フィルタリング係数を受信する。代わりの実施形態では、レイヤ3フィルタリング係数は、メモリ2208に記憶されたデフォルト値であり得る。制御情報は、たとえば、プロセス500のステップ504で論じられるように、この文書内の他の場所で論じられる通りであり得る。ステップ708で、UE101は、UEについての複数の別個の推定経路損失を決定することに少なくとも部分的に基づいて、UE101についての推定経路損失を決定し、推定経路損失の各々は、セル固有信号ブロックのそれぞれ1つに対応し、複数の別個のDLセル固有信号ブロックから導出される。ステップ708の結果は、UE101が、少なくとも1つのDL UE固有基準信号からではなく、UE101についての推定経路損失を決定し得ることである、ことが認識されるべきである。たとえば、DLセル固有信号ブロックのうちの1つに対応する推定経路損失の各々は、少なくとも1つのDL UE固有基準信号に関係なく(すなわち、基づかずに)、少なくとも部分的に、レイヤ3フィルタリング係数を使用してフィルタリングされたそのDLセル固有信号ブロックの信号送信電力および受信電力から導出され得る。言い換えれば、UE101は、経路損失推定において少なくとも1つのDL UE固有基準信号を使用することができたかもしれないが、それは、少なくとも1つのDL UE固有基準信号のいずれにも関係なく経路損失を推定するように意図的に構成される。UEは、ACTIVE状態における経路損失推定のためにDLセル固有信号ブロックを従来使用しておらず、むしろ、経路損失推定のためにDL UE固有基準信号を使用していること、DL UE固有基準信号に関係なく経路損失推定のためにDLセル固有信号ブロックを使用するようにUE101を構成することによって、これは、UE101がACTIVE状態にあるときに、より正確な経路損失推定を可能にし得ること、がさらに認識されるべきである。
プロセス700は、UE101が経路損失選択のための指示シグナリングを受信し、指示シグナリングに従って推定経路損失のうちの特定の1つを選択するステップ(表されない)も含み得る。具体的かつ非限定的な例として、図17を追加で参照して、経路損失選択のための指示シグナリングは、特定のビームに対応していてもよく、これは、第1のUEのためのビーム1および第2のUEのためのビーム4として図17に例示される。
プロセス700は、プロセス500の具体的かつ非限定的な実装の例であり得ることが認識されるべきである。たとえば、プロセス700は、UE101がACTIVE状態にあるとき、その間にそれが少なくとも1つのDL UE固有基準信号を受信する、プロセス500の実装であり得る。
例示の技法2-1:UE固有、1つのRS、L1またはL2
図8を参照すると、具体的かつ非限定的な実装の例による、経路損失を推定するためにUE101によって実装され得るプロセス800が提供される。ステップ802において、UE101は、DL UE固有基準信号を受信する。ステップ804において、UE101は、UE固有基準信号の信号送信電力を示す制御情報を受信し、レイヤ1またはレイヤ2フィルタリング係数を取得する。代わりの実施形態では、レイヤ1またはレイヤ2フィルタリング係数は、メモリ2208に記憶されたデフォルト値であり得る。ステップ806において、UE101は、レイヤ1またはレイヤ2フィルタリング係数を使用してフィルタリングされたDL UE固有基準信号の信号送信電力および受信電力に少なくとも部分的に基づいて、UEについての推定経路損失を決定する。一般に、UE固有基準信号の信号送信電力およびレイヤ1またはレイヤ2フィルタリング係数は、同じまたは異なる制御シグナリング内でUEに示されることができる。
具体的かつ非限定的な例として、図18を追加で参照して、UEについての推定経路損失を決定するために使用される特定のビーム(すなわち、ビーム6)における基準信号のセット内の具体的なDL UE固有基準信号を例示する。
DL UE固有基準信号、制御情報、信号送信電力、フィルタリング係数は、この文書内の他の場所で論じられる通りであり得る。
L1またはL2フィルタリング(すなわち、非L3フィルタリング)によって、受信電力を決定するためのプロセスは、L3フィルタリングが行われるときに受信電力を決定することと比較してより短くなり得ることが認識されるべきである。
例示の技法2-2:UE固有、複数のRS、L1またはL2
図9を参照すると、具体的かつ非限定的な実装の例による、経路損失を推定するためにUE101によって実装され得るプロセス900が提供される。ステップ902において、UE101は、複数の別個のDL UE固有基準信号を受信する。ステップ904において、UE101は、DL UE固有基準信号の各々についての信号送信電力、およびレイヤ1またはレイヤ2フィルタリング係数を示す制御情報を受信する。DL UE固有基準信号の各々についての信号送信電力を示す制御情報は、DL UE固有基準信号のすべての送信電力を特徴付ける共通信号送信値であってもよく、または、DL UE固有基準信号のそれぞれ1つの送信電力を特徴付ける複数のそれぞれの信号送信電力値であってもよい。ステップ906において、UE101は、UEについての複数の推定経路損失を決定し、各推定経路損失は、DL UE固有基準信号のうちの1つに対応し、少なくとも部分的に、同じレイヤ1またはレイヤ2フィルタリング係数を使用してフィルタリングされたそのDL UE固有基準信号の信号送信電力および受信電力から導出される。一般に、UE固有基準信号の信号送信電力およびレイヤ1またはレイヤ2フィルタリング係数は、同じまたは異なる制御シグナリング内でUEに示されることができる。代わりの実施形態では、レイヤ1またはレイヤ2フィルタリング係数は、メモリ2208に記憶されたデフォルト値であり得る。
具体的かつ非限定的な例として、図19を追加で参照して、UEについての推定経路損失を決定するために使用される、異なるビーム(すなわち、ビーム1、5、および6)における複数のDL UE固有基準信号を例示する。
DL UE固有基準信号、制御情報、信号送信電力、フィルタリング係数は、この文書の他の場所で指定されている通りであり得る。
プロセス900は、UE101が経路損失選択のための指示シグナリングを受信し、指示シグナリングに従って推定経路損失のうちの特定の1つを選択するステップ(表されない)も含み得る。たとえば、基地局BS1は、経路損失選択のための指示シグナリングを提供し、特定の基準信号に対応する特定の推定経路損失を選択するように指定し得る。
例示の技法2-3:UE固有、複数のRSセット、L1またはL2
図10を参照すると、具体的かつ非限定的な実装の例による、経路損失を推定するためにUE101によって実装され得るプロセス1000が提供される。ステップ1002において、UE101は、複数の別個のDL UE固有基準信号セットを受信し、各セットは少なくとも1つのDL UE固有基準信号を含む。各セットは、具体的な送信ビームに対応する信号を含むことが可能であり、(この文書内の他の場所で論じられるように)ビーム識別のために使用されることが可能である。ステップ1004において、UE101は、各UE固有基準信号セット内の各UE固有基準信号についての信号送信電力、およびレイヤ1またはレイヤ2フィルタリング係数を示す制御情報を受信する。代わりの実施形態では、レイヤ1またはレイヤ2フィルタリング係数は、メモリ2208に記憶されたデフォルト値であり得る。
ステップ1006において、UE101は、UEについての複数の推定経路損失を決定し、各推定経路損失は、DL UE固有基準信号セットのそれぞれ1つに対応し、各DL UE固有基準信号セットについて、そのUE固有基準信号セットに対応する推定経路損失は、少なくとも部分的に、そのUE固有基準信号セット内の各DL UE固有基準信号についての信号送信電力、および同じレイヤ1またはレイヤ2フィルタリング係数を使用してフィルタリングされたそのDL UE固有基準信号の受信電力から導出される。一般に、UE固有基準信号の信号送信電力およびレイヤ1またはレイヤ2フィルタリング係数は、同じまたは異なる制御シグナリング内でUEに示されることができる。
具体的かつ非限定的な例として、図20を追加で参照して、UEについての推定経路損失を決定するために使用され得る、ビーム6におけるそのセット内の複数のDL UE固有基準信号、およびビーム5におけるそのセット内の信号基準信号を例示する。
DL UE固有基準信号セット、DL UE固有基準信号、制御情報、信号送信電力、フィルタリング係数は、この文書内の他の場所で論じられる通りであり得る。
プロセス1000は、UE101が経路損失選択のための指示シグナリングを受信し、指示シグナリングに従って推定経路損失のうちの特定の1つを選択するステップ(表されない)も含み得る。
例示の技法2-4:選択
プロセス800、900、および1000は、経路損失を推定するためにUE101によって実装されてもよく、推定された経路損失のうちの1つの選択が行われてもよい。基地局BS1は、推定経路損失を導出する際の使用のために、プロセス800、900、および1000のうちの1つの選択のために、制御情報をUE101に提供し得る。制御情報は、動的制御情報、半静的/RRC(無線リソース制御)シグナリング、およびMAC制御要素(CE)のうちの1つ以上であることが可能である指示シグナリングを使用して提供され得る。
例示の技法3a:セル固有およびUE固有、RSセット
図11を参照すると、具体的かつ非限定的な実装の例による、経路損失を推定するためにUE101によって実装され得るプロセス1100が提供される。ステップ1102において、UE101は、DLセル固有信号ブロックを受信する。ステップ1102において、UE101は、また、レイヤ3フィルタリング係数を受信し得る。ステップ1104において、UE101は、UE固有基準信号セットを受信する。ステップ1104において、UE101は、また、レイヤ1および/またはレイヤ2フィルタリング係数を受信し得る。レイヤ3および/またはレイヤ1および/またはレイヤ2フィルタリング係数の受信は、プロセス1100における別々のステップの一部であることが可能であり、いくつかの実施形態では、基地局から制御情報を受信することを伴うことが可能である。代わりの実施形態では、UEは、基地局の関与なしに、メモリ2208に記憶されたデフォルト値を調べてもよい。ステップ1106で、UE101は、レイヤ3フィルタリング係数を使用してフィルタリングされたDLセル固有信号ブロックから導出された第1のフィルタリングされた経路損失と、レイヤ1またはレイヤ2フィルタリング係数を用いてフィルタリングされたUE固有基準信号セットから導出された第2のフィルタリングされた経路損失とに少なくとも部分的に基づいて、推定経路損失を決定する。ステップ1106において、UE101は、DLセル固有信号ブロックとUE固有基準信号セットの両方に基づいて1つのみの経路損失を計算し得ることが認識されるべきである。たとえば、経路損失(PL)は
PL=(1-β)・PLcell-specific+β・PLue-specific
として決定され得る。ここで、PLcell-specificは、セル固有信号ブロックに基づくPL推定を表現し、PLue-specificは、1つのUE固有基準信号に基づくPL推定を表現し、βは、(この文書内の他の場所で論じられるように)L1またはL2フィルタリング係数である。
プロセス1100は、UE101が経路損失選択のための制御シグナリングを受信し、制御シグナリングに従って、第1の(レイヤ3フィルタリングされた)経路損失と第2の(レイヤ1またはレイヤ2)フィルタリングされた経路損失の間で推定経路損失の決定を配分するステップ(表されない)も含み得る。制御情報は、動的制御情報、半静的/RRCシグナリング、およびMAC CEのうちの1つ以上であることが可能である指示シグナリングを使用して提供され得る。プロセス1100は、ハイブリッド手法であり、経路損失を推定するためにこの文書内の他の場所で論じられる他のプロセスの態様を含み得ることが認識されるべきである。
例示の技法3b:セル固有およびUE固有、RS
図12を参照すると、具体的かつ非限定的な実装の例による、経路損失を推定するためにUE101によって実装され得るプロセス1200が提供される。ステップ1202において、UE101は、DLセル固有信号ブロックおよびL3フィルタ係数を受信する。ステップ1204において、UE101は、DL UE固有基準信号、およびL1またはL2フィルタリング係数を受信する。L3および/またはL1またはL2フィルタリング係数の受信は、プロセス1200における別々のステップの一部であり得る。L3および/またはL1またはL2フィルタリング係数は、基地局から受信されてもよい。いくつかの実施形態では、UEは、基地局の関与なしに、メモリ2208に記憶されたデフォルト値を調べることによって、フィルタリング係数を取得し得る。セル固有信号を基にした経路損失のみが、第1のチャネル、たとえば物理ランダムアクセスチャネル(PRACH)について使用されるようにUE101が構成されているならば、そしてステップ1206において、UE101は、DL UE固有基準信号の受信電力ではなく、DLセル固有信号ブロックの受信電力に少なくとも部分的に基づいて、第1のチャネルについての推定経路損失を決定する。ステップ1206において、経路損失推定は、L3フィルタリング係数を用いてDLセル固有信号ブロックの受信電力をフィルタリングすることを含み得る。UE固有基準信号を基にした経路損失のみが、第2のチャネル、たとえば物理アップリンク共有チャネル(PUSCH)について使用されるようにUE101が構成されているならば、そしてステップ1208において、UE101は、DLセル固有信号ブロックの受信電力ではなく、DL UE固有基準信号の受信電力に少なくとも部分的に基づいて、第2のチャネルについての推定経路損失を決定する。
ステップ1208において、経路損失推定は、L1またはL2フィルタリング係数を用いてDL UE固有基準信号の受信電力をフィルタリングすることを含み得る。代わりに、ステップ1208において、経路損失推定は、また、L3フィルタリング係数を用いてDL UE固有基準信号の受信電力をフィルタリングすることを含み得る。両方の、セル固有信号ブロックを基にした、およびUE固有基準信号を基にした経路損失が、第3のチャネル(たとえばPUSCH)について使用されるようにUE101が構成されているならば、そしてステップ1210において、UE101は、DL UE固有基準信号の受信電力とDLセル固有信号ブロックの受信電力の両方に少なくとも部分的に基づいて、推定ハイブリッド経路損失を決定する。このようにして、UE101による経路損失推定を行うために、異なる基準信号が異なるチャネルについて使用され得る。一般に、アップリンク送信のための異なるチャネルは、PUSCH、PUCCH(物理アップリンク制御チャネル)、PRACHのうちの少なくとも1つであることが可能である。さらに、経路損失推定のためのRSの構成は、事前定義、半静的/RRCシグナリング、動的制御情報、およびMAC CEのうちの少なくとも1つであることが可能である。
例示の技法4:INACTIVE状態
次の技法では、IDLE状態とは異なる第3の状態であるINACTIVE状態への参照が行われる。INACTIVE状態は、IDLEとACTIVE状態の間の中間状態と考えられ得る。INACTIVE状態では、UE101は、基地局BS1とのアクティブな接続を維持しなくてもよい。UE101がACTIVE状態から入るINACTIVE状態では、ACTIVEからのある残差情報が保存(記憶)され、この情報は、IDLE状態では利用可能でない。たとえば、これは、UE101がACTIVE状態にあった間に決定されたであろう経路損失を含み得る。INACTIVE状態は、「RAN(無線アクセスネットワーク)制御状態」とも呼ばれ得る。実際の実装では、UE101は、INACTIVE状態において、次の特徴のうちの1つ以上を有し得る。
・CN(コアネットワーク)接続またはRAN接続が維持されている。
・AS(アクセス層)コンテキストがRANに記憶されている。
・ネットワークは、エリア内のUEの位置を知っており、UEは、ネットワークに通知することなく、そのエリア内でモビリティを実行する。
・RANは、RAN制御されたINACTIVE状態にあるUEのページングをトリガすることができる。
・専用リソースは維持されない。
図13を参照すると、具体的かつ非限定的な実装の例による、経路損失を推定するためにUE101によって実装され得るプロセス1300が提供される。ステップ1302において、UE101は、ACTIVE状態、INACTIVE状態から「INACTIVE」状態に入る。ステップ1304において、UE101は、DLセル固有信号ブロックを受信する。ステップ1306において、UE101は、UE101がINACTIVE状態にある間に決定されたDLセル固有信号ブロックの受信電力、またはUE101がACTIVE状態にあった間に決定された記憶された経路損失値に少なくとも部分的に基づいてUE101についての経路損失を推定する。さらに、記憶された経路損失は、たとえば、上記で説明されたプロセス400、500、…、1100、1200のいずれかにおいて決定されるように、ACTIVE状態におけるDLセル固有信号ブロックおよびUE固有基準信号のうちの少なくとも1つの構成によって推定される経路損失を指す。
プロセス1300は、UE101が、非アクティブ状態の間に、レイヤ3フィルタリング係数を受信し、非アクティブ状態の間に、DLセル固有信号ブロックの受信電力を決定し、非アクティブ状態の間に、UEについての推定経路損失を決定するために、レイヤ3フィルタリング係数を使用して、DLセル固有信号ブロックの受信電力をフィルタリングするステップ(表されない)も含み得る。
この文書内の他の場所で注目したように、様々な状態の命名法は、実際の実装では異なることがあり、それゆえに、状態名は、例示の目的のために提供されている。
図21は、本開示の実施形態が実装されることが可能である例示の通信システム2100を例示する。一般に、通信システム2100は、複数のワイヤレスまたは有線の要素がデータおよび他のコンテンツを伝達することを可能にする。通信システム2100の目的は、ブロードキャスト、ナローキャスト、ユーザデバイス・ツー・ユーザデバイスなどを介してコンテンツ(音声、データ、ビデオ、テキスト)を提供することであり得る。通信システム2100は、帯域幅のようなリソースを共有することによって動作し得る。
この例では、通信システム2100は、電子デバイス(ユーザ機器(UE)とも呼ばれる)2110a〜2110c、無線アクセスネットワーク(RAN)2120a〜2120b、コアネットワーク2130、公衆交換電話網(PSTN)2140、インターネット2150、および他のネットワーク2160を含む。ある数のこれらの構成要素または要素が図21に表されているが、任意の妥当な数のこれらの構成要素または要素が通信システム2100に含まれてもよい。
UE2110a〜2110cは、通信システム2100において動作し、通信し、または両方をするように構成される。たとえば、UE2110a〜2110cは、ワイヤレスまたは有線の通信チャネルを介して送信し、受信し、または両方をするように構成される。各UE2110a〜2110cは、ワイヤレス動作のための任意の適したエンドユーザデバイスを表現し、ワイヤレス送信/受信ユニット(WTRU)、移動局、固定または移動加入者ユニット、携帯電話、ステーション(STA)、マシンタイプ通信(MTC)デバイス、パーソナル・デジタル・アシスタント(PDA)、スマートフォン、ラップトップ、コンピュータ、タブレット、ファブレット、ワイヤレスセンサー、または消費者電子デバイスを含み、またはそのように呼ばれ得る。
図21において、RAN2120a〜2120bは、それぞれ基地局2170a〜2170bを含む。各基地局2170a〜2170bは、任意の他の基地局2170a〜2170b、コアネットワーク2130、PSTN2140、インターネット2150、および/または他のネットワーク2160へのアクセスを可能にするために、UE2110a〜2110cのうちの1つ以上とワイヤレスにインターフェースするように構成される。たとえば、基地局2170a〜2170bは、基地トランシーバ局(BTS)、ノードB(NodeB)、発展型ノードB(eNodeB)、ホームeノードB、gノードB、送信ポイント(TP)、サイトコントローラ、アクセスポイント(AP)、またはワイヤレスルータのようないくつかの周知のデバイスのうちの1つ以上を含み得る(またはそれらであり得る)。任意のUE2110a〜2110cは、代わりにまたは加えて、任意の他の基地局2170a〜2170b、インターネット2150、コアネットワーク2130、PSTN2140、他のネットワーク2160、または前述のものの任意の組み合わせとインターフェースし、アクセスし、または通信するように構成され得る。通信システム2100は、RAN2120bのようなRANを含むことが可能であり、対応する基地局2170bは、表されるように、インターネット2150を介してコアネットワーク2130にアクセスする。図1における無線アクセスネットワーク100は、RAN2120a〜2120bのうちの1つであることが可能であり、図1における基地局BS1は、基地局2170a〜2170bのうちの1つであることが可能であり、図1におけるコアネットワークは、コアネットワーク2130であってもよく、図1におけるUEは、UE2110a〜2110cのうちのいずれか1つであってもよいことが理解されるべきである。
UE2110a〜2110cおよび基地局2170a〜2170bは、ここで説明される機能および/または実施形態のいくつかまたはすべてを実装するように構成されることができる通信機器の例である。図21に表される実施形態では、基地局2170aは、RAN2120aの一部を形成し、これは、他の基地局、基地局コントローラ(BSC)、無線ネットワークコントローラ(RNC)、中継ノード、要素、および/またはデバイスを含み得る。任意の基地局2170a、2170bは、表されるように、単一の要素、または対応するRAN内に分散された複数の要素、または他のものであり得る。また、基地局2170bは、RAN2120bの一部を形成し、これは他の基地局、要素、および/またはデバイスを含み得る。各基地局2170a〜2170bは、時々「セル」または「カバレージエリア」と呼ばれる特定の地理的領域またはエリア内でワイヤレス信号を送信および/または受信する。セルは、セルセクタにさらに分割されてもよく、基地局2170a〜2170bは、たとえば、複数のセクタにサービスを提供するために複数のトランシーバを採用してもよい。いくつかの実施形態では、無線アクセス技術がそのようなものをサポートする、ピコまたはフェムトセルが確立され得る。いくつかの実施形態では、たとえば多入力多出力(MIMO)技術を使用して、複数のトランシーバが各セルについて使用されることが可能である。表されるRAN2120a〜2120bの数は単に例示である。通信システム2100を考案するとき、任意の数のRANが意図され得る。
基地局2170a〜2170bは、ワイヤレス通信リンク、たとえば、無線周波数(RF)、マイクロ波、赤外線(IR)などを使用して、1つ以上のエアインターフェース2190の上でUE2110a〜2110cのうちの1つ以上と通信する。エアインターフェース2190は、任意の適した無線アクセス技術を利用し得る。たとえば、通信システム2100は、エアインターフェース2190において、符号分割多元接続(CDMA)、時分割多元接続(TDMA)、周波数分割多元接続(FDMA)、直交FDMA(OFDMA)、または単一搬送波FDMA(SC-FDMA)のような1つ以上のチャネルアクセス方法を実装し得る。
基地局2170a〜2170bは、広帯域CDMA(WCDMA(登録商標))を使用してエアインターフェース2190を確立するために、ユニバーサルモバイル電気通信システム(UMTS)地上無線アクセス(UTRA)を実装し得る。そうする際に、基地局2170a〜2170bは、HSDPA、HSUPA、または両方を任意選択で含むHSPA、HSPA+のようなプロトコルを実装し得る。代わりに、基地局2170a〜2170bは、LTE、LTE-A、および/またはLTE-Bを使用して進化型UTMS地上無線アクセス(E-UTRA)とのエアインターフェース2190を確立し得る。通信システム2100は、上記で説明されたような方式を含む複数チャネルアクセス機能を使用し得ることが意図される。エアインターフェースを実装するための他の無線技術は、IEEE 802.11、802.15、802.16、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、IS-2000、IS-95、IS-856、GSM(登録商標)、EDGE、およびGERANを含む。もちろん、他の多元接続方式およびワイヤレスプロトコルが利用されてもよい。
RAN2120a〜2120bは、音声、データ、および他のサービスのような様々なサービスをUE2110a〜2110cに提供するために、コアネットワーク2130と通信する。RAN2120a〜2120bおよび/またはコアネットワーク2130は、1つ以上の他のRAN(表されない)と直接または間接に通信してもよく、他のRANは、コアネットワーク2130によって直接にサービス提供されてもよく、またはされなくてもよく、RAN2120a、RAN2120b、または両方と同じ無線アクセス技術を採用してもよく、またはしなくてもよい。コアネットワーク2130は、また、(i)RAN2120a〜2120bまたはUE2110a〜2110c、または両方と、(ii)他のネットワーク(PSTN2140、インターネット2150、および他のネットワーク2160のような)との間のゲートウェイアクセスとしてサービス提供し得る。加えて、UE2110a〜2110cのうちのいくつかまたはすべては、異なるワイヤレス技術および/またはプロトコルを使用して異なるワイヤレスリンクの上で異なるワイヤレスネットワークと通信するための機能を含み得る。ワイヤレス通信に代えて(またはそれに加えて)、UEは、有線通信チャネルを介してサービスプロバイダまたはスイッチ(表されない)へ、およびインターネット2150へ通信し得る。PSTN2140は、基本電話サービス(POTS)を提供するための回線交換電話網を含み得る。インターネット2150は、コンピュータおよびサブネット(イントラネット)または両方のネットワークを含み、IP、TCP、UDPのようなプロトコルを組み込み得る。UE2110a〜2110cは、複数の無線アクセス技術に従って動作することが可能であるマルチモードデバイスであり、それをサポートするために必要な複数のトランシーバを組み込んでもよい。
図22Aおよび図22Bは、本開示による方法および教示を実装し得る例示のデバイスを例示する。特に、図22Aは、例示のUE2110を例示し、図22Bは、例示の基地局2170を例示する。これらの構成要素は、通信システム2100において、または任意の他の適したシステムにおいて使用されることが可能である。
図22Aに表されるように、UE2110は、少なくとも1つの処理ユニット2200を含む。処理ユニット2200は、UE2110の様々な処理動作を実装する。たとえば、処理ユニット2200は、信号コーディング、データ処理、電力制御、入力/出力処理、またはUE2110が通信システム2100内で動作することを可能にする任意の他の機能を実行することが可能である。処理ユニット2200は、また、上記でより詳細に説明された機能および/または実施形態のうちのいくつかまたはすべてを実装するように構成され得る。各処理ユニット2200は、1つ以上の動作を実行するように構成された任意の適した処理または計算デバイスを含む。各処理ユニット2200は、たとえば、マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ、フィールド・プログラマブル・ゲート・アレイ、または特定用途向け集積回路を含むことが可能である。
UE2110は、また、少なくとも1つのトランシーバ2202を含む。トランシーバ2202は、少なくとも1つのアンテナまたはネットワーク・インターフェース・コントローラ(NIC)2204による送信のためにデータまたは他のコンテンツを変調するように構成される。トランシーバ2202は、また、少なくとも1つのアンテナ2204によって受信されたデータまたは他のコンテンツを復調するように構成される。各トランシーバ2202は、ワイヤレスまたは有線送信のための信号を生成し、および/またはワイヤレスにまたは有線で受信された信号を処理するための任意の適した構造を含む。各アンテナ2204はワイヤレスまたは有線の信号を送信および/または受信するための任意の適した構造を含む。UE2110において1つまたは複数のトランシーバ2202が使用されることが可能である。UE2110において1つまたは複数のアンテナ2204が使用されることが可能である。単一の機能ユニットとして表されているが、トランシーバ2202は、また、少なくとも1つの送信機および少なくとも1つの別々の受信機を使用して実装されることが可能である。
UE2110は、1つ以上の入力/出力デバイス2206またはインターフェース(インターネット2150への有線インターフェースのような)をさらに含む。入力/出力デバイス2206は、ユーザまたはネットワーク内の他のデバイスとの相互作用を可能にする。各入力/出力デバイス2206は、ネットワークインターフェース通信を含む、スピーカー、マイクロフォン、キーパッド、キーボード、ディスプレイ、またはタッチスクリーンのような、ユーザに情報を提供し、またはユーザから情報を受信するための任意の適した構造を含む。
加えて、UE2110は、少なくとも1つのメモリ2208を含む。メモリ2208は、UE2110によって使用され、生成され、または収集された命令およびデータを記憶する。たとえば、メモリ2208は、上記で説明された機能および/または実施形態のうちのいくつかまたはすべてを実装するように構成され、処理ユニット2200によって実行されるソフトウェア命令またはモジュールを記憶することが可能である。各メモリ2208は、任意の適した揮発性および/または不揮発性記憶装置および検索デバイスを含む。ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、ハードディスク、光ディスク、加入者識別モジュール(SIM)カード、メモリスティック、セキュアデジタル(SD)メモリカード、および同様のもののような任意の適したタイプのメモリが使用され得る。
図22Bに表されるように、基地局2170は、少なくとも1つの処理ユニット2250、少なくとも1つの送信機2252、少なくとも1つの受信機2254、1つ以上のアンテナ2256、少なくとも1つのメモリ2258、および1つ以上の入力/出力デバイスまたはインターフェース2266を含む。送信機2252および受信機2254に代えて、表されないトランシーバが使用されてもよい。処理ユニット2250にスケジューラ2253が結合されてもよい。スケジューラ2253は、基地局2170内に含まれ、またはそれとは別々に動作されてもよい。処理ユニット2250は、信号コーディング、データ処理、電力制御、入力/出力処理、または任意の他の機能のような基地局2170の様々な処理動作を実装する。処理ユニット2250は、また、上記でより詳細に説明された機能および/または実施形態のうちのいくつかまたはすべてを実装するように構成されることができる。各処理ユニット2250は、1つ以上の動作を実行するように構成された任意の適した処理または計算デバイスを含む。各処理ユニット2250は、たとえば、マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ、フィールド・プログラマブル・ゲート・アレイ、または特定用途向け集積回路を含むことが可能である。
各送信機2252は、1つ以上のUEまたは他のデバイスへのワイヤレスまたは有線の送信のための信号を生成するための任意の適した構造を含む。各受信機2254は、1つ以上のUEまたは他のデバイスからワイヤレスにまたは有線で受信された信号を処理するための任意の適した構造を含む。別々の構成要素として表されているが、少なくとも1つの送信機2252および少なくとも1つの受信機2254は、トランシーバに組み合わされることが可能である。各アンテナ2256はワイヤレスまたは有線の信号を送信および/または受信するための任意の適した構造を含む。共通アンテナ2256が送信機2252と受信機2254の両方に結合されているようにここで表されているが、1つ以上のアンテナ2256が送信機2252に結合されることが可能であり、1つ以上の別々のアンテナ2256が受信機2254に結合されることが可能である。各メモリ2258は、UE2110に関連して上記で説明されたもののような任意の適した揮発性および/または不揮発性記憶装置および検索デバイスを含む。メモリ2258は、基地局2170によって使用され、生成され、または収集された命令およびデータを記憶する。たとえば、メモリ2258は、上記で説明された機能および/または実施形態のうちのいくつかまたはすべてを実装するように構成され、処理ユニット2250によって実行されるソフトウェア命令またはモジュールを記憶することが可能である。
各入力/出力デバイス2266は、ユーザまたはネットワーク内の他のデバイスとの相互作用を可能にする。各入力/出力デバイス2266は、ネットワークインターフェース通信を含む、ユーザに情報を提供し、またはユーザから情報を受信/提供するための任意の適した構造を含む。
いくつかの実施形態の動作のために必要とされ得るある追加の要素は、それらがこの技術分野の当業者の範囲内にあると想定されるので、説明または例示されていないことが認識されるべきである。さらに、ある実施形態は、ここに具体的に開示されていない要素がなくてもよく、欠如してもよく、および/またはそれ無しに機能してもよい。実装のいくつかの例では、ここで論じられた任意の実施形態の任意の特徴が、ここで論じられた任意の他の実施形態の任意の特徴と組み合わされてもよい。
ここで論じられた任意の実施形態および/または例の任意の特徴は、いくつかの実装の例では、ここで論じられた任意の他の実施形態および/または例の任意の特徴と組み合わされてもよい。
ここで提供される実施形態の方法の1つ以上のステップは、図23に従って、対応するユニットまたはモジュールによって実行され得ることが認識されるべきである。たとえば、信号は、送信ユニットまたは送信モジュールによって送信されてもよい。信号は、受信ユニットまたは受信モジュールによって受信されてもよい。信号は、処理ユニットまたは処理モジュールによって処理されてもよい。それぞれのユニット/モジュールは、ハードウェア、ソフトウェア、またはそれらの組み合わせであり得る。たとえば、ユニット/モジュールの1つ以上は、フィールド・プログラマブル・ゲート・アレイ(FPGA)または特定用途向け集積回路(ASIC)のような集積回路であり得る。モジュールがソフトウェアである場合、それらは、必要に応じて全体的にまたは部分的に、個別にまたは処理のために一緒に、必要に応じて単一または複数のインスタンスで、プロセッサによって検索されてもよいこと、モジュールそれら自体がさらなる配備およびインスタンス化のための命令を含んでもよいこと、が認識されるであろう。
この技術分野の当業者に知られているUE2110および基地局2170の詳細は、明確さのためにここでは省略される。
様々な実施形態および例が提示されたが、これは、発明を限定するのではなく、説明する目的のためであった。様々な修正および改良は、この技術分野の当業者に明らかになり、添付の特許請求の範囲によって定義される発明の範囲内にある。
100 無線アクセスネットワーク
101 UE
2100 通信システム
2110a〜2110c 電子デバイス
2120a〜2120b 無線アクセスネットワーク(RAN)
2130 コアネットワーク
2140 公衆交換電話網(PSTN)
2150 インターネット
2160 他のネットワーク
2170a〜2170b 基地局
2190 エアインターフェース
2200 処理ユニット
2202 トランシーバ
2204 ネットワークインターフェースコントローラ(NIC)
2206 入力/出力デバイス
2208 メモリ
2250 処理ユニット
2252 送信機
2253 スケジューラ
2254 受信機
2256 アンテナ
2258 メモリ
2266 入力/出力デバイスもしくはインターフェース

Claims (43)

  1. ユーザ機器(UE)における経路損失推定の方法であって、
    同期チャネルおよびブロードキャストチャネル復調基準信号を備えるダウンリンクセル固有信号ブロックを受信するステップと、
    前記ダウンリンクセル固有信号ブロックの信号送信電力を示す制御情報を受信するステップと、
    レイヤ3フィルタリング係数を使用してフィルタリングされた前記ダウンリンクセル固有信号ブロックの前記信号送信電力および前記ダウンリンクセル固有信号ブロックの受信電力に少なくとも部分的に基づいて、前記UEについての推定経路損失を決定するステップと、
    を備える方法。
  2. 基地局から前記レイヤ3フィルタリング係数を受信するステップをさらに備える、請求項1に記載の方法。
  3. 前記レイヤ3フィルタリング係数をデフォルト値として前記UEのメモリに記憶するステップをさらに備える、請求項1に記載の方法。
  4. 前記UEがアイドル状態にある、請求項1に記載の方法。
  5. 前記UEがアクティブ状態にある、請求項1に記載の方法。
  6. 前記方法が、少なくとも1つのダウンリンクUE固有基準信号を受信するステップをさらに備え、
    前記UEについての前記経路損失が、前記少なくとも1つのダウンリンクUE固有基準信号のいずれにも基づかない、請求項5に記載の方法。
  7. 1つ以上のプロセッサと、
    前記1つ以上のプロセッサによって実行されるとき、前記1つ以上のプロセッサに、請求項1から6のいずれか一項に記載の方法を実行させる命令を記憶したメモリ記憶装置と
    を備えるワイヤレスデバイス。
  8. ユーザ機器(UE)における経路損失推定の方法であって、
    複数の別個のダウンリンクセル固有信号ブロックを受信するステップと、
    前記ダウンリンクセル固有信号ブロックの各々についての信号送信電力を示す制御情報を受信するステップと、
    前記UEについての複数の推定経路損失を決定するステップであって、各推定経路損失が、前記複数のダウンリンクセル固有信号ブロックのうちの1つに対応し、少なくとも部分的に、レイヤ3フィルタリング係数を使用してフィルタリングされた前記ダウンリンクセル固有信号ブロックの前記信号送信電力および受信電力から導出される、ステップと、
    を備える方法。
  9. 基地局から前記レイヤ3フィルタリング係数を受信するステップをさらに備える、請求項8に記載の方法。
  10. 前記レイヤ3フィルタリング係数をデフォルト値として前記UEのメモリに記憶するステップをさらに備える、請求項8に記載の方法。
  11. 前記複数の推定経路損失から1つの推定経路損失を前記UEについての前記推定経路損失として選択するステップをさらに備える、請求項8に記載の方法。
  12. 前記UEがアイドル状態にある、請求項8に記載の方法。
  13. 前記UEがアクティブ状態にある、請求項8に記載の方法。
  14. 少なくとも1つのダウンリンクUE固有基準信号を受信するステップと、
    前記UEについての複数の別個の推定経路損失を決定するステップであって、前記推定経路損失の各々が、前記セル固有信号ブロックのそれぞれ1つに対応し、前記少なくとも1つのダウンリンクUE固有基準信号からではなく、前記複数の別個のダウンリンクセル固有信号ブロックから導出される、ステップと、
    をさらに備える、請求項13に記載の方法。
  15. 経路損失選択のための指示シグナリングを受信し、前記指示シグナリングに従って前記推定経路損失のうちの特定の1つを選択するステップをさらに備える、請求項14に記載の方法。
  16. 1つ以上のプロセッサと、
    前記1つ以上のプロセッサによって実行されるとき、前記1つ以上のプロセッサに、請求項8から15のいずれか一項に記載の方法を実行させる命令を記憶したメモリ記憶装置と、
    を備えるワイヤレスデバイス。
  17. ユーザ機器(UE)における経路損失推定の方法であって、
    ダウンリンクUE固有基準信号を受信するステップと、
    前記UE固有基準信号の信号送信電力を示す制御情報を受信するステップと、
    レイヤ1またはレイヤ2フィルタリング係数を使用してフィルタリングされた前記ダウンリンクUE固有基準信号の前記信号送信電力および受信電力に少なくとも部分的に基づいて、前記UEについての推定経路損失を決定するステップと、
    を備える方法。
  18. 基地局から前記レイヤ1またはレイヤ2フィルタリング係数を受信するステップをさらに備える、請求項17に記載の方法。
  19. 前記レイヤ1またはレイヤ2フィルタリング係数をデフォルト値として前記UEのメモリに記憶するステップをさらに備える、請求項17に記載の方法。
  20. 1つ以上のプロセッサと、
    前記1つ以上のプロセッサによって実行されるとき、前記1つ以上のプロセッサに、請求項17から19のいずれか一項に記載の方法を実行させる命令を記憶したメモリ記憶装置と、
    を備えるワイヤレスデバイス。
  21. UE(ユーザ機器)における経路損失推定の方法であって、
    複数の別個のダウンリンクUE固有基準信号を受信するステップと、
    前記UE固有基準信号の各々についての信号送信電力を示す制御情報を受信するステップと、
    前記UEについての複数の推定経路損失を決定するステップであって、各推定経路損失が、前記ダウンリンクUE固有基準信号のうちの1つに対応し、少なくとも部分的に、レイヤ1またはレイヤ2フィルタリング係数を使用してフィルタリングされたそのダウンリンクUE固有基準信号の前記信号送信電力および受信電力から導出される、ステップと、
    を備える方法。
  22. 基地局から前記レイヤ1またはレイヤ2フィルタリング係数を受信するステップをさらに備える、請求項21に記載の方法。
  23. 前記レイヤ1またはレイヤ2フィルタリング係数をデフォルト値として前記UEのメモリに記憶するステップをさらに備える、請求項21に記載の方法。
  24. 経路損失選択のための指示シグナリングを受信し、前記指示シグナリングに従って前記推定経路損失のうちの特定の1つを選択するステップをさらに備える、請求項21に記載の方法。
  25. 1つ以上のプロセッサと、前記1つ以上のプロセッサによって実行されるとき、前記1つ以上のプロセッサに、請求項21から24のいずれか一項に記載の方法を実行させる命令を記憶したメモリ記憶装置と、を備えるワイヤレスデバイス。
  26. ユーザ機器(UE)における経路損失推定の方法であって、
    複数の別個のダウンリンクUE固有基準信号セットを受信するステップであって、各セットが少なくとも1つのダウンリンクUE固有基準信号を備える、ステップと、
    各UE固有基準信号セット内の各UE固有基準信号についての信号送信電力を示す制御情報を受信するステップと、
    前記UEについての複数の推定経路損失を決定するステップであって、各推定経路損失が、前記ダウンリンクUE固有基準信号セットのそれぞれ1つに対応し、各ダウンリンクUE固有基準信号セットについて、そのUE固有基準信号セットに対応する前記推定経路損失が、少なくとも部分的に、そのUE固有基準信号セット内の各ダウンリンクUE固有基準信号についての前記信号送信電力、およびレイヤ1またはレイヤ2フィルタリング係数を使用してフィルタリングされたそのダウンリンクUE固有基準信号の受信電力から導出される、ステップと、
    を備える方法。
  27. 経路損失選択のための指示シグナリングを受信し、前記指示シグナリングに従って前記推定経路損失のうちの特定の1つを選択するステップをさらに備える、請求項26に記載の方法。
  28. 前記指示シグナリングから前記レイヤ1またはレイヤ2フィルタリング係数を決定するステップをさらに備える、請求項26に記載の方法。
  29. 前記レイヤ1またはレイヤ2フィルタリング係数をデフォルト値として前記UEのメモリに記憶するステップをさらに備える、請求項26に記載の方法。
  30. 1つ以上のプロセッサと、前記1つ以上のプロセッサによって実行されるとき、前記1つ以上のプロセッサに、請求項26から29のいずれか一項に記載の方法を実行させる命令を記憶したメモリ記憶装置と、を備えるワイヤレスデバイス。
  31. UEにおける経路損失推定の方法であって、
    ダウンリンクセル固有信号ブロックを受信するステップと、
    ダウンリンクUE固有基準信号を受信するステップと、
    レイヤ3フィルタリング係数を使用してフィルタリングされた前記ダウンリンクセル固有信号ブロックから導出された第1のフィルタリングされた経路損失と、レイヤ1またはレイヤ2フィルタリング係数を用いてフィルタリングされた前記UE固有基準信号セットから導出された第2のフィルタリングされた経路損失とに少なくとも部分的に基づいて、推定経路損失を決定するステップと、
    を備える方法。
  32. 基地局から前記フィルタリング係数を受信するステップをさらに備える、請求項31に記載の方法。
  33. 前記フィルタリング係数をデフォルト値として前記UEのメモリに記憶するステップをさらに備える、請求項31に記載の方法。
  34. 経路損失選択のための制御シグナリングを受信し、前記制御シグナリングに従って、前記第1のフィルタリングされた経路損失と前記第2のフィルタリングされた経路損失の間で前記推定経路損失の決定を配分するステップをさらに備える、請求項31に記載の方法。
  35. 1つ以上のプロセッサと、前記1つ以上のプロセッサによって実行されるとき、前記1つ以上のプロセッサに、請求項31から34のいずれか一項に記載の方法を実行させる命令を記憶したメモリ記憶装置と、を備えるワイヤレスデバイス。
  36. ユーザ機器(UE)における経路損失推定の方法であって、
    ダウンリンクセル固有信号ブロックを受信するステップと、
    ダウンリンクUE固有基準信号を受信するステップと、
    前記UEが第1のチャネルについてセル固有信号ブロックを基にした経路損失を使用するように構成されているならば、前記ダウンリンクUE固有基準信号の受信電力ではなく、前記ダウンリンクセル固有信号ブロックの受信電力に少なくとも部分的に基づいて、前記第1のチャネルについての推定経路損失を決定するステップと、
    前記UEが第2のチャネルについてUE固有基準信号を基にした経路損失を使用するように構成されているならば、前記ダウンリンクセル固有信号ブロックの前記受信電力ではなく、前記ダウンリンクUE固有基準信号の前記受信電力に少なくとも部分的に基づいて、前記第2のチャネルについての推定経路損失を決定するステップと、
    を備える方法。
  37. 前記UEが第3のチャネルについてセル固有信号ブロックおよびUE固有基準信号の両方を基にした経路損失を使用するように構成されているならば、前記ダウンリンクUE固有基準信号の前記受信電力と前記ダウンリンクセル固有信号ブロックの前記受信電力の両方に少なくとも部分的に基づいて、前記第3のチャネルについての推定経路損失を決定するステップをさらに備える、請求項36に記載の方法。
  38. 1つ以上のプロセッサと、前記1つ以上のプロセッサによって実行されるとき、前記1つ以上のプロセッサに、請求項36から37のいずれか一項に記載の方法を実行させる命令を記憶したメモリ記憶装置と、を備えるワイヤレスデバイス。
  39. ユーザ機器(UE)における経路損失推定の方法であって、
    アクティブ状態から非アクティブ状態に入るステップであって、前記非アクティブ状態がアイドル状態とは異なる、ステップと、
    ダウンリンクセル固有信号ブロックを受信するステップと、
    前記UEが前記非アクティブ状態にある間に決定された前記ダウンリンクセル固有信号ブロックの受信電力、または前記UEが前記アクティブ状態にあった間に決定された記憶された経路損失値に少なくとも部分的に基づいて、前記UEについての推定経路損失を決定するステップと、
    を備える方法。
  40. 前記UEが前記非アクティブ状態にある間に、レイヤ3フィルタリング係数を取得するステップと、
    前記UEが前記非アクティブ状態にある間に、前記ダウンリンクセル固有信号ブロックの前記受信電力を決定するステップと、
    前記UEが前記非アクティブ状態にある間に、前記UEについての前記推定経路損失を決定するために、前記レイヤ3フィルタリング係数を使用して、前記ダウンリンクセル固有信号ブロックの前記受信電力をフィルタリングするステップと、
    をさらに備える、請求項38に記載の方法。
  41. 基地局から前記レイヤ3フィルタリング係数を受信するステップをさらに備える、請求項39に記載の方法。
  42. 前記レイヤ3フィルタリング係数をデフォルト値として前記UEのメモリに記憶するステップをさらに備える、請求項39に記載の方法。
  43. 1つ以上のプロセッサと、前記1つ以上のプロセッサによって実行されるとき、前記1つ以上のプロセッサに、請求項39から42のいずれか一項に記載の方法を実行させる命令を記憶したメモリ記憶装置と、を備えるワイヤレスデバイス。
JP2019536023A 2016-12-30 2017-12-25 経路損失推定方法およびデバイス Active JP6938642B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662440464P 2016-12-30 2016-12-30
US62/440,464 2016-12-30
PCT/CN2017/118368 WO2018121482A1 (en) 2016-12-30 2017-12-25 Path loss estimation methods and devices

Publications (3)

Publication Number Publication Date
JP2020515107A true JP2020515107A (ja) 2020-05-21
JP2020515107A5 JP2020515107A5 (ja) 2021-03-25
JP6938642B2 JP6938642B2 (ja) 2021-09-22

Family

ID=62706930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019536023A Active JP6938642B2 (ja) 2016-12-30 2017-12-25 経路損失推定方法およびデバイス

Country Status (8)

Country Link
US (3) US10420036B2 (ja)
EP (1) EP3563612B1 (ja)
JP (1) JP6938642B2 (ja)
KR (1) KR102272681B1 (ja)
CN (2) CN110445560B (ja)
BR (1) BR112019013616A2 (ja)
CA (1) CA3048934C (ja)
WO (1) WO2018121482A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10447513B2 (en) 2017-01-06 2019-10-15 National Instruments Corporation Common phase error (CPE) compensation for frequency division multiplex (FDM) symbols in wireless communication systems
CN110771078B (zh) 2017-04-03 2022-04-15 美国国家仪器有限公司 测量基于ptrs端口选择的无线通信系统
EP3606182B1 (en) * 2017-04-12 2022-02-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink power control method, device and system
WO2018204571A1 (en) 2017-05-05 2018-11-08 National Instruments Corporation Wireless communication system that performs beam reporting based on a combination of reference signal receive power and channel state information metrics
US10567065B2 (en) 2017-08-11 2020-02-18 National Instruments Corporation Radio frequency beam management and failure pre-emption
KR102478885B1 (ko) * 2017-09-11 2022-12-16 텔레폰악티에볼라겟엘엠에릭슨(펍) 무선 링크 관리 및 무선 자원 관리를 위한 향상된 측정 필터링 구성
CN108401535A (zh) * 2018-01-22 2018-08-14 北京小米移动软件有限公司 信息配置方法及装置、接收功率的确定方法及装置和基站
US20220110067A1 (en) * 2018-09-27 2022-04-07 Samsung Electronics Co., Ltd. Method and device for estimating inter-terminal path loss in wireless communication system
CN112020131B (zh) * 2019-05-31 2022-04-01 大唐移动通信设备有限公司 一种发射功率确定方法、信息传输方法及通信设备
US11160033B2 (en) * 2019-06-18 2021-10-26 Electronics And Telecommunications Research Institute Method and apparatus for controlling transmit power in sidelink communication system
WO2021003626A1 (zh) * 2019-07-05 2021-01-14 北京小米移动软件有限公司 直连通信的发送功率控制方法、装置、设备及存储介质
US11191031B2 (en) * 2019-09-15 2021-11-30 Qualcomm Incorporated Path-loss estimation using path-loss reference signal activation and deactivation
US10897740B1 (en) * 2019-10-01 2021-01-19 Qualcomm Incorporated Methods and devices for facilitating path loss estimations for transmit power control
US11178628B2 (en) * 2019-10-31 2021-11-16 National Instruments Corporation Efficient beam sweeping at a mobile device receiver
JP7385031B2 (ja) * 2019-11-06 2023-11-21 北京小米移動軟件有限公司 電力制御の線路損失計算方法及び装置
US20220394626A1 (en) * 2019-11-08 2022-12-08 Ntt Docomo, Inc. Terminal and radio communication method
US11611870B2 (en) * 2019-11-20 2023-03-21 Qualcomm Incorporated UE capability reporting for configured and activated pathloss reference signals
US20220417868A1 (en) * 2021-06-24 2022-12-29 Mediatek Inc. Power control on repeaters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529205A (ja) * 2011-06-21 2014-10-30 テレフオンアクチーボラゲット エル エム エリクソン(パブル) アップリンク送信の送信電力制御を行うユーザ装置およびその装置における方法
JP2014534667A (ja) * 2011-09-26 2014-12-18 サムスン エレクトロニクス カンパニー リミテッド Comp測定システム及び方法
JP2015513264A (ja) * 2012-03-07 2015-04-30 株式会社Nttドコモ 移動通信のための物理レイヤおよびリンクレイヤにおける方法および装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8428521B2 (en) * 2009-08-04 2013-04-23 Qualcomm Incorporated Control for uplink in MIMO communication system
KR101830738B1 (ko) * 2011-02-22 2018-04-04 엘지전자 주식회사 무선 통신 시스템에서 단말의 상향링크 송신 전력 제어 방법 및 이를 위한 장치
CN102244923B (zh) * 2011-07-25 2018-04-27 中兴通讯股份有限公司 一种上行信号的功率控制方法、网络侧设备及用户设备
EP2777187A1 (en) * 2011-11-11 2014-09-17 Telefonaktiebolaget LM Ericsson (PUBL) Methods and apparatus for performing measurements in adaptive downlink power transmission
KR101589911B1 (ko) * 2012-08-03 2016-02-18 주식회사 케이티 랜덤 액세스 전력 제어 방법 및 장치
CN104904280A (zh) * 2013-03-27 2015-09-09 富士通株式会社 发送功率确定方法及其装置、通信系统
CN104244392B (zh) * 2013-06-24 2017-12-29 华为技术有限公司 避免d2d传输造成上行干扰的方法、基站和用户设备
JP6313095B2 (ja) * 2014-04-01 2018-04-18 株式会社Nttドコモ 基地局
US11116006B2 (en) * 2016-12-16 2021-09-07 Qualcomm Incorporated Uplink transmission parameter selection for random access initial message transmission and retransmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529205A (ja) * 2011-06-21 2014-10-30 テレフオンアクチーボラゲット エル エム エリクソン(パブル) アップリンク送信の送信電力制御を行うユーザ装置およびその装置における方法
JP2014534667A (ja) * 2011-09-26 2014-12-18 サムスン エレクトロニクス カンパニー リミテッド Comp測定システム及び方法
JP2015513264A (ja) * 2012-03-07 2015-04-30 株式会社Nttドコモ 移動通信のための物理レイヤおよびリンクレイヤにおける方法および装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "DL RRM Measurement over Narrowband Reference Signals[online]", 3GPP TSG RAN WG1 #87 R1-1612123, JPN6020042130, 5 November 2016 (2016-11-05), ISSN: 0004380277 *
NOKIA, ALCATEL-LUCENT SHANGHAI BELL: "Mobility Measurement in IDLE and INACTIVE Mode[online]", 3GPP TSG RAN WG2 #96 R2-167712, JPN6020042132, 4 November 2016 (2016-11-04), ISSN: 0004380278 *

Also Published As

Publication number Publication date
JP6938642B2 (ja) 2021-09-22
CN110121905B (zh) 2023-09-22
CA3048934C (en) 2024-01-23
CN110445560A (zh) 2019-11-12
EP3563612B1 (en) 2022-03-23
KR20190101434A (ko) 2019-08-30
CA3048934A1 (en) 2018-07-05
US10986586B2 (en) 2021-04-20
EP3563612A4 (en) 2019-12-18
EP3563612A1 (en) 2019-11-06
KR102272681B1 (ko) 2021-07-05
WO2018121482A1 (en) 2018-07-05
CN110121905A (zh) 2019-08-13
BR112019013616A2 (pt) 2020-03-17
CN110445560B (zh) 2021-03-23
US20190373563A1 (en) 2019-12-05
US20210235391A1 (en) 2021-07-29
US20190090205A1 (en) 2019-03-21
US10420036B2 (en) 2019-09-17

Similar Documents

Publication Publication Date Title
JP6938642B2 (ja) 経路損失推定方法およびデバイス
CN113302993B (zh) 基于上行链路的多小区测量的探测参考信号
US10644777B2 (en) Channel state information reference signal (CSI-RS) for layer-3 (L3) mobility
CN109861802B (zh) 无线网络中自适应传输的系统和方法
CN106537964B (zh) 用于网络适配和利用下行链路发现参考信号的设备、网络和方法
US9949279B2 (en) Selection of transmission mode based on radio conditions
RU2565245C1 (ru) СИНХРОНИЗАЦИЯ ВРЕМЕННЫХ ХАРАКТЕРИСТИК ДЛЯ НИСХОДЯЩЕЙ (DL) ПЕРЕДАЧИ В СКООРДИНИРОВАННЫХ, МНОГОТОЧЕЧНЫХ (СоМР) СИСТЕМАХ
JP6224880B2 (ja) 基地局装置、ユーザ端末、通信システム及び通信制御方法
RU2656234C1 (ru) СИНХРОНИЗАЦИЯ ВРЕМЕННЫХ ХАРАКТЕРИСТИК ДЛЯ НИСХОДЯЩЕЙ (DL) ПЕРЕДАЧИ В СКООРДИНИРОВАННЫХ МНОГОТОЧЕЧНЫХ (CoMP) СИСТЕМАХ
JPWO2016199768A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2014010963A1 (ko) 무선 통신 시스템에서 단말의 측정 수행 방법 및 이를 위한 장치
JP6967601B2 (ja) セル品質導出構成
JP2018029375A (ja) 基地局装置、ユーザ端末及び通信制御方法
WO2014203298A1 (ja) 無線通信方法、無線通信システム、無線局および無線端末
WO2020107423A1 (en) Method, device and computer readable medium for sinr measurement
CN116349314A (zh) 功率控制状态的框架

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201109

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20210208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210901

R150 Certificate of patent or registration of utility model

Ref document number: 6938642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150