JP2020513478A - 高密度化リンクプラットフォームを有する焼結付加製造パーツ - Google Patents

高密度化リンクプラットフォームを有する焼結付加製造パーツ Download PDF

Info

Publication number
JP2020513478A
JP2020513478A JP2019529482A JP2019529482A JP2020513478A JP 2020513478 A JP2020513478 A JP 2020513478A JP 2019529482 A JP2019529482 A JP 2019529482A JP 2019529482 A JP2019529482 A JP 2019529482A JP 2020513478 A JP2020513478 A JP 2020513478A
Authority
JP
Japan
Prior art keywords
densified
link
support
debinding
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019529482A
Other languages
English (en)
Inventor
マーク,グレゴリー,トーマス
Original Assignee
マークフォージド,インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62239990&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2020513478(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by マークフォージド,インコーポレーテッド filed Critical マークフォージド,インコーポレーテッド
Publication of JP2020513478A publication Critical patent/JP2020513478A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/01Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/16Formation of a green body by embedding the binder within the powder bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1146After-treatment maintaining the porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/12Formation of a green body by photopolymerisation, e.g. stereolithography [SLA] or digital light processing [DLP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/14Formation of a green body by jetting of binder onto a bed of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/18Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/37Process control of powder bed aspects, e.g. density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • B22F10/385Overhang structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • B22F10/43Structures for supporting workpieces or articles during manufacture and removed afterwards characterised by material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/55Two or more means for feeding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F2003/1042Sintering only with support for articles to be sintered
    • B22F2003/1046Sintering only with support for articles to be sintered with separating means for articles to be sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/244Leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F2005/103Cavity made by removal of insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2103/00Use of resin-bonded materials as moulding material
    • B29K2103/04Inorganic materials
    • B29K2103/06Metal powders, metal carbides or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2505/00Use of metals, their alloys or their compounds, as filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

付加的に製造されるパーツにおける歪みを減少させるため、所望のパーツと同一の複合物の高密度化リンクプラットフォーム及び/又はサポートがパーツの下に印刷されてもよい。デバインド後、結果として生じる形状保持ブラウンパーツアセンブリが焼結され、形状保持ブラウンパーツアセンブリにわたって隣接する金属粒子が原子拡散を行いつつ同一の速度で一緒に高密度化する。形状保持ブラウンパーツアセンブリの一部を相互接続する、部分間に剥離層を印刷する、逆行方向でアセンブリの隣接ロードを堆積させる及び/又はチャネルを提供することにより、歪みが縮小され、デバインド工程を促進する。【選択図】図4

Description

関連出願の相互参照
本出願は、2016年12月2日に出願された「焼結付加製造パーツのためのサポート」と題する米国仮特許出願第62/429,711号;2016年12月6日に出願された「焼結付加製造パーツ用ウォームスプール供給」と題する米国仮特許出願第62/430,902号;2017年1月4日に出願された「焼結準備済みパーツの付加層の一体堆積及びデバインド」と題する米国仮特許出願第62/442,395号;2017年3月31日に出願された「流動層における焼結付加製造パーツ」と題する米国仮特許出願第62/480,331号;2017年4月24日に出願された「マイクロ波加熱炉における焼結付加製造パーツ」と題する米国仮特許出願第62/489,410号;2017年5月11日に出願された「内部流路を介した急速デバインド」と題する米国仮特許出願第62/505,081号;2017年6月13日に出願された「焼結可能3D印刷パーツにおけるバインダ内応力の補償」と題する米国仮特許出願第62/519,138号;2017年8月15日に出願された「可溶性バインダ供給原料における金属粉末の3D印刷におけるバブルレメディエーション」と題する米国仮特許出願第62/545,966号;及び2017年10月20日に出願された「焼結性粉末供給原料を有する3D印刷内部フリースペース」と題する米国仮特許出願第62/575,219号に対して米国特許法第119条(e)に基づいて利益を主張するものであり、それらの開示は参照によりその全体が本明細書に組み込まれている。
態様は、複合金属又はセラミック材料の3次元印刷に関連する。
技術としての「3次元印刷」には、金属パーツを製作する様々な方法が含まれる。
3D印刷では、概して、パーツのオーバーハング又はカンチレバー部はもちろん、支持されていないスパン部も、堆積のための対向面を提供するため又は後処理中の変形に抵抗するために、下部に除去可能及び/又は可溶性及び/又は分散するサポートを必要とすることがある。
本発明の実施形態の第1態様によれば、付加的に製造されるパーツにおける歪みを減少させる方法において、ポリマーベースのバインダ母材に金属微粒子充填材を含む複合物の連続層の高密度化リンクプラットフォームを形成することを含んでいてもよい。前記高密度化リンクプラットフォーム上に前記同一の複合物の連続層から、高密度化リンクサポートが形成され、前記高密度化リンクプラットフォーム及び高密度化リンクサポート上に前記同一の複合物の連続層から、所望のパーツが形成される。ツールパスに沿って、前記複合物が堆積され、隣接ツールパスが、前記高密度化リンクプラットフォーム、高密度化リンクサポート及び所望のパーツの前記形成中に逆行方向で堆積される。前記高密度化リンクプラットフォーム、高密度化リンクサポート及び所望のパーツを含んでいる形状保持ブラウンパーツアセンブリ(shape-retaining brown part assembly)を形成するために十分な前記バインダ母材がデバインドされる。前記複合物から形成された前記形状保持ブラウンパーツアセンブリが焼結され、前記形状保持ブラウンパーツアセンブリにわたって隣接する金属粒子が原子拡散を行いつつ前記高密度化リンクプラットフォーム、前記高密度化リンクサポート及び前記所望のパーツを一緒に同一の速度で高密度化し、逆行方向の隣接ツールパスにおける前記複合物の前記堆積は、前記隣接ツールパスのポリマー鎖の応力及び緩みに起因するパーツの捻れを減少させる。
本明細書中に説明されているような3D印刷装置は、前記プラットフォーム、サポート及びパーツを形成してもよく、洗浄ステーション、バス又は浸漬(任意に前記3Dプリンタに不可欠な)は、前記母材をデバインドしてもよく、焼結オーブン(任意に前記洗浄ステーションに不可欠な)は、前記形状保持ブラウンパーツアセンブリを焼結してもよい。
任意に、前記高密度化リンクプラットフォーム、高密度化リンクサポート及び所望のパーツが形成され、前記結合された高密度化リンクプラットフォーム及び接続された高密度化リンクサポートの質量中心を前記所望のパーツの前記質量中心と実質的に揃える。前記高密度化リンクサポートと前記所望のパーツの側面との間に前記同一の複合物の分離可能な取り付け突起を形成することにより、前記高密度化リンクサポートが、前記所望のパーツの前記側面にリンク又は相互接続されてもよい。
さらに任意に、前記所望のパーツの横輪郭の一部に続いて、前記同一の複合物の横高密度化リンクシェル(lateral densification linking shell)が形成されてもよい。前記横高密度化リンクシェルは、前記高密度化リンクプラットフォームとリンク又は接続してもよい。前記横高密度化リンクシェルと前記所望のパーツとの間に前記同一の複合物の分離可能な取り付け突起を形成することにより、前記横高密度化リンクシェルは、前記所望のパーツの前記横輪郭の前記一部と接続又はリンクしてもよい。
さらに又は前記代替手段において、可溶性物質の可溶性サポート構造(soluble support structures)が形成され(実質的に前記デバインド可能な母材と同一であってもよい)、前記可溶性サポート構造は、前記所望のパーツの前記形成中に下向きの力に抵抗する。前記形状保持ブラウンパーツアセンブリを焼結する前に、前記高密度化リンクプラットフォーム、高密度化リンクサポート及び所望のパーツを含んでいる形状保持ブラウンパーツアセンブリを形成するために十分な前記母材がデバインドされ、前記可溶性サポート構造の前記可溶性物質をデバインドしてもよい。
さらに追加で又は前記代替手段において、セラミック微粒子充填材及び(前記デバインド可能な母材と実質的に同一であってもよい)デバインダを含んでいる剥離複合物により、前記高密度化リンクサポートと前記所望のパーツとの間のパーツ剥離層が形成されてもよい。前記デバインド中及び前記焼結中に、前記パーツ剥離層及び形状保持ブラウンパーツアセンブリが、一緒にユニットとして保持されてもよい。焼結後、前記所望のパーツから、前記パーツ剥離層、高密度化リンクプラットフォーム及び高密度化リンクサポートが分離されてもよい。
任意に、ツールパスに沿った前記複合物の堆積の開始又は前記複合物の堆積の停止の一方が、ツールパスに沿って調整され、前記パーツの層の内部領域内に位置付けられてもよい。前記開始点と前記停止点との間の輪郭ツールパスは、前記内部領域を少なくとも部分的に満たすラスタパスをさらに画定してもよい。前記隣接ツールパスは、同一層内にあってもよい及び/又は隣接層内にあってもよい。
本発明の実施形態の他の態様によれば、付加的に製造されるパーツにおける歪みを減少させる方法は、ポリマーベースのバインダ母材に金属微粒子充填材を含む複合物の連続層の高密度化リンクプラットフォームを形成することを含んでいてもよい。前記高密度化リンクプラットフォーム上に、前記同一の複合物の連続層からの高密度化リンクサポートが形成されてもよく、前記高密度化リンクプラットフォーム及び高密度化リンクサポート上に、前記同一の複合物の連続層からの所望のパーツが形成されてもよい。前記高密度化リンクプラットフォーム、高密度化リンクサポート及び所望のパーツの前記形成中に、壁ツールパスに沿って及び前記壁ツールパス内のインフィルツールパス(infill tool paths)に沿って、前記複合物が堆積されてもよく、前記壁ツールパスの少なくとも一部は、前記壁ツールパス内を貫通する複数のアクセスチャネルを形成する。前記高密度化リンクプラットフォーム、高密度化リンクサポート及び所望のパーツの周囲に及び前記複数のアクセスチャネルにデバインド流体を流すことにより、デバインドされた高密度化リンクプラットフォーム、高密度化リンクサポート及び所望のパーツを含んでいる形状保持ブラウンパーツアセンブリを形成するために十分な前記バインダ母材がデバインドされてもよい。前記複合物から形成された前記形状保持ブラウンパーツアセンブリが焼結され、前記形状保持ブラウンパーツアセンブリにわたって隣接する金属粒子が原子拡散を行いつつ前記高密度化リンクプラットフォーム、前記高密度化リンクサポート及び前記所望のパーツを一緒に同一の速度で高密度化するようにしてもよい。
任意に、前記高密度化リンクサポートと前記所望のパーツの側面との間に前記同一の複合物の分離可能な取り付け突起を形成することにより、前記高密度化リンクサポートが、前記所望のパーツの前記側面にリンク又は相互接続されてもよい。前記所望のパーツの横輪郭の一部又は全てに続いて、前記同一の複合物の横高密度化リンクシェルが形成されてもよい。前記横高密度化リンクシェルが、前記高密度化リンクプラットフォームに接続されてもよく、前記横高密度化リンクシェルと前記所望のパーツとの間に前記同一の複合物の分離可能な取り付け突起を形成することにより、前記所望のパーツの前記横輪郭に接続されてもよい。
さらに任意に、可溶性物質の可溶性サポート構造が形成されてもよく(実質的に前記デバインド可能な母材と同一であってもよく)、前記可溶性サポート構造は、前記所望のパーツの前記形成中に下向きの力に抵抗する。前記形状保持ブラウンパーツアセンブリを焼結する前に、前記高密度化リンクプラットフォーム、高密度化リンクサポート及び所望のパーツを含んでいる形状保持ブラウンパーツアセンブリを形成するために十分な前記母材がデバインドされ、前記可溶性サポート構造の前記可溶性物質をデバインドしてもよい。
さらに又は前記代替手段において、セラミック微粒子充填材及び(実質的に前記デバインド可能な母材と同一であってもよい)バインダを含んでいる剥離複合物により、前記高密度化リンクサポートと前記所望のパーツとの間に、パーツ剥離層が形成されてもよい。前記デバインド中及び前記焼結中に、前記パーツ剥離層及び形状保持ブラウンパーツアセンブリが、一緒にユニットとして保持されてもよい。焼結後、前記所望のパーツから、前記パーツ剥離層、高密度化リンクプラットフォーム及び高密度化リンクサポートが分離されてもよい。
任意に、前記インフィルツールパスの少なくとも一部は、前記インフィルツールパスの間に複数の流通チャネル(distribution channels)を形成する。前記複数のアクセスチャネル及び前記複数の流通チャネルに、前記デバインド流体が流され、前記デバインドを促進してもよい。複数の流通チャネルを形成している前記インフィルツールパスの少なくとも一部は、一対のアクセスチャネルと流体的に相互接続してもよく、前記一対のアクセスチャネルの一方と前記複数の流通チャネルとに、前記デバインド流体が流され、前記一対のアクセスチャネルの残りの一方から流出して、前記デバインドを促進してもよい。
さらに追加で又は前記代替手段において、前記高密度化リンクプラットフォーム、高密度化リンクサポート及び所望のパーツを囲んでいる前記デバインド流体のバス(bath)が、排出及び補充され、前記デバインドを促進してもよい。前記アクセスチャネルに入る前記デバインド流体の供給が、排出及び補充され、前記アクセスチャネルを通る流体流を加速させ、前記デバインドを促進してもよい。
本発明の実施形態の他の態様によれば、付加的に製造されるパーツにおける歪みを減少させる方法において、複合物の連続層の高密度化リンクプラットフォームが形成されてもよく、前記複合物は、ポリマーベースのバインダ母材に金属微粒子充填材を含んでいる。前記高密度化リンクプラットフォーム及び高密度化リンクサポート上に、前記同一の複合物の連続層の所望のパーツが形成されてもよい。ツールパスに沿って、前記複合物が堆積されてもよく、隣接ツールパスが、前記高密度化リンクプラットフォーム及び所望のパーツの前記形成中に逆行方向で堆積され、前記ツールパスの少なくとも一部は、前記ツールパスを貫通するチャネルを形成する。前記高密度化リンクプラットフォーム、高密度化リンクサポート及び所望のパーツを含んでいる形状保持ブラウンパーツアセンブリを形成するために十分な前記バインダ母材がデバインドされてもよく、前記ツールパスを貫通する前記チャネルは、デバインドを促進させる。前記複合物から形成された前記形状保持ブラウンパーツアセンブリが焼結され、前記形状保持ブラウンパーツアセンブリにわたって隣接する金属粒子が原子拡散を行いつつ前記高密度化リンクプラットフォーム、前記高密度化リンクサポート及び前記所望のパーツを一緒に同一の速度で高密度化してもよく、逆行方向の隣接ツールパスにおける前記複合物の前記堆積は、前記隣接ツールパスのポリマー鎖の応力及び緩みに起因するパーツの捻れを減少させる。
任意に、前記高密度化リンクプラットフォームと前記所望のパーツの底との間に前記同一の複合物の分離可能な取り付け突起を形成することにより、前記高密度化リンクプラットフォームが、前記所望のパーツの前記底にリンク又は相互接続されてもよい。
さらに任意に、可溶性物質の可溶性構造が形成されてもよい(実質的に前記デバインド可能な母材と同一であってもよい)。前記形状保持ブラウンパーツアセンブリを焼結する前に、前記高密度化リンクプラットフォーム及び前記所望のパーツを含んでいる形状保持ブラウンパーツアセンブリを形成するために十分な前記母材がデバインドされ、前記可溶性構造の前記可溶性物質をデバインドしてもよい。
代わりに又は加えて、前記高密度化リンクプラットフォーム上に、前記同一の複合物の連続層の高密度化リンクサポートが形成されてもよい。セラミック微粒子充填材及び(実質的に前記デバインド可能な母材と同一であってもよい)バインダを含んでいる剥離複合物により、前記高密度化リンクサポートと前記所望のパーツとの間に、パーツ剥離層が形成されてもよい。前記デバインド中及び前記焼結中に、前記パーツ剥離層及び前記形状保持ブラウンパーツアセンブリが、一緒にユニットとして保持されてもよい。焼結後、前記所望のパーツから、前記パーツ剥離層、高密度化リンクプラットフォーム及び高密度化リンクサポートが分離されてもよい。
任意に、前記隣接ツールパスは、同一層内にあってもよく及び/又は前記隣接ツールパスは、隣接層内にあってもよい。壁ツールパスに沿って及び前記壁ツールパス内のインフィルツールパスに沿って、前記複合物が堆積されてもよく、前記壁ツールパスの少なくとも一部は、前記壁ツールパスを貫通するチャネルを形成する。前記壁ツールパスを貫通する前記チャネルを通じて前記デバインド流体を流入及び流出させてもよい。
さらに任意に、前記チャネルに入る前記デバインド流体の供給が排出及び補充され、前記チャネルを通る流体流を加速させ、前記デバインドを促進してもよく及び/又は前記高密度化リンクプラットフォーム及び所望のパーツを囲んでいる前記デバインド流体のバスが排出及び補充され、前記デバインドを促進してもよい。
本発明の実施形態の他の態様によれば、付加的に製造されたパーツにおける歪みを減少させる方法は、デバインド可能な母材に金属微粒子充填材を含んでいる複合物の連続層の収縮又は高密度化リンクプラットフォームを形成することを含んでいてもよい。前記デバインド可能な母材は、1又は2段バインダとなるように異なる成分を含んでいてもよい。収縮又は高密度化リンクサポートは、前記収縮プラットフォーム上に前記同一複合物から形成される。前記同一複合物の所望のパーツは、前記収縮プラットフォーム及び収縮サポート上に形成され、前記所望のパーツの実質的に水平な部分(例えば、オーバーハング、ブリッジ、大半径アーチ)は、前記収縮プラットフォームにより垂直にサポートされる(例えば、直接、前記収縮サポートを介して又は剥離層を介して)。前記収縮プラットフォームと下層面(例えば、ビルドプラットフォーム又は焼結用トレイ等)との間の横抵抗を減少させ、前記収縮プラットフォーム(例えば、図4に示すように)の底と等しい又は前記収縮プラットフォームの底より大きい表面積のスライド剥離層が、前記収縮プラットフォームの下に形成されてもよい。前記収縮プラットフォーム、収縮サポート及び所望のパーツを含んでいる形状保持ブラウンパーツアセンブリ(shape-retaining brown part assembly)(例えば、残存するバインダのまばらな格子を含んでおり、前記形状を保持する)を形成するために十分な前記母材がデバインドされる。前記形状保持ブラウンパーツアセンブリの全体にわたって隣接する金属粒子が質量拡散を行っている間に、同一の速度で前記収縮プラットフォーム、前記収縮サポート及び前記所望のパーツの全てを一緒に収縮させるために前記同一複合物から形成される前記形状保持ブラウンパーツアセンブリは加熱される。その結果、均一収縮と前記スライド剥離層とにより歪みを減少させる。
同様の利点を有する装置は、前記収縮プラットフォーム、前記収縮サポート及び前記所望のパーツを堆積させる印刷ヘッドと、前記スライド剥離層を形成する第2プリントヘッドと、前記形状保持ブラウンパーツアセンブリをデバインドするデバインド洗浄と、前記収縮プラットフォーム、前記収縮サポート及び前記所望のパーツを同一の速度で一緒に加熱及び収縮させるための焼結オーブンとを含んでいてもよい。任意に、セルチャンバ間の相互接続を含んでいるオープンセル構造(open cell structure)は、前記収縮プラットフォーム、前記収縮サポート及び前記所望のパーツの少なくとも1つにおいて堆積され、流体デバインダは、前記オープンセル構造に浸透し、前記オープンセル構造内から前記母材をデバインドする。さらに又は代わりに、前記収縮プラットフォーム、収縮サポート及び所望のパーツは、前記結び付けられた収縮プラットフォーム及び接続された収縮サポートの質量中心と前記パーツの前記質量中心とを実質的に揃えるように形成されてもよい。さらに追加で又は前記代替手段において、前記収縮サポートは、前記収縮サポートと前記所望のパーツの側面との間に前記同一複合物の分離可能な取り付け突起を形成することにより前記所望のパーツの前記側面と相互接続されてもよい。なおさらに追加で又は前記代替手段において、横サポートシェル(lateral support shell)が、前記所望のパーツの横輪郭に続いて前記同一複合物から形成されてもよく、前記横サポートシェルは、前記横サポートシェルと前記所望のパーツとの間に前記同一複合物の分離可能な取り付け突起を形成することにより前記所望のパーツの前記横輪郭に接続されてもよい。
さらに任意に、前記所望のパーツの前記形成中に下向きの力に抵抗する前記デバインド可能な母材の可溶性サポート構造(soluble support structures)が、前記金属微粒子充填材なしで形成されてもよく、前記形状保持ブラウンパーツアセンブリを加熱する前に前記可溶性サポート構造を溶解するために十分な前記母材がデバインドされる。代わりに又は加えて、セラミック微粒子充填材及び前記デバインド可能な母材を含んでいる剥離複合物の可溶性サポート構造が形成されてもよく、前記可溶性サポート構造は、前記所望のパーツの前記形成中に下向きの力に抵抗する。前記形状保持ブラウンパーツアセンブリを加熱する前に、前記収縮プラットフォーム、収縮サポート及び所望のパーツを含んでいる形状保持ブラウンパーツアセンブリを形成し、前記可溶性サポート構造の前記母材を溶解するために、十分な前記母材がデバインドされてもよい。
さらに又は前記代替手段において、前記下層面は、ポータブルビルドプレート(portable build plate)を含んでいてもよい。この場合、前記収縮プラットフォームは、前記ポータブルビルドプレート上に形成されてもよく、前記スライド剥離層は、セラミック微粒子及び前記デバインド可能な母材を含んでいる剥離複合物により前記収縮プラットフォームの下で、前記ポータブルビルドプレートの上に形成される。前記形状保持ブラウンパーツアセンブリは、前記加熱中に焼結されてもよい。前記ビルドプレート、スライド剥離層、及び形状保持ブラウンパーツアセンブリは、前記デバインド中及び前記焼結中にユニットとして一緒に保持されてもよい。焼結後、前記ビルドプレート、スライド剥離層、収縮プラットフォーム及び収縮サポートは、前記所望のパーツから分離されてもよい。
任意に、パーツ剥離層が、セラミック微粒子充填材及び前記デバインド可能な母材を含んでいる剥離複合物により前記収縮サポートと前記所望のパーツとの間に形成されてもよく、前記形状保持ブラウンパーツアセンブリは、前記加熱中に焼結される。前記パーツ剥離層及び形状保持ブラウンパーツアセンブリは、前記デバインド中及び前記焼結中にユニットとして一緒に保持されてもよい。焼結後、前記パーツ剥離層、収縮プラットフォーム及び収縮サポートを分離することは、前記所望のパーツから分離されてもよい。この場合、前記収縮サポートにおけるセルチャンバ間に相互接続を含んでいるオープンセル構造が堆積されてもよく、流体デバインダは、前記オープンセル構造に浸透し、前記オープンセル構造内から前記母材をデバインドしてもよい。
本発明の実施形態の他の態様によれば、付加的に製造されたパーツにおける歪みを減少させる方法は、デバインド可能な母材に金属微粒子充填材を含んでいる複合物から形成された収縮プラットフォームを連続層で堆積させることと、前記同一複合物の収縮サポートを前記収縮プラットフォーム上に堆積させることとを含んでいる。相互接続を含んでいるオープンセル構造は、前記収縮サポートにおけるセルチャンバ間に堆積される。前記同一複合物から、所望のパーツが、前記収縮プラットフォーム及び収縮サポート上に堆積される。前記収縮プラットフォーム、収縮サポート及び所望のパーツは、流体デバインダに曝され、形状保持ブラウンパーツアセンブリを形成する。前記流体デバインダは、前記オープンセル構造に浸透し、前記オープンセル構造内から前記母材をデバインドする。前記形状保持ブラウンパーツアセンブリは、焼結され、前記形状保持ブラウンパーツアセンブリの全体にわたって共通の速度で収縮する。
任意に、前記収縮プラットフォームと下層面との間の横抵抗を減少させ、前記収縮プラットフォームの底と等しい又は前記収縮プラットフォームの底より大きい表面積のスライド剥離層が、前記収縮プラットフォームの下に堆積される。さらに又は前記代替手段において、パーツ剥離層が、セラミック微粒子充填材及び前記デバインド可能な母材を含んでいる剥離複合物により前記収縮サポートと前記所望のパーツとの間に堆積され、前記パーツ剥離層及び形状保持ブラウンパーツアセンブリは、前記曝されている間及び前記焼結中にユニットとして一緒に保持される。焼結後、前記パーツ剥離層、収縮プラットフォーム及び収縮サポートは、前記所望のパーツから分離される。さらに任意に、例えば、図8乃至図10に示すように、剥離複合物を有しない垂直ギャップが、収縮サポートの垂直面が前記所望のパーツの隣接壁に対向する収縮サポートと前記所望のパーツとの間に形成される。
代わりに又は加えて、例えば、図8乃至図10に示すように、横サポートシェルブロックが、大きなセル内部を有し、前記横サポートシェルブロック内の最も厚い壁より幅が広いセルキャビティを有するセルを有して堆積され、デバインド流体の前記サポート内への拡散及び浸透を支援する。さらに代わりに又は加えて、前記収縮サポートは、前記収縮サポートと前記所望のパーツの側面との間に前記同一複合物の分離可能な取り付け突起を形成することによって前記所望のパーツの前記側面と相互接続されてもよい。
さらに任意に、例えば、図8乃至図10に示すように、前記収縮サポートとしての前記同一複合物の横サポートシェルが堆積され、前記所望のパーツの横輪郭をたどってもよい。この場合、前記横サポートシェルは、前記横サポートシェルと前記所望のパーツとの間に前記同一複合物の分離可能な取り付け突起を形成することにより前記所望のパーツの前記横輪郭に接続されてもよい。代わりに又は加えて、前記収縮プラットフォーム、前記横サポートシェル及び前記所望のパーツの少なくとも1つは、内部チャンバ間の相互接続を有して堆積されてもよく、流体デバインダが、前記相互接続を介して前記内部チャンバ内に浸透し、前記オープンセル構造内から前記母材をデバインドしてもよい。前記収縮プラットフォーム、収縮サポート、及び所望のパーツは、前記結び付けられた収縮プラットフォーム及び接続された収縮サポートの質量中心と前記パーツの前記質量中心とを実質的に揃えるように堆積されてもよい。
本発明の実施形態の他の態様によれば、付加的に製造されたパーツにおける歪みを減少させる方法は、デバインド可能な母材に金属微粒子充填材を含んでいる複合物から形成された収縮プラットフォームを連続層で堆積させることを含んでいる。前記同一複合物の収縮サポートが、前記収縮プラットフォーム上に堆積されてもよい。例えば、図8乃至図10に示すように、前記収縮サポート間に、前記収縮サポートを分離クリアランスに沿って分離可能な断片に分割する前記分離クリアランスとしてのパーティングラインが形成されてもよい。前記同一複合物から、所望のパーツが、前記収縮プラットフォーム及び収縮サポート上に成形されてもよい。前記収縮プラットフォーム、収縮サポート柱及び所望のパーツを含んでいる形状保持ブラウンパーツアセンブリを形成するために十分な前記母材がデバインドされてもよい。前記形状保持ブラウンパーツアセンブリは、焼結され、前記形状保持ブラウンパーツアセンブリの全体にわたって均一な速度で収縮してもよい。前記収縮サポートは、前記分離クリアランスに沿って断片に分割されてもよく、前記断片は、前記所望のパーツから分離されてもよい。
任意に、1以上の分離クリアランスは、隣接するサポート柱を分離させ、実質的に前記隣接するサポート柱の高さに対して延びている垂直クリアランスとして形成されており、さらに、前記隣接するサポート柱は、前記垂直クリアランスに沿って互いに分離される。代わりに又は加えて、前記所望のパーツのキャビティ内に、内部収縮サポートが、前記同一複合物から形成される。前記内部収縮サポート間で、パーティングラインが、前記内部収縮サポートを前記分離クリアランスに沿って分離可能な小区分断片に分割する分離クリアランスとして形成されてもよい。前記小区分断片は、前記分離クリアランスに沿って互いに分離されてもよい。
代わりに又は加えて、前記断片は、前記収縮サポートを交差させる平面内で隣接する分離クリアランスに沿って互いに分離可能なブロックとして形成される。前記収縮サポートとしての前記同一複合物の横サポートシェルが形成され、前記所望のパーツの横輪郭を追跡してもよい。任意に、前記横サポートシェルは、前記横サポートシェルと前記所望のパーツとの間に前記同一複合物の分離可能な取り付け突起を形成することにより、前記所望のパーツの前記横輪郭に接続されてもよい。さらに任意に、前記横サポートシェルにおいて、前記横サポートシェルをパーティングラインに沿って分離可能なシェル断片に分割するパーティングラインが形成されてもよい。前記収縮プラットフォーム、収縮サポート柱、横サポートシェル及び所望のパーツを含んでいる形状保持ブラウンパーツアセンブリを形成するために十分な前記母材がデバインドされてもよい。前記横サポートシェルは、前記パーティングラインに沿って前記シェル断片に分離されてもよい。前記シェル断片は、前記所望のパーツから分離されてもよい。
さらに任意に、前記収縮プラットフォーム、前記収縮サポート及び前記所望のパーツの少なくとも1つは、内部チャンバ間の相互接続を有して堆積されてもよく、流体デバインダが、前記相互接続を介して前記内部チャンバ内に浸透し、前記オープンセル構造内から前記母材をデバインドする。代わりに又は加えて、前記金属微粒子充填材なしで、前記所望のパーツの前記形成中に下向きの力に抵抗する前記デバインド可能な母材の可溶性サポート構造が形成されてもよく、前記形状保持ブラウンパーツアセンブリを焼結する前に、前記可溶性サポート構造を溶解するために十分な前記母材がデバインドされる。
なお、さらに任意に、前記収縮プラットフォームとビルドプレートとの間の横抵抗を減少させる前記収縮プラットフォームの底と等しい又は前記収縮プラットフォームの底より大きい表面積のスライド剥離層が、前記収縮プラットフォームの下に形成されてもよく、前記収縮プラットフォームは、前記ポータブルビルドプレート上に形成されてもよい。前記スライド剥離層は、セラミック微粒子及び前記デバインド可能な母材を含んでいる剥離複合物により前記収縮プラットフォームの下で、前記ポータブルビルドプレート上に形成されてもよく、前記ビルドプレート、スライド剥離層及び形状保持ブラウンパーツアセンブリは、前記デバインド中及び前記焼結中にユニットとして一緒に保持されてもよい。
さらに代わりに又は加えて、パーツ剥離層が、セラミック微粒子充填材及び前記デバインド可能な母材を含んでいる剥離複合物により前記収縮サポートと前記所望のパーツとの間に形成されてもよく、前記パーツ剥離層及び形状保持ブラウンパーツアセンブリは、前記デバインド中及び前記焼結中にユニットとして一緒に保持されてもよい。焼結後、前記パーツ剥離層、収縮プラットフォーム及び収縮サポートは、前記所望のパーツから分離されてもよい。
本発明の実施形態の他の態様によれば、堆積ベースの付加製造システムによるパーツの構築方法において、ポリマー含有材料は、第1輪郭ツールパスに沿って堆積され、グリーンパーツ(green part)の層の外周パスを形成し、前記外周パス内の内部領域を画定する。前記第1方向に逆行する第2方向において、前記材料は、第2輪郭ツールパスに基づき堆積され、前記外周パスに隣接する前記内部領域に隣接パスを形成する。前記第2方向の前記隣接パスの前記堆積は、前記外周パスにおける前記材料のポリマー鎖における応力と反対方向で前記材料のポリマー鎖に応力を加え、前記パーツの前記ポリマー鎖の緩みに起因するパーツの捻れを減少させる。
任意に、堆積の開始又は堆積の停止の一方は、前記層の前記内部領域内に位置付けられるように調整される。さらに任意に、前記開始点及び前記停止点の前記位置は、オープンスクエア配置、クローズドスクエア配置、重複クローズドスクエア配置、オープントライアングル配置、クローズドトライアングル配置、収束点配置、重複クロス配置、クリンプスクエア配置及びこれらの組合せからなる群より選ばれる配置を画定する。代わりに又は加えて、前記開始点と前記停止点との間の輪郭ツールパスは、さらに、前記内部領域を少なくとも部分的に満たすラスタパスを画定する。
本発明の実施形態の他の態様によれば、堆積ヘッド及び制御部を有している堆積ベースの付加製造システムによるパーツの構築方法において、前記パーツの層に対する第1ツールパスは、前記制御部により受信され、前記受信された第1ツールパスは、外周輪郭セグメントを備えている。前記パーツの層に対する第2ツールパスは、前記制御部により受信され、前記受信された第2ツールパスは、前記外周輪郭セグメントに隣接している内部領域セグメントを備えている。堆積ヘッドは、前記受信された第1ツールパスの前記外周輪郭セグメントをたどるパターンで動かされ、焼結性粉末を含んでいるデバインド可能な複合物の外周パスを作成し、前記堆積ヘッドを前記受信された第2ツールパスの前記内部領域セグメントをたどるパターンで動かし、前記デバインド可能な複合物の内部隣接パスを作成し、前記外周パス及び前記隣接パスは、前記デバインド可能な複合物のバインダ内の残留応力の方向が前記外周パス及び前記隣接パスにおいて反対であるような方向に堆積される。
本発明の実施形態のさらに他の態様によれば、堆積ベースの付加製造システムによるパーツの構築方法において、前記パーツのデジタル固体モデル(例えば、3Dメッシュ又は3D固体)が受信され、前記デジタル固体モデルは、複数の層にスライスされる。外周輪郭ツールパスは、前記複数の層の一層の外周に基づき生成され、前記生成された外周輪郭ツールパスは、前記層の内部領域を画定する。内部隣接パスは、前記内部領域内の前記外周輪郭ツールパスに基づき生成される。デバインド可能な複合物は、前記外周輪郭ツールパスに基づき第1方向に焼結性粉末を含んで押し出され、前記層に対する前記デバインド可能な複合物の外周を形成する。前記デバインド可能な複合物は、前記外周輪郭ツールパスに基づき第2方向に押し出され、前記層に対する前記デバインド可能な複合物の内部隣接パスを形成し、前記外周輪郭ツールパス及び前記内部隣接パスの前記堆積は、前記デバインド可能な複合物のバインダ内の残留応力の方向が前記外周輪郭ツールパス及び前記内部隣接パスにおいて反対であるように互いに逆行する方向にトレースされる。任意に、前記外周輪郭ツールパスの開始点及び前記外周輪郭ツールパスの停止点は、前記内部領域内に位置付けられるように調整される。
本発明の実施形態のさらに他の態様によれば、堆積ヘッド及び制御部を有している堆積ベースの付加製造システムによるパーツの構築方法において、前記パーツの層に対する第1ツールパスは、制御部により受信され、前記受信された第1ツールパスは、輪郭セグメントを備えている。前記パーツの層に対する第2ツールパスは、制御部により受信され、前記受信された第2ツールパスは、前記第2ツールパスの連続堆積長の少なくとも90パーセントに亘って、前記第1ツールパスと重複してもよい。前記堆積ヘッドは、前記第1ツールパスをたどるパターンで動かされ、前記層に対するデバインド可能な複合物の外周パスを作成する。前記堆積ヘッドは、前記第1ツールパスと逆行する方向の前記第2ツールパスをたどるパターンで動かされ、デバインド可能な複合物の前記外周パスに隣接する応力オフセットパスを作成し、前記デバインド可能な複合物のバインダ内の残留応力の方向が前記外周パス及び前記応力オフセットパスにおいて反対になるようにする。任意に、前記第2ツールパスは、前記同一層内で前記第1ツールパスの少なくとも90パーセントに連続的に隣接し、内部領域パスを備えている。さらに任意に、前記第2ツールパスは、隣接層内で前記第1ツールパスの少なくとも90パーセントに亘って連続的に隣接し、前記隣接層の外周パスを備えている。
本発明の実施形態のさらに他の態様によれば、堆積ヘッド及び制御部を有している堆積ベースの付加製造システムによるパーツの構築方法において、ツールパスは、コンピュータで生成される。前記生成されたツールパスに対する指示は、前記制御部に送信され、デバインド可能な複合物は、前記堆積ヘッドを前記生成されたツールパスに沿って移動させながら前記堆積ヘッドから堆積され、前記パーツの層の外周パスを形成する。前記外周パスは、第1輪郭ロード部及び第2輪郭ロード部を含んでいてもよく、前記第1輪郭ロード部及び前記第2輪郭ロード部の各々は、偶数のXパターンで互いに交差し、前記層に対する偶数の隠された継ぎ目を形成している。
本発明の実施形態のさらに他の態様によれば、堆積ヘッド及び制御部を有している堆積ベースの付加製造システムによるパーツの構築方法において、前記堆積ヘッドは、第1ツールパスセグメントに沿って動かされ、前記パーツの層に対する外周ロード部を形成し、方向転換ツールパスセグメント(direction changing tool path segment)に沿って動かされる。前記堆積ヘッドは、第2ツールパスセグメントに沿って動かされ、前記外周ロード部に隣接する応力均衡ロード部を形成してもよい。任意に、前記方向転換ツールパスセグメントは、前記同一層内の前記第1ツールパスセグメントと前記第2ツールパスセグメントとの間に連続して優角を成す。さらに任意に、バインダ及び焼結性粉末を含んでいるデバインド可能な複合物は、外周についての第1方向に堆積される。内部パスは、前記第1方向に逆行する方向の前記外周に沿って堆積される。前記隣接パスの前記堆積は、前記外周パスの応力と反対方向で前記バインダの長鎖分子に応力を加え、前記パーツの前記長鎖分子の緩みに起因する焼結中のパーツ捻れを減少させる。
本発明の実施形態のさらに他の態様によれば、付加製造のために材料を堆積させる方法において、複合材料は、バインダ母材及び焼結性粉末を含んで供給される。パーツの壁の連続層が堆積され、前記パーツの外部から前記パーツの内部に延びている第1アクセスチャネルを形成する。前記パーツの前記内部にハニカムインフィル(honeycomb infill)の連続層が堆積され、前記ハニカムインフィルの内部ボリュームを前記第1アクセスチャネルに接続する流通チャネル(distribution channel)を形成する。前記バインダ母材は、前記ハニカムインフィルの前記内部ボリューム内で前記第1アクセスチャネル及び前記流通チャネルにデバインド流体を流すことにより、デバインド(例えば、溶解)される。
任意に、前記パーツの前記壁の連続層が堆積され、前記パーツの前記外部から前記パーツの前記内部に延びている第2アクセスチャネルを形成し、前記バインダ母材は、デバインド流体を前記第1アクセスチャネルから、前記流通チャネルを介して、前記第2アクセスチャネルから出るように流すことにより、デバインドされる。さらに任意に、前記第1アクセスチャネルは、デバインド流体の加圧供給に接続され、デバインド流体を前記第1アクセスチャネル、流通チャネル及び第2アクセスチャネルに押し通す。代わりに又は加えて、ハニカムインフィル材の連続層が前記パーツの前記内部に堆積され、前記ハニカムインフィルの内部ボリュームを前記第1アクセスチャネルに接続する複数の流通チャネルを形成する。前記複数の流通チャネルの少なくともいくつかは、他の前記流通チャネルとは異なる長さを有している。
本発明の実施形態の他の態様によれば、付加製造のために材料を堆積させる方法において、バインダ母材及び8マイクロメーター未満の平均粒径を有している焼結性粉末金属を含んでいる金属材が供給され、前記金属材は、第1焼結温度を有している。セラミック材は、同一のバインダ母材及び焼結性粉末セラミックを含んで供給され、前記セラミック材は、前記金属材より高い焼結温度を有している第1セラミックと前記金属材より低い焼結温度を有している第2セラミックの混合体を含んでおり、前記セラミック材は、実質的に前記金属材の収縮挙動とマッチし、実質的に前記第1焼結温度と同一の範囲の第2焼結温度を有している。前記金属材の層は、堆積により前記金属材の層の事前の堆積の上に形成され、前記金属材の層は、堆積により前記セラミック材の層の事前の堆積の上に形成される。前記バインダ母材の少なくとも一部は、前記金属材及びセラミック材の各々からデバインドされる。前記金属材及びセラミック材からそのように形成されたパーツは、前記第1焼結温度まで加熱され、その結果、前記第1材料及び前記第2材料を焼結する。パーツの壁の連続層が堆積され、前記パーツの外部から前記パーツの内部に延びている第1アクセスチャネルを形成し、同様に、前記ハニカムインフィルの内部ボリュームを前記第1アクセスチャネルに接続する流通チャネルを形成する。焼結性粉末を保持しているバインダ母材は、デバインド流体を前記ハニカムインフィルの前記内部ボリューム内で前記第1アクセスチャネル及び前記流通チャネルに流すことにより、デバインドされる。
本発明の実施形態のさらなる態様によれば、付加製造により焼結可能なブラウンパーツを形成するために材料を堆積させる方法において、材料供給パスに沿って供給する第1フィラメントは、バインダ母材及び第1焼結温度を有している焼結可能な球状及び/又は粉末の第1材料を含んでいる。第1材料のグリーン層は、堆積により第1材料のブラウン層上に形成される。前記バインダ母材の少なくとも一部は、第1材料の各グリーン層からデバインドされ、各グリーン層を対応するブラウン層にデバインドする。前記パーツの実質的に全てのブラウン層の前記形成に続いて、前記パーツは、前記第1焼結温度で焼結されてもよい。
代わりに又は加えて、付加製造により焼結可能なブラウンパーツを形成するために材料を堆積させる方法において、第1フィラメントは、バインダ母材及び第1焼結温度を有している焼結可能な球状及び/又は粉末の第1材料を含んで供給される。第2フィラメントは、前記第1焼結温度より高い300℃を超える第2焼結温度を有している第2材料を含んで供給される。第2材料の層は、堆積によりビルドプレート又は第1若しくは第2材料の事前の堆積の上に形成される。第1材料のグリーン層は、堆積によりブラウン層又は第2材料の事前の堆積の上に形成され、第1材料の各グリーン層からの前記バインダ母材の少なくとも一部は、デバインドされ、各グリーン層を対応するブラウン層にデバインドする。前記パーツの実質的に全てのブラウン層の前記形成に続いて、前記パーツは、前記第2焼結温度未満の前記第1焼結温度で焼結され、その結果、前記第2材料を焼結することなく、前記第1材料を焼結してもよい。
本発明の実施形態の他の態様によれば、粉末の焼結可能な材料から形成されるブラウンパーツ品を焼結する方法において、パウダーベッドにおいて第1焼結温度を有している第1粉末から一体的に形成されるブラウンパーツは、るつぼ内に置かれ、前記パウダーベッドは、前記第1焼結温度より高い300℃を超える第2焼結温度を有している第2粉末を含んでいる。前記第2粉末は、攪拌され、前記ブラウンパーツの内部キャビティを充填する。前記ブラウンパーツの支持されていない部分の重量は、前記第2粉末で継続的に対抗される。前記ブラウンパーツは、前記第2粉末を焼結することなく前記第1温度で焼結され、焼結パーツを形成する。前記焼結パーツは、前記パウダーベッドから除去される。
任意に、前記攪拌することは、加圧ガスを前記るつぼの前記底に流すことにより、前記第2粉末を流体化させることを含んでいる。代わりに又は加えて、前記ブラウンパーツの支持されていない部分の前記重量は、少なくとも一部、前記流体化された第2粉末における上向き成分を有している浮力を維持することにより、前記第2粉末で継続的に対抗される。
本発明の実施形態の他の態様によれば、粉末の焼結可能な材料から印刷される3Dを作る方法において、第1フィラメントは、バインダ母材及び第1焼結温度を有している焼結可能な球状及び/又は粉末の第1材料を含んで供給される。第2フィラメントは、前記第1焼結温度より高い300℃を超える第2焼結温度を有している第2材料を含んで供給される。第2材料の層は、堆積によりビルドプレート又は第1若しくは第2材料の事前の堆積の上に形成され、第1材料のグリーン層は、堆積によりブラウン層又は第2材料の事前の堆積の上に形成される。第1材料の各グリーン層からの前記バインダ母材の少なくとも一部は、デバインドされ、各グリーン層を対応するブラウン層にデバインドする。前記パーツは、るつぼ内のパウダーベッドに一体的に置かれ、前記パウダーベッドは、前記第1焼結温度より高い300℃を超える第3焼結温度を有している第3粉末を含んでいる。前記第3粉末は、攪拌され、前記ブラウン層間の内部キャビティを充填し、前記ブラウン層の支持されていない部分の重量は、前記第3粉末で継続的に対抗される。前記パーツは、前記第3粉末を焼結することなく前記第1温度で焼結され、焼結パーツを形成し、前記焼結パーツは、前記パウダーベッドから除去される。
本発明の実施形態の他の態様によれば、付加製造のための方法において、材料は、除去可能なバインダ及び1200℃より高い融点を有している、50%より大きい体積分率の粉末金属を含有して供給される。前記粉末金属の50パーセントを超える粉末粒子は、10ミクロン未満の直径を有している。前記材料は、連続層で付加的に堆積して、グリーンボディを形成し、前記バインダは、続いて除去され、ブラウンボディが形成される。前記ブラウンパーツ又はボディは、実質的に1200℃未満の動作温度、1×10−6/℃未満の熱膨張計数及び10m以上のマイクロ波場侵入深さを有している材料から形成された溶融チューブに押し込まれる。前記溶融チューブは密封され、内部空気は焼結雰囲気に置き換えられる。マイクロ波エネルギーは、前記密封された溶融チューブ外で前記ブラウンパーツに適用される。前記ブラウンパーツは、1200℃未満の温度で焼結される。
本発明の実施形態のさらなる態様によれば、付加製造のための方法において、材料は、除去可能なバインダ及び1200℃より高い融点を有している、50%より大きい体積の粉末金属を含有して供給される。50パーセントを超える前記粉末粒子は、10ミクロン未満の直径を有している。前記材料は、300ミクロンより小さい内径を有しているノズルで付加的に堆積される。前記バインダは除去され、ブラウンボディ又はパーツが形成される。前記ブラウンパーツ又はボディは、1×10−6/℃未満の熱膨張計数を有している材料から形成された溶融チューブに押し込まれる。前記溶融チューブは密封され、内部空気は焼結雰囲気に置き換えられる。放射エネルギーは、前記密封された溶融チューブ外から前記ブラウンパーツに適用される。前記ブラウンパーツ又はボディは、500℃より高いが、1200℃未満の温度で焼結される。
本発明の実施形態のさらなる態様によれば、付加製造のための方法において、第1ブラウンパーツは、第1粉末金属を含んでいる第1デバインド材から形成され、供給されてもよい。前記第1粉末金属の50パーセントを超える粉末粒子は、10ミクロン未満の直径を有している。第2ブラウンパーツは、第2粉末金属を含んでいる第2デバインド材から形成され、供給されてもよい。前記第2粉末金属の50パーセントを超える粉末粒子は、10ミクロン未満の直径を有している。第1モードにおいて、前記第1ブラウンパーツは、1×10−6/℃未満の熱膨張計数を有している材料から形成された溶融チューブに押し込まれてもよく、前記溶融チューブ内の温度は、毎分10℃より高いが、毎分40C℃未満で、500℃より高く、700℃未満の第1焼結温度まで上昇させてもよい。第2モードにおいて、前記第2ブラウンパーツは、前記同一の溶融チューブに押し込まれてもよく、前記溶融チューブ内の温度は、毎分10℃より高いが、毎分40℃未満で、1000℃より高いが、1200℃未満の第2焼結焼戻し温度まで上昇させてもよい。
任意に、前記第1モードにおいて、第1焼結雰囲気は、酸素フリーの99.999%以上の不活性窒素を含んでいる前記溶融チューブに導入される。さらに任意に、前記第2モードにおいて、少なくとも2%乃至5%(例えば、3%)の水素を備えている第2焼結雰囲気は、前記溶融チューブに導入されてもよい。任意に、前記溶融チューブは、10m以上のマイクロ波場侵入深さを有している溶融シリカから形成され、マイクロ波エネルギーは、前記溶融チューブ内の前記第1及び/又は第2材料ブラウンパーツに適用され、同一の前記温度を上昇させる。マイクロ波エネルギーは、代わりに又は加えて、前記溶融チューブ外及び前記溶融チューブ内の任意の焼結雰囲気外に置かれたサセプタ材料要素に適用され、前記サセプタ材料要素の前記温度を上昇させてもよい。
これらの態様において、任意に、前記材料は、前記ノズルの幅の実質的に2/3以上の層の高さで付加的に堆積される。任意に、材料は、前記粉末金属の90パーセントを超える粉末粒子が8ミクロン未満の直径を有して、供給される。さらに任意に、マイクロ波エネルギーは、前記密封された溶融チューブ外から前記密封された溶融チューブ外に配置されるサセプタ材料部材に適用される。マイクロ波エネルギーは、前記密封された溶融チューブ外から前記ブラウンパーツに適用された前記放射エネルギーであってもよい。前記密封された溶融チューブ外に配置されたサセプタ材料部材は、抵抗加熱されてもよい。任意に、前記溶融チューブ内の温度は、毎分10℃より高いが、毎分40℃未満で上昇させてもよい。前記溶融チューブの前記材料は、アモルファス溶融シリカであってもよく、前記焼結雰囲気は、少なくとも2%の水素であって5%未満の水素(例えば、3%の水素)を備えてもよい。前記粉末金属は、ステンレス鋼又は工具鋼であってもよい。前記サセプタ材料は、炭化ケイ素又はケイ化モリブデンの一方であってもよい。
本発明の実施形態の追加の態様によれば、多目的焼結炉は、1×10−6/℃未満の熱膨張計数を有している溶融シリカから形成された溶融チューブ及び周囲の雰囲気に対して前記溶融チューブを密閉するシールを含んでいる。内部雰囲気レギュレータは、真空を適用するために前記溶融チューブの内部に動作可能に接続され、前記溶融チューブ内のガスを除去し、複数の焼結雰囲気を前記溶融チューブに導入し、発熱体が前記溶融チューブ外及び前記溶融チューブ内の任意の焼結雰囲気外に置かれる。制御部は、前記発熱体及び前記内部雰囲気レギュレータに動作可能に接続され、第1モードにおける前記制御部は、500℃より高く700℃未満の第1焼結温度で第1焼結雰囲気内において第1材料ブラウンパーツを焼結し、第2モードにおいて、1000℃より高いが、1200℃未満の第2焼結温度で第2焼結雰囲気内において第2材料ブラウンパーツを焼結する。
任意に、前記内部雰囲気レギュレータは、前記溶融チューブの内部に動作可能に接続され、酸素フリーの99.999%以上の不活性窒素を備えている第1焼結雰囲気を導入する。さらに任意に、前記第1モードにおける前記制御部は、50パーセントを超える粉末粒子が10ミクロン未満の直径を有しているアルミニウム粉末で主として形成されたブラウンパーツを、酸素フリーの99.999%以上の不活性窒素を備えている前記第1焼結雰囲気内で、500℃より高く、700℃未満の前記第1焼結温度で焼結する。代わりに又は加えて、前記第2モードにおける前記制御部は、50パーセントを超える粉末粒子が10ミクロン未満の直径を有している鋼粉末で主として形成されたブラウンパーツを、少なくとも3%の水素を備えている前記第2焼結雰囲気内で、1000℃より高く、1200℃未満の前記第2焼結温度で焼結する。
前記制御部は、毎分10℃より高いが、毎分40℃未満で前記溶融チューブ内の温度を上昇させてもよい。前記内部雰囲気レギュレータは、前記溶融チューブの内部に動作可能に接続され、少なくとも3%の水素を備えている第2焼結雰囲気を導入してもよい。前記制御部は、毎分10℃より高いが、毎分40℃未満で前記溶融チューブ内の温度を上昇させてもよい。前記溶融シリカチューブは、1×10−6/℃未満の熱膨張計数及び10m以上のマイクロ波場侵入深さを有している溶融シリカから形成されてもよく、前記発熱体は、さらに、前記溶融チューブ内の前記第1及び/又は第2材料ブラウンパーツにエネルギーを適用し、前記第1及び/又は第2材料ブラウンパーツの前記温度を上昇させるマイクロ波発振器を備えている。サセプタ材料発熱体は、前記溶融チューブ外及び前記溶融チューブ内の任意の焼結雰囲気外に置かれてもよく、前記マイクロ波発振器は、(i)前記溶融チューブ内の前記第1及び/又は第2材料ブラウンパーツ及び/又は(ii)前記サセプタ材料発熱体の一方又は双方にエネルギーを適用し、(i)前記溶融チューブ内の前記第1及び/又は第2材料ブラウンパーツ及び/又は(ii)前記サセプタ材料発熱体の一方又は両方の前記温度を上昇させる。前記発熱体は、さらに、前記溶融チューブ外及び前記溶融チューブ内の任意の焼結雰囲気外に置かれたサセプタ材料発熱体を備えている。付加的に堆積された材料に埋め込まれた小さな粉末粒子のサイズ(例えば、90パーセントの粒子が8ミクロンより小さい)の金属粉末は、ステンレス鋼の焼結温度を、溶融シリカチューブ炉の1200℃の動作温度天井未満に下げてもよく、前記同一のシリカ溶融チューブ炉をアルミニウム及びステンレス鋼の双方を(適切な雰囲気で)焼結するために利用するために利用されること、同様に、両方の材料を焼結するためのマイクロ波加熱、抵抗加熱又は受動的若しくは能動的サセプタ加熱の前記使用を可能にする。
本発明の実施形態の他の態様によれば、50%を超える金属又はセラミック球を含んで、任意に二段バインダを有している複合材料において、フィラメント材のスプールは、室温より高いが、バインダ材のガラス転移温度未満の温度、例えば、50摂氏度乃至55摂氏度で、巻き付けられ、解かれる。フィラメント材のスプールは、室温において運ばれてもよい。モデル材チャンバにおける上側のスプールは、前記モデル材及び前記剥離材を含んでいてもよい。前記スプールは、前記スプールを当該例により熟慮された前記50摂氏度乃至55摂氏度で保持するジョイント加熱チャンバに保持されてもよい。ビルドプレートは、印刷中、同様またはより高い温度(例えば、50度乃至120度)までビルドプレートヒータにより加熱されてもよい。前記ビルドプレートの前記加熱は、前記印刷区画内の前記温度を室温より高いレベルで維持する手助けをしてもよい。
任意に、材料の各スプールは、それ自身の独立チャンバで保持されてもよい。前記スプールの温度を維持するためのヒータは、受動的な、例えば、放射及び対流ヒータであってもよいし、送風機を含んでいてもよい。加熱空気は、前記フィラメント材が運ばれるボーデンチューブ又は他の輸送チューブを通って運ばれてもよい。前記スプールは、水平軸上に垂直に配置されてもよく、前記フィラメントは、前記フィラメントの全ての曲げにおいて大きな曲げ半径を有するように、実質的にまっすぐ前記移動印刷ヘッドに滴下される。前記材料は、10cmの曲げ半径より小さい曲げは有さず及び/又は前記スプール半径より実質的に小さい曲げ半径は有さず、維持されてもよい。
本発明の実施形態の他の態様によれば、3D印刷グリーンパーツのための方法において、バインダは、粉末供給原料の連続層上に噴射され、層毎に結合粉末の2D層形状を形成する。3D形状は、前記結合粉末の相互接続された2D層形状からの所望の3Dグリーンパーツで付加的に堆積される(例えば、構築される)。焼結サポートの3D形状は、前記結合粉末の相互接続された2D層形状から付加的に堆積され(例えば、構築され)、収縮プラットフォームの3D形状は、前記結合粉末の相互接続された2D層形状から付加的に堆積される(例えば、構築される)。剥離材は、結合粉末の形状上に付加的に堆積され(例えば、構築され)、剥離材の2D層形状を形成し、剥離面の3D形状は、前記剥離材の相互接続された2D層形状から付加的に堆積される(例えば、構築される)。プレースホルダ材(placeholder material)は、結合粉末の形状上に付加的に堆積され(例えば、構築され)、プレースホルダ材の2D層形状を形成し、プレースホルダ体積の3D形状は、前記プレースホルダ材の相互接続された2D層形状から付加的に堆積される(例えば、構築される)。前記結合粉末、剥離材及びプレースホルダ材は、デバインドされ、前記所望の3Dグリーンパーツ、前記焼結サポート、前記剥離面及びデバインド前の前記プレースホルダ材の前記3D形状に対応する内部キャビティを含んでいるグリーンパーツアセンブリを形成する。
当該態様によれば、デバインドされ、焼結される3D印刷グリーンパーツに関し、バインダは、焼結性粉末供給原料の連続層内に噴射され、所望の3Dグリーンパーツの3D形状、関連付けられている焼結サポート及び関連付けられている収縮プラットフォームを構築してもよい。剥離材は、前記3Dグリーンパーツと前記焼結サポートとの間に介在するように堆積されてもよい。プレースホルダ材は、結合粉末上に堆積され、プレースホルダ材の2D層形状を形成してもよく、前記焼結性粉末供給原料は、前記プレースホルダ材に関し、補充され、平らにならされる。デバインドの際、前記プレースホルダ材の前記3D形状に対応する内部キャビティが形成される。
本発明の実施形態の他の態様によれば、焼結性粉末金属を可溶性バインダに堆積させることによる付加製造用の装置は、内部に実質的に一定の直径の第1中央円筒キャビティ及び前記円筒キャビティに接続されているノズル出口が形成されているノズルボディを含んでいるノズルアセンブリを含んでおり、前記ノズル出口は、直径が0.1mm乃至0.4mmである。熱遮断部材は、前記ノズルアセンブリに当接し、前記熱遮断部材は、くびれ部、前記熱遮断ボディ及びくびれ部を通して形成されている実質的に一定の直径の第2中央円筒キャビティを有している熱遮断ボディを含んでいる。溶融チャンバは、前記第1及び第2中央円筒キャビティにより共有されて形成され、前記溶融チャンバは、体積が15mm^3乃至25mm^3、直径が1mm以下である。
本発明の実施形態の他の態様によれば、3Dプリンタは、本明細書中に説明されている前記粉末金属(又はセラミック)及びバインダ複合物から、所望のパーツの横又は水平の範囲、例えば、セラミック剥離層により前記パーツから少なくとも部分的に分離された、前記パーツの前記エンベロープに対応する最小サイズ、と等しい又は横又は水平の範囲より大きい高密度化リンクプラットフォームを堆積させてもよい。前記高密度化リンクプラットフォームの前記厚さは、前記ラフトにおける原子拡散から前記収縮工程中に生じた前記力が実質的に前記ブラウンボディアセンブリと焼結が行われるプレート又はキャリアとの間の前記摩擦力に対抗するように、少なくとも1/2mm乃至10mmの厚さであるべきである。前記所望のパーツは、任意に、前記パーツが基礎を置く前記高密度化リンクプラットフォームのように、前記同一の幾何学的方法で前記パーツが縮小できるように、前記セラミック剥離層を垂直に浸透させる前記金属複合材料の小断面積(例えば、直径1/3mm未満)接続で、前記高密度化リンクプラットフォームにタックされてもよい。前記高密度化リンクプラットフォームは、任意に、凸状(凹面がない多角形又は湾曲した形状)の形をした及び/又は上記パーツと揃った重心を有している対称形状の断面積を有して形成される。前記高密度化リンクプラットフォームは、その単純形状に起因した規則的又は予測可能な方法で、また仮に前記所望のパーツが前記ラフトに接続されることが、特に非対称パーツ、高アスペクト比の断面を有しているパーツ及び多様な厚さを有しているパーツの場合、前記所望のパーツと前記高密度化リンクプラットフォームとの間の前記摩擦力から生じる形状特有のパーツの歪みを減少させれば、高密度化及び縮小する傾向がある。前記パーツと前記ラフトとの間のタックポイントの数及び配置は、前記ラフトが前記焼結工程後に適切に除去できるように選択されてもよい。任意に、前記高密度化リンクに強固に取り付けられている前記パーツの前記外周外の鉛直壁は、少なくとも部分的に、前記所望のパーツの前記側面まで延びて、さらに歪みを減少させてもよい。これら垂直のサポートは、また、前記セラミック剥離層により前記所望のものから分離されてもよい。
上述の本発明の実施形態の態様の例は、個別に組み合わされる場合又は複数の組合せにおいて、本発明の実施形態の態様の追加例を形成することは、明示的に熟慮されている。
金属3次元プリンタの概略図である。 バインダジェッティング/パウダーベッド印刷アプローチを表す、金属3次元プリンタの概略図である。 3次元プリンタシステムのブロックダイアグラム及び概略図である。 図2の3Dプリンタの全体的な作業を説明するフローチャートである。 焼結サポート(例えば、収縮又は高密度化リンクサポート)が設けられている3D印刷システム、パーツ及び工程の概略図である。 図4の図面の模式的な断面図である。 図4及び図5A乃至図5Dに対する代替的な3D印刷システム、パーツ及び工程の概略図である。 分離及び/若しくは剥離層、グリーンボディサポート並びに/又は焼結若しくは収縮若しくは高密度化リンクサポートによる印刷、デバインド、焼結及びサポート除去の工程の一例の概略図である。 図4に対するさらに代替的な3D印刷システム、パーツ及び工程の概略図である。 図4に対するさらに代替的な3D印刷システム、パーツ及び工程の概略図である。 図4の3D印刷システム、パーツ及び工程の焼結されたアセンブリの上面図であり、サポートシェル又は焼結若しくは収縮サポートを除去するためのパーティングラインを示す。 図4に対する代替的な3D印刷システム、パーツ及び工程の焼結されたアセンブリの上面図であり、サポートシェル又は焼結若しくは収縮サポートを除去するためのパーティングラインを示す。 図8及び図9に模式的に示されるパーツの正投影及び3D/正投影図である。 図8及び図9に模式的に示されるパーツの正投影及び3D/正投影図である。 フィラメント材が印刷に適切な環境条件で設定されている3Dプリンタの概略図である。 フィラメント材が印刷に適切な環境条件で設定されている3Dプリンタの概略図である。 フィラメント材が印刷に適切な環境条件で設定されている3Dプリンタの概略図である。 スプーリング及び搬送を可能にする、フィラメントにおける焼結可能な付加製造供給原料の維持のための適正な範囲を示す弾性率対温度の描写である。 各層が印刷される際又は各層又は一連の層に続いて、デバインドが行われる3Dプリンタの概略図である。 各層が印刷される際又は各層又は一連の層に続いて、デバインドが行われる3Dプリンタの概略図である。 各層が印刷される際又は各層又は一連の層に続いて、デバインドが行われる3Dプリンタの概略図である。 各層が印刷される際又は各層又は一連の層に続いて、デバインドが行われる3Dプリンタの概略図である。 付加製造により、材料を堆積させ、焼結可能なブラウンパーツを形成する方法を示すフローチャートである。 図4及び/又は図6のものの代替の3D印刷システム、パーツ及び工程の代替概略図である。 図4及び/又は図6のものの代替の3D印刷システム、パーツ及び工程の代替概略図である。 印刷、デバインド、焼結及び任意に、分離及び/又は剥離層、グリーンボディサポート及び/又は流動ベッド焼結を伴うサポート除去の一例の工程の概略図である。 任意に、材料及び焼結オーブンの特定の構成を伴う焼結の追加例の工程の概略図である。 図5Bに対応し、印刷及び他の工程段階を説明するために図4を通した代替の選択区分を示す。 図5Dに対応し、印刷及び他の工程段階を説明するために図4を通した代替の選択区分を示す。 断面で示され、インフィルとして用いられる六角形ハニカムの例である。 断面で示され、インフィルとして用いられる三角形ハニカムの例である。 ハニカムキャビティ/インフィルが垂直な円柱プリズム形状として形成される、図4、図6、図8及び図9の説明と実質的に同様な、側面断面図を示す。 ハニカムキャビティ/インフィルが垂直な円柱プリズム形状として形成される、図4、図6、図8及び図9の説明と実質的に同様な、側面断面図を示す。 流通チャネルキャビティ/インフィルが円柱プリズム形状を通して整列され及び/又は曲げられて形成される、図4、図6、図8、図9、図27及び図28の説明と実質的に同様な、側面断面図を示す。 アクセスチャネルが提供される、図4、図6、図8、図9、図27、図28及び図29の説明と実質的に同様な、側面断面図を示す。 アクセスチャネルが提供される、図4、図6、図8、図9、図27、図28及び図29の説明と実質的に同様な、側面断面図を示す。 セラミック焼結サポート材の収縮量が、最終的な収縮量に達するまでパーツモデル材の収縮量未満であるべきグラフを示す。 凸又は凹形状(突起、キャビティ又は輪郭)のどちらか又は両方を含んでいるパーツ形状を同じ程度で拡大して示す。 凸又は凹形状(突起、キャビティ又は輪郭)のどちらか又は両方を含んでいるパーツ形状を同じ程度で拡大して示す。 凸又は凹形状(突起、キャビティ又は輪郭)のどちらか又は両方を含んでいるパーツ形状を同じ程度で拡大して示す。 凸又は凹形状(突起、キャビティ又は輪郭)のどちらか又は両方を含んでいるパーツ形状を同じ程度で拡大して示す。 本明細書中に説明されているようなパーツに有益な重力支援のデバインド工程のフローチャート及び図を示す。 本明細書中に説明されているようなパーツに有益な重力支援のデバインド工程のフローチャート及び図を示す。 硬化性又はデバインド可能なフォトポリマーからグリーンパーツを形成するための3Dプリンタを示す。 逆行パターンの堆積パスの堆積方向を表す図を示す。 逆行パターンの堆積パスの堆積方向を表す図を示す。 堆積壁及びハニカムにおける継ぎ目及びジョイント相互作用を表す概略図である。 堆積壁及びハニカムにおける継ぎ目及びジョイント相互作用を表す概略図である。 堆積壁及びハニカムにおける継ぎ目及びジョイント相互作用を表す概略図である。 堆積壁及びハニカムにおける継ぎ目及びジョイント相互作用を表す概略図である。 堆積壁及びハニカムにおける継ぎ目及びジョイント相互作用を表す概略図である。 堆積壁及びハニカムにおける継ぎ目及びジョイント相互作用を表す概略図である。 堆積壁及びハニカムにおける継ぎ目及びジョイント相互作用を表す概略図である。 堆積壁及びハニカムにおける継ぎ目及びジョイント相互作用を表す概略図である。 堆積壁及びハニカムにおける継ぎ目及びジョイント相互作用を表す概略図である。 FDM/FFFノズルアセンブリを断面で示す。 FDM/FFFノズルアセンブリを断面で示す。 MIM材料押出ノズルアセンブリを断面で示す。 MIM材料押出ノズルアセンブリを断面で示す。 MIM材料押出ノズルアセンブリを断面で示す。
本特許出願には、下記の開示の全体が参照により組み込まれている。米国特許出願第61/804,235号、61/815,531号、61/831,600号、61/847,113号、61/878,029号、61/880,129号、61/881,946号、61/883,440号、61/902,256号、61/907,431号及び62/080,890号。「複合フィラメント製造特許出願」又は「CFF特許出願」として、14/222,318号、14/297,437号及び14/333,881号が、本明細書中で参照されてもよい。本開示は様々な金属又はセラミック3D印刷システムについて検討しているが、本明細書中に説明されているように、少なくとも、CFF特許出願の機械的及び電気的な動作、制御並びにセンサシステムが使用されてもよい。これに加えて、米国特許第6,202,734号、5,337,961号、5,257,657号、5,598,200号、8,523,331号、8,721,032号及び米国特許公報第20150273577号の全体が参照により本明細書中に組み込まれている。さらに、2016年12月2日に出願された米国特許出願第62/429,711号、2016年12月6日に出願された62/430,902号、2017年1月4日に出願された62/442,395号、2017年3月31日に出願された62/480,331号、2017年4月24に出願された62/489,410号、2017年5月11日に出願された62/505,081号、2017年6月13日に出願された62/519,138号、2017年8月15日に出願された62/545,966号、2017年10月20日に出願された62/575,219号及び2017年10月2日に出願された15/722,445号が関連している主題を含んでおり、その全体が参照により本明細書中に組み込まれている。
3D印刷では、概して、パーツのオーバーハング又はジェッティング部は、堆積のための対向面を提供するために、下部に除去可能及び/又は可溶性及び/又は分散するサポートを必要としてもよい。金属印刷では、一つには、金属は特に高密度である(例えば、重量がある)ので、除去可能及び/又は可溶性及び/又は分散するサポートが、例えば、高温のような潜在的に変形する環境で垂下又は弛みに対して形状を保つために、途中又は後処理中の変形や弛みの防止に役立ってもよい。
バインダ及びセラミック又は金属焼結材料を含んでいる3D印刷材料を使用した焼結可能なパーツの印刷は、サポート構造により補助され、例えば、押し出しの下向き圧力に抵抗でき、堆積ビーズ又は他の堆積物を空間に配置できる。サポート構造とパーツとの間に介在する剥離層は、任意でモデル材に類似する(主要)母材又はバインダ成分で堆積された、例えば、セラミック又は高温金属等のより高い溶融温度材料を含んでいる。剥離層は、焼結せず、パーツがサポートから「剥離」することを可能にする。剥離層の下には、パーツとしての同一モデル材が、サポート構造として使用され、焼結中、同一圧縮/高密度化を促進する。このことは、パーツとサポートが均一に収縮するという意味を持つ傾向にあり、パーツの寸法精度を維持する。サポートの底部には、剥離層も印刷されてよい。これに加えて、サポート構造は、任意で機械的な又はその他の攪拌の存在下で、最終的に焼結されたサポート構造が、容易に除去できるよう、より小さな小区分に崩れやすくなるように、セクション間に剥離層を持つセクションで印刷されてもよい。このようにして、大きなサポート構造は、実質的により小さな穴を介して内部空洞部から除去できる。これに加え又は代替的な手段として、さらなるサポート方法として、デバインド工程において除去される可溶性サポート材を印刷することがある。触媒デバインドとして、これはデルリン(POM)材であってもよい。
均一収縮又は高密度化を促す1つの方法として、セラミック剥離層をパーツの最下層として印刷することがある。スライド剥離層(微小ボールベアリングに類似)の上には、パーツと均一に収縮する金属の薄板、例えば、ラフトが印刷されて、収縮又は高密度化工程中、相対的な位置にパーツ及び関連するサポート材を保持する「収縮プラットフォーム」又は「高密度化リンク」プラットフォームを提供してもよい。任意で、ステープル又はタック、例えば、取り付けポイントが、印刷されているモデル材の部分を接続及び相互接続する(又は高密度化リンクとしてリンクさせる)。
図1A、図1B及びそうでない場合は図40までの残りの図面に示されるプリンタは、少なくとも2つのプリントヘッド18、10及び/又は印刷技術を有し、1つのヘッドで、パーツ及びサポート構造の両方を印刷するために使用される、バインダ及び分散された球又は粉末18(例えば、熱可塑性又は硬化性バインダ内の)を含む複合材料を堆積させ、第2ヘッド18a(図4乃至図9に示される)で剥離又は分離材を堆積させる。任意で、第3ヘッド及び/又は第4ヘッドは、グリーンボディサポートヘッド18b及び/又は連続的なファイバ堆積ヘッド10を備える。ファイバ強化複合フィラメント2(本明細書中では、連続コア強化フィラメントとも呼ばれる)は、実質的に間隙がなくてもよく、内部の連続的なシングルコア又はマルチストランドコアを被覆、浸透又は含浸するポリマー又は樹脂を含んでもよい。なお、印刷ヘッド18、18a、18bが押出プリントヘッドとして示されているが、本明細書中で使用される「充填材印刷ヘッド」18、18a、18bは、充填材を堆積させるための光学若しくはUV硬化、熱融合若しくは焼結、又は「ポリジェット」、液体、コロイド、懸濁液若しくは粉末ジェッティング装置(不図示)を、本明細書中に説明されている他の機能的要件が満たされる限り、備えてもよい。機能的要件は、グリーンボディ材が、重力又は印刷力に対する印刷をサポートすること、焼結又は収縮(高密度化リンク)が、重力に対してパーツをサポートして、焼結中の原子拡散を介して均一収縮を促すこと及び剥離又は分離材が、実質的にステム部をデバインドすることを通して形状を留めるが、焼結後、除去可能、分散、粉末化しやすくなることの1以上の採用を含んでいる。
図1A、図1B乃至図40は、一般的には、3つの直交する並進移動方向に各印刷ヘッドを相対的に動かすためのカルテシアン配置を示しているが、他の配置は、少なくとも3つの自由度で(すなわち、4つ以上の自由度でも)、印刷ヘッド及び3D印刷されたパーツをサポートするビルドプレートを相対的に動かしてもよいドライブシステム又はドライブ又はモータ付ドライブの適用範囲内で考慮して、それらによって明確に記述されている。例えば、3つの自由度として、デルタパラレルロボット構造は、基部でユニバーサルジョイントに接続された3つの平行四辺形のアームを使用してもよく、任意で印刷ヘッドの配向(例えば、印刷ヘッド及びビルドプレート内の3つの電動の自由度)を維持する又は印刷ヘッドの配向(例えば、印刷ヘッド及びビルドプレート内の4以上の自由度)を変更する。他の例として、印刷ヘッドは、3つ、4つ、5つ、6つ又はそれ以上の自由度を持つロボットアームに取り付けられてもよい、及び/又はビルドプラットフォームは、3次元に回転、並進移動してもよいし、スピンされてもよい。プリントベッド又はビルドプレート又はパーツを保持するための任意の他のベッドは、1つ、2つ又は3つの自由度で1つ、2つ又は3つのモータにより動かされてもよい。
長い又は連続的なファイバ強化複合フィラメントは、完全に任意であり、使用の際、母材材料のために選択された制御温度まで任意で熱せられた導管ノズルを通して、搬送され、引きずられ、及び/又は引っ張られて、所定の粘度、結合したランクの接着力、溶融特性及び/又は表面仕上げを維持する。ファイバ強化フィラメントの母材材料又はポリマーが実質的に溶融した後、連続コア強化フィラメントがビルドプラテン16上に加えられ、パーツ14の連続層を構築し、3次元構造を作り出す。ビルドプラテン16及びプリントヘッド18、18a、18b及び/又は10の相対的な位置及び/又は配向は、制御部20により制御され、本明細書中に説明されている各材料を所望の配置位置及び方向に堆積させる。従動ローラセット42、40が、フィラメントの座屈を防ぐ遊合領域(clearance fit zone)に沿って、連続的なフィラメントを動かしてもよい。縫い工程では、溶融母材材料及びフィラメントの軸方向のファイバストランドが、軸方向の圧縮時に、押圧されてパーツ及び/又は下側のスワス(swaths)となってもよい。ビルドプラテン16及び印刷ヘッドが、互いに並進移動するにつれて、フィラメントの端部がアイロンリップに接触し、次々と継続的に横断圧力領域にアイロンがかけられ、結合したランク又は複合スワスをパーツ14に形成する。
図1A、図1B乃至図40を参照して、プリントヘッド18、18a、18b、10のそれぞれは、プリンタのX、Yモータ付機構がそれらを同時に動かすように、同一のリニアガイド若しくは異なるリニアガイド又はアクチュエータに搭載されていてもよい。図示されるように、各押出プリントヘッド18、18a、18bは、溶融ゾーン若しくは溶融リザーバ、ヒータ、熱抵抗器又はスペーサー(例えば、ステンレス鋼、ガラス、セラミック、任意でエアギャップ)によって形成される高温勾配ゾーン及び/又はテフロン(登録商標)、すなわちPTFEチューブを有する押出ノズルを備えてもよい。1.75mm乃至1.8mm、3mm、又はより大きい若しくはより小さい熱可塑性(及び/又はバインダ母材)フィラメントが、例えば、直接駆動又はボーデンチューブ駆動を介して、溶融リザーバ内に押出背圧の供給によって動かされる。
図1Bは、図1Aの押出プリンタに一般的に類似するいくつかのコンポーネントを有している、バインダジェッティングパウダーベッドプリンタを模式的に示す。プリンタ1000Jは、供給ライン142により供給される2以上のプリントヘッド18(バインダを結合粉末132に噴射又は適用し、モデル材又はバウンド複合物を形成する)、18a(剥離又は分離材を噴射又は押し出す)及び又は18b(プレースホルダ材を噴射又は押し出す)を含んでいる。プリンタ1000Jは、印刷ヘッド18で、バインダ132をパウダーベッド134上に堆積させ、パーツ、サポート構造及び縮小又は高密度化リンクプラットフォームを印刷するために利用されるデバインダ及び分散球又は粉末(金属又はセラミック粉末)を含んでいる複合材料を形成してもよい。焼結可能粉末供給原料リザーバ、サプライ又はリフィル136は、レベリング又はドクターロール138により平らにならされた、新たな非結合粉末層をパウダーベッド134に供給する。レベリングからの余剰分は、供給原料オーバーフローリザーバ140に捉えられる。第2ヘッド18aにより、プリンタ1000Jは、剥離又は分離材を堆積させてもよい。任意に、第3ヘッド及び/又は第4ヘッドは、本明細書中に説明されているように、プレースホルダ材ヘッド18b及び/又は連続的繊維堆積ヘッド10を含んでいる。本明細書中に説明されているバインダジェッティングプリンタ1000Jは、本明細書中に説明されている機能要件を満たす(例えば、グリーンボディ及び/又はプレースホルダ材は、重力又は印刷力に対して印刷をサポートし、焼結サポートは、重力に対してパーツをサポートし、焼結中の原子拡散を介して均一収縮を促し、剥離又は分離材は、実質的に、デバインドステップを通して形状を留めるが、焼結後に除去可能であり、分散化、粉末化等されやすい)。
図2は、ブロックダイアグラム及び3次元プリンタの機構、センサ及びアクチュエータを制御し、本明細書中に示される制御プロファイル及び説明されている工程を行う指示を実行する、例えば、図1A及び図1Bにおける3次元プリンタの制御システムを示す。プリンタは、例えば、3つのコマンドモータ116、118、120のあり得る構成を示すために、概略的に示されている。なお、当該プリンタは、プリントヘッド18、18a、18b及び/又は10の複合アセンブリを含んでもよい。
図2に示されるように、3次元プリンタ3001(またプリンタ1000及び1000Jの代表的なもの)は、任意のファイバヘッドヒータ715又は類似のチップヒータ、ファイバフィラメントドライブ42及び複数のアクチュエータ116、118、120に動作可能に接続される制御部20を備え、制御部20は、フィラメントドライブ42にファイバを堆積及び/又は圧縮させてパーツにする指示を実行する。指示は、フラッシュメモリに保持され、RAM(不図示、制御部20に埋め込まれていてもよい)で実行される。スプレー塗装(スプレー剥離粉末を含んでいる)を塗布するためのアクチュエータ114も、本明細書中に説明されているように、制御部20に接続されてもよい。ファイバドライブ42に加えて、1以上の押出プリントヘッド18、18a、18b、1800を供給するために、制御部20が、各フィラメントフィード1830(例えば、ヘッド18、18a及び/又は18bそれぞれに対し1つまで)を制御してもよい。任意で複合プリントヘッドに搭載され、それと共に動き、リボンケーブルを介して主制御部20に接続されるプリントヘッドボード110は、特定の入力及び出力を開始する。アイロン先端部726の温度は、サーミスタ又は熱電対102により制御部20によってモニターされてもよく、いずれかの付随する押出プリントヘッド1800のヒータブロック保持ノズルの温度も、各サーミスタ又は熱電対1832によって測定されてよい。アイロン先端部726を加熱するためのヒータ715及び各押出ノズル18、18a、18b、1802を加熱するための各ヒータ1806は、制御部20が制御する。ヒートシンクファン106及びパーツファン108は、それぞれ冷却用ではあるが、プリントヘッド間で共有されてもよいし、プリントヘッド毎に独立して提供されてもよく、制御部20が制御する。プリントヘッドアセンブリからパーツまでの距離(及びその結果、パーツの表面形状)を測定する距離計15もまた、制御部20がモニターする。サーボモータ、ソレノイド又は同等品であってもよい、カッタ8アクチュエータも、制御部20に動作可能に接続される。1つの又は任意のプリントヘッドを持ち上げてパーツから離す(例えば、ドリッピング、スクレーピング、又はラビングを制御する)ためのリフタモータもまた、制御部20により制御されてもよい。アクチュエータ116、118、120が、それらの適正移動範囲の端部まで到達した時を検出するリミットスイッチ112も、制御部20がモニターする。
図2に示されるように、分離したマイクロコントローラを含んでもよい、追加のブレークアウト基板122が、制御部20へのユーザインタフェース及び接続を提供する。802.11Wi−Fiトランシーバは、制御部をローカル無線ネットワーク及び一般のインターネットに接続し、リモート入力、指示、及び制御パラメータを送信及び受信する。タッチスクリーン表示パネル128は、ユーザフィードバックを提供し、ユーザからの入力、指示、及び制御パラメータを受け付ける。フラッシュメモリ126及びRAM130は、ユーザインタフェースマイクロコントローラ及び制御部20用のプログラム及びアクティブな指示を保管する。
図3は、図1乃至図40のプリンタ1000の印刷作業を示すフローチャートを示す。図3は、共通に取り付けられたFFF押出ヘッド18、18a及び/若しくは18b並びに/又はCFF特許出願にあるようなファイバ強化フィラメント印刷ヘッドを交互にかつ組み合わせて使用するように行われてもよい制御ルーチンを、連動機能として説明する。
図3では、印刷の開始に、制御部20がステップS10において、印刷される次のセグメントが、ファイバセグメントか否かを判定し、ファイバフィラメントセグメントが印刷される場合、工程をS12へ進め、例えば、(ラフト又は収縮/高密度化リンクプラットフォーム等の)ベース、(押出又は噴出結合モデル材、剥離材又はプレースホルダ材等の)充填又は(スプレー若しくは噴出された剥離材等の)塗装を含む他のセグメントの場合は、ステップS14へ進める。ルーチンS12及びS14のそれぞれ又はどちらかが、セグメントを完成させた後、図3のルーチンは、ステップS16でスライスの完了をチェックして、セグメントがスライス内に残る場合、ステップS18で、次の予定されているセグメントにインクリメントし、判定とファイバセグメント及び/又は非ファイバセグメントの印刷を続ける。同様に、ステップS16でスライスが完了した後、ステップS20でスライスが残る場合、ルーチンはステップS22で次の予定されているスライスにインクリメントして、判定とファイバセグメント及び/又は非ファイバセグメントの印刷を続ける。本明細書中で使用される「セグメント」は、「ツールパス」及び「軌道」に対応し、例えば、開口していても閉じていても、線であっても、ループであっても、カーブしていても、ストレートであってもよい始まりと終わりを有する線形のロウ、ロード又はランクを意味する。セグメントは、プリントヘッドが材料を連続的に堆積させ始めると開始し、プリントヘッドが堆積することをやめると、終了する。「スライス」は、3Dプリンタで印刷される予定の単一層、シェル又は薄片であり、スライスは、1つのセグメント、多数のセグメント、セルの格子充填、他の材料、及び/又はファイバ埋め込みフィラメントセグメントと純粋なポリマーセグメントとの組み合わせを含んでもよい。「パーツ」には、パーツを作り上げるための複数のスライスが含まれる。サポート構造及びプラットフォームも、複数のスライスを含んでいる。図3の制御ルーチンは、複合プリントヘッド18、18a、18b及び/又は10を含む、1、2、又はそれ以上(例えば、4)の異なるプリントヘッドでのデュアルモード印刷を可能にする。例えば、S10での決定は、S12、S14に加えて異なる材料印刷ルーチンに進む「ケース」構造であってもよい。
先に説明された全ての印刷された構造は、いかなる種類、まばら、高密度、同心、疑似等方性の強化繊維構造、又、そうでない場合は、充填材(例えば、モデル材及び剥離材を含んでいる)又は単純な樹脂構造を明確に含む、本明細書中に説明されている印刷工程中に印刷された物品内に埋め込まれてもよい。これに加えて、パーツへの埋め込みに関して説明したすべての場合において、熱可塑性押出堆積を使用して充填材ヘッド18、18a、18bによって印刷された構造は、可溶性物質(例えば、可溶性熱可塑性物質又は塩)と交換されて、パーツ印刷用の印刷基板を形成してもよい可溶性プリフォームを形成して、その後取り除かれてもよい。本明細書中に説明されている全ての連続的なファイバ構造、例えば、サンドイッチパネル、シェル、壁、穴又は特徴部を囲む補強等は、連続的なファイバ補強部分の一部であってもよい。図1乃至図40を参照して本明細書中に説明されている3Dプリンタは、それにより、充填材(例えば、金属、セラミック及び/又はファイバを含むデバインド可能な母材と複合)、可溶性(例えば、「可溶性」には、場合によっては、熱、熱分解又は触媒処理によってデバインド可能なことも含まれる)材料、又は連続的なファイバのどれかを堆積させてもよい。
印刷に適切な商業的に価値のある金属として、アルミニウム、チタニウム及び/又はステンレス鋼が挙げられ、高温及び低温の両方で酸化抵抗のあるその他の金属(例えば、非晶質金属、ガラス状金属又は金属ガラス)も挙げられる。後処理の一形態として焼結がある。本明細書中に説明されている型成形又は3D印刷モデル材によって、1以上のバインダ及び粉末状又は球状金属又はセラミック(均一又は好適に分散された粒子又は球体サイズ)を含む適切な材料からグリーンボディ(green body)が生成されてもよい。グリーンボディから1以上のバインダを除去して(例えば、溶剤、触媒作用、熱分解を使用して)ブラウンボディ(brown body)が生成されてもよい。ブラウンボディはその形状を維持したまま、残存するバインダの再溶融によって、グリーンボディよりも優れた衝撃耐久を有していてもよい。他の場合、ブラウンボディは、その形状を維持するが、比較的壊れやすくてもよい。ブラウンボディが、高温及び/又は高圧で焼結される際、残存する又は二段バインダは、熱分解されてなくなってもよく、ブラウンボディは焼結されるにつれて実質的に均一に収縮する。焼結は、不活性ガス内、還元ガス内、反応気体内、又は真空内で行われてもよい。熱(及び任意で)圧力を加えると、金属又はセラミックビーズの間及びその中の内部気孔、間隙、及び微小空洞が、少なくとも拡散接合及び/又は原子拡散によって、除去される。モデル材と同じか異なるかのどちらかである、サポート材料は、印刷、後処理、又は焼結されるパーツを、印刷自体(例えば、グリーンボディサポート)の堆積力に対し及び/又は重力(例えば、グリーンボディサポート又は焼結サポート)に対し、特に支持されていない一直線又は低角度のスパン又はカンチレバーを支持する。
パーツの印刷は、サポート構造により補助され、例えば、押出の下向きの圧力に抵抗でき、堆積ビーズ又は堆積物を空間に配置できる。本明細書中に説明されているように、剥離層は、モデル材に類似する(主要)母材成分に又は(主要)母材成分を介して任意に堆積された、セラミック等のより高い溶融温度又は焼結温度粉末材料を含む。剥離層の下には、同一(金属)材料がパーツとして使用され、同一圧縮/高密度化を促進する。このことは、パーツ及びサポートが均一に収縮するという意味を持つ傾向にあり、パーツの全体寸法精度を維持する。焼結サポートの底部には、剥離層も印刷されてよい。これに加えて、焼結サポート構造は、任意で機械的な又はその他の攪拌の存在下で、最終的に焼結されたサポート構造が、容易に除去できるよう、より小さい小区分に崩れやすくなるように、剥離層を持つ印刷されたセクションであってもよい。このようにして、大きなサポート構造は、実質的により小さな穴を介して内部空洞部から除去できる。これに加え又は代替的な手段として、さらなるサポート方法として、デバインド工程において除去される可溶性サポート材を印刷することがある。触媒デバインドとして、これはデルリン(POM)材であってもよい。均一収縮を促す1つの方法として、セラミック剥離層をパーツの最下層として印刷することがある。スライド剥離層(微小ボールベアリングに類似)の上には、パーツと均一に収縮する金属の薄板、例えば、ラフトが印刷されて、収縮又は高密度化工程中、相対的な位置にパーツ及び関連するサポート材を保持する「収縮プラットフォーム」又は「高密度化リンクプラットフォーム」を提供してもよい。任意で、ステープル又はタック、例えば、取り付けポイントが、印刷されているモデル材の部分を接続及び相互接続する。
上述の通り、一例では、グリーンボディサポートは、熱、可溶性、熱分解又は触媒的に反応する材料(例えば、ポリマー又はポリマーブレンド)から印刷され、グリーンボディサポートが除去された時に、除去可能な副産物(気体又は溶解した材料)のみが残されてもよい。他の例では、グリーンボディサポートは、熱、可溶性又は触媒のデバインド可能な複合材料(例えば、ポリオキシメチレンを含む触媒、POM/アセタール)及び高融点金属(例えば、モリブデン)又はセラミック球の母材から任意で印刷されてもよく、デバインドされると粉末が残されてもよい。グリーンボディサポートは、デバインド前又は後に機械的又は化学的又は熱的に除去されるように形成されてもよいが、好適には、熱、可溶性、熱分解又は触媒的に反応する材料から作られてもよく、デバインド段階(又はその直後、例えば、残留粉末を除去するためのその後の粉末清掃)中に完全に除去されてもよい。場合によっては、グリーンボディサポートは、デバインド前又は後に、デバインドから異なる化学/熱工程によって除去される。
例示のPOM又はアセタールを含む触媒的にデバインド可能な複合材料は、二段デバインド材(two-stage debinding material)の一例である。場合によっては、二段デバインド材では、第1段階で第1材料が除去され、デバインド中の気体流路用の相互接続された間隙を残す。第1材料は、溶融しても(例えば、ワックス)、触媒的に除去されても(例えば、触媒の表面反応で直接、気体に変換されても)、又は(溶剤内で)溶解してもよい。二段バインダ、例えば、第1材料工程には反応しないポリエチレンは、格子状で多孔質な形態で残留し、焼結まで待機する3D印刷物の形状を未だ維持する(例えば、金属又はセラミックボールが、焼結の原子拡散が始まるのに十分な温度まで加熱される前)。その結果、焼結サポートを含む又は焼結サポートに取り付けられている、ブラウンパーツとなる。パーツが、高温で焼結されるにつれ、二段バインダは、熱分解され、次第にガス状形態へと除去されてもよい。
図4乃至図7は、模式的に、関連工程、構造、材料及びシステムのさらなる説明を示す。図4乃至図7に示すように、工程の堆積段階に適した3Dプリンタ1000は、(例えば、連続的な複合堆積ヘッド10(図4乃至図7において不図示)のみならず)モデル材及びサポートを堆積させるための1つ、2つ、3つ又はより多く堆積ヘッド18、18a、18bを備えてもよい。図4に示すように、モデル材堆積ヘッド18は、ポリマー、ワックス及び/又は他のユーティリティ成分をバインドする可溶物又は母材のみならず、金属又はセラミックの球状粉末を含む複合材料を堆積させる。モデル材堆積ヘッド18では、工程が、低直径のフィラメント(例えば、1mm乃至4mm)を材料供給及び押出のための背圧供給のための両方として、使用されてもよい。この場合、ヘッド18に供給されたモデル材押出フィラメントは、下記のグリーンボディのサポート又は焼結(いわゆる収縮又は高密度化リンク)サポートがない状態でも、ギャップ又はスパンをわたって印刷する間に橋渡しをサポートするために、固くあっても、供給されたままで適度に成形しやすく(例えば、0.1GPa乃至3.0GPaの曲げ弾性率)、流体化させた時に適度に粘性があってもよい(例えば、溶融又は動的粘度が100Pa.s乃至10,000Pa.s、好適には、300Pa.s乃至1000Pa.s)。
図4に示される3Dプリンタ1000及び例示のパーツ14では、分離又は剥離材料堆積ヘッド18‐S(又は18a)及びグリーンボディサポート材堆積ヘッド18‐G(又は18b、グリーンボディサポート材は、また又は代わりに、プレースホルダ材である)は、図1乃至図3までを含めて参照して説明されているように印刷されているパーツP1に対して、少なくとも3つの相対的な自由度を持って動くようにさらに支持されてもよい。本明細書中に説明されているように、分離材は、場合によっては、グリーンボディサポートとして機能してもよく、代替的に、図6に示すように、1つのヘッド18‐SGのみが、グリーンボディサポート材及び分離材の両方を堆積させてもよい。図4に示すように、底部から上部まで(この場合、3D印刷は底部から上に向かって行われる)、これらの例示の工程では、印刷された第1層は、例えば、分離材堆積ヘッド18‐S(又は18−SG)から印刷されるラフト分離層又はスライド剥離層SL1である。分離材は、本明細書中に記されるように、モデル材と同様のデバインド材であってもよいが、例えば、モデル材の焼結温度において焼結、溶融、又、そうでない場合は、一緒に固化しない、セラミック又は他の球状粉末充填材(例えば、微粒子)等を有する。それ故、溶剤、触媒作用、熱分解、分散可能及び/又は除去可能な粉末(例えば、焼結後、焼結工程が終わった後ですら残留する焼結されていない分離材の粉末)を残すことによって、分離材は、そのデバインド材が、完全に除去されてもよい。「分離」及び「剥離」は、本明細書中では一般に言い換え可能に使用される。
図5A乃至図5Dは、印刷及び他の工程段階を説明する目的で、図4の選択された断面図を示す。なお、図面は、必ずしも原寸に比例していない。特に、非常に小さなクリアランス又は材料が充填されたクリアランス(例えば、分離又は剥離層)又は構成部(例えば、スナップ取り外しのための突起部)が、明確な説明のため、拡大したスケールで示されてもよい。さらに、場合によっては、中実体が説明を簡略するために示されているが、本明細書中の中実体の内部構造は、多孔質、セルラー又は中空インフィルパターン(例えば、ハニカム)で3D印刷されてもよい、及び/又は、CFF特許出願に説明されている、細かく切った、短い、長い若しくは連続的なファイバ強化物を含んでいてもよいことに留意する。
図4及び図5Aに示すように、任意で着脱自在及び可搬の、任意でセラミックのビルドプレート16上に、ラフト分離層SL1が分離材ヘッド18−Sにより印刷され、場合によってはデバインド前に又は場合によっては、デバインド工程中に(図7に示される例)、(例えば、可搬の)ビルドプレート16自体がまだ取り付けられている際に、上部に印刷されたラフト又は収縮プラットフォーム又は高密度化リンクプラットフォームRA1をビルドプレート16から除去しやすくしてもよい。
図4及び図5Bに示すように、ラフト分離層SL1の印刷に続いて、モデル材(例えば、金属含有複合材)のラフト又は収縮プラットフォーム又は高密度化リンクプラットフォームRA1が、印刷される。ラフト又は収縮プラットフォームRA1は、焼結中の物質輸送及び収縮/高密度化の工程が、例えば、共通質量中心又は重心、例えば、「高密度化リンク」まわりで均一に実施されるように、例えば、連続的なモデル材の土台又はパーツとそのサポートとの間での材料の相互接続を提供する目的で印刷される。ラフトRA1は、他の目的、例えば、早期の接着を改善すること、環境的に問題のある(例えば、濡れた、酸化した)材料を押出又は供給パスから除去すること、又は印刷ノズル若しくは他のパス要素(例えば、ローラ)を印刷状態に調整すること等、を果たしてもよい。上記のように、グリーンボディサポートGS1、GS2(印刷工程中に印刷されているパーツをサポートするが、焼結前又は最中に取り除かれる)及び焼結(例えば、収縮又は高密度化リンク)サポートSS1、SH1、RA1(焼結工程中に焼結されているパーツをサポートする)である、2つの一般的なクラスのサポートが使用されてもよい。グリーンボディサポートGS2も、内部ボリューム、パーツ形状自体の穴若しくはキャビティ又は内部ハニカムキャビティのどちらかを「プレースホールド」するために利用されてもよい。サポートによっては、両方の役割を果たしてもよい。図4及び図5Bに示すように、印刷全体の上部がグリーンボディサポートの恩恵を受ける場合は、グリーンボディサポートGS1の下層は、ビルドプレート16上に印刷されるか、図4及び図5Bに示すように、分離層SL1及び/又はラフト若しくは収縮プラットフォームRA1上に印刷されるかのいずれかであってよい。
図4及び図5Cに示すように、続いて、ラフト又は収縮プラットフォームRA1は、周囲又は側部シェルサポート構造SH1(切れ目がないか、又はパーティングラインPL及び/若しくは物理的分離構造(例えば、屈曲して剥離してもよい、すぼんだ及び/若しくは細い腰の、並びに/又は有孔の、又、さもなくば場合は、脆弱化した断面)を介してかのいずれか)まで連続又は接続されてもよい。さらに、分離構造、この場合では、モデル材突起部P1と、任意で介在分離層SL2と、は、ラフトRA1とシェルSH1との間に印刷されてもよく、焼結の後にラフトRA1及びシェルSH1を除去できるようにする。本明細書中に説明されている突起部P1は、垂直、水平又は他の方向を向いており、例えば、1/2mm未満の接触面の断面を有して、鋭い又はパルス状の衝撃により折れるように形成されてもよい。グリーンボディサポートGS1の印刷が上方に連続して、この場合では、後に、オーバーハング又はカンチレバー部OH1のための焼結サポートを提供するため、及び同一オーバーハング又はカンチレバー部OH1のための印刷サポートのためのグリーンボディサポートGS1を構築するために印刷された、任意に角度のある(例えば、垂直から10度乃至45度)、まばらな及び/又は分岐する焼結(例えば、収縮又は高密度化リンク)サポートSS1に対する印刷サポートを提供する。本明細書中で使用されているような「印刷サポート」とは、印刷中の印刷の背圧又は重力に対するサポートを意味してもよく、一方、「焼結サポート」とは、焼結中の重力に対するサポート、他の外部/内部応力に対するサポートを意味してもよい。同様に又は代わりに、均一に分散した物質輸送及び/又は原子拡散を容易化する相互接続を提供することを意味する。オーバーハング又はカンチレバー部OH1は、図4に示されているが、2つの対向辺でパーツP1に隣接するサポートされていないスパン部は、上述の通り、サポートによる恩恵を受けてもよい。
図4及び図5Dに示すように、周囲シェルサポート構造SH1は、層状の印刷まで連続し、任意で、例えば、シェルサポート構造SH1に接続されたモデル材の突起部P1及び/又は分離層材SL2の材料を介して、パーツ14に垂直に又は斜めに相互接続される。パーティングライン及び分離構造も同様に、垂直に連続し、それらがそれにそって除去される平面を維持する。パーツP1の内部ボリュームV1、この場合では、筒状ボリュームV1は、グリーンボディサポートGB2で印刷されており、印刷中に、モデル材が十分に粘性を持っている又は形状保持している場合、3D印刷工程は、ギャップを橋渡しするか又は斜めに積み重ねてもよく、傾斜壁を持つ内部ボリューム又はアーチのような壁は、焼結サポートを必要としない可能性がある。代替的に、内部ボリュームV1は、例えば、オーバーハングOH1の下部のサポートSS1と同様に、焼結サポートで又はグリーンボディサポートGB#と焼結サポートSS#との組み合わせで印刷される。内部ボリュームV1はパーツ外へのチャネルを有して印刷され、サポート材を、除去、洗浄、又は、伝熱又は溶剤若しくは触媒として使用される流体若しくは気体によって、よりアクセスしやすくする。グリーンボディサポートGS1及び分岐焼結サポートSS1は、同様に連続し、後に、オーバーハング又はカンチレバー部OH1のための焼結サポートを提供する、同様に、同一オーバーハング又はカンチレバー部OH1のための印刷サポートのためのグリーンボディサポートGS1を構築する。
図4及び図5Dに示すように、オーバーハング又はカンチレバー部OH1は、焼結サポートSS1が、印刷工程中に、例えば、わずかなオフセット(角度をつける)を持って積み重なる層状に印刷される間の、モデル材の固有の剛性、粘性又は他の特性によって、又は代替的に若しくは追加的に、例えば、グリーンボディサポートGS1によって提供される側面及び垂直サポートによってのいずれかで自立する限り、焼結サポートSS1によって斜めにサポートされてもよい。焼結サポートSS1はまた、焼結行程中に、パーツ14と一体としたまま又はパーツ14をサポートするように頑丈でなくてはならない。図5C又は図5Dに示される焼結サポートSS1の何れかは、代わりに、垂直な円柱であっても、モデル材から堆積された構造を包み込んでいる円柱の焼結サポートにより包み込まれてもよい。
最後に、図4に示すように、パーツ14の残留物、サポートシェル構造SH1、焼結(例えば、収縮又は高密度化リンク)サポートSS1及びグリーンボディサポートGS1、GS2が印刷されて完成する。印刷されると、基本的に印刷又は焼結サポートを必要とするパーツ14のすべての部分が、グリーンボディサポートGS1、GS2、焼結(例えば、収縮又は高密度化リンク)サポートSS1、ラフトRA1、分離層SL1及び/又はSL2のいずれかを介して、垂直方向にサポートされている。パーツ14の部分又は自立した(例えば、モデル材複合材の材料特性又は外部ボディの提供するサポート、並びに/又はサポートの除去、デバインド及び/若しくは焼結中に十分な剛性があるので)パーツ14内の構造は重力に対してサポートされる必要はない。これに加えて、サポート構造SS1、ラフトRA1及び/又はシェル構造SH1は、焼結中に同一質量中心若しくは重心まわりに収縮する傾向又はパーツ14の隣接部に対して相対的な局所的規模を少なくとも維持する傾向で、パーツ14に対するモデル材と相互接続する。従って、焼結工程の約12%乃至24%(例えば、20%)の均一収縮又は高密度化中、これらサポート構造はパーツ14と一緒に収縮又は高密度化し、重力に対するサポートを提供し続ける。
図6は、図4の3Dプリンタ、印刷方法、パーツ構造及び材料のバリエーションを表す。図6では、分離グリーンボディサポート堆積ヘッド18c(又は18−G)は提供されない。従って、グリーンボディサポートGS1、GS2及び分離層SL1、Sl2は、例えば、セラミック又は高温金属粒子若しくは球が、例えば、1段階又は2段階デバインド可能な母材内に分散している分離層に使用される複合材料等の、同じ材料から形成される。この場合、グリーンボディサポートGS1、GS2は、必ずしも、デバインド中若しくは前又は分離工程中に、除去されないが、その代わりに、単に、デバインド中に弱められ、分離層と同様に、焼結中に熱分解したそれらの残留するポリマー材を有する。残留するセラミック粉末は、焼結後に、分離層と同時に、洗浄及び/又は除去できる。
図7は、工程の全体的な一模式図を示す。図7の構成要素は、図4に表示された同一の外観の構成要素に対応するが、様々なステップを示すために、図7には表示しない。初めに、3D印刷段階では、パーツ14は、(図4で説明され、示されるように)そのグリーンボディサポートGS、焼結サポートSS及び分離層SLと共に、上記のように、3Dプリンタで印刷される。これらのサポート構造(例えば、グリーンボディアセンブリGBA)のすべてを含むグリーンボディは、任意でセラミック又は他の材料のビルドプレート16にまだ結合又は接続されているが、デバインドチャンバ(任意で、デバインドチャンバは3Dプリンタ1000に一体化している、又はその逆である)に移される。上述のように、グリーンボディサポートが、第1段階のデバインド材と異なるポリマー、バインダ又は物質製である場合、デバインド前に分離工程でグリーンボディサポートを除去してもよい。グリーンボディサポートが、第1段階のデバインド材と同一若しくは類似の物質か、分解又は分散により同一のデバインド工程に反応するものかのいずれかでできている場合、グリーンボディサポートは、デバインド中に除去されてもよい。従って、図7に示すように、デバインドすることは、熱工程、溶媒工程、触媒工程又はこれらの組み合わせを利用してモデル材から第1バインダ成分を除去すること、多孔質のブラウンボディ構造を放置すること(「デバインド」)を含み、任意で、グリーンボディサポートを、溶解、溶融及び/又はグリーンボディサポートに触媒作用を及ぼしてなくすことを含んでもよい(「サポート除去1」)。
図7に続き、図示されるように、ブラウンボディ(例えば、付属した焼結サポート及び/又は周囲シェルを有するブラウンボディアセンブリBBA)は、焼結チャンバ又はオーブン(任意でプリンタ及び/又はデバインドチャンバと組み合わされる)に移される。ブラウンボディは、例えば、ブラウンボディアセンブリBBAとして、パーツ、任意で周囲シェル構造、及び任意で焼結サポートを含む。上述の通り、周囲シェル構造及び焼結(例えば、収縮又は高密度化リンク)サポートは、焼結サポート構造の異なる態様である。任意で、シェル構造及び/又は焼結サポートの間に介在するのは、例えば、分離材から成る分離層である。任意で、シェル構造及び/又は焼結サポートの間に介在するのは、パーツにこれらを相互接続するモデル材の突起部又はリッジである。任意で、同一又は類似の分離材が、ブラウンボディ(例えば、ブラウンボディアセンブリとして)とビルドプレートとの間に介在する。焼結中に、ブラウンボディ(例えば、ブラウンボディアセンブリとして)は、20%等、約12%乃至24%で均一に収縮し、原子拡散によりブラウンボディ(例えば、ブラウンボディアセンブリとして)内の内部多孔質構造をふさぐ。モデル材の第2段階デバインド成分は、焼結中に熱分解されてもよい(例えば、触媒作用又は気体、又、そうでない場合は、流動可能な形態の他の反応性薬剤の支援があることを含む)。
図7に示すように、焼結ボディ(例えば、焼結ボディアセンブリとして)は、焼結オーブンから取り出すことができる。サポートシェル構造及び焼結サポートは、パーティングラインに沿って及び/若しくは分離層に沿って、並びに又は突起接続部、タック又は他の特に機械的に弱い構造をスナップすること又は曲げること又は衝撃を与えることによって、分離又は崩壊させることができる。分離層は粉末化され、除去されやすい。グリーンボディサポートが、分離材から成る場合は、グリーンボディサポートは、同様に粉末化され、除去されやすくてもよい。
図8は、図4又は図6で印刷されたパーツのバリエーションを示す。図8に示すパーツは、4つのオーバーハング又はカンチレバーセクションOH2乃至OH5を含む。オーバーハングOH2は、カンチレバー状のより薄いオーバーハングOH3の下の、より低い位置のより厚いオーバーハングである。低いオーバーハングOH2は、場合によっては、長さ、薄さ、重さが十分で、グリーンボディサポート及び焼結サポートの両方が必要になってもよい、長いカンチレバーオーバーハングOH3の下にある自立したカンチレバーとして、焼結サポート又はグリーンボディサポートでさえもなしに印刷されてもよい。オーバーハングOH4は、下向きに傾くオーバーハングであって、一般に少なくともグリーンボディサポートと共に印刷されなくてはならず(なぜなら、そうしないと、その最下部が、すなわち、印刷中に自由空間において、支持されないからである)、ドラフト又はパーティングラインなしには、下部に印刷された焼結サポートを除去するのが困難な形態(なぜなら、硬性の焼結サポートが膠着状態になり得るため)で印刷されなくてはならない。オーバーハングOH5は、モデル材の重量のあるブロックを含むカンチレバーで、グリーンボディ及び焼結サポートの両方を必要としてもよい。これに加えて、図8に示されるパーツは、内部の、例えば、筒状ボリュームV2を含み、ここから、小さなチャネルを介して必要ないかなる焼結サポートも除去されなくてはならない。参照として、図8のパーツ14の3D形状が図12及び図13に示されている。
図8に示すように、図4及び図6の焼結サポートSS1と対照的に、焼結(例えば、収縮又は高密度化リンク)サポートSS2、サポートオーバーハングOH2及びOH3は、薄肉の垂直部材を含んで形成されてもよい。これらの垂直部材は、本明細書中に説明されているように、デバインドのための流体流を可能にしてもよい、垂直チャネルを形成する。焼結サポートSS2の垂直部材は、独立型(例えば、垂直ロッド又はプレート)又はインタロック型であってもよい(例えば、アコーディオン又はメッシュ構造)。図8に示すように、焼結サポートSS2(又は実際は、図4及び図6の焼結サポートSS1若しくは図8の焼結サポートSS3、SS4及びSS5)は、ラフトRA2、パーツ14a及び/又は互いに、直接的にタックされてもよい(例えば、「タックされる」は、モデル材に切れ目なく印刷されているが、相対的に小さな断面領域を有していてもよい)。逆に、焼結サポートSS2は、分離層の上部、下部又は隣にタックなしで印刷されてもよい。図示されるように、焼結サポートSS2はパーツ14aの直交する凹形表面から除去可能である。
さらに、図8に示すように同様の焼結(例えば、収縮又は高密度化リンク)サポートSS3が、下向き傾斜オーバーハングOH4の下及びより重量のあるオーバーハングOH5の下に印刷される。これらサポートSS3は、除去しやすくてよいため、一部又は全てが、例えば、分離材から形成される、及び/若しくは機械的に弱められた分離構造から形成される(例えば、本明細書中に説明されている、ほぼ又は辛うじて当接するクリアランスをもって印刷する又は細腰の、すぼんだ又は有孔の断面をもって印刷する等)又はこれらの組み合わせから形成される(又は、これが別々に印刷されている場合、任意でセラミック又は金属の含有がほとんどない又はまったくないグリーンボディサポート材を有するものの一方又は両方の組み合わせ)パーティングラインPL付きで印刷される。焼結サポートの除去を容易にする、これらの材料又は機械的な分離構造は、図4乃至図7、図9及びすべてに示される様々な焼結サポートへと同様に印刷されてもよい。
これに加えて、図8に示すように、焼結(例えば、収縮又は高密度化リンク)サポートSS5は、内部ボリュームV2内に印刷される。焼結サポートSS5はそれぞれ、例えば、複数の分離可能なセグメントに印刷された、多数のパーティングラインを備え、それによって、この場合では、焼結サポートは、内部ボリュームV2に接続するチャネルを介して除去されやすいほどに十分に小さな部分に崩れる又は粉々にできる。図示されるように、その形状を保持するため、印刷中及び焼結中の両方において十分な剛性を持つ小径孔の例として、チャネルCH2自体は内部サポート付きで印刷されていない。当然、チャネルCH2に、いずれか又は両方のタイプのサポートが、形状保持を確保するために印刷されてもよい。
図9は、実質的に図8に類似するが、構造にいくつかのバリエーションを呈する。強化がある及びない印刷の両方のバリエーションが示される。例えば、図9は、そこに強化構造CSP1を示す一方、図9の中実体、サポート及び分離層における残りの変異構造は、任意に、図8及び全体の非強化構造に適用可能である。例えば、オーバーハングOH3の下に、一枚でできたぴったり合うシェルSH3が、モデル材で印刷され、剥離若しくは分離層SL2及び/又は突起部P1のいずれかによって、パーツ14から分離される。一枚でできたシェルSH3は小さな開口したセル穴を全体に持ち、軽量化、材料の節約及びデバインドのための気体又は液体の浸透又は拡散を向上させる。本明細書中に説明されているように、開口したセル穴は、任意に、デバインド流体の浸透及び流出のためのアクセス及び/又は流通チャネルに接続されてもよく、例えば、図25乃至図31の構造の何れかは、開口したセル穴を形成しても、開口したセル穴により形成されても、開口したセル穴と結合されてもよい。このシェルSH3は、十分なパーティングライン又は剥離層がシェルSH3に印刷される場合(例えば、図面の左側の構造SH4及びSH5の代わりに、同様の構造が配置され得る)、及び工作物保持ピースとしての機能を果たす下記を十分に形成する場合、パーツ14を包囲してもよい。
図9の他の例では、一枚でできた(例えば、側方)サポート(例えば、収縮又は高密度化リンク)シェルSH4は、ラフトRA2と一体に印刷されているが、分割及びサポートシェルSH4の除去の許容のために角度を持つパーティングラインPLを有する。図9に示されるさらなる例では、サポートシェルSH4は、(材料の節約のため)上向きに角度をつけて印刷され、大きなセル又はハニカム内部を有して、軽量化、材料の節約及び/又はデバインドのための気体又は液体の浸透又は拡散の向上を行う。図9はまた、例えば、連続的なファイバヘッド10によって堆積された連続的なファイバ層の例を示す。サンドイッチパネル強化層CSP1は、例えば、オーバーハングOH2、OH3及びOH5の上側及び下側境界内等、様々な層に位置付けられる。
図4乃至図9に示されるように、焼結サポートSS1、SS2、SS3は、除去中に分離するように、少なくともいくつかの介在する剥離層材料を有してブロック又はセグメントの形態に形成されてもよい。これらの図及び全体の何れかにおいて、サポートは、タックされていても、タックされなくてもよい。「タックされていない」焼結サポートは、モデル材、すなわち、パーツと同じ複合材料から形成されてもよいが、剥離層、例えば、同一又は類似のバインド材を有するより高い温度の複合材によって、印刷されるパーツから分離できる。例えば、多くの金属印刷には、剥離層は、同一のバインドワックス、ポリマー又は他の材料を有する高温セラミック複合材から形成されてもよい。剥離層は、例えば、1枚の3D印刷層等、非常に薄くてもよい。金属が焼結されると、すでに第1段階のバインダが除去された剥離層は、セラミック材を焼結又は拡散接合するには温度が不十分なため、基本的に粉末化する。これにより、タックされていない焼結サポートを、焼結後、容易に除去できるようになる。
逆に、「タックされた」焼結サポートも、同様にモデル材、すなわち、パーツと同一の複合材料から形成されてもよいが、剥離層を貫通して又は剥離層なしでのいずれかで、パーツに接続してもよい。タックされた焼結サポートは、細い接続部を介して、すなわち、少なくともパーツに対して「タックされて」、パーツと隣接して印刷される。タックされた焼結サポートは、代替的に、又は追加的に、モデル材を有するパーツとサポートと相互接続するパーツの下のラフトと隣接するように印刷されてもよい。ラフトは、3Dプリンタのビルドプレートから、剥離層材料の1以上の層によって、分離されてもよい。
タックされた及びタックされていない焼結サポートの役割は、重力に対する十分なサポートポイントを提供して、重力による橋渡し部、スパン部又はオーバーハング部材料の弛み又は反りを防ぐ又は場合によっては修正することにある。タックされていない及びタックされた焼結サポートは両方とも役立つ。ブラウンボディは、焼結工程において、例えば、重心又は質量中心まわりに均一に原子拡散することによって収縮してもよい。金属焼結及びいくつかのセラミックでは、これは典型的に少なくとも部分的には固体原子拡散(solid-state atomic diffusion)である。多数の相互接続された金属/セラミック球中の拡散ベースの物質輸送が、例えば、非常に薄い橋部が、大きな物質に接合するのを維持するほど十分な材料を輸送しない場合もあるが、これは必ずしも、一端橋部として1端のみで接続して(又は二端橋部として2端で接続、又は長さにわたって相互接続して)切れ目なく形成されてもよいサポートの場合というわけではない。
タックされた焼結サポートが、その上にパーツが印刷されたモデル材ラフト又は収縮プラットフォーム又は高密度化リンクプラットフォームにタック又は接続又はリンクされているそれらの場合、パーツ及びパーツに隣接するラフトサポートがそれぞれ、焼結中に均一に収縮し、サポートがパーツに対して過剰に動く相対移動がないように、タックされた焼結サポートとラフトとの中のモデル材の相互接続は、ラフトサポート隣接ボディの質量中心が、パーツの質量中心と、空間内の同じ位置に又はその近辺にくるように配置できる。他の場合、パーツ自体はまた、隣接ボディ全体が、共通質量中心まわりに収縮するように、モデル材ラフトにタックされてもよい。他のバリエーションの場合、パーツは、両端に(例えば、ラフトに及びパーツに)及び/又はそれらの長さに沿って(例えば、パーツに及び/又は相互に)タックされた、タック焼結サポートを介してラフトに相互接続される。
他の場合、タックされていない焼結サポートは、ボリューム内に収容され、ラフト及び/又はパーツと隣接してもよい。ボリュームはモデル材から形成され、それらがそれら自身の質量中心(又は相互接続された質量中心)まわりで収縮してもよいが、空間を通して継続的に動かされ、周囲のモデル材によるパーツを支持する位置で保持されるようにする。例えば、このことは、図8又は図9の内部ボリュームV2の場合に有効であってもよい。
代替手段において又は加えて、サポート又はサポート構造又はシェルは、例えば、図4乃至図9の特定の場合に示すように、重力に対して横方向でのパーツの形成に続いてモデル材から形成されてもよい。モデル材シェルは、(パーツにタックされてもよい)ベースラフトにタックされて印刷されてもよい。それらは、ベースラフトと一体で印刷されてもよいが、ベースラフトから分離可能である。ベースラフトは、モデル材シェルと共に分離可能であってもよい。これらのサポート構造は、パーツの側面の外側輪郭からオフセットされても、実質的にパーツの側面の外側輪郭をたどってもよいし、プリミティブ形状(一直線又は湾曲した壁)だがパーツに近いものから形成されてもよい。1バリエーションにおいて、サポート構造は、全ての面でパーツを包んでもよい(多くの場合、パーティングライン及び/又は分離構造を含んでおり、シェルが除去されるのを可能にしている)。これらのオフセットサポート構造は、分離層又は分離材の層で印刷されてもよい(任意に、機械的サポートを伝達させるが、分離するのは難しくないセラミック又は他の材料)。
本明細書中に説明されているサポート構造の何れか、例えば、タックされた又はタックされていない焼結サポート及び/又はサポートシェルは、パーツとサポート構造(両方ともモデル材から形成される)との間に、介在分離材に代えて又は介在分離材に加えて、分離クリアランス又はギャップ(例えば、5ミクロン乃至100ミクロン)を有して印刷されてもよい。当該方法において、サポート構造の個々の粒子又は球は、焼結中に間欠的にパーツと接触してもよいが、分離クリアランス又はギャップが多くの位置で保存されるように、サポート構造は、圧縮され、パーツと緊密なサポートで印刷されない。もし間欠的に接触している粒子において接合拡散が生じると、焼結後に分離クリアランスサポート構造を取り除くために必要な分離力は、「スナップアウェイ」又は「タップアウェイ」であってもよく、どんな場合でもパーツの一体の又は隣接する拡張より非常に低い。より大きな分離クリアランス又はギャップ(例えば、200ミクロン乃至300ミクロン)が、デバインド流体が浸透及び/又は排出するのを可能にしてもよい。
代替手段において、パーツとサポート構造との間の分離ギャップ又はクリアランスは、より近く又はより遠く又はその両方で、例えば、パーツの横輪郭に続くサポート構造の残りのいくつかと共に、輪郭に続く部分セグメントに位置付けられてもよい。例えば、サポート構造は、サポート構造の大部分に対して小さな分離ギャップ(5ミクロン乃至100ミクロン)を有して印刷されてもよいが、パーツ(例えば、1ミクロン乃至20ミクロン)にさらに近い印刷された輪郭に部分的に実質的に続く他の区分により、焼結中に剛性及びサポートの増加をもたらすが、一般に一連の制限された接触域(例えば、接触域の5%未満)が除去を可能にする。これは、また、大きい及び中位のギャップ(例えば、任意に分離材介在によるより大きいクリアランスサポート構造に対する100ミクロン乃至300ミクロンの分離及びより近い次のサポート構造に対する5ミクロン乃至100ミクロン)により実施されてもよい。さらに、これは、3以上のレベル(例えば、パーツの輪郭に続くサポート構造の異なる部分における100ミクロン乃至300ミクロンのギャップ、5ミクロン乃至100ミクロンのギャップ及び1ミクロン乃至20ミクロンのギャップ)で実施されてもよい。
任意に、焼結サポート構造は、より大きい(例えば、5ミクロン乃至300ミクロン)ギャップ又はクリアランスにより、例えば、側面のパーツ輪郭から一般にオフセットされた内面を有している次のシェルを含んでいてもよいが、より小さいギャップ(例えば、1ミクロン乃至20ミクロン)へ及びより小さいギャップ(例えば、1ミクロン乃至20ミクロン)により分離されたギャップ又はクリアランスへと延びている又はギャップ又はクリアランスを横切って延びている突起部又は隆起部を有することになり、同一(又は類似)のモデル材から形成されたパーツとサポート構造との間の小点接触を可能にする。点接触は、例えば、次の輪郭シェルの、圧縮され、緊密な接触よって焼結後に中断しやすくてもよい。任意に、滑らかな母材(例えば、1以上のバインダ成分から形成されたグリーンボディサポート)サポート構造は、モデル材(例えば、金属)パーツとモデル材(例えば、金属)サポート構造との間に印刷され、グリーン及びブラウン状態の間のパーツの形状及び構造的完全性を維持し、取り扱う際の割れ又は破壊の可能性を減少させてもよい。
図面のいくつかは側面、断面図で示される一方、図10は、上面図で図4の焼結ボディ構造を示し、一方、図11は、説明を目的としてバリエーションを示す。図示されるように、サポートシェル又は他の構造は、サポート構造の部分間に分離又はパーティングライン又は層を有して印刷されてもよい。分離又はパーティングライン又は層は、本明細書中に説明されている任意の分離構造であってもよく、パーツとサポート構造との間に説明されているものを含んでいる。例えば、2以上のパーツ(任意に、多数のパーツ)に分解されるサポートシェルを可能にする分離ライン又は層は、スナップオフ構造を可能にする分離ギャップ(1ミクロン乃至20ミクロン、5ミクロン乃至100ミクロン又は50ミクロン乃至300ミクロン等)及び/又は突起部又はリッジを有して、分離材(例えば、セラミック及びバインダ)から、バインダ材から、モデル材(例えば、金属)から形成されてもよい。例えば、サポート構造又はシェルは、(例えば、図10におけるように)2つに分割するように形成され、サポート構造又はシェルにパーティングラインを作成してもよい。パーティングラインは、任意に、素早い分離を可能にするようにサポートシェル構造を交差させる(例えば、2等分する)平面内に隣接するように印刷される。パーティングラインの多数の平面が、サポートシェル構造を交差させてもよい。「パーティングライン」、「パーティング面」及び「パーティング平面」は、射出成形における文脈と同様に、すなわち一般に同様の理由で、それに沿って1つの構造が別の構造から離れる平面として、本明細書中で利用され、パーツの周囲構造がパーツとの干渉又はパーツにおける取り込みなしで除去されることを可能にする。射出成形の文脈において、これらの言葉がそれに沿って型が半分に離れる平面に言及する一方、本開示においては、「パーティング」ライン、面又は構造という言葉は、それに沿ってパーツをサポート又は包むサポート構造が互いに壊れる又は分割する又は離れてもよい平面に言及する。
上述のように、複雑な形態の場合、サポート構造は、パーティングラインを有して印刷され、図11に示すように、より小さい小区分に区分されてもよい(例えば、図11におけるPL―1のように、オレンジスライスのように、またさらに、簡単に除去できるように直交軸で区分される)。例えば、サポート構造がパーツのダブテール(dovetail)を充填して印刷される場合、サポート構造は、3つのパーツで形成され得る。例えば、センターパーツが抜き勾配を有しているか長方形のどちらかで、簡便に除去でき、その結果、2つのサイドパーツを内方にスライドした後、除去されるように開放するように、3つのパーツで設計され得る。逆に、パーティングラインは、横方向における以外のいくつかの場合、分離に抵抗するように、連結するように(例えば、図11におけるPL―3)、はざまを設けて又は組継ぎ(例えば、図11におけるPL―3と類似)として形成されて印刷されてもよい。パーティングラインは、サポートシェルを通ってほぼカットされて(例えば、図11におけるPL―2)印刷されてもよい。なお、図11は、突起部P1なしで、すなわち、サポートシェルSHを囲む、垂直方向及び大部分が一枚でできた分離層SL2のみを有して示されている。
場合によっては、特に少数のパーティングライン(例えば、2分の1、3分の1、4分の1)の場合、サポート構造は、少なくともそれらがフォームフォロー構造であるため、二次操作(機械加工等)において焼結パーツを保持するために、工作物保持具、例えば、ソフトジョーとして後で利用されるために保存されてもよい。例えば、サポート構造が一般に球状のパーツを支持するための、工作物保持ジョー又はソフトジョーとして後で利用されるのに適切なサポート構造であった場合、構造は、パーツを全ての面から留めておくべきであり、そのため、球の中心又は中間点を過ぎて延びるべきである。重力に対して焼結及び支持するため、サポート構造は、中間点(又はわずかに前)を過ぎて延びる必要はないが、検査及び後処理のためのその後の工作物保持のため、サポート構造は、中間点(例えば、パーツの高さの2/3まで、場合によっては、パーツに張り出す)を過ぎて延び、例えば、万力におけるポジティブグリップを可能にする。
さらに、万力(又は他のホルダ)において工作物保持具又はソフトジョーを保持するためのアタッチメント機能が、後処理のためにサポート構造に追加されてもよい。例えば、万力又はダブテール等に取り付けるための貫通穴である。代わりに又は加えて、セラミックサポートは、多数の3D印刷パーツの焼結ステップのための再利用可能なサポートの機能を果たすために印刷され、焼結されてもよい。この場合、再利用可能なサポートの上向きの対向面は、支持されるパーツの一致又は対向する表面と同じ高さまで収縮するように印刷されてもよい。
本明細書中に説明されているように、パーツ及び/又は焼結サポートを形成するための供給原料材料は、約50%乃至70%(好ましくは約60%乃至65%)の体積分率の二次母材材料、例えば、直径サイズが10ミクロン乃至50ミクロンの(セラミック又は金属の)実質的に球状のビーズ又は粉末、約20%乃至30%(好ましくは約25%の体積分率の可溶性又は触媒可能バインダ、(好ましくは室温において固体)、約5%乃至10%(好ましくは約7%乃至9%)の体積分率の熱分解可能なバインダ又は一次母材材料、(好ましくは室温において固体)同様に、約0.1%乃至15%(好ましくは約5%乃至10%)の体積分率の炭素繊維ストランド、各繊維ストランドは焼結温度以下で炭素と反応しない金属(例えば、ニッケル、ホウ化チタン)で塗装されている、を含んでいてもよい。本明細書中に説明されているように、「一次母材」は、ポリマーバインダであり、3Dプリンタにより堆積され、「二次母材」ビーズ又は球及び繊維フィラーを保持し、焼結に続いて、ビーズ又は球の(セラミック又は金属)材料は、母材となり、繊維フィラーを保持する。
代わりに、パーツ及び/又は焼結サポートを形成するための供給原料材料は、約50%乃至70%(好ましくは約60%乃至65%)の体積分率の二次母材材料、例えば、直径サイズが10ミクロン乃至50ミクロンの(セラミック又は金属)の実質的に球状のビーズ又は粉末、約20%乃至30%(好ましくは約25%の体積分率の可溶性又は触媒可能バインダ、(好ましくは室温において固体)、約5%乃至10%(好ましくは約7%乃至9%)の体積分率の熱分解可能なバインダ又は二次母材材料、約1/10乃至1/200の弾性率の(セラミック又は金属)の二次母材材料、及び二次、(金属又はセラミック)母材材料の約2倍乃至10倍の弾性率の材料の約0.1%乃至15%(好ましくは約5%乃至10%)の体積分率の粒子又は繊維フィラーを含んでいてもよい。本明細書中に説明されているように、「一次母材」は、ポリマーバインダであり、3Dプリンタにより堆積され、「二次母材」ビーズ又は球及び繊維フィラーを保持し、焼結に続いて、ビーズ又は球の(セラミック又は金属)材料は、母材となり、繊維フィラーの粒子を保持する。
弾性率の比較が以下の表で見付けられてもよく、弾性率1GPa乃至5GPaのポリマー/バインダ一次母材を有する。
Figure 2020513478
球、ビーズ又は粉末(例えば、微粒子)は、サイズに範囲があってもよい。バインダは、分散剤、安定剤、可塑剤及び/又は分子間潤滑油添加剤を含んでいてもよい。バインダ又はポリマー一次母材内に3Dプリンタにより堆積されてもよいいくつかの候補の二次母材充填材の組合せには、炭化タングステン被覆グラファイト(炭素)繊維を有しているコバルト又は青銅ビーズ;グラファイト(炭素)繊維を有しているアルミニウムビーズ;窒化ホウ素繊維を有している鋼鉄ビーズ;炭化ホウ素繊維を有しているアルミニウムビーズ;ニッケル被覆炭素繊維を有しているアルミニウムビーズ;炭素繊維を有しているアルミナビーズ;炭化ケイ素繊維を有しているチタニウムビーズ;酸化アルミニウム粒子(及び炭素繊維)を有している銅ビーズ;ダイヤモンド粒子を有している銅−銀合金ビーズが含まれる。CFF特許出願の技術を介して印刷されてもよいそれらの繊維は、また、連続繊維として埋め込まれてもよい。粒子又は繊維に対する炭素フォームには、カーボンナノチューブ、カーボンブラック、炭素短/中/長繊維、片状黒鉛、プレートレット、グラフェン、カーボンオニオン、アストラレン等が含まれる。
いくつかの可溶性−熱分解可能なバインダの組合せには、ポリエチレングリコール(PEG)及びポリメチルメタクリレート(PMMA)(任意のステアリン酸、任意のエマルジョンフォームにおけるPMMA);ステアタイト及び/又はポリエチレン(PE)と混合されたワックス(カルナバ、蜜蝋、パラフィン);PEG、ポリビニルブチラール(PVB)及びステアリン酸が含まれる。いくつかの熱分解可能な二段バインダには、ポリオレフィン樹脂ポリプロピレン(PP)、高密度ポリエチレン(HDPE);直鎖状低密度ポリエチレン(LLDPE)及びポリオキシメチレン共重合体(POM)が含まれる。上述の通り、熱デバインドにおいて、バインダを含有しているパーツは、制御された雰囲気下で任意の速度で加熱される。オーブンから出るガスにより吹き飛ばされる小分子における熱割れにより、バインダは分解する。溶媒デバインドにおいて、バインダを含有しているパーツは、適切な溶媒、例えば、アセトン又はヘプタンにバインダを溶解することに影響を受ける。触媒デバインドにおいて、パーツは、流されうる、バインダの割れを促進させるガス状触媒を内包している雰囲気と接触させられる。
図14は、フィラメント材が印刷に適切な環境条件で設定されている、3Dプリンタの概略図である。バインダ材が少なくともポリマー材及び/又はワックスを含んでいる場合、印刷中の供給及び背圧を目的とするポリマー及び/又はワックスの挙動は、室温(例えば、20℃)及び少し上昇した動作温度(例えば、20℃より高いが、80℃未満)でも、温度依存であってよい。温度が上昇するにつれ、剛性は減少し、延性は増加する。温度が上昇して軟化又はガラス転移温度に近づくと、弾性率がより速い速度で変化する。アモルファスポリマーに関して、弾性率及び耐荷力は、ガラス転移温度TG−A(図17に示されるように)を超えると無視できるほどになる。半結晶材料に関して、少量(例えば、Tgを下回る1/3乃至1/10の弾性率)の剛性又は弾性率は、ガラス転移温度TG−SC(図17に示されている)を超えて緩やかに溜まり、融点まで減少し続けてもよい。バインダ材、ポリマー又はワックス又は両方のいずれかは、1を超える成分及び1以上のガラス転移温度又は溶融温度を有していてもよく、ガラス転移温度Tgは、著しい軟化を示す。図17は、本明細書中に説明されている軟化材料等の1つの可能性のあるポリマー又はワックス成分に対する1つの可能性のあるスプール温度スパンを示している。しかし、なお、成分の記されているガラス転移温度TGに対する当該カーブ上の特定の位置は、全体としてのフィラメントの供給挙動より重要ではない。フィラメントは、壊れることなくスプールから十分に引っ張られ又は引かれ、さらに押出機により供給されるように十分固く、そしてボーデンチューブBT1及び、例えば、ケーブルキャリアEC1内で繰り返し曲げられるように十分成形しやすいように、任意の脆い状態から軟化されるべきである。
50%を超える金属又はセラミック球を含んでいる複合材料において、二段バインダと同様に、3D印刷、すなわちデバインド及び焼結に有利な機械特性(溶融粘度、触媒挙動等を含んでいる)は、工程の他の部分に対して適切又は有利な特性を有している一方、たとえ印刷温度(上記の材料の1以上のガラス転移温度又は溶融温度)において、適切に流体化されて3D印刷に対して適切な粘性があり自立している印刷材料をもたらす可能性があっても、室温において粘土質である及び/又は脆いかもしれない。
室温において脆い材料を扱うのに適切な構造は、図14乃至図16に示されており、3Dプリンタは模式的に示され、それ以外は、図1乃至図9と同様に構成されている。図14及び図15は、室温より高いが、バインダ材のガラス転移温度未満の温度、例えば、50摂氏度乃至55摂氏度で、例えば、直径が約1.75mmのフィラメントで巻き付けられたモデル材及び/又は剥離材(本明細書中に説明されているように、デバインド後に焼結されてもよい又は、剥離材用に、焼結中にバインダ部が熱分解された場合に粉末化に抵抗する高温粒子又は球を含んでいる複合材料)のスプールを受け入れる。任意に、温度は、モデル材のワックス成分のガラス転移又は軟化温度と同等だが、ポリマー成分のガラス転移又は軟化温度よりは低い。図14及び図16に示されるように、2つの上側のスプールは、モデル材及び剥離材を含んでおり、これらはそれぞれ、ヒータHT1により加熱されたジョイント加熱チャンバ(HC1)内にある。ヒータHT1は、例えば、直径約1.75mmのフィラメントで、当該例により熟慮された50摂氏度乃至55摂氏度で、スプールを保持する。ビルドプレート16は、印刷中ほぼ同程度の温度(例えば、50摂氏度乃至55摂氏度)を維持し、また、室温を超えるレベルで印刷区画内の温度を維持する手助けをする、ビルドプレートヒータ16aにより加熱されてもよい。より小径のフィラメントは、より低温(例えば、1mmのフィラメントに対し、40度乃至45度が採用されてもよい)で曲げ及び供給に十分なように軟化されてもよい。
各スプール/材料は、ジョイントチャンバHC1ではなく、それ自身の独立チャンバで保持されてもよく、各々は、ジョイントヒータHT1ではなく、それ自身のヒータにより加熱されてもよい。ヒータHT1は、受動的、例えば、放射及び対流ヒータであってもよいし、送風機を含んでいてもよい。図14乃至図16に示されるように、リターンチャネルRC1が印刷区画から加熱チャンバHC1に空気が引き込まれることを可能にする場合、送風機タイプのヒータは、加熱チャンバHC1を相対的に正圧で保持してもよい。加熱チャンバHC1が駆動「押出機」EXT1(例えば、ゴム輪フィラメント駆動システム)から下流の入口としてのリターンチャネルRC1及びフィラメント出口及びボーデンチューブBT1を除いて十分に密封されている場合、加熱チャンバHC1内の加熱空気は、駆動されたフィラメントの周囲のボーデンチューブBTを通って駆動され、暖められたフィラメントが印刷中にボーデンチューブを通して動かされる、場合によっては、屈曲されるような上昇レベルで温度を維持してもよい。少なくとも駆動された空気及びビルドプレートを加熱するヒータ16aは、印刷区画及びチャネルRC1を介して戻った空気を室温レベルより高く維持し(及びエネルギー消費を減少させ)てもよい。ボーデンチューブの曲げ半径ひいてはフィラメント内部を制御し続けるために、最小曲げ半径EC1を維持するセグメント化されたケーブルキャリア(例えば、エネルギーチェーン)は、ボーデンチューブを収容してもよい。
図14乃至図16は、スプールの配向及びフィラメントの駆動システムにおいて異なっている。図14において、スプールは、回転を可能にするレイジースーザンタイプのホルダに水平に配置され、フィラメントドライバ(それらの、例えば、エラストマー駆動輪を含んでいる)は、スプールとボーデンチューブとの間の中ほどの都合の良い位置に配置されている。当該ミッドドライブ配置は、フィラメントが加熱チャンバHC1においてエラストマー範囲まで軟化されない場合に適している。図15において、スプールは、回転スプールホルダ(例えば、ローラ上)に垂直に配置され、フィラメントドライバ又は「押出機」(それらの、例えば、エラストマーの駆動輪を含んでいる)は、各ノズル18、18aにおける溶融チャンバの上流に直接配置されている。当該ダイレクトドライブ配置は、より軟らかいフィラメントにもより硬いフィラメントにも適している。図16において、スプールは、軸に垂直に配置され、フィラメント及びフィラメントドライバ又は「押出機」(それらの、例えば、エラストマーの駆動輪を含んでいる)は、各ノズル18、18aにおける溶融チャンバの上流に直接配置されている。さらに、図16において、加熱チャンバは大規模であり、フィラメントはフィラメントの全ての曲げにおいて大きな曲げ半径を有する(例えば、図のように、10cmより小さい曲げ半径の曲げがない又は、例えば、スプール半径の曲げ半径より実質的に小さい曲げ半径はない)ように、動いている印刷ヘッド18、18aに実質的に直接滴下される。ボーデンチューブは、スプールに至る高さのパーツに対し、フィラメントを誘導する。
一代替実施形態において、印刷後に全体パーツをデバインドするのではなく、デバインドの少なくとも一部が、パーツ及び/又はサポートの層を印刷中又は印刷後に行われる。本明細書中に説明されているように、デバインドは、溶媒、加熱及び/又は真空蒸着又は昇華の適用、触媒作用又はバインダを除去又は分解する他の手段により行われてもよく、各ケースにおいて、焼結等のその後の工程のため、母材材料の少なくとも一部を除去する。同時に一層未満(例えば、任意に印刷ヘッドと共に移動する有向デバインドヘッドで)又は同時に一層、少しの層又は数層(例えば、全囲いデバインドシステム又は同時領域又は走査可能なデバインドシステムで)をデバインドすることがより有利であるかもしれない。
デバインドを使用するフルパーツ成形技術は、付加又は3D印刷技術と対照的に、必ず、完全な成形パーツにデバインド工程を適用する。本明細書中に説明されているように、フルパーツのデバインドは、付加又は3D印刷パーツでも同様に有益であり、付加又は3D印刷パーツの場合の成形パーツと対比して利点を有してもよい(例えば、内部ハニカム、アクセスチャネル、開口したセル及び他のデバインド加速構造が印刷された場合に、重量が減少してもよい及び/又はデバインドが加速されてもよい)。
逆に、層毎のデバインド(例えば、同時に一層に限らず、印刷中の連続的なデバインド又は同時に一層の一部のデバインド又は一連の層のデバインドのそれぞれが可能である)は、3D印刷又は付加技術の場合において固有の利点を有していてもよい。成形におけるように、押出3D印刷の場合の一段バインダの目的(例えば、スプール又はコイル状フィラメント、スプール又は折り畳み可能なテープ又は供給可能ロッドを使用して)は、焼結性粉末の所望の形状へのデリバリである一方、二段バインダの目的は、重力及びシステム/工程力に対するブラウンパーツにおける粘着及び形状保持である。デリバリ後、一段バインダは、これらの力に対する粘着及び形状保持のために必要又は有益である場合にのみ、保持される必要がある。成形の場合、これは、少なくともグリーンパーツが形成された後までであり、大抵の場合、グリーンパーツがモールドから除去された後までである。3D印刷の場合、デバインドシステム及びバインダ材特性によって、バインダは、堆積のほぼ直後に除去できる(例えば、一部の一段バインダが残っている及び/又は二段バインダ又は他の成分が重力及び印刷/処理力に対する構造的完全性を保持している場合)。十分な構造的完全性が残っている場合、デバインドヘッドは、固められた堆積ロード「の後ろ」を又はまだ固められていない又は固化のために冷却されていないものでさえ、引き続きデバインドしてもよい。他の例として、デバインドヘッドは、層の一部、完全な層又は一連の層を独立して追跡又はスキャンしてもよく、印刷チャンバにおけるボリューム測定又はバルク工程(例えば、加熱、真空)は、引き続きデバインド又はデューティサイクルでデバインドしてもよい。実質的に層毎のデバインドのこれらの場合の全てにおいて、複数の利点が結果として生じる。内側面は直接デバインドできるため、デバインドの工程は、著しく加速される。同様に、フルパーツ工程においてデバインドが難しい構造(例えば、高密度又は大きなパーツ)がデバインドされてもよい。プリンタがパーツのグリーン層を連続してブラウン層に変え(連続して、領域毎に、層毎に又は層セット毎に)、印刷パーツはブラウンパーツであるため、印刷に続いて追加の時間又は運搬は必要ない。部分的デバインドであっても、パーツ全体のデバインドに対して有効な表面積を増加させることにより、全体工程を加速させるかもしれない。例えば、部分的デバインドスイープは、印刷層又は一連の層上で行われてもよく、一時的に一部の表面がデバインド流体(ガス又は液体)に曝される。
図18乃至図21は、各層が印刷される際に、又は各層又は一連の層に続いて、デバインドが行われる3Dプリンタの概略図である。図18乃至図21のプリンタは、どちらの温度も室温を超えて加熱された際に成形しやすく又は室温において成形しやすく制御されているモデル材及び/又は剥離材のスプール又は、代わりに、例えば、ピストンフィーダにより供給される個別の棒材を受け入れる。ビルドプレート16は、ビルドプレートヒータ16aにより加熱されてもよい。ビルドプレートヒータ16aは、印刷中、デバインドに寄与するように(例えば、上昇させるが、モデル材の流体化又は軟化温度よりは低い、温度を維持してもよいし、室温より高いレベルで印刷区画内の温度を維持してもよい(印刷区画は、加えて又は代わりに、このために別のヒータ(不図示)も利用する)。図18乃至図21に示されるように、少なくともビルドプレートを加熱しているヒータ16aは、チャンバヒータHT2の任意の助力を得て、印刷区画を室温レベルより高く維持してもよく、最小曲げ半径EC1を維持するセグメント化されたケーブルキャリア(例えば、エネルギーチェーン)は、ヒューム抽出のための空気、ガス、流体及び/又は真空ラインと同様に、ボーデンチューブを収容してもよい。
一例において、図18に示されるように、プリントヘッド180、180aの各々は、少なくとも(モデル材、グリーンボディサポート材又は焼結サポート材を押し出す又は噴霧するための)印刷ヘッド及び(印刷されたモデル材から一段バインダをデバインドするための)デバインドヘッドDBH1を組み込んでいる。デバインドヘッドDBH1のタイプは、一段バインダ材のためのデバインド工程次第である。例えば、熱的デバインド可能な第1材料のためのデバインドヘッドDBH1は、強制ホットエアガン又は放射又はIR発熱体又はプロジェクタの一方又は両方を含んでいてもよい。真空中でデバインドされる材料の場合(バインダの蒸気圧を増加させる)、チャンバ全体が、同様に(例えば、真空コンジットVC1により接続された真空ポンプ又は高真空装置を用いて)真空下にあってもよく、特殊ガス(不活性又は活性)内でデバインドされる材料の場合、チャンバ全体が、不活性雰囲気ポートATM1を介してこのようなガスで満たされてもよい。溶媒又は触媒によりデバインド可能な第1材料のためのデバインドヘッドDBH1は、溶媒又は触媒流体、エアロゾル又はガス(任意に暖められ、加熱され又は再生された)の噴霧、液滴又は噴流を含んでいてもよい。どちらの場合も、デバインドヘッドDBH1は、廃棄物又はヒューム収集真空又は抽出部FE1を含んでいても、加えてもよい。追加の頭上又はチャンバ全体の工程は、デバインドステップに続いてデバインド溶媒の除去を(例えば、ガス流、真空又は熱により)促進してもよい。
ヒートガン又は放射エレメントの場合、堆積された第1材料の層又はロードは、材料をデバインドするため、200℃乃至220℃の温度まで加熱されてもよい。任意に、ヒューム抽出部FE1又は真空は、ヒュームがデバインドヘッドDBH1の移動方向に依存することなく、同様に抽出されるように、熱源と同心円をなしても、部分的に同心円をなしてもよい。同様に、デバインドヘッドDBH1は、さらに、デバインドが任意の方向で印刷ヘッド180又は180aを「追従」又は追跡してもよく及び/又は動きの任意のデカルト方向と同様に行われてもよいように、ヒューム抽出部FE1の有無にかかわらず、印刷ヘッド180又は180aと同心円をなしてもよい。代わりに、デバインドヘッドDBH1又はヒューム抽出部FE1のどちらかが、(方向に対し独立した関節接合の有無にかかわらず)印刷ヘッド180又は180aの側面に取り付けられてもよく、別々の又は独立した可動式キャリッジに取り付けられてもよい。本明細書中に説明されている各々の場合(同心、隣接又は主走査)において、ヒューム抽出部FE1は、好ましくは、デバインドヘッドDBH1の出力(例えば、スプレー、放熱器等)に最も近い、例えば、デバインドヘッドDBH1から0.1mm乃至10mm未満である。
代わりに、図19に示されるように、デバインドヘッドDBH1は、全幅主走査デバインドヘッドであり、副走査におけるプリンタの幅を移動する別のキャリッジに取り付けられ、任意の追跡及び/又は誘導ヒューム抽出部FE1を有している。当該主走査デバインドヘッドDBH1は、1以上の通過で層全体をデバインドしてもよい。主走査デバインドヘッドDBH1は、例えば、その出力(例えば、放熱器)が例えば、0.1mm乃至10mmのクリアランスを有してパーツに面するように、各層から所定の及び/又は調整可能なクリアランスを有して配置されてもよく、緻密な印刷物を乱すかも知れない吹き込み空気を回避してもよい。
さらに代わりに、図20に示されるように、デバインドヘッドDBH1は、デバインドヘッドDBH1内に向きを調整可能、可干渉性又はコリメート度が高い放射線ビームエミッタ(例えば、レーザ)を含んでいる。エミッタは、有益なプリントベッド16の視線で又は少なくとも幾分移動し、適切な焦点距離における視線又は位置決めを可能にする別のキャリッジに固定して取り付けられる又は印刷ヘッドDBH1に取り付けられ、それと共に図18と同様に移動する。ビーム放射デバインドヘッドDBH1は、1以上の通過で、ロード毎に又は層全体を連続的にデバインドしてもよい。ビーム又はレーザの好適なパワーレベルは、プラスチック用に利用されるSLSレーザと同程度(例えば、100mW乃至100W)であってもよい。本明細書中に説明されている図18乃至図21の各実装において、プリントベッド16及び/又はチャンバは、熱ベース又は熱利用デバインドヘッドDBH1、例えば、ビームエミッタが、デバインド工程を実行するためにパーツ層の温度を数度だけ上昇させる必要があるように、デバインド温度(例えば、1度乃至10度未満)に近い温度までヒータ16a及び/又はHT2により上昇させられてもよく、層を部分的にデバインド又は現在の層より低い層をデバインドし続ける温度(例えば、90℃乃至150℃)までヒータ16a及び/又はHT2により上昇させられてもよい。本明細書中に説明されている図18乃至図21の各実装において、暖かい空気噴流、周囲空気噴流又は冷却された空気噴流は、デバインドヘッドDBH1を追従又はそうでない場合は追跡して、デバインドに続いて層を冷却してもよい及び/又は層を環境の動作温度まで戻してもよい(全体又は部分的に上昇させられてもよい)。
なおさらに代わりに、図21に示されるように、層の完了次第、パーツは、(例えば、循環され、再循環され、攪拌され及び/又は加熱された)溶媒バスに入るように(例えば、わずかに又は完全に)下げられてもよい。この場合、デバインドヘッドDBH1は、溶媒バス構造と見なされてもよく、同時に1層乃至5層をデバインドすることが、昇降時間のためにより効果的なアプローチとなってもよい。図18乃至図21における各例において、ヒューム抽出部FE1は、溶解、揮発性、霧状、流動、エアロゾル化又はそうでない場合は除去されたバインダを除去してもよい。ヒューム抽出部FE1は、収集した材料を(例えば、揮発性、昇華又はガス状態材料を凝縮して液体又は固体材料にするために)コールドトラップCT1に向けさせ、任意にその後、適切な出口に排出する前に炭素フィルタ又は他のガスクリーナCF1を通すポンプに接続されてもよい。デバインドヘッドDBH1から離れたヒューム抽出部FE2は、チャンバ全体から別々にヒュームを退避又は除去してもよい。
図22に示されるように、本開示は、材料を堆積させ、焼結可能なブラウンパーツを形成する方法を記載し、付加製造用装置は、ステップS40においてラフトRA1を作成することを含んでいてもよい。続いて、本明細書中に説明されているように、ステップS42において、層、層の一部又は一連の層が印刷され、ステップS44において、層は、図18乃至図21を参照して及び本開示を通して説明されているようにデバインドされる。当該工程は繰り返される。なお、高密度な印刷は結果としてより頻繁なデバインドステップをもたらす。ステップS46におけるように、全ての層が印刷もデバインドもされると、工程が完了する。方法は、材料供給パスに沿って供給することを含んでいてもよい。装置は、バインダ母材及び第1焼結温度を有している焼結可能な球状及び/又は粉末の第1材料、例えば、モデル材を含んでいる第1フィラメントを供給する。第1材料のグリーン層は、少なくとも場合によっては、すでにデバインドされた第1材料のブラウン層上に堆積又は部分的に堆積される。他の場合、焼結サポート又はグリーンボディサポート材の層上に堆積されてもよい。少なくともバインダ母材の一部は、続いて、第1材料のグリーン層又はその一部から除去され、各グリーン層が対応するブラウン層にデバインドされる。全てのグリーン層が印刷され、ブラウン層に変換されると、パーツは、ブラウンパーツとなり、第1焼結温度でパーツが焼結されてもよい。
焼結サポートが利用される場合、装置(及び/又は工程)は、材料供給パスに沿って第2印刷ヘッドを含んでいてもよく、装置は、バインダ母材及び第1焼結温度より高い第2焼結温度(任意に、例えば、300℃より高い又は500℃より高い)を有している焼結可能な球状及び/又は粉末の第2材料を含んでいる第2フィラメントを提供できる。装置は、第1焼結温度より高い300℃を超える又は500℃を超える第2焼結温度を有していてもよい、第2材料、分離層材料の層を形成する。モデル材のグリーン層は、ビルドプレート又は(本明細書中に説明されているように予め層毎にデバインドされた)ブラウン層若しくは分離材の事前の堆積の上への堆積により堆積され、少なくとも各グリーン層のバインダ母材の一部がデバインドされ、その層又はそれらの層が対応するブラウン層に変質する。分離材の層は、ビルドプレート又は第1若しくは第2材料上に堆積され、第1材料の層は、必要に応じてモデル材又は分離材の事前の堆積の上の堆積により堆積され、これにより、焼結サポートが後に除去可能となる又は分離材を構築することが可能になる。パーツの全てのブラウン層がそのように変質すると、パーツは、第2材料より低い第1焼結温度で焼結されてもよい。装置(装置の追加のステーションを含んでいる)は、第1材料及び第2材料の各々からバインダ母材の少なくとも一部をデバインドする。装置(装置の追加のステーションを含んでいる)は、続いて、第1及び第2材料からそのように形成されたパーツを第1焼結温度まで加熱し、その結果、第2材料(分離材)を焼結及び分解することなく第1材料を焼結する。分離材における二段バインダは、しかしながら、熱分解され、後に非焼結の粉末が残る。
本開示において、昇華(例えば、ナフタリン)に依存する高蒸気圧一段バインダを使用した真空補助デバインド工程は、相互接続チャネルが印刷される場合に特に効果的であってもよい。3D印刷モデル材は、バインダ及びセラミック又は金属焼結材料を含んでいてもよく、剥離層が、サポート構造及びパーツ外部に接続するパーツ内部におけるインフィルセル又はハニカム又は開口したセル間に介在する。本明細書中に説明されているように、開口したセル穴は、デバインド流体進入及び流出用のアクセス及び/又は流通チャネルを任意に形成しても、アクセス及び/又は流通チャネルにより形成されても、アクセス及び/又は流通チャネルに接続されてもよい。「真空補助」は、周囲より低い、任意に0.1mmHg乃至5mmHgより低いガス圧におけるデバインドを意味してもよく、ここで、任意の残余ガスは、デバインドヘッドによる追加熱、加熱されたプリントベッド及び/又は加熱された印刷/デバインドチャンバの有無にかかわらず、空気又は不活性であってもよい。チャネル/穴の全て又はいくつか、各々は、真空下のデバインド中、開いたままであるが、約20%(約20%は12%乃至24%でよい)のサイズの焼結の減少又は高密度化中には閉じているように形成されてもよい。このような場合、一段バインダは、溶媒の抽出の利用に先立って又は溶媒の抽出を利用することなく、デバインド温度の下端で(サポート構造及びそれにより除去しやすい)、特に減圧及び昇温条件下で、測定可能な蒸気圧を有している化学的に適合する固体、液体及び/又はペースト状高級炭化水素及びエステルバインダ成分を含んでいてもよい。好ましくは、バインダ画分におけるこのような全体又は部分的ワックス交換成分は、昇華により、すなわち、固体から気相に直接、成分の除去を上手く行えて、よってポリオレフィンバインダ相のオープン構造を保つ、低地三重点(low-lying triple point)を特徴とする。
本開示において、室温フィラメントワインディング、商業範囲出荷及び室温貯蔵及びスプーリング解除に適切なバインダ組成物は、低融点ワックス及び他の適合性材料を一段バインダに結合することにより形成されてもよい。克服すべき問題は、比較的高いアスペクト比のフィラメント(例えば、1mm乃至3mm)を壊すことなく曲げること又は巻くことを妨げる脆弱性である。
溶媒デバインドMIM供給原料は、多くの場合、3つの特有の成分を含んでいる。1つの成分は、石油ワックス(PW)、マイクロクリスタリンワックス(MW)、クリスタリンワックス(CW)、蜜蝋、C15―C65パラフィン等、溶媒抽出可能な一部混和性の低分子量成分である。一段バインダ成分は、その寸法及び完全性を変更することなくグリーンパーツから急速に及び任意に除去され得るが、ブラウンパーツボディを変形させることなくブラウンパーツボディからのガス状熱分解生成物の制御された均一な除去も促進するポア形成として機能してもよい。第2成分は、LDPE、HDPE、LLMWPE等の様々なグレードのポリエチレン(PE)、ポリプロピレン、ポリ(メチルペンテン)又は他の非極性炭化水素ポリマーから選択される熱可塑性ポリマーであってもよい、抽出不可能で、後に熱分解される二段バインダであってもよい。第3成分は、無機又は金属粉末に対して離解性界面活性剤の機能を果たす長鎖飽和脂肪酸(例えば、ステアリン酸(SA)又はパルミチン酸(PA))等、粉末分散成分のマイナー画分、あるいは粉末分散成分としての脂肪酸の代わりの極性及び粘着性コポリ(エチレン−酢酸ビニル)(PEVA)であってもよい。
これらの例において、バインダ組成物は、50vol%乃至70vol%の炭化水素溶剤可溶物ワックス又は脂肪酸成分の一段バインダを含んでいてもよい。室温又は出荷条件においてより曲がりやすく又は成形しやすくするために、一段バインダは、高級アルカン、ワセリン、パラフィンワックス及び脂肪酸エステル及び他の適合性液体可塑剤等、低融点バインダ成分を含んでおり、高分子バインダシステムの可撓性を増加させてもよい。これらの成分は、小径スプールにおけるスプール巻きを改善し、(より低温の周囲温度、例えば、氷点下においてを含んでいる)取扱中及び出荷中の衝撃に抵抗してもよく、また、溶媒デバインドステップ中の抽出比率を上昇させてもよい。
特定の一例において、適度に揮発性の可塑化バインダ成分は、周囲貯蔵下で相対的に揮発性を有していてもよい。例えば、主としてポリオレフィンバインダの成分として又は一段バインダの大部分の成分又は成分全体として、室温付近の三重点温度(triple point temperature)を有しているナフタリン、2−メチルナフタレン又は他の炭化水素等である。その芳香族性及び低極性に起因して、ナフタリンは、溶けて、相対的に非常に低温の三重点及びよって固相に亘って80℃の融点までの非常に高い蒸気圧を有しているナフタリンを有しているポリエチレン(ポリオレフィン)と互換性がある。他の例において、ポリオレフィンバインダは、ナフタリンの留分の有無にかかわらず、直鎖又は分岐鎖高級(10<n<26)アルカン又はこのようなアルカンの混合体とブレンドされ、ここで、アルカン又はそれらの混合体は、アルカン又はその混合体におけるポリオレフィンの融点未満又は前記ポリオレフィンの溶解温度未満の温度で測定可能な蒸気圧を有している化合物から選択される。「測定可能な蒸気圧」は、20℃で0.1Pa(1μmHg))より高い飽和蒸気圧を意味する。
アルカン又はその混合体は、全体として又は一部、周囲温度からエステル又はその混合体におけるポリオレフィンバインダの溶解温度までの範囲において測定可能な蒸気圧も持つ、モノ−、ジ−又はトリエステル脂肪酸及び脂肪アルコール、グリコール又はグリセロールに交換されてもよい。アルカン、エステル又はそのブレンド又は中型脂肪酸とのブレンドが周囲温度以上だがポリマーバインダの融点又は溶解点未満で測定可能な蒸気圧を有している場合、望ましくは昇温だが、少なくとも初めはポリオレフィンバインダの融点又は溶解温度より低い温度で、グリーンパーツを単に低圧環境にさらすことにより、ブレンドから任意に除去できる。バインダ成分の昇華又は蒸着は、グリーンパーツのバインダ相に微小空洞を生成することになり、それによりその後のグリーンパーツの熱デバインドが促進され、捕捉ガス状分解生成物の膨張に起因するその寸法の歪みが防止される。
揮発性バインダ成分は、大気中での材料の通常の取り扱い及び使用中にかなりの程度蒸発しないように、十分低い周囲温度で蒸気圧を有しているべきである。長期貯蔵中の揮発性バインダロスは、密封されたガス及び有機蒸気不透過性の多層包装内にペレット、押出フィラメント等を保存することにより、効果的に防止されてもよい。ポリオレフィンバインダは、ナフタリン、2−メチルナフタレンの一部を含んでいるワックス成分と共に説明されているように、ポリエチレン、ポリプロピレン又はそれらの共重合体を含んでいる。貯蔵中のナフタリンの昇華は、アルミポリマーラミネート等、適切な蒸気不透過性包装材料を使用することにより防止できるが、ナフタリンは、低圧下、例えば、ナフタリンの融点未満の温度で真空オーブンにおいて、適度な加熱により、グリーンパーツから比較的急速に除去できるため、ナフタリンは、バインダ相を溶かすことなく除去される。
上述の通り、図4乃至図40を全て包含した場合、グリーンボディサポートは、主として、印刷工程中の印刷力及び重力に対して、グリーンボディを支持するためのものであり、デバインド及び/又は焼結に先立って除去されてもよい。一方、焼結サポートは、主として、重力に対してブラウンボディを支持するため及び均一収縮のためにサポートとブラウンボディを相互接続するためのものであり、デバインド工程を通して及び焼結工程中、保持される。分離材は、デバインドされてもよく、焼結後の焼結サポートの除去を支援してもよい。図6の場合、グリーンボディサポート及び分離材は、結合されてもよく、分離材及びグリーンボディサポートがデバインド中に除去される(分離材の粉末の一部は残っていてもよい)一方、焼結サポートは、重力に対してブラウンボディを支持するために、さらに保持される。重力に対してブラウンボディを支持する必要がない場合(例えば、本明細書中に開示されているように、流動ベッドにおける完全に水面下の焼結中の浮力効果のため又は下の粉末により提供される抵抗のため)、焼結サポートは、より小さくてもよく、それほど強くなく、あるいは不要であってもよい。この最後の場合において、このことは、図23A及び図23Bの印刷ステージにより表されてもよく、ここで、焼結サポートではなく、グリーンボディサポート/分離材のみが、印刷され、パーツを支持する。
図23A及び図23Bに示されるように、パウダーベッド又は流動ベッドブラウンパーツ焼結オーブン及び工程は、本明細書中に開示されている3Dプリンタと併用されてもよい。図23Aに示される焼結オーブンは、本明細書中に開示されている3Dプリンタ及びデバインドステーションと併用されてもよく、その内、グリーンボディサポート及び分離層の一部は、異なる材料から形成され、グリーンボディサポート及び分離層の一部は、同一の材料から形成され、焼結サポートは形成されない。
図23Aに示されるように、焼結オーブン及び方法は、モデル材又は複合物の流動ベッド焼結をサポートしてもよい。剥離層は、焼結中、球状又は粉末金属パーツ、初めのうちはブラウンパーツを含んでおり、焼結工程中の反り及び歪みを防止する。例えば、パーツ23―3は、図23A及び図23Bに示されるように、るつぼ23―1内に置かれてもよい。るつぼ23―1は、0.001ミクロン乃至200ミクロンのサイズ、好ましくは1ミクロン乃至20ミクロンのサイズの微粉末23―4で部分的に満たされてもよい。代わりに又は加えて、パウダーベッドが任意に流体化される場合、るつぼ23―1は、ゲルダートグループAの粉末で部分的に満たされてもよい。ゲルダートグループA粉末は、典型的に実質的に20μmと100μmとの間であり、球状又は不規則であってもよく、粒子密度は、任意に1.4g/cm未満である。しかし、ゲルダートグループA粉末は、粉末サイズによるのではなく、バブリング挙動により画定され、任意のゲルダートグループA粉末が適している。ゲルダートグループA粉末において、バブリングベッド相の開始に先立って、ベッドは、かさ密度の低下に起因して、初期の流動化で拡張してもよい。代わりに、ゲルダートグループC又はグループB粉末が、場合によっては、機械的又は他の攪拌に適していてもよい。
パウダーベッドが流体化される場合、焼結に好適な加圧ガス(例えば、典型的に不活性ガス又は還元ガス)は、多数の穴を通って、分配器プレート23―9又はスパージャ分配器(sparger distributor)を介して流動ベッド容器に入ってもよく、得られたガス粒子流体は空気より軽く、ベッドを通って上方に流れ、固体粒子を浮遊させる。(任意に流体化された)パウダーベッド及びパーツ23―3を含んでいるるつぼ23―1に熱が加えられる。システムの任意のパーツは、適切に予熱されてもよく、例えば、加圧ガス23―2は、焼結温度未満、焼結温度の範囲内又は焼結温度を超えた温度まで予熱されてもよい。パーツ23―3が焼結温度まで加熱されるにつれ、重力下、すなわち、パーツ23―3自体の重量下で下向きに変形する傾向がある。図23A及び図23Bのシステムにおいて、微粉末(好ましくはアルミナ等)は、落ち込み及び弛みに抵抗を与える。また、他の場合においては、微粉末の流動ベッドが抵抗又は浮力のどちらか又は両方を与える。システムは、流動状態と非流動状態との間を行き来してもよい。及び/又は、流体(ガス)の流量は、さらに、さまざまな程度の粉末移動度を実現するように調整することができる。図のように、ベッドの粉末は、ブラウンパーツの支持されていない部分(例えば、支持されていない部分23―12)の重量に継続的に抵抗する。
任意に、流れを促進させ、パーツのオリフィス及び区画における粉末の取り込みを防止するために、粉末は、実質的に球状に形成されてもよい。さらに、パウダーベッドは、流体化され、流体入口及び/又は分配器プレート23―9を通って粘度を軽減させることができる。さらに任意に、るつぼ23―1は、焼結工程中、炉を封止して、通常、金属粉末の物理的特性にとって有害な酸素の進入を防ぐ、実質的に気密なチャンバ23―7内に位置付けられる。炉の(好ましくは、ステンレス鋼の)壁から高温のるつぼ23―1を分離する、炉材23―5が示されている。
さらに任意に、るつぼ蓋23―6は、るつぼ23―1の上部に置かれ、パーツ23―3への酸素の進入をさらに制限してもよい。ガスがるつぼ23―1に流れ込むにつれ、圧力は、わずかに23―1の蓋を押し上げ、ガスが漏れるのを可能にしてもよい。結果として生じる正圧流ガス封止は、酸素進入を減少させ、結果としてパーツ23―3の周囲により純粋な雰囲気をもたらしてもよい。さらに任意に、一実施形態において、流体化ガスは、初期の温度上昇の間、及び焼結の工程、焼結工程の初期段階における、金属粉末球間のネッキングの発現を通して、粉末の移動度のポイント未満の流量で維持されてもよい。十分なネッキングが実現されて多数の球を接続し、その結果、パーツの構造が維持される場合、ガス流は、粉末を流体化させるポイントまで増加できる。初期上昇の間(ネッキング前)の流体化(例えば、流動ベッドの作成)は、パーツへのかく乱効果を有してもよく、割れ又は損傷の可能性を増加させるかもしれない。しかし、一旦、焼結又は予備焼結が十分なパーツ強度(例えば、0.1%乃至10%のパーツ収縮)を可能にすると、パーツが収縮して完全に焼結される(例えば、12%乃至24%又は約20%の収縮)前に、流体流を増加させ、パーツを損傷させることなくサポート粉末を流動化させてもよい。工程の後半で流体流を増加させるには、穴、キャビティ等から粉末の放出を可能にするために低粘度粉末を必要としてもよい。
さらに任意に、粉末、流体流及び印刷(パーツ、サポート及び補助構造を含んでいる)の特性は、流動浴における低浮力から中立浮力までのスケールで、パーツの浮力を発生させるように設定されてもよい。当該効果的な無重力焼結工程は、内部スパン及びブリッジを有している複雑な形状が弛み又は落ち込みなく焼結されることを可能にしてもよい。軽度の浮力は、パーツ又はパーツの一部の有効重量を減少させることになる。しかし、浮力は、中立まで(パーツが流動ベッド内で浮く傾向がある)又は中立を超えて(パーツが流動ベッドの上部に浮く傾向がある)いてもよい。支持ハンガー23―10は、負、中立又は正の浮力に対抗し、流動ベッドに浸ったパーツを保持してもよい。加えて、粉末を直接パーツの輪郭上に排除するように形成されたフードガード23―11は、パーツ上に存在する非流体化粉末のフード又は停滞キャップの重量を減少又は除外させてもよい。当該フード又は停滞キャップは、全体浮力又は特定の位置の浮力を減少させてもよい(例えば、https://rucore.libraries.rutgers.edu/rutgers−lib/26379/を参照)。フードガード23―11は、パーツと共に3D印刷されてもよい。例えば、フードガード23―11は、パーツの代表的又は最大の水平断面の断面形状に従って決定され、流動ベッドにおける浸水の予想深さに対して上向きに突出してもよい。フードガード23―11は、続いて、例えば、分離層を有しているパーツ上又は別の印刷ジョブにより(焼結されるパーツに続き又は焼結されるパーツのそばに)、モデル材(又は焼結サポート材)から中空又は実質的に中空のプリズム又はシェルとして3D印刷されてもよい。フードガード23―11は、また、支持ハンガー23―10の役割を果たしてもよく、パーツは、フードガード23―11を介して吊されてもよい。フードガード23―11は、例えば、印刷中に生成されるが、焼結に続いて処理又は再生され、「犠牲的」であってもよい。
さらに任意に、ガス出口8は、焼結工程の排ガスがオーブンから除去できるようにしてもよい。代わりに又は加えて、出口8は、炉における真空引きに利用され(例えば、真空ポンプを利用して、真空へ向けて周囲圧力を低める)、ベッドを焼結及び/又は流体化させるための不活性又は還元ガスを流すのに先立って環境から酸素のかなりの部分を除去してもよい。粉末内にガスを流すことにより、粉末を流体化するのに加えて粉末を攪拌する。さらに任意に、流動ベッドは、粉末が任意の抵抗を発揮することなく、パーツが焼結中に収縮又は縮小することを可能にしてもよい。特定の粒子サイズ及びタイプを流体化する際に微粒子型及びバブリング型に入るのに必要なガス流が実験的に又はモデリング、機械的撹拌を介して上手く特徴付けられることができる一方、超音波、磁気、誘導的等の攪拌部材、振動部材又はチャンバを含むことにより、必要なガス速度を減少させても、パーツのより近づきにくい区分における流動化を提供してもよい。
図23Bは、工程の一全体図を示す。初めに、3D印刷段階において、STG−1Aのパーツ14は、少なくともそのグリーンボディサポートと共に、説明されているように3Dプリンタで印刷される。これらの全てを含み、より高い溶融温度の材料、セラミック又は他の材料のビルドプレート16に任意にさらにバインドされたグリーンボディは、デバインドチャンバに移されてもよい(任意に、デバインドチャンバは、3Dプリンタに一体化されており、逆もまた同様である)。上述の通り、グリーンボディサポートは、デバインド中に除去されてもよい。従って、図24に示されるように、デバインドSTG−2Aは、多孔質ブラウンボディ構造を残して、モデル材をデバインドし(「デバインディング」)、任意にグリーンボディサポートを溶解させ、溶かし及び/又は触媒作用を及ぼすことを含んでいてもよい(「サポート除去」)。説明されているように、焼結サポートは、パウダーベッド又は流体化パウダーベッド技術により、なお残っていてもよいが、例えば、より少ない場所に置かれても、より長いスパンのみサポートしてもよい。
図23Bを続けて、図のように、ブラウンボディは、(任意にプリンタ及び/又はデバインドチャンバと結合された)焼結チャンバ又はオーブンに移される。焼結チャンバ又はオーブンは、説明されているように、ブラウンボディの焼結温度で焼結しない粉末で満たされる(例えば、焼結されるnアルミニウム又は鋼鉄のブラウンボディ周囲のアルミナ粉末。焼結STG−3Aの間、ブラウンボディは、約20%、均一に縮小し、原子拡散によりブラウンボディの内部多孔質構造が閉じられる。アルミナパウダーベッドは焼結しないが、スパン及びオーバーハングのたるみ及び落ち込みに抵抗する及び/又はスパン及びオーバーハングに対して浮力を提供するかのどちらかである。パウダーベッドが流体化される場合、粉末及びパーツは、ガスによる流体化の循環により、より均一に加熱されてもよい。図24に示されるように、焼結されたボディは、焼結オーブンから除去できる。一部のアルミナ粉末は、内部キャビティに留まってもよく、STG−4Aで洗浄及び/又は回収できる。
焼結オーブンに関して、(低温でマイクロ波を通さない又は反射させてもよい)固体金属と異なり、粉末金属は、有利にマイクロ波を吸収してもよい。加えて、結果として生じる加熱工程は、ボリューム測定又は部分的なボリューム測定であり、粉末材料のボディを、(適合性チャンバ及び雰囲気が実際的に提供できる場合、)焼結温度までなど、均等に加熱してもよい。さらに、本明細書中に説明されているように、より小さい粉末サイズ(例えば、10ミクロン未満、平均又は>90%カウント)は、焼結温度を下げ、低温炉及び耐火材料の使用を可能にしてもよい。フォーミング又は還元ガス(例えば、水素混合)に浸すことも利用されてもよい。
(マイクロ波と併用で又は別の方法で)焼結に利用される溶融シリカチューブは、高純度のシリカ(例えば、99.9%のSiO2)から形成されてもよく、ワークピース又はパーツ保持用のるつぼは、類似の材料から作られてもよい。場合によっては、溶融シリカの光透過性が、そのマイクロ波透明性及び/又はその熱膨張の係数と相互に関連があってもよい。より光学的に透明な溶融シリカは、より低い程度の結晶化を有していてもよく、結晶構造は、光及びRFの両方を飛散さてもよい。
典型的な熱膨張計数及びマイクロ波侵入深さ
Figure 2020513478
●侵入深さ(d)は、電界強度が減少する材料の表面から表面におけるその値の1/e(約0.368)までの距離である。当該表における測定は、20℃周辺で成された。温度が上昇するにつれ、侵入深さは、減少する傾向がある(例えば、1200℃で、侵入深さは、20℃における侵入深さの50%乃至75%であってもよい)。
ガスの取り扱いに関して、異なる焼結雰囲気は、異なる金属(例えば、水素、窒素、アルゴン、一酸化炭素、真空、わずかな比率の水素を有している還元ガス)及び焼結工程の異なる段階に好適である。焼結雰囲気は、異なる段階、例えば、デバインドを完了させる際、デバインド残留物を一掃して焼結炉の汚染を防ぐ際、表面酸化を減少させる際、内部酸化を防止する際及び/又は脱炭を防ぐために役立ってもよい。雰囲気制御炉は、焼結前にも又はマッフル段階的連続炉において準備される異なる段階で利用されてもよい。
潤滑剤又は残留バインダを一掃するための初期デバインド後であって焼結前の雰囲気は、水中で(水で又は追加された空気で飽和した窒素を)酸化して、例えば、高温金属にしてもよく、任意に類似の(一次)母材又はバインダ成分で堆積されてモデル材にしてもよい。焼結後、剥離層は、高度に飽和してもよい又は空気追加を用いることにより高度に飽和してもよい。温度は、0C乃至25Cの露点で200C乃至750Cであってもよい。焼結における雰囲気は、特にステンレス鋼又はいくつかの工具鋼に対し、例えば、−20C乃至−40Cの露点で、純粋な水素を大幅に減少させてもよい。窒素/水素混合(3%乃至40%)又は窒素/アンモニアが利用されてもよく、炭化水素が裏面炭素を追加してもよく、その欠損を防いでもよい。焼結後における雰囲気は、例えば、毎秒1℃乃至2℃のペースで冷却(非常に低い酸素レベルで、例えば、10ppm乃至50ppm)してもよく及び/又は例えば、鋼鉄に対し700℃乃至1000℃の範囲で炭化水素を含んでいる雰囲気(いくらかのCOを形成)で再炭素化してもよい。
マイクロ波補助焼結炉113に関して、図25に示されるように、焼結を補助又は実行するための一候補のマイクロ波発振器113―1は、1kW乃至10kWの出力で2.45GHz周波数マイクロ波を生成してもよい。発生器、発振器又はマグネトロン113―1は、開放された出口で導波路113―2に接続されてもよい。サーキュレータ113―3及びダミーロード113―4(例えば、水)は、反射波を吸収し、これらがマグネトロン113―1に戻るのを防ぎ、進行波を炉113に向け直す(適切なセンサによりモニターされるように)及び調整してもよい。チューナー装置(サーキュレータに加えて又は替えて)113―3は、マイクロ波反射の相及び大きさを変更し、例えば、反射波を打ち消す又は反射波に対抗してもよい。
図25に示されるように、1つの技術及び材料変更方法は、本明細書中に説明されているような除去可能なバインダ(二又は一段)及び1200℃より高い融点を有している50%より大きい体積分率の粉末金属(ステンレス鋼又は工具鋼等、様々な鋼鉄を含んでいる)を含んでいる材料を供給する(ペレット押出、フィラメント押出、噴射又は硬化)ことを伴ってもよい。粉末金属は、10ミクロン未満の直径の50パーセントを超える粉末粒子及び有利に8ミクロン未満の直径の90パーセントを超える粉末粒子を有していてもよい。平均粒子サイズは、直径3ミクロン乃至6ミクロンであってもよく、直径6ミクロン乃至10ミクロンの実質最大(例えば、+/−3標準偏差又は99.7パーセントのスパンを超える)である。粒子サイズ分布は、直径約8ミクロン(例えば、6乃至10)ミクロンでの一モード及び直径サブミクロン(例えば、0.5ミクロン)での第2モードによる、二峰性であってもよい。第2モードにおけるより小さい粒子は、構造的完全性を保護するための早期又は低温ネッキングを助ける。
より小さい、例えば、90パーセントが8ミクロン未満の、粒子サイズは、粒子間の表面積及び表面接触の増加を含む様々な効果の結果として、焼結温度を下げてもよい。場合によっては、特にステンレス及び工具鋼に対し、これにより、結果として、例えば、1200℃未満の、非晶質シリカのチューブを使用した溶融チューブ炉の操作範囲内にある焼結温度をもたらされてもよい。従って、本明細書中に説明されているように、工程バリエーションにおいて、当該より小径の粉末材料が、連続層で付加的に堆積され、本明細書中に説明されているようにグリーンボディを形成してもよく、バインダが除去され、ブラウンボディが形成される(本明細書中に説明されている堆積及び/又はデバインドの任意の例において)。
図24及び図25に示されるように、ブラウンパーツは、実質的に1200℃未満の動作温度、1×10−6/℃未満の熱膨張計数及び10m以上のマイクロ波場侵入深さを有している材料(例えば、実際的には約1200℃に制限された動作温度、約0.55×10−6/℃の熱膨張計数及び20mを超えるマイクロ波場侵入深さを有しているアモルファス溶融シリカ)から形成された溶融チューブ113―5を有している溶融チューブ炉(炉113は一例)に押し込まれてもよい。低熱膨張計数は、熱衝撃に抵抗する能力に関連し、そのため、動作中及び築炉において温度を急速に上昇させ、高い温度勾配を操作する。例えば、耐熱衝撃材料の使用により、溶融チューブ内の温度を毎分10℃より高いが毎分40℃未満で上昇させることを可能にしてもよい。マイクロ波場侵入深さは、マイクロ波透明性に関連し、より高い侵入深さは、より高い透明性に関連している。
図24及び図25に示されるように、当該工程において、溶融チューブ113―5は、溶融シリカプラグ又はプレート113―6(及び/又は耐火又は絶縁プラグ又はプレート)により密封されてもよい。内部空気は、真空状態にされてもよく、さらに内部空気を焼結雰囲気(真空、不活性ガス、還元ガス、不活性及び還元ガスの混合体を含んでいる)で交換してもよい。マイクロ波エネルギーが、密封された溶融チューブ外のマイクロ波発振器113―1からブラウンパーツに適用されてもよい。この場合、小粒子は焼結温度を下げてもよいため、鋼鉄のブラウンパーツは、1200℃未満の温度で当該炉において焼結されてもよい。有利な一例において、90パーセントを超える印刷材料の粉末粒子は、8ミクロン未満の直径を有している。これらの粒子の一部又は残り10%の粒子は、1ミクロン未満の直径を有していてもよい(例えば、これらの>90%は、0.5ミクロン未満の直径を有している)。
図24及び図25に示されるように、マイクロ波は一様に分散した加熱を(例えば、ターンテーブル及び反射攪拌ブレードを利用しても)管理することは難しいため、システムは、サセプタ部材113―7(例えば、外周に分布されたロッド)を利用してもよい。サセプタ部材113―7は、高温に抵抗するマイクロ波吸収材料、例えば、炭化ケイ素から作られてもよい。サセプタ部材113―7は、受動的(マイクロ波放射によってのみ励磁される)、能動的(抵抗加熱される)又は2つの混合であってもよい。本明細書中に説明されているサセプタ部材113―7は、マイクロ波加熱なしでさえ利用されてもよい(マイクロ波フリーシステムにおいて、炭化ケイ素及びケイ化モリブデン、2つの共通サセプタ材料は、多くの場合、高温に対して、良い抵抗ヒータでもある)。図24及び図25にさらに示されるように、マイクロ波エネルギーは、密封された溶融チューブ113―5の外部から(チューブ内部における焼結雰囲気を汚染しない)密封された溶融チューブ外に配置されたサセプタ材料部材113―7に適用される。上述の通り、焼結雰囲気は、ステンレス鋼に対し、焼結される粉末金属、例えば、不活性、真空又は少なくとも3%の水素(例えば、1%乃至5%の水素だが、純粋な水素まで含んでいる)に好適である。
細密なパーツを作るためのバリエーションアプローチにおいて、さらに、除去可能なバインダ及び50%より大きい体積の粉末鋼鉄(又は他の金属)を有している材料は、10ミクロン未満の直径を有している50パーセントを超える粉末粒子を、有利には、実質的に8ミクロン以下の直径を有している90パーセントを超えて、供給される。材料は、緻密だが、粉末のより大きい粒子の直径の10倍乃至20倍である(ジャミングを防ぐ)、300ミクロンより小さい内径を有しているノズルで付加的に堆積されてもよい。さらに、バインダが除去され、ブラウンボディが形成され、ブラウンパーツは1×10−6/℃未満の熱膨張計数を有している溶融チューブ、例えば、非晶質シリカ、に押し込まれ、密封され、その中の雰囲気は焼結雰囲気に置き換えられる。放射エネルギー(例えば、受動的又は能動的サセプタロッド又は他の抵抗素子からの放射熱及び/又はマイクロ波エネルギー)が、密封された溶融チューブ113―5の外部からブラウンパーツに適用され、500℃より高いが、1200℃未満の温度(小粒子鋼粉末と同様に小粒子アルミニウムを有効にする範囲)でブラウンパーツを焼結する。この場合、ノズルは、ノズル幅の実質的に2/3以上の層の高さ(例えば、300ミクロンのノズルに対して実質的に200ミクロンを超えて又は150ミクロンのノズルに対して100ミクロン)で材料を堆積させるように配置されてもよい。
1つの焼結炉113においてアルミニウム及びステンレス鋼の両方(可能な他の材料に加えて)を焼結するのに適した他のバリエーションにおいて、いずれの小粒子粉末から形成されたパーツも、材料に従って実質的に制御された同一の炉及び雰囲気及び温度上昇中に置かれてもよい。例えば、第1ブラウンパーツは、第1粉末金属(例えば、アルミニウム)を含んでいる第1デバインド材(例えば、アルミニウム粉末印刷材料)から形成されてもよく、そのうち、第1粉末金属の50パーセントを超える粉末粒子は、10ミクロン未満の直径を有している。第2粉末金属(例えば、ステンレス鋼)を含んでいる第2デバインド材(例えば、ステンレス鋼粉末印刷材料)から形成される第2ブラウンパーツでは、第2粉末金属の50パーセントを超える粉末粒子が、10ミクロン未満の直径を有している。炉に対する第1モードにおいて、アルミニウムブラウンパーツは、本明細書中に説明されている非晶質シリカ溶融チューブに押し込まれてもよく、温度は、500℃より高く700℃未満の第1焼結温度まで、毎分10℃より高いが毎分40C℃未満で上昇させられる。第2モードにおいて、ステンレス鋼ブラウンパーツは、同一の溶融チューブに押し込まれてもよく、溶融チューブ内の温度は、1000℃より高いが、1200℃未満の第2焼結焼戻し温度まで、毎分10℃より高いが毎分40℃未満で(例えば、熱管理HC及び又はマイクロ波発振器MGにより)上昇させられる。
雰囲気は、圧力制御113―8及び/又は流量制御113―9により変更され、真空ポンプ113―10又はガス源113―11を操作してもよい。アルミニウムに対する第1モードにおいて、第1焼結雰囲気は、酸素フリーの99.999%以上の不活性窒素を含んで、溶融チューブ113―5に導入されてもよい。ステンレス鋼に対する第2モードにおいて、少なくとも3%の水素を備えている第2焼結雰囲気が導入されてもよい。
図25に示されるように、1200C未満でアルミニウム及びステンレス鋼の両方を急速に焼結させるのに適切な多目的焼結炉において、本明細書中に説明されているように小径粉末を使用して、炉は、1×10−6/℃未満の熱膨張計数を有している溶融シリカから形成された溶融チューブ113―5(高い上昇率を可能にするゆるめ粉末、熱衝撃に抵抗するチューブ)及び周囲の雰囲気に対して溶融チューブを密閉するシールを含んでいてもよい。チューブ内雰囲気レギュレータ(例えば、高真空113―10ポンプ又は他の装置、圧力制御113―8、流量制御113―9及び/又はガス源113―11を含んでいる)は、溶融チューブ113―5の内部に動作可能に接続され、真空を適用して溶融チューブ113―5内のガス(空気及び水蒸気を含んでいる)を除去し、複数の焼結雰囲気(特に、真空、不活性及び還元雰囲気を含んでいる)を溶融チューブに導入してもよい。発熱体(例えば、抵抗ヒータ及び/又はサセプタ113―7及び/又はマイクロ波発振器113―1)は、焼結雰囲気を汚染しないように、溶融チューブ113―5外及び溶融チューブ113―5内の任意の焼結雰囲気外に置かれる。制御部(例えば、113―12)は、発熱体113―7及び/又は113―1及び内部雰囲気レギュレータに動作可能に接続されてもよい。第1モードにおいて、制御部113―12は、500℃より高く700℃未満の第1焼結温度で第1焼結雰囲気(窒素内で<0.001パーセントの酸素)内において第1材料(アルミニウム)ブラウンパーツを焼結してもよい。第2モードにおいて、制御部は、1000℃より高いが、1200℃未満の第2焼結温度で第2焼結雰囲気(例えば、不活性又は還元雰囲気)内において第2材料(ステンレス鋼)ブラウンパーツを焼結してもよい。(光学的な)高温計113―13は、シールを通して焼結挙動を観察するために利用されてもよい。オーブン113は、適切なマイクロ波反射囲い113―14内に保持され、適切な絶縁113―15及び耐火材料113―16で絶縁されている。
図24及び図25に示されるように、内部雰囲気レギュレータは、溶融チューブ113―5の内部に動作可能に接続され、焼結雰囲気を導入してもよく、溶融チューブ113―5内の温度を毎分10℃より高いが毎分40℃未満で上昇させてもよい。このことは、アルミナ又はムライト等の高熱膨張セラミックでは典型的に推奨されない。また、非晶質シリカの20m以上のマイクロ波場侵入深さは、より高いマイクロ波侵入効率を可能にする。マイクロ波発振器MGは、溶融チューブ113―5内の第1及び/又は第2材料ブラウンパーツにエネルギーを適用し、第1及び/又は第2材料ブラウンパーツの温度を上昇させ及び/又はサセプタ133―7は、続いて熱を再放射して第1及び/又は第2材料ブラウンパーツを加熱する。
従って、付加的に堆積された材料に埋め込まれた小さい粉末粒子サイズ(例えば、任意に1ミクロン未満の粒子を含んでいる又は1ミクロン未満の粒子により補助される、8ミクロンより小さい90パーセントの粒子)の金属粉末は、1200℃の溶融シリカチューブ炉の動作温度天井未満までステンレス鋼の焼結温度を下げ、同一のシリカ溶融チューブ炉がアルミニウム及びステンレス鋼の両方を(適切な雰囲気で)焼結するために利用されること、同様に、両材料を焼結するためのマイクロ波加熱、抵抗加熱又は受動的又は能動的サセプタ加熱の使用を可能にする。
本明細書中に説明されているように、相互接続チャネルが、パーツ外部に接続する、パーツ内部のインフィルセル又はハニカム又は開口したセル間に印刷されてもよく、シェル(サポートシェルを含んでいるがそれに限られない)は、内部にわたって小さな開口したセル穴、大きなセル又はハニカムを有し、重量を減少させ、材料を保存し、デバインドのためのガス又は液体(例えば、流体)の侵入又は拡散を改善してもよい。これらのアクセスチャネル、開口したセル及び他のデバインド加速構造は、パーツ又はサポート(収縮/高密度化サポート又は収縮/高密度化プラットフォームを含んでいる)内に印刷されてもよい。チャネル/穴の全て又はいくつかは、デバインド中開いたまま(真空下を含んでいるがそれに限られない)だが、焼結の約20%のサイズ減少の間は閉じているように形成されてもよい。内部ボリュームは、パーツの外へのチャネルと共に印刷され、サポート材が除去され、一掃され、溶媒又は触媒作用として利用される伝熱又は流体又はガスにより、よりアクセスされやすいようにすることが可能であってもよい。
溶媒又は触媒流体(液体、ガス、又はその他)を含んでいるデバインド技術のためのデバインド時間は、場合によって、パーツの「厚さ」次第であると見なしてもよい。例えば、4cmの厚さ又は2cmの厚さのパーツは、1cmの厚さのパーツより緩やかにデバインドしてもよく、場合によって、当該関係は、例えば、厚さのミリメータ毎に何分かのデバインド時間により、ヒューリスティックに定義される。デバインド流体を除去(例えば、乾燥又は清浄)するための時間も、実質的に厚さに比例して増加してもよい。本実施形態によれば、デバインド時間のための効果的なパーツの厚さは、パーツ内部への上記流体アクセスを提供し、焼結を通して開いたまま又は焼結に続いて(効果的に)閉じられるかのどちらかである、外部からのチャネルを使用することにより減少してもよい。
このようなチャネルは、例えば、パーツの外部から3D印刷形状の壁構造を通ってパーツの1つ、複数又は多数のインフィルキャビティ(infill cavities)に進入する、パーツの外部への少なくとも1つのアクセスチャネルを含んでいてもよく、代わりにパーツの壁構造により囲まれていてもよい。場合によっては、相互接続チャネルは、流体流のための入口及び出口を提供するために又は単に流体が表面張力及び/又は内部ガスに対して進入することを可能にするために、同様に壁に侵入するパーツの外部への少なくとも2つのアクセスチャネルを含んでいてもよい。これらの入口−ハニカム−出口構造は、増加されても相互接続されてもよい。場合によっては、入口は、加圧流体流に(例えば、3D印刷された又は機械的に挿通されたいずれかの流路構造を介して)接続されてもよい。場合によっては、入口は、真空又はフラッシングガスに接続されてもよい。場合によっては、「入口」及び「出口」は、工程の段階によっては、互換性がある。
例えば、図1乃至図40全てによる3Dプリンタは、バインダ母材及び焼結性粉末を含んでいる複合材料を供給するために用いられてもよい。層又はシェルにおける「壁」は、3Dモデルの正の輪郭又は負の輪郭をたどり、メッシュ又はモデル外形又は表面に従って位置付けられ、1以上のロード又は層又はシェルの厚さ(モデル外形又は表面からオフセットすることにより形成された隣接壁)であってもよい。内壁(「屋根」又は「床」のような水平壁を含んでいる)も形成されてもよく、典型的に、3Dモデル形状の外側又は内側輪郭をたどる壁に接続している又は壁から延びている。「充填」又はハニカムは、壁、床及び屋根の間及び中を延びている。3Dプリンタは、壁又は壁の連続層を堆積させてもよく、壁は、パーツの外部からパーツの内部に延びているアクセスチャネルを有している。アクセスチャネルは、流体が内部(例えば、パーツの断面の正及び負の輪郭の間)に入ることを可能にする。図のように、例えば、図26A乃至図31において、パーツの内部全体が相互接続されデバインド時間を減少させる必要はない。例えば、壁侵入アクセスチャネル及び相互接続されたハニカム(例えば、流通チャネルを介して)は、パーツの最も深い内部領域の指定された距離内の位置に流体を送るように又はパーツの1以上の壁の指定された距離を最も近い流体で満たされたチャンバに設定するように接続されてもよい。
3Dプリンタは、内部(例えば、パーツの正及び負の輪郭をたどる壁の間)にハニカムインフィルの連続層を堆積させてもよく、ハニカムインフィルは、ハニカムインフィルの内部ボリュームをアクセスチャネルに接続する一流通チャネル(又は複数、又は多数の流通チャネル)を有していてもよい。3Dプリンタ又はそれに続くデバインドステーション又はパーツワッシャは、デバインド流体をアクセスチャネル及び/又は流通チャネルを通して及びハニカムインフィルの内部ボリューム内を流すことによりバインダ母材をデバインドしてもよい。
図26A及び図26Bは、実質的に、それぞれ図5B及び図5Dに対応し、印刷及び他の工程ステップを説明するために図4を通して選択された区分を示している。図4及び図26Aに示されるように、ラフト分離層SL1の印刷に続いて、モデル材(例えば、金属含有複合物)のラフトRA1が印刷される。ラフト又は収縮プラットフォーム又は高密度化リンクプラットフォームRA1は、流体をパーツのアクセスチャネルに接続するため又は向かわせるために通るルーティングチャネルCH1を含んでいてもよい。1つ、複数又は図のように、多くのルーティングチャネルCH1があってもよい。ルーティングチャネルCH1は、デバインド中、対応している1つ、複数又は多くのデバインド流体供給チャネル(例えば、図25に示されるように)に接続してもよい。代わりに又は加えて、ルーティングチャネルを通る流体流は、デバインド流体の浸されたバスにおいて、循環、加熱又は攪拌によって促進されてもよい。攪拌は、強制流体、機械的、誘導的、磁気等であってもよい。ラフト又は収縮プラットフォームRA1は、それ以外の点では、図5Bを参照して説明されているものと同様である。
図4及び図26Bに示されるように、周囲のシェルサポート構造SH1は、層状に印刷され続け、パーツ内部と同様に内部ボリュームV1は、パーツの外へのチャネル(例えば、アクセスチャネルCH2に繋がる流通チャネルCH3(不図示))を有して印刷され、サポート材が除去され、一掃され又は溶媒又は触媒作用として利用される伝熱又は流体又は気体により、よりアクセスされやすくすることを可能にしてもよい。図4、図26A及び図26B(及び同様に他の図)の場合、上述の通り、中実体は、説明を簡略するために示されているが、中実体の内部構造は、インフィルパターン(例えば、ハニカム)で3D印刷されてもよい、及び/又は細かく切った、短い、長い若しくは連続的なファイバ強化物を含んでいてもよい。2つの例が、図26C及び図26Dに示されている。
図26C及び図26Dに示されるように、それぞれ、六角形及び三角形ハニカム(断面で示され、垂直プリズム、円柱に形成されたキャビティ及びインフィルの両方を含んでいてもよく、オフセット多面体キャビティ/インフィルであってもよい)がインフィルとして用いられる。2つの流通チャネルCH3が、各区分された層に示されている。流通チャネルCH3は、多数の層に関して分布されてもよく(例えば、数層間に形成されてもよく)、いくつかの、多数の又は全てのインフィル又はハニカムセルを相互接続している。図26Cは、また、堆積の異なる層に架かるチャネル及びセルキャビティパスにより流通チャネルCH3と相互接続する、アクセスチャネルCH2を示している。チャネルCH2及びCH3は、パーツのインフィル及び壁を通して曲げられ、それによりチャネルの長さを増加及び/又は流体流におけるターンの数又は程度を減少させることができる。当該方法において、チャネルCH2又はCH3の長さ又は真直度を変更することにより、チャネルCH2及びCH3パーツを通る流体流は、均等にバランスが取れる又は特定の領域における流れを増加/減少させることができる。
図27は、図4、図6、図8及び図9の説明と実質的に同様で、ハニカムキャビティ/インフィルが垂直、円柱プリズム形状として形成されている側面断面図を示す。流通チャネルCH3(例えば、約20示されている)は、堆積パーツの多数の層の間に示されている。流通チャネルCH3は、多数の層に関して分布され、いくつかの、多数の又は全てのインフィル又はハニカムセルを相互接続するように示されている。追加のデバインダ流体流を必要とするほど厚くなくてよい、オーバーハングOH2又はOH4へと延びるチャネルはない。図のように、焼結サポート又はぴったり合うシェルSH3もインフィルセルで満たされていてもよく、追加でチャネル、アクセス又は流通チャネルCH2又はCH3(図27には示されていない)を含んでいてもいなくてもよい。図27は、任意のアクセスチャネルCH2を示しておらず、これは流通チャネルCH3がそれら自身によりデバインド速度を増加させる場合である。1バリエーションにおいて、インフィルの20%以下の垂直ハニカムキャビティ又は最大断面の面積の5%未満の面積を有している垂直コラムキャビティは、流通チャネルの機能を果たす。
図27及び図28は、図4、図6、図8及び図9の説明と実質的に同様で(共通の参照符号が同様に記載されている)、ハニカムキャビティ/インフィルが垂直、円柱プリズム形状として形成されている側面断面図を示す。流通チャネルCH3(例えば、約20示されている)は、堆積パーツの多数の層の間に示されている。流通チャネルCH3は、多数の層に関して分布され、いくつかの、多数の又は全てのインフィル又はハニカムセルを相互接続するように示されている。追加のデバインダ流体流を必要とするほど厚くなくてよい、オーバーハングOH2又はOH4へと延びているチャネルは示されていない。図のように、焼結サポート又はぴったり合うシェルSH3もインフィルセルで満たされていてもよく、追加でチャネル、アクセス又は流通チャネルCH2又はCH3(図27には示されていない)を含んでいてもいなくてもよい。図27は、任意のアクセスチャネルCH2を示しておらず、すなわち、流通チャネルCH3がそれら自身によりデバインド速度を増加させる場合を示している。しかし、他の図に示される及び本明細書中に説明されているアクセスチャネルCH2が、図27の構造に適用されてもよい。図28は、ハニカムセルに相互接続される流通チャネルCH3への流体流の進入及び放出を提供するアクセスチャネルCH2を示している。全体を通して留意すべきこととして、チャネルに関する寸法は、拡大されてもよく、図のように単に穴を通して壁に侵入する。流通チャネルCH3は、小さい丸穴であり、インフィルの表面積の1%未満(例えば、1%乃至3%未満)を占めてもよい。同様に、アクセスチャネルCH2は、パーツ壁の表面積の1%未満(例えば、1%乃至3%未満)を占める小さい円状貫通穴であってもよい。
図29は、図4、図6、図8、図9、図27及び図28の説明と実質的に同様で(共通の参照符号が同様に記載されている)、流通チャネルキャビティ/インフィルが円柱プリズム形状を通して整列して及び/又は曲がって形成されている側面断面図を示す。説明されているように、チャネルCH3の直径、長さ及び/又は真直度を変更すること又はそれらの内に障害物又はバッフルを堆積させることは、流れへの抵抗を増加又は減少させてもよい。図28と対比して、焼結サポート又はシェル構造SH3及びSH4も、アクセスチャネルCH2を含んでおり、流体流がそこを通ることを可能にする(入口及び出口の両方)。さらに、ルーティングチャネルCH1が、介在層(例えば、ラフトRA2、シェル構造SH3、SH4、剥離又は分離層SL3)において印刷され、この場合、プリントベッド又はビルドプレートに提供されたマッチングルーティングチャネルと一致してもよい(例えば、プリントベッド又はビルドプレートがデバインド及び/又は焼結工程を通してグリーン及び/又はブラウンパーツと一緒に運ばれる場合、流体流アクセスを提供するため)。
図30は、図4、図6、図8、図9、図27、図28及び図29の説明と実質的に同様で(共通の参照符号が同様に記載されている)、キャビティ/インフィルにわたる流通チャネルCH3がセルラー(一例として八面体)多面体が積み重なった形状を通して整列して及び/又は曲がって形成され、アクセスチャネルCH2が当該セクションの3箇所に提供される、側面断面図を示す。なお、壁の厚さは、全体をとおして実質的に一定(例えば、5%以内の厚さ)で維持されてもよく、例えば、インフィルの内壁と同一のパーツの外壁又はシェルの厚さ及び/又は流通又はアクセスチャネルを形成している壁と同一のどちらか、及び/又は焼結サポート構造又は収縮プラットフォームを形成している壁と同一の厚さであるもののいずれかである。
図31は、図4、図6、図8、図9、図27、図28、図29及び図30の説明と実質的に同様で(共通の参照符号が同様に記載されている)、キャビティ/インフィルにわたる流通チャネルCH3がセルラープリズム形状を通して整列して及び/又は曲がって形成され、アクセスチャネルCH2が当該セクションの2箇所に提供される、側面断面図、図25の工程図の例示の部分の近景を示す。流通チャネルは、パーツの負又は正の輪郭又は壁から最も遠い、パーツの負又は正の輪郭又は壁内で最も深い又はパーツの負又は正の輪郭又は壁に対して最も厚いTHのパーツ内部の部分に近い、隣接している又は最も近いところを通る。図25を参照して説明されているように、図31に示されるパーツの最上部の領域は、チャネルを含まないが、パーツの最上部の領域が許容時間でデバインドすることが期待されているように、パーツ内部はデバインダ流体流に十分近い。
従って、図25乃至図31に示されるように、急速な流体ベースのデバインドに適している「厚い」パーツを形成する工程は、パーツの壁の連続層を堆積させ、1つのアクセスチャネルCH2だけでなく、パーツの外部からパーツの内部に延びている第2アクセスチャネルCH2も形成することを含んでいてもよい。これにより、第1アクセスチャネルから入り、流通チャネルを介して、第2アクセスチャネルから出るようにデバインド流体を流すことによりバインダ母材をデバインドすることを補助してもよい。この場合、第1アクセスチャネルCH2は、デバインド流体の加圧供給に接続され、デバインド流体が第1アクセスチャネル、流通チャネル及び第2アクセスチャネル通って及び/又は通り抜けるように押し進めてもよい。さらに又は代替手段においては、当該工程において、ハニカムインフィルの連続層が、パーツの内部に堆積され、ハニカムインフィルの内部ボリュームを第1アクセスチャネルCH2に接続する複数の流通チャネルCH3を形成してもよく、少なくとも複数の流通チャネルCH3のいくつかは、他の流通チャネルCH3と異なる長さを有している。
図32及び図33A乃至図33Dに示されるように、コンパニオンセラミック焼結サポート(companion ceramic sintering supports)は、金属モデル材と寸法に関して同様に機能するが金属モデル材と共に焼結しないセラミック複合材料を使用して印刷されてもよい。パーツ及びそのコンパニオンセラミック焼結サポートCSSはパーツのモデル材を焼結するのに適した任意の特定の温度プロファイルに従って焼結してもよいが、セラミック焼結サポートの材料は、少なくともセラミック焼結サポート材の組成に従って、特定の量及び場合によっては特定の密度プロファイル(例えば、開始及び終了密度、開始及び終了温度、間のカーブの形状)に沿って収縮する。セラミック焼結サポートの焼結挙動をパーツモデル材の焼結挙動と一致させるために、上述の通り、最終収縮量は、同一であるべきある。図32に示されるように、任意に、セラミック焼結サポート材の収縮量は、最終収縮量に至るまで、パーツモデル材の収縮量未満であるべきある。さらに任意に、セラミック焼結サポート材は、より低温で又は同一の温度でより早く収縮し始めてもいい。
概して、対象の金属パーツモデル材を焼結するための実質的な温度上昇及び環境条件(ガス等)は、パーツはサポートの有無にかかわらず適切に焼結しなければならないため、利用される温度上昇であると推定される。例外の可能性はある(例えば、サポートがより良く機能することを可能にするパーツモデル焼結温度上昇への若干の変更)。これらの条件の下(例えば、金属パーツモデル材を焼結するのに適した温度上昇が与えられる)、パーツモデル材の焼結温度を超える焼結温度を有している、候補の第1セラミック材、例えば、αアルミナ又は他のアルミナ、は、(i)平均粒子サイズ(「APS」)を減少させる又は(ii)適合性のある第2又は第3のより低温の焼結材料(例えば、シリカ又はイットリア−シリカ−ジルコニア)に混合することにより、その焼結温度を下げる及び/又はその収縮量を変更してもよい。これらの混合材料も焼結され得る。加えて又は代替手段において、極めて高温で焼結する非焼結充填材が混合されてもよい(一般に収縮又は高密度化の量を減少させることになる)。概して、より小さいAPSを有している均質な材料は、より低温で緻密化し始め、より大きなAPS材料より低温で完全密度を実現することになる。
加えて又は代替手段において、焼結温度、収縮量又は高密度化の程度は、粒子サイズ分布(「PSD」、例えば、同一の平均粒子サイズに対し、より大きい及びより小さい粒子の異なる割合又は組成)を変更することにより変更できる。加えて又は代替手段において、反応するかもしれない材料が混合される場合、混合体の焼結温度、収縮量又は高密度化の程度は、化学反応より低温で緻密化してもよい成分混合を使用して変更できる。例えば、ムライトを形成する温度より低い温度で緻密化(焼結)する方法でアルミナ及びシリカを結合させる。例えば、アルミナ−シリカ粉末が、それぞれシリカのシェルを有しているアルミナコアを形成するアルミナ粉末粒子として生成されてもよい。この場合、混合体は、まず、例えば、1150℃と1300℃との間で緻密化/焼結し、より高温、例えば、1300℃乃至1600℃でのみ、ムライトに変質する。
加えて又は代替手段において、焼結温度、収縮量又は高密度化の程度は、異なる成分の均質化の度合い(分子、ナノスケール、コアシェル構造)を変更することにより変更できる。凸又は凹形状(突起、キャビティ又は輪郭)のどちらか又は両方を含んでいるパーツ形状の場合、図33A乃至図33Dに示されるように、異なる収縮率又は収縮量を有している材料で作られた焼結サポートは、形状を変形させることが可能な落ち込み又は干渉のどちらか又は両方を引き起こすことができる。なお、図33A乃至図33Dは、同じ程度で拡大されている。
適切な焼結サポート材は、本明細書中に説明されているように、モデル材として同一の時刻−温度焼結プロファイルに亘って最終収縮量を有していてもよい。しかし、完全な率の一致及び最終収縮率は必要ない。例えば、焼結サポート材は、モデル材より遅い速度で収縮すべきではない。又はパーツにおける凹形状は、変形されてもよいし、重力により修復されなくてもよい。しかし、焼結サポート材は、モデル材より速い速度で収縮すべきであり、印刷された焼結サポートは、パーツの多数の凹形状に干渉しなくてもよい(例えば、図33Bに示されるように)。加えて、より速く収縮している焼結サポートに対して、印刷されたサポートは、分割されてもよく、凸形状又は特定の凹形状のどちらかと干渉する及び/又はどちらかを変形させることを避けるため、焼結サポート内にギャップが印刷される。この場合、焼結温度における重力及びいくらかの弾性的挙動は、たとえ焼結サポート材がモデル材より速い速度で収縮しても、パーツ及び焼結サポートが最終的な焼結収縮量で「一致する」ことを可能にする。
図33C及び図33Dに示されるように、ギャップは、垂直方向又は水平方向において、各セラミック焼結サポートとパーツとの間(隣接するセラミック焼結サポート間を含んでいる)のグリーンボディサポート及び/又は分離層と共に、左右に印刷されてもよい。ギャップは、凸又は凹形パーツ形状又は輪郭に隣接して印刷されてもよい。加えて、ギャップは、パーツの表面及びセラミックサポートの表面が収縮中にギャップなく干渉する各パスをたどる凸又は凹形パーツ形状又は輪郭に隣接して印刷されてもよい。垂直なギャップの場合、パーツ材の少量(例えば、数mm)の支持されていないスパンは、焼結中、重力による落ち込みに抵抗するのに十分なほど固い。水平又は斜めのギャップの場合、デバインドに続く残留粉末(球)を含んでいるギャップにおける分離層は、焼結中、セラミックサポートの実質的に自由な水平又は斜めのスライドを可能にすることになる。
しかし、図33A乃至図33Dに示されるように、セラミック焼結サポートが目標密度まで金属パーツ材より早く及び/又はより速く及び/又は等しく収縮/焼結する場合であっても、実質的に異なる収縮率又は経時的なかさ密度カーブにおける他の違い(例えば、異なる開始又は終了位置、異なるカーブ形状)は、焼結サポート材に対するモデル材の収縮率プロファイルが焼結温度上昇の上昇及び一定の温度箇所に亘ってモデル材のかさ密度の5パーセント以内にマッチするように、デバインドに続くいくつかの焼結サポートのいくらかの再配置を必要としてもよい。
図34A及び図34Bは、それぞれ、チャネルCH1、CH2及び/又はCH3を有して(又は場合によっては有することなく)本明細書中に説明されているように印刷されたパーツに有益な重力補助デバインド工程を示すフローチャート及び図を示す。図34A及び図34Bは、一例として(このようなチャネル有している)図29の断面構造を使用して説明され、示されている。図34A及び図34Bに示されるように、アクセス、ルーティング及び流通チャネルは、流体がパーツ内部に入り、より迅速にグリーンパーツをブラウンパーツにデバインドすることを可能にする。溶媒ベース(熱アシストによる又は溶媒アシストによる熱デバインドを含んでいる)又は触媒工程としてのデバインドは、時間、充填除去流体サイクルを可能にするのに十分な時間を取ってもよい。一例の工程において、図34A及び34Bに示されるように、アクセス、流通及び/又はルーティングチャネルを有しているパーツは、ステップS341においてデバインドチャンバ、容器又は設備内に置かれる。図34Bに示されるように、パーツは、多孔ラックに吊され又は入れられ、そうでない場合は、少なくとも上部及び底のチャネルの入口及び出口が重力ベースの流体流に対する障害が相対的に除かれようにして、保持されてもよい。
ステップS342において、チャンバは、溶媒又は他のデバインド剤で満たされてもよい(代わりに又は加えて、パーツが、予め満たされたバスに下ろされる又はそうでない場合は、中に置かれる)。ステップS343において、パーツは、所定の、モデルの、計算された又は測定された滞留時間、デバインド剤内で保持される。滞留時間は、例えば、デバインド剤がチャネルに浸透するのに十分であってもよい。滞留時間は、さらに又は代わりに、例えば、デバインド剤が第1有効量(例えば、母材材料除去の容量で5%乃至30%以上)により第1母材材料をデバインドするのに十分であってもよい。ステップS343における滞留時間又は期間は、図34Bに示されるように、攪拌(例えば、機械部材、チャンバ全体、気泡等)、振動及び/又は循環により拡張されてもよい。任意のステップS344において、デバインドの状態の代表的な特性又は特徴が、認識され及び/又は測定され及び任意に、次のサイクルに備えてデバインド剤及び除去材を除去又は流出させるための流出工程を開始するためのトリガとして利用されてもよい(測定の場合によっては一サイクルのみであってもよい)。例示の測定は、(i)光学又は電磁センサを介して、デバインドされた材料の量の代表的な不透明度、色、静電容量、インダクタンス等の特性を測定、(ii)(任意に光学又は電磁素子に接続される)機械又は流体応答センサを介して、自然周波数、粘度又は密度等の特性を測定又は(iii)(任意に光学又は電磁素子に接続される)化学センサを介して、pH、酸素含有量等の化学変化を測定し得る。
ステップS345において、また図34Bに示されるように、デバインドチャンバは、重力を介してリザーバに排出してもよい。十分な時間が与えられ、任意に攪拌、加熱、循環又は他の熱機械工程により補助され、パーツ内の内部のデバインド剤流体で保存されたチャネル(流通及びアクセスチャネル等)も排出する。リザーバは、フィルタ、バッフル又は他のデバインド材除去のためのクリーナ及び/又はデバインド剤からデバインド材を沈殿させる又はそうでない場合は収集又は除去するための触媒、化学、磁気、電気又は熱機械剤)を含んでいてもよい。代わりに又は加えて、リザーバは、デバインドチャンバからの排出をもたらすためのバルブ及び/又はデバインド剤をデバインドチャンバに戻して再循環させるためのポンプを含んでいてもよい。代わりに又は加えて、リザーバは、デバインドチャンバに一体化されていてもよい(例えば、材料除去後にデバインドチャンバ内で再循環される)。
ステップS346において、また図34Bに示されるように、ポスト流出又は部分的流出、測定は、デバインドの進行を判断し、その後の段階トリガ又は次のサイクルのための指示を設定するために成されてもよい。適用可能なセンサは、ステップS344を参照して説明されているものと同様又は同一であってもよい。加えて又は代替手段において、パーツ重量が、ロードセル等を介して測定されてもよい(デバインドサイクルの前後で)。チャンバの充填及び流出のサイクル数が比較的少ない(例えば、2サイクル乃至10サイクル)場合、パーツ重量の変更は、その後のサイクルの時間、温度及び/又は攪拌を決定するために記録され(例えば、プロファイルとして)、利用されてもよい。サイクルカウントが2乃至10以上(例えば、連続的なリサイクリング及び/又は充填/排出を含んでいる)である場合、重量変化のプロファイルも、パーツ重量毎の最大除去可能バインダに関連する指数関数的減衰定数をモデル化する及び指数関数的減衰定数に基づき終了サイクルカウント又は時間を設定する(例えば、指数関数的減衰率に基づき重量で90%乃至95%の材料が除去された時間又はサイクルカウントにおいて終了する)ために用いられてもよい。
ステップS347において、また図34Bに示されるように、サイクルは、完了するまで繰り返されてもよい(「Nサイクル」は、所定のカウント又は時間により、上述のような直接又は間接的な測定フィードバック又は他のモデリングにより決定される)。重力ベースの充填/排出サイクルを介するデバインドのサイクルが完了すると、グリーンパーツは、ブラウンパーツになり、能動的に又は受動的に乾燥させられ又はそうでない場合は、焼結に備えて後処理されてもよい。図35に示されるように、また本明細書中に記載されるように、グリーンパーツは、焼結性粉末だけでなく任意に二段バインダ(デバインド可能、例えば、熱分解フォトポリマー又は熱可塑性物質のどちらか)を含んでいる硬化性及び/又はデバインド可能なフォトポリマーから形成されてもよい。CFF特許出願及び本明細書中に組み込まれている他の先の特許出願において述べられているように、異なる付加製造工程は、液体(例えば、SLA)又は粉末(例えば、SLS)フォームに母材を含んで、芯材(例えば、金属粉末)の周囲に固化した母材(例えば、デバインド可能なプラスチック)を含んでいる複合材料を作ることができる。本明細書中に説明されている多数の方法も、光造形に似ているが、液状樹脂と比較して母材としての構造媒体用に粉末樹脂を利用する選択的レーザ焼結に適用できる。構造、電気伝導度、光学伝導度及び/又は流体伝導度特性のため、強化材が利用されるかもしれない。CFF特許出願及び本明細書中に組み込まれている他の先の特許出願に記載されているように、また図35に示されるように、光造形工程は、3次元パーツを形成するために利用され、印刷される層は、樹脂で覆われ、UV光又は特定の波長のレーザで硬化され、樹脂を硬化させるために利用される光は、パーツの表面をさっと通って、樹脂(母材)を選択的に固化し、それを先の下位層に接着させる。
図35は、上述の光造形工程の実施形態を示している。本明細書中の図1A及び図1Bの記載は、(参照符号が異なるにも拘わらず)図35と一致しているとして、当業者により認識され得る。図に示されるように、パーツ1600は、光造形を使用してプラテン1602上に構築されている。パーツ1600は、トレイ1606に含まれている液状樹脂材料1604に浸される。液状樹脂材料は、任意の適切なフォトポリマー(例えば、一次デバインド可能成分及び任意に二次デバインド可能成分及び焼結性粉末を含んでいるデバインド可能な複合物)であってもよい。樹脂浴に加えて、パーツ1600の形成中、プラテン1602が、パーツ1600を液状樹脂材料1604の水面下に保持するために、各層の形成後、層の厚さに対応する位置を順次下げるように動かされる。示されている実施形態において、レーザ1612又は他の適切なタイプの電磁放射が、樹脂を硬化させるよう指示される。レーザは、源1616により生成されてもよく、制御可能ミラー1618により方向付けられる。
押出タイプ及び他の堆積3Dプリンタは、外周を完成させるため、特に閉じた外周パスを押し出した結果の継ぎ目を減少させるための様々な印刷アプローチを採用する。外周パスが、最外部のパスポイントを構成しているため、外周パス上でない任意のパスポイントは、内部領域にある(例えば、外周囲のパーツを形成する新しいパスは、先のパスを内部領域とする)。従って、印刷パスは、バットジョイント又はバットジョイント以外(例えば、重複、自己交差、連結)により継ぎ目を形成してもよい。一般に、継ぎ目が少ない方が優れた美的感覚、封止及び寸法安定性を有している傾向があるため、1つのセグメント及び1つの継ぎ目が好ましい。さらに、壁又はシェル輪郭パス(「ラスタ」充填パスと対照的に)は、同一の回転方向、時計回り又は反時計回りのどちらかで堆積されている。パスは、外周パスが内部に分岐する場合も、同一の時計回り又は反時計回り方向に印刷される。これにより、外周パスが現在の向きから優角ターン(例えば、180度未満のターン)なしで連続的に印刷できるように印刷を簡略化及び加速する。
プリンタが、デバインドされた後に焼結されることを目的とした複合供給原料を堆積させ、焼結中に適所の二段バインダが共通の分子長の保持ポリマーを含んでいる場合、堆積は、少なくとも堆積パスに沿ってある程度整列している二段バインダ内でポリマー分子鎖(例えば、HDPE等)に沿って応力を生み出してもよい。グリーン又はブラウン状態において、応力は、寸法安定性に対して任意の特定の効果を有していなくてもよい。しかし、パーツが焼結工程で加熱されるにつれ、応力は、各層において緩和又は引かれてもよく、多数の小さな変更がパーツの多数の層で合わさる場合、パーツの形状を累積的に変更させる。
このような場合、ブラウンパーツは、堆積されたグリーンパーツと寸法に関して一致していてもよいが、焼結後に縦軸周りに捻れを示してもよい。ブラウンパーツを軽度のレベル(例えば、150C乃至200C)まで加熱することにより捻れが生じる場合、二段ポリマーバインダは、ブラウンパーツに構築される堆積応力が緩和されるにつれ、残留応力が緩和できるレベルまで加熱され、捻れを生じさせるとみなされてもよい。プリンタが層を堆積させるにつれ、二段バインダポリマー(一次デバインド後に残るバインダの一部)を構成する長鎖分子は、印刷方向に沿って引っ張られてもよい。緩和温度まで加熱されると、分子が引き戻り、潜在的に累積する多数の層の間の引力としてパーツに巨視的な捻れを生じさせるかもしれない。
捻れに対する一対策は、反対又は逆行方向にロードを印刷することである。3つの最も一般的なカテゴリのロードは、印刷されてスライスされた内部又は外部の輪郭の外周を形成するシェル又は壁、隙間のない方法で内部ボリュームを充填するために印刷される「ラスタ」充填及びハニカムにおける内部ボリュームを充填するために印刷されるインフィルハニカムである。加えて、内部ボリュームは、ロードを渡る及び/又は他のロード又は輪郭に平行又は隣接する非ラスタ又は非牛耕式充填(例えば、無作為充填、壁に沿った充填、スパイラル充填、ザンボーニパターン充填等)を含んでいる任意の範囲パターンで充填されてもよく、規則的及び不規則なセルラー(セル壁及び低密度又は雰囲気セル内部)充填の可変サイズ、ランダム化、異方性、泡状、スポンジ状、3次元又は他のバージョンで充填されてもよい。シェル又は壁に関し、多数又は殆どのパーツは、垂直プリズム形状及び貫通穴からは形成されず、そのため、層間で、スライスの形状及びシェルの形状又は全ては、異なる壁スロープ、凹面及び凸面に対し徐々に変化する。上下面に近くでは、壁又はシェル形状における漸進的変化は、より顕著であってもよい。
例えば、上の層で始まる突起又は他の形状を有している最上部の水平な又は実質的に水平で平らな層において、シェル又は壁の形状は、1つの層からその次に完全に変わってもよい。従って、より複雑かもしれない層毎の比較を避けるために、1つの層内に対向する方向の壁又はシェルの第1及び第2のセットを印刷することは、任意に有利である。一アプローチは、コンパニオン、平行、隣接壁又はシェルロードで各外周囲又は負の輪郭内周囲を印刷することである。このような場合、コンパニオン又はオフセットロードの長さは、特に、小さい正及び負の輪郭(例えば、3mmの直径特性に対し、外周ロード対コンパニオンロードの長さは、25%又は30%異なってもよい一方、30mmで、コンパニオンロードの長さは、5%以下の違いがあってもよい)に関しては、必ずしも正確に同一ではない。このような場合、外周長さにおける差に従って決定される重複量は、捻れを除去するときに有効であってもよい。
シェル又は壁内のラスタ充填に関して、残留応力の緩和からの捻れ効果は、ラスタ行がいくつかの逆行パスを含んでいてもよいため、顕著なほどではなくてもよい。しかし、充填された内部領域が小さくなるにつれ、ラスタ行とターンとの間のパス長さの差は、より顕著になってもよい。方向の長さ(例えば、行末ターンと同様に一直線の列を含んでいる)における差に従って決定される重複は、長さの差をオフセットするために利用されてもよい。加えて、ラスタ状又はセルラーパターンは、各々がメインパス及び平行な逆行パスを含み、タイル内及び/又はタイル間の捻れ応力を緩和するタイルパターンで印刷されてもよい。
本発明のこのような実施形態又は表現の一例において、図36Aに示されるように、堆積方向が堆積パス内に矢印で示される場合、堆積ベースの付加製造システムでパーツを構築するための方法は、第1方向(内部矢印により示されるように)において、ポリマー含有材料を第1輪郭ツールパスに沿って堆積させ、グリーンパーツの層の外周パス371を形成し、外周パス内の内部領域を画定することを含んでいてもよい。材料は、また、第2輪郭ツールパスにおいて第1方向に逆行する第2方向で堆積され、外周パス371に隣接する内部領域における隣接パス372を形成する。第2方向における隣接パス372の堆積は、外周パス371における材料のポリマー鎖における応力と反対の方向における材料のポリマー鎖に応力を加え、パーツのポリマー鎖の緩みに起因するパーツの捻れを減少させる。
図36Bは、図36Aの層の異なるバージョンと見なされてもよいし、隣接層を示していると見なされてもよい(図36Bは、ピークへと傾斜している隣接層に対する場合であるように、図36Aより小さい外周囲を示している)。図のように、隣接層における隣接外周パス376は、代わりに又はまた、外周パス371に対して逆行する方向に堆積されてもよく、ラスタ充填378又はハニカムインフィル377等の他のパスも、それぞれ、隣接層374、373における平行パスに対して逆行する方向に印刷されてもよい。また図36Bに示されるように、隣接ロード又は堆積376は、外周パス375より幅広く又はより速い速度で(又はより狭く)堆積されてもよい。奇数の壁が外周に堆積されると、変更された幅又は堆積速度は、同一の層における(どちらかの側における)2つの隣接する堆積の捻れ傾向をオフセットしてもよい。
図37B又は図37Jに示されるようなバットジョイントが最もシンプルな継ぎ目の1つであるのに対して(例えば、隣接ロード又は堆積におけるバットジョイントは、整列されても、回転オフセットされても、離れた回転位置にあってもよい)、堆積の開始又は堆積の停止の1つは、図37A又は図37C乃至図37Hに示されるように層の内部領域内に位置付けられることになる。図37A乃至図37Hに示されるように、開始点及び停止点の位置は、様々なジョイント、重複及び連結を画定するように設定されてもよい。図37H及び図37Jに示されるように、パスの開始点と停止点との間の輪郭ツールパスは、少なくとも部分的に内部領域を充填するラスタパスを画定してもよい。
本発明のこのような実施形態又は表現の他の例において、図36A乃至図36B、図37A乃至図37H及び図37Jに示されるように、堆積ヘッド及び制御部20を有している堆積ベースの付加製造システムによりパーツを構築する際、パーツの層に対する第1ツールパスは、制御部により受信されてもよく、受信された第1ツールパスは、外周輪郭セグメント371を含んでいる。第2ツールパス372は、制御部によりパーツの層に対して受信されてもよく、外周輪郭セグメントに隣接する内部領域セグメントを含んでいる。堆積ヘッドは、受信された第1ツールパスの外周輪郭セグメントをたどるパターンで動かされ(光又は電磁エネルギーのビーム又は光線の有向の動きを含んでいる)、焼結性粉末を含んでいるデバインド可能な複合物の外周パス371を作成してもよく、受信された第2ツールパスの内部領域セグメントをたどるパターンで動かされ、デバインド可能な複合物の内部隣接パス372を作成してもよく、ここで、デバインド可能な複合物のバインダ内の残留応力の方向が外周パス及び隣接パスで反対になるように、外周パス371及び隣接パス372は、逆行する方向で堆積される。図37A乃至図37H及び図37Jに示されるように、このことは、隣接層間にも適用してもよく、この場合、隣接パス376は、隣接層にある。
本発明のこのような実施形態又は表現の他の例において、図36A乃至図36B、図37A乃至図37H及び図37Jに示されるように、堆積ベースの付加製造システムによりパーツを構築する際、デジタル固体モデルが、パーツに対して受信されてもよい(例えば、STLファイル等の3Dメッシュ又はNURBS、parasolid、IGESファイル等の3D固体)。デジタル固体モデルは、(例えば、コンピュータ又はクラウドベースのコンピューティングサービスにより)複数の層にスライスされてもよい。外周輪郭ツールパス371は、複数の層の一層の外周に基づいて生成されてもよく、ここで、生成された外周輪郭ツールパスは、層の内部領域を画定する。内部隣接パス372は、内部領域内の外周輪郭ツールパスに基づき生成されてもよい。デバインド可能な複合物は、外周輪郭ツールパスに基づき第1方向において焼結性粉末を含んで堆積され、層に対してデバインド可能な複合物の外周371を形成してもよい。デバインド可能な複合物は、外周輪郭ツールパスに基づき第2方向に押し出され、層に対してデバインド可能な複合物の内部隣接パス372を形成してもよい。外周輪郭ツールパス371及び内部隣接パス372の堆積は、デバインド可能な複合物のバインダ内の残留応力の方向が外周輪郭ツールパス371及び内部隣接パス372において反対になるように、互いに逆行する方向にトレースされてもよい。任意に、図37A及び図37C乃至図37Hに示されるように、外周輪郭ツールパス371の開始点及び外周輪郭ツールパス371の停止点は、内部領域内に位置するように調整されてもよい。
本発明のこのような実施形態又は表現の他の例において、図36A乃至図36B、図37A乃至図37H及び図37Jに示されるように、堆積ヘッド及び制御部を有している堆積ベースの付加製造システムによりパーツを構築することは、制御部によりパーツの層に対する第1ツールパスを受信することを含んでいてもよく、ここで、受信された第1ツールパスは、輪郭セグメントを備えている。第2ツールパスは、制御部によりパーツの層に対して受信されてもよく、ここで、受信された第2ツールパスは、第2ツールパスの連続的な堆積長の70パーセント、好ましくは少なくとも90パーセントを超えて第1ツールパスと重複している。堆積ヘッドは、第1ツールパスをたどるパターンで動かされ、層に対するデバインド可能な複合物の外周パス371を作成してもよく、また、第1ツールパスに逆行する方向における第2ツールパスをたどるパターンで動かされ、デバインド可能な複合物の外周パスに隣接する応力オフセットパス372を作成してもよい。デバインド可能な複合物のバインダ内の残留応力の方向は、外周パス371及び応力オフセットパス372において反対であってもよい。
任意に、第2ツールパスは、同一の層内で第1ツールパスと連続的に隣接していても重複していてもよいし、同一の層内に内部領域パスを含んでいてもよい。代わりに又は加えて、第2ツールパスは、隣接層内で第1ツールパスの少なくとも90パーセントに亘って連続的に隣接し、隣接層の外周パスを含んでいてもよい。
本発明のこのような実施形態又は表現の他の例において、図36A乃至図36B、図37A乃至図37H及び図37Jに示されるように、堆積ヘッド及び制御部を有している堆積ベースの付加製造システムによるパーツの構築方法において、方法は、コンピュータによりツールパスを生成することを含んでいる。指示が、生成されたツールパスに対して制御部へ生成されてもよい。デバインド可能な複合物は、堆積ヘッドを生成されたツールパスに沿って移動させながら堆積ヘッドから堆積され、パーツの層の外周パスを形成してもよい。図37Gに示されるように、外周パスは、第1輪郭ロード部378及び第2輪郭ロード部379を含んでいてもよく、互いに偶数のXパターンで交差する第1輪郭ロード部及び第2輪郭ロード部の各々は、層に対して偶数の隠された継ぎ目を形成している。
本発明のこのような実施形態又は表現の他の例において、図36A乃至図36B、図37A乃至図37H及び図37Jに示されるように、堆積ヘッド及び制御部を有している堆積ベースの付加製造システムは、堆積ヘッドを第1ツールパスセグメント380に沿って移動させ、パーツの層に対する外周ロード部371を形成してもよい。図37Cに示されるように、堆積ヘッドは、方向転換ツールパスセグメント381に沿って動かされてもよく、第2ツールパスセグメント382に沿って動かされ、外周ロード部371に隣接している応力均衡ロード部372を形成してもよい。図37Cに示されるように、方向転換ツールパスセグメント381は、同一の層内の第1ツールパスセグメント380と第2ツールパスセグメント382との間に優角連続(例えば、180度と360度との間)を含んでいてもよい。
図38A、図38B、図39A、図39B及び図40に示されるように、ノズル構造は、本明細書中に説明されている金属粉末複合供給原料の印刷特性を改善させるために利用できる。MIM(金属射出成形)供給原料等の金属粉末複合供給原料は、本明細書中に説明されているように、複合材料であり、焼結可能な金属粉末及びバインダを含んでおり、MIM特有の工程を促進するように設計されてもよい。過去20年間の様々な創作者により発見されたように、いくつかの供給原料は、押出タイプの3D印刷、例えば、溶融堆積モデリング又は溶融フィラメント製造(「FDM」又は「FFF」、一般的な押出タイプの3D印刷に対する言葉)に適応させることができる。従来の押出供給原料は、MIM供給原料と同一の方法では形成されず、溶融又は軟化する熱可塑性材料を含んでいる。MIM供給原料の場合、射出成形又はグリーンからブラウンパーツへの工程を対象とした他の材料は、多くの場合、典型的にはワックスだが、他の低融点及び低粘度材料も含んでいる供給原料に含まれている。FDM/FFF熱可塑性フィラメントの高粘度(ワックス含有MIM供給原料の低粘度に対して)及び低い熱伝導率(MIM供給原料の高い金属粉末含有量に対して)は、材料が流れに適した温度及びそのため適した粘度になるようにより大きな溶融帯を必要としてもよい。
融点が十分に低い又は材料が十分に反応する場合、通常の押出タイプノズル、熱遮断及び加熱を使用する押出工程の間、流体化された供給原料内に小さい気泡又は他の不連続が生じ得る。気泡はいくつかの方法で印刷不良を生じさせる。例えば、ギャップ若しくは液滴の両方の印刷ムラ又は層若しくはパーツの隣接ロード若しくは異なる部分におけるロードの印刷ムラである。本開示は、特に均一な印刷を促進するための解決手段を提供する。気泡は、多数の方法で形成されてもよい。例えば、固相からのガス溶解、すなわち少量の水分発生蒸気である。代わりに又は加えて、微泡が、供給原料製造フェーズにおける供給原料フィラメントに入るノズル内で融合してもよい。例えば、当該工程中に除去されないフィラメントに変換されるペレット材料における気泡又はフィラメント生産中に導入される気泡である。代わりに又は加えて、空気が、安定した印刷に続く後退ステップ中にシステムに引き込まれてもよい(押出タイプ3Dプリンタは、安定した印刷に続いて又は溶融帯における圧力を緩和するための非印刷ノズル移動中に、例えば、1mm乃至5mmの少量だけ、フィラメント駆動方向を「後退」、すなわち逆転させるように設定されてもよい)。加えて又は代替手段において、気泡は、フィラメント押出機ホブによる変形に起因してもよい(例えば、歯を掴む、圧力又は加熱の何れかに起因する)。
本システムの追加の利点は、実際的なサイズのヒータブロック及びノズルシステムのための溶解量を減少させ、より反応がよい押出制御を提供することである。追加の背圧も、いくつかのMIM材料の非常に低い粘度が与えられたより良い押出制御を付与してもよい。一実装において、例えば、約130C乃至150Cで溶解又は液化し始めるMIM材料に関して、材料は、印刷ヘッドにおいて180C乃至230Cまで加熱され、粘着を促進させてもよい。当該代替手段において、長く、薄い溶融チャネル(例えば、直径に対して1:10の幅高さアスペクト比及び20mm^3の体積を使用して溶融帯の体積を減少させることに代えて、溶融帯は、短い1:2のアスペクト比及び20mm^3の体積、例えば、3mmの溶融帯高さ、直径1.5mmの溶融帯であってもよい。より長い、薄い溶融チャネルは、しかし、発熱体への暴露に対して、より長い加熱長さを可能にする(例えば、図に示されるように、短い溶融帯は、必ずしも大きく、強力な加熱カートリッジを収容できるわけではない)。縮小されたフィラメント径(例えば、通常の3mm又は1.75mmに代えて、直径1mmのフィラメント)は、任意の温度に対してより小さい曲げ半径及び押し出された量に亘るより良い制御を可能にしてもよく、押出機における任意のステップサイズに対し、より少ない材料が押し出される。
推奨された又は有利な寸法に関して、以下、10:1のノズル粒子径比ジャミングが開始されてもよい。ジャミングは、より少ない球状粒子(例えば、混合又はスクリュー押出中に作成され得るプレートレット又はフレーク)により悪化する。従来のMIM(又はCIM)材料は、容量でロードする55%と65%との間の金属(又はセラミック)粉末であってもよいが、当該レベルのローディングでは、小さい粉末サイズ(例えば、直径1um未満)のアルミナセラミックの分離層材料は、鋼鉄焼結温度で焼結する傾向があってもよい。粉末のサイズが2umまでわずかに増加するにつれ、分離層は、チョーク状になってもよい。従って、MIMバインダ(本明細書中に説明されているように、例えば、ワックス−ポリエチレン)においてロードされたアルミナ又は類似のセラミック粉末に対する5um以上の粉末径を有している容量で15%乃至35%の粉末は、分離層として上手く働いてもよい。代わりに、MIMバインダにおいてロードされたアルミナ又は類似のセラミック粉末に対する2um以下(又は1um以下)の粉末径を有している容量で10%乃至20%の粉末が、分離層として上手く働いてもよい。さらに、これらは、結合されてもよい(例えば、1umより小さいいくつかの粒子及び5umより大きいいくつかの粒子)。
従来のFDM/FFFフィラメント又は溶融チャンバは、約1.7mm乃至3mmであってもよく、本発明において、溶融チャンバは、0.1mm乃至0.4mmのチップ出口径に対して(1.0mm乃至2mmのフィラメント径に対して)、直径0.6mm乃至1mmであってもよい。溶融チャンバの体積(隣接するノズルチップから溶融界面まで延びている一定の径の加熱された実質的に円筒のチャンバ)は、約70mm^3の従来のFDM/FFFにおける溶融チャンバに対して、約15mm^3乃至25mm^3であってもよい。
図38A及び図38Bに示されるように、FDM/FFFノズルアセンブリは、より大きな直径及びノズル出口38―3への遷移を有している円筒の溶融チャンバ38―2の一部を含んでいるノズル38―1を含んでいてもよい。遷移は、滑らか(図38Aにおけるように、先細38―4)であっても、段階的38―5(図38Bにおけるように)であってもよい。ノズル38―1及び熱遮断38―5の両方が、互いの当接を防いでヒータ38―6に締め付けられ(例えば、ねじ止めされ)、熱遮断38―5は、円筒の溶融チャンバの残りを含んでいる。熱遮断38―5は、低熱伝導率材料(例えば、ステンレス鋼)から成るくびれを含んでおり、(ヒートシンクを介して冷却される)熱遮断38―5の上部と熱遮断38―5のより低い、伝導加熱された部分との間の急な温度推移を介して溶融界面を提供する。固体フィラメント38―8と溶融チャンバ38―2の液化物質との間の溶融界面は、典型的にくびれに近い(上若しくは下に隣接又はその中)。図38A及び図38Bの各々に示されるように、FDM/FFFノズルアセンブリは、直径約0.25mm乃至0.4mmのノズル出口に対して、直径約1.8mm及び高さ10mm、体積約70mm^3の溶融チャンバを含んでいてもよい。図のように、カートリッジヒータ38―6(図38Aにおける)又はコイル状誘導ヒータ38―6(図38Bにおける)が適切である。図のように、場合によっては、PTFEインサート38―9がフィラメントジャミングに抵抗を与えてもよい。
図39A及び図39Bに示されるように、MIM材料押出ノズルアセンブリは、例えば、ノズル39―1における滑らかな又は段階的な推移、くびれを含んでいる熱遮断39―5及びこれまでに説明されているような他の要素(例えば、これまでに用いられた番号38―#に対応する符号39―#により)を有して、構造的に同様であってもよい。固体ペルチェ冷却器は、熱遮断39―5において又は熱遮断39―5に隣接して利用されてもよく、伝熱セメント又は他の高熱伝導率インターフェースにより熱遮断39―5に接着されてもよい。図39A及び図39Bの各々に示されるように、MIM材料押出ノズルアセンブリは、直径約0.1mm乃至0.4mmのノズル出口39―3に対して、直径約0.6mm乃至1mm及び高さ10mm、体積約20mm^3の溶融チャンバ39―2を含んでいてもよい。図39Bに示されるように、絞り込みインサート39―11は、MIM材料押出のためにFDMノズルを変形させるために利用されてもよい(例えば、本明細書中に説明されている溶融チャンバ体積対ノズル出口サイズ又はフィラメントの関係は、押し出し中のMIM材料寸法に関連しているが、必ずしも特定のノズル、熱遮断又はインサートパーツではない)。図40に示されるように、MIM材料押出ノズルアセンブリは、直径約0.1mm乃至0.4mmのノズル出口に対して、直径約1.7mm乃至3mm及び高さ1mm乃至4mm、体積約20mm^3の溶融チャンバ39―2を含んでいてもよい。
図1Bに示されるバインダジェッティング例に関して、フィラメントを使用する押出機が必要ない先行の例の全てにおいて、バインダジェッティング例のプリンタ1000J及び関連工程が利用されてもよい。所望の3Dグリーンパーツを作成するための3Dプリンタにおいて、バインダは、一連の隣接する2D層形状として粉末供給原料の連続層で焼結可能な金属又はセラミックパウダーベッド上に噴出されてもよく、パウダーベッドは、新しい又は再生された供給原料で補充され、連続層毎に再び平らにならされる/拭われる。所望の3Dグリーンパーツの3D形状及び関連付けられている焼結サポート又は基礎的収縮プラットフォーム(3Dグリーンパーツの全体形状の焼結及び維持中の重力に対して適所の3Dグリーンパーツの支持されていないスパンを保持するため)は、焼結性粉末及びバインダを含んでいるバウンド複合物として構築され、ゆるめ粉末の体積中に埋め込まれる。3Dグリーンパーツ及びその焼結サポートは、後にデバインドされ、続いて焼結されることになり、焼結サポートは除去される。
いくつかの層において、形成される2D層形状セグメントが外壁、内壁又はハニカム壁又は内部バルク材料であるかに応じて(又はこのような外周又は面積に関連した印刷位置に応じて)異なる量のバインダが噴出されてもよい。その結果、バインダと粉末の、例えば、90%のバインダと100%の粉末から50:50を経て10%のバインダと90%の粉末までの異なる(任意に連続的又は段階的勾配の)体積分率割合が生じる。例えば、高体積分率のバインダは、外側のシェル(及び/又は内側シェル)に配置され、次第に、例えば、面重心へ向けて内方に減少していく。
いくつかの層において、(供給原料粉末の焼結温度で焼結しない他の粉末も含んでいる)剥離材は、また、例えば、下層のサポート形状と2つ上の層のパーツ形状との間に介在している相補型2D形状(例えば、バインダ内に噴出される、バインダ内に押し出される)において適用されてもよい。
いくつかの層において、プレースホルダ材も(グリーンパーツ粉末も剥離材料粉末もなく)、グリーンパーツ及び/又は焼結サポート内の所望のフリースペースの相補型2D形状において適用されてもよい(例えば、噴出される又は押し出される)。いくつかの層において、プレースホルダ材は、また又は代わりに、壁又は「モールド」形状において適用されてもよく、例えば、外部のフリースペースをパーツ形状に使用し、モールド形状内の非結合焼結性粉末を取り込む。言い換えると、外部のシェル(例えば、ワックス)は、プレースホルダ材から形成されてもよい。外部のシェル2D形状は、先行する粉末(例えば、結合粉末、非結合粉末、及び/又は剥離材)層の上部の各候補の層に堆積され、その後、非結合粉末供給原料のそれに続く層が拭われる。図1Bに示されるように、ドクターブレード138が、2Dシェル形状の上部をスライス(レベリング)するために利用されてもよく、シリコンローラ/ブレード138が、2Dシェル形状の上部をスライスするために利用されてもよく、シリコンローラ/ブレードは、いくらかの変形、例えば、印刷平面上のプラスチック耐性のバンプを提供するための変形を受け入れてもよい。
バインダは、モールド形状内の屋根、床、格子、ハニカム又は骨格強化形状に噴出され(例えば、モールド形状から間を空けて開始)、重力又はパーツをステーションからステーションへとレベリング又は移動させる等の下流工程の間の機械的かく乱に対して非結合焼結性粉末を保持するのを助けてもよい。例えば、いくつかの2D層において、六角形、三角形等の内部保持パターン又はこれまでに説明したような低密度若しくは高体積分率のバインダは、バウンド複合物から形成された外側のシェル、高体積分率バインダバウンド複合物(例えば、70%のバインダ)から形成された外側のシェル及び/又はプレースホルダ材から形成されたモールド形状のいずれかとの併用で、ホルダとして利用されてもよい。上述の通り、これにより、印刷中/又は層の再適用中にパーツの動きを妨げる手助けをしてもよい。
さらに、いくつかの層において、プレースホルダ材は、また又は代わりに、例えば、結合粉末から形成された収縮プラットフォームと基礎的ビルドプラットフォームとの間又は複数の隣接する若しくは積み重なった3Dグリーンパーツと関連付けられている焼結サポートとの間の接着の相補型2D形状において適用され、多数のパーツが実行毎に構築されることを可能にしてもよい。接着機能も、さらに、パーツをステーションからステーションへとレベリング又は移動させる等の下流工程の間の機械的かく乱に対して形状のいずれかを保持するのを助けてもよい。なお、焼結性粉末へのバインダジェッティングも、収縮プラットフォームとビルドプラットフォームとの間、同様に又は代わりに複数の隣接する若しくは積み重なった3Dグリーンパーツと関連付けられている焼結サポートとの間の本明細書中に説明されているような接着鋲を形成するために利用されてもよい。言い換えると、パーツは、地板(例えば、ビルドプレート)への(例えば、溶媒除去)バインダとのアンカーパーツ及び/又は互いへのパーツ(例えば、Z軸において、他のものの上に1つを印刷する場合)であってもよい。
各層に次いで、パウダーベッドが、グリーンパーツ形状、剥離材形状及び/又はフリースペースプレースホルダ材形状と同一平面で補充され、(ドクターブレード138、ローラ、車輪又は他の粉末レベリング機構により)再び平らにならされる/拭われる。任意に、表面処理機構が、パウダーベッドがそれらの周囲に補充される前に、グリーンパーツ形状、剥離材形状及び/又はプレースホルダ材形状の新しい又は最新の層を平坦化又は形作る(ローリング、シェービング、アイロニング、研磨、フライス加工)。
グリーンパーツ、焼結サポート、介在剥離材及びプレースホルダフリースペース材の各々の3D形状は、連続層で構築され、3D空間において、基本的に任意の連結3Dフォームを取ってもよい。多くの場合、グリーンパーツは、3D物体を下の焼結サポートの円柱から分離する平面、アーチ、半球、有機的形状等を形成している分離材により、認識できる3D物体として形成され、プレースホルダ材及び/又はバウンド複合鋲を介してビルドプラットフォームに接着されている、本明細書中に説明されているような収縮プラットフォームに繋がる。任意に、説明されているように、認識できる3D物体内で、所望のフリースペースは、プレースホルダ材及び/又は非結合焼結性粉末で満たされてもよい。プレースホルダ材及び/又は非結合焼結性粉末の間に、プレースホルダ材又は非結合焼結性粉末のどちらか又は両方を含有又は同伴しているバウンド複合ハニカム又は格子等が堆積されてもよい。任意に、説明されているように、認識できる3D物体に関して、3D物体の外皮を画定しているモールド形状は、プレースホルダ材から形成されてもよい。さらに又は代替手段において、3D物体の外皮を形成している肌形状は、バウンド複合物から形成されてもよい。
続いて、焼結サポート、剥離形状及びプレースホルダ又は接着形状と共に、3Dグリーンパーツは、粉末から除去され、残りの非結合粉末が洗浄される。非結合粉末は、バウンド複合物において形成された出口を介して3Dグリーンパーツ及び焼結サポートの周囲から除去されても、所望のグリーンパーツ内に同伴されて残されてもよい。続いて、グリーンパーツ及びその焼結サポートは、本開示に別段の記載がない限り、処理されてもよい。バウンド複合物の外側及び内側壁並びに内部ハニカム壁は、説明されているようにデバインドされ、ブラウンパーツアセンブリを形成することになる。剥離材は、説明されているようにデバインドされ、焼結サポートを除去するための分離粉末となり、焼結のために保持され、焼結に続いて除去される。プレースホルダ材は、デバインドされても(溶媒、触媒又は熱工程においても含んでいる)、さらに、バインダと異なる材料であっても、デバインド前又は後に除去されてもよい。場合によっては、高熱でその形状を留める高温プレースホルダ材だけが、さらなる振動、機械的、放射又は電気加工(例えば、炭素又はセラミック複合)により解体されてもよいし、焼結を通して保持されてもよい。
代わりに、デバインドステップは、単段バインダが焼結炉において熱分解できれば、グリーンパーツ形状及び/又は焼結サポートに対して不要であってもよい。このような場合、グリーンパーツアセンブリは、炉に直接運ばれる。バウンド複合物の外側及び内側壁並びに内部ハニカム壁は、一体化工程においてデバインド及び焼結される。剥離材は、炉における一体化デバインド及び焼結に先立ってデバインドされてもよいし、同様に炉においてデバインドされてもよい。プレースホルダ材は、炉における一体化デバインド及び焼結に先立ってデバインドされてもよいし(溶媒、触媒又は熱工程においても含んで)、同様に炉においてデバインドされてもよい。
材料は、本明細書中に説明されているような除去可能なバインダ(二又は一段)及び1200℃より高い融点を有している50%より大きい体積分率の粉末金属(ステンレス鋼又は工具鋼等、様々な鋼鉄を含んでいる)を含んで供給(ペレット押出、フィラメント押出、噴射又は硬化)されてもよい。粉末金属は、直径10ミクロン未満の50パーセントを超える粉末粒子及び有利に直径8ミクロン未満の90パーセントを超える粉末粒子を有していてもよい。平均粒子サイズは、直径3ミクロン乃至6ミクロンであってもよく、直径6ミクロン乃至10ミクロンの実質最大(例えば、+/−3標準偏差又は99.7パーセントのスパンを超える)である。
より小さい、例えば、90パーセントが8ミクロン未満の粒子サイズは、粒子間の表面積及び表面接触の増加を含んでいる様々な効果の結果として焼結温度を下げてもよい。場合によっては、特にステンレス及び工具鋼に対して、このことが、結果として、例えば、1200℃未満の非晶質シリカのチューブを使用した溶融チューブ炉の操作範囲内である焼結温度をもたらしてもよい。より小径の粉末材料は、連続層で付加的に堆積され、本明細書中に説明されているようにグリーンボディを形成し、バインダが除去され、ブラウンボディが形成されてもよい(本明細書中に説明されている堆積及び/又はデバインドの任意の例において)。
定義
材料の「焼結温度」は、材料が産業において焼結される温度範囲であり、典型的に、材料が焼結により期待されるかさ密度、例えば、焼結炉において達すると期待されるピークのかさ密度の90パーセント以上に達する最低の温度範囲である。
「ハニカム」は、3面、6面、4面、相補型形状(例えば、三角形と結合した六角形)連結形状又はセルラーを含んでいる、面積(及びそれによって層が積み重ねられるにつれての体積)のまばらな充填に対する任意の規則的又は繰り返し可能なテッセレーションを含んでいる。「セル」は、本物のハニカム(中央キャビティ及び円柱のように延びている周囲の壁)に似た幾何学的プリズム形状の垂直又はそうでない場合は円柱であってもよく、多面体又は様々な形状の「気泡」を中央キャビティ及び3次元における全ての方向に積み重なって配置されている周囲の壁と連結させる、アルキメデスの螺旋又は他のスペース充填ハニカムであってもよい。セルは、同一のサイズ、異なるが繰り返されるサイズ又は可変サイズであってもよい。
「押出」は、ストック材料が型を通して押され、ストック材料より下の断面積の特定の形状を取る工程を意味してもよい。溶融フィラメント製造(「FFF」)は、溶融堆積製造(「FDM」)とも呼ばれることもあり、押出工程である。同様に、「押出ノズル」は、押出流体流の方向又は特性を制御するために、特に流体流が閉鎖したチャンバにある(又は入る)際、速度を上昇させる及び/又は断面積を制限するために設計された装置を意味すべきである。
「シェル」及び「層」は、多くの場合、区別しないで利用され、「層」は、「シェル」(例えば、層は、シェルの2.5D制限バージョンであり、薄片が3D空間の任意の方向に延びている)のサブセット又は「シェル」(例えば、シェルは、3D表面の周囲に巻かれた層である)のスーパーセットの一方又は両方である。シェル又は層は、(デカルト、極性又は「デルタ」と表現されてもよい)3自由度を有している2.5D連続表面として及び4乃至6以上の自由度を有している3D連続表面として堆積される。
本開示において、「本開示において、「3Dプリンタ」は、より大きな工程内の付加製造サブ工程を実行する、個別のプリンタ及び/又は製造機械へのツールヘッドアクセサリの両方を含んでいる。3Dプリンタは、専用のGコードを解釈し、Gコードに従って3Dプリンタの様々なアクチュエータを駆動するモーション制御部20により制御される。「充填材」は、例えば、デバインド前の、デバインド可能な材料及び焼結性粉末から形成された複合材料を含んでいる。
「充填材」は、押出物、流体又は粉末材料としての実質的に均質なフォームで堆積されてもよい材料を含んでおり、例えば、固化、結晶化又は硬化により固化される。「実質的に均質」には、粉末、流体、ブレンド、分散、コロイド、懸濁液及び混合体が含まれる。
「3Dプリンタ」の意味は、より大きな工程内の付加製造サブ工程を実行する、個別のプリンタ及び/又は製造機械へのツールヘッドアクセサリを含んでいる。3Dプリンタは、専用のGコード(ツールパス指示)を解釈し、Gコードに従って3Dプリンタの様々なアクチュエータを駆動するモーション制御部20により制御される。
「堆積ヘッド」は、ジェットノズル、スプレーノズル、押出ノズル、導管ノズル及び/又はハイブリッドノズルを含んでいてもよい。
「フィラメント」は、一般に、(例えば、スプールされた)構築材料の全体断面領域を参照してもよい。

Claims (28)

  1. 付加的に製造されるパーツにおける歪みを減少させる方法であって、
    ポリマーベースのバインダ母材に金属微粒子充填材を含む複合物の連続層の高密度化リンクプラットフォームを形成し、
    前記高密度化リンクプラットフォーム上に前記複合物の連続層の高密度化リンクサポートを形成し、
    前記高密度化リンクプラットフォーム及び高密度化リンクサポート上に前記複合物の連続層の所望のパーツを形成し、
    ツールパスに沿って前記複合物を堆積させ、隣接ツールパスが、前記高密度化リンクプラットフォーム、前記高密度化リンクサポート及び前記所望のパーツの形成中に逆行方向で堆積され、
    前記高密度化リンクプラットフォーム、前記高密度化リンクサポート及び前記所望のパーツを含んでいる形状保持ブラウンパーツアセンブリを形成するために十分な前記バインダ母材をデバインドし、
    前記複合物から形成された前記形状保持ブラウンパーツアセンブリを焼結させ、前記形状保持ブラウンパーツアセンブリにわたって隣接する金属粒子が原子拡散を行いつつ前記高密度化リンクプラットフォーム、前記高密度化リンクサポート及び前記所望のパーツを一緒に同一の速度で高密度化し、逆行方向の隣接ツールパスにおける前記複合物の前記堆積が、前記隣接ツールパスのポリマー鎖の応力及び緩みに起因するパーツの捻れを減少させる方法。
  2. 請求項1に記載の方法であって、さらに、
    前記高密度化リンクプラットフォーム、前記高密度化リンクサポート及び前記所望のパーツを形成し、結合された高密度化リンクプラットフォーム及び接続された高密度化リンクサポートの質量中心を前記所望のパーツの質量中心と実質的に揃える方法。
  3. 請求項1に記載の方法であって、さらに、
    前記高密度化リンクサポートと前記所望のパーツの側面との間に前記複合物の分離可能な取り付け突起を形成することにより、前記高密度化リンクサポートを前記所望のパーツの側面に相互接続する方法。
  4. 請求項1に記載の方法であって、さらに、
    前記所望のパーツの横輪郭の一部に続いて前記複合物の横高密度化リンクシェルを形成し、
    前記横高密度化リンクシェルを前記高密度化リンクプラットフォームに接続し、
    前記横高密度化リンクシェルと前記所望のパーツとの間に前記複合物の分離可能な取り付け突起を形成することにより、前記横高密度化リンクシェルを前記所望のパーツの前記横輪郭の前記一部に接続する方法。
  5. 請求項1に記載の方法であって、さらに、
    可溶性物質の可溶性サポート構造を形成し、
    前記形状保持ブラウンパーツアセンブリを焼結する前に、前記高密度化リンクプラットフォーム、前記高密度化リンクサポート及び前記所望のパーツを含んでいる形状保持ブラウンパーツアセンブリを形成するために十分な前記母材をデバインドし、前記可溶性サポート構造の前記可溶性物質をデバインドする方法。
  6. 請求項1に記載の方法であって、さらに、
    セラミック微粒子充填材及びデバインド可能な母材を含んでいる剥離複合物により、前記高密度化リンクサポートと前記所望のパーツとの間にパーツ剥離層を形成し、
    前記デバインド中及び前記焼結中に、前記パーツ剥離層及び前記形状保持ブラウンパーツアセンブリを一緒にユニットとして保持し、
    焼結後、前記パーツ剥離層、前記高密度化リンクプラットフォーム及び前記高密度化リンクサポートを前記所望のパーツから分離する方法。
  7. 請求項1に記載の方法であって、さらに、
    前記所望のパーツの層の内部領域内に位置付けられる、前記ツールパスに沿った前記複合物の堆積の開始及び前記ツールパスに沿った前記複合物の堆積の停止の一方を調整する方法。
  8. 請求項7に記載の方法であって、
    前記開始点と前記停止点との間の輪郭ツールパスは、前記内部領域を少なくとも部分的に満たすラスタパスをさらに画定する方法。
  9. 請求項1に記載の方法であって、
    前記隣接ツールパスは、同一層内にある方法。
  10. 請求項1に記載の方法であって、
    前記隣接ツールパスは、隣接層内にある方法。
  11. 付加的に製造されるパーツにおける歪みを減少させる方法であって、
    ポリマーベースのバインダ母材に金属微粒子充填材を含む複合物の連続層の高密度化リンクプラットフォームを形成し、
    前記高密度化リンクプラットフォーム上に前記複合物の連続層の高密度化リンクサポートを形成し、
    前記高密度化リンクプラットフォーム及び高密度化リンクサポート上に前記複合物の連続層の所望のパーツを形成し、
    前記高密度化リンクプラットフォーム、前記高密度化リンクサポート及び前記所望のパーツの形成中に、壁ツールパスに沿って及び前記壁ツールパス内のインフィルツールパスに沿って前記複合物を堆積させ、前記壁ツールパスの少なくとも一部は、前記壁ツールパス内を貫通する複数のアクセスチャネルを形成し、
    前記高密度化リンクプラットフォーム、前記高密度化リンクサポート及び前記所望のパーツの周囲に及び前記複数のアクセスチャネルにデバインド流体を流すことにより、デバインドされた高密度化リンクプラットフォーム、前記高密度化リンクサポート及び前記所望のパーツを含んでいる形状保持ブラウンパーツアセンブリを形成するために十分な前記バインダ母材をデバインドし、
    前記複合物から形成された前記形状保持ブラウンパーツアセンブリを焼結させ、前記形状保持ブラウンパーツアセンブリにわたって隣接する金属粒子が原子拡散を行いつつ前記高密度化リンクプラットフォーム、前記高密度化リンクサポート及び前記所望のパーツを一緒に同一の速度で高密度化する方法。
  12. 請求項11に記載の方法であって、さらに、
    前記高密度化リンクサポートと前記所望のパーツの側面との間に前記複合物の分離可能な取り付け突起を形成することにより、前記高密度化リンクサポートを前記所望のパーツの側面に相互接続する方法。
  13. 請求項11に記載の方法であって、さらに、
    前記所望のパーツの横輪郭に続いて前記複合物の横高密度化リンクシェルを形成し、
    前記横高密度化リンクシェルを前記高密度化リンクプラットフォームに接続し、
    前記横高密度化リンクシェルと前記所望のパーツとの間に前記複合物の分離可能な取り付け突起を形成することにより、前記横高密度化リンクシェルを前記所望のパーツの前記横輪郭に接続する方法。
  14. 請求項11に記載の方法であって、さらに、
    可溶性物質の可溶性サポート構造を形成し、前記可溶性サポート構造は、前記所望のパーツの形成中に下向きの力に抵抗し、
    前記形状保持ブラウンパーツアセンブリを焼結する前に、前記高密度化リンクプラットフォーム、前記高密度化リンクサポート及び前記所望のパーツを含んでいる形状保持ブラウンパーツアセンブリを形成するために十分な前記母材をデバインドし、前記可溶性サポート構造の前記バインダをデバインドする方法。
  15. 請求項11に記載の方法であって、さらに、
    セラミック微粒子充填材及びバインダを含んでいる剥離複合物により、前記高密度化リンクサポートと前記所望のパーツとの間にパーツ剥離層を形成し、
    前記デバインド中及び前記焼結中に、前記パーツ剥離層及び形状保持ブラウンパーツアセンブリを一緒にユニットとして保持し、
    焼結後、前記パーツ剥離層、前記高密度化リンクプラットフォーム及び前記高密度化リンクサポートを前記所望のパーツから分離する方法。
  16. 請求項11に記載の方法であって、
    前記インフィルツールパスの少なくとも一部は、前記インフィルツールパスの間に複数の流通チャネルを形成し、
    前記方法は、さらに、前記複数のアクセスチャネル及び前記複数の流通チャネルに前記デバインド流体を流し、前記デバインドを促進する方法。
  17. 請求項11に記載の方法であって、
    前記インフィルツールパスの少なくとも一部は、一対のアクセスチャネルと流体的に相互接続する複数の流通チャネルを形成し、
    前記方法は、さらに、前記一対のアクセスチャネルの一方と前記複数の流通チャネルとに前記デバインド流体を流し、前記一対のアクセスチャネルの残りの一方から流出させ、前記デバインドを促進する方法。
  18. 請求項11に記載の方法であって、さらに、
    前記高密度化リンクプラットフォーム、前記高密度化リンクサポート及び前記所望のパーツを囲んでいる前記デバインド流体のバスの排出及び補充を行い、前記デバインドを促進する方法。
  19. 請求項11に記載の方法であって、さらに、
    前記アクセスチャネルに入る前記デバインド流体の供給の排出及び補充を行い、前記アクセスチャネルを通る流体流を加速させ、前記デバインドを促進する方法。
  20. 付加的に製造されるパーツにおける歪みを減少させる方法であって、
    ポリマーベースのバインダ母材に金属微粒子充填材を含む複合物の連続層の高密度化リンクプラットフォームを形成し、
    前記高密度化リンクプラットフォーム及び高密度化リンクサポート上に前記複合物の連続層の所望のパーツを形成し、
    ツールパスに沿って前記複合物を堆積させ、隣接ツールパスが、前記高密度化リンクプラットフォーム及び前記所望のパーツの形成中に逆行方向で堆積され、前記ツールパスの少なくとも一部は、前記ツールパスを貫通するチャネルを形成し、
    前記高密度化リンクプラットフォーム、前記高密度化リンクサポート及び前記所望のパーツを含んでいる形状保持ブラウンパーツアセンブリを形成するために十分な前記バインダ母材をデバインドし、前記ツールパスを貫通する前記チャネルは、デバインドを促進させ、
    前記複合物から形成された前記形状保持ブラウンパーツアセンブリを焼結させ、前記形状保持ブラウンパーツアセンブリにわたって隣接する金属粒子が原子拡散を行いつつ前記高密度化リンクプラットフォーム、前記高密度化リンクサポート及び前記所望のパーツを一緒に同一の速度で高密度化し、逆行方向の隣接ツールパスにおける前記複合物の前記堆積が、前記隣接ツールパスのポリマー鎖の応力及び緩みに起因するパーツの捻れを減少させる方法。
  21. 請求項20に記載の方法であって、さらに、
    前記高密度化リンクプラットフォームと前記所望のパーツの底との間に前記複合物の分離可能な取り付け突起を形成することにより、前記高密度化リンクプラットフォームを前記所望のパーツの前記底に相互接続する方法。
  22. 請求項20に記載の方法であって、さらに、
    前記高密度化リンクプラットフォームと前記所望のパーツとの間に可溶性物質の可溶性構造を形成し、
    前記形状保持ブラウンパーツアセンブリを焼結する前に、前記高密度化リンクプラットフォーム及び前記所望のパーツを含んでいる形状保持ブラウンパーツアセンブリを形成するために十分な前記母材をデバインドし、前記可溶性構造の前記可溶性物質をデバインドする方法。
  23. 請求項20に記載の方法であって、さらに、
    前記高密度化リンクプラットフォーム上に前記複合物の連続層の高密度化リンクサポートを形成し、
    セラミック微粒子充填材及びバインダを含んでいる剥離複合物により、前記高密度化リンクサポートと前記所望のパーツとの間にパーツ剥離層を形成し、
    前記デバインド中及び前記焼結中に、前記パーツ剥離層及び形状保持ブラウンパーツアセンブリを一緒にユニットとして保持し、
    焼結後、前記パーツ剥離層、前記高密度化リンクプラットフォーム及び前記高密度化リンクサポートを前記所望のパーツから分離する方法。
  24. 請求項20に記載の方法であって、
    前記隣接ツールパスは、同一層内にある方法。
  25. 請求項20に記載の方法であって、
    前記隣接ツールパスは、隣接層内にある方法。
  26. 請求項20に記載の方法であって、さらに、
    壁ツールパスに沿って及び前記壁ツールパス内のインフィルツールパスに沿って前記複合物を堆積させ、前記壁ツールパスの少なくとも一部は、前記壁ツールパスを貫通するチャネルを形成し、
    前記壁ツールパスを貫通する前記チャネルを通じてデバインド流体を流入及び流出させる方法。
  27. 請求項20に記載の方法であって、さらに、
    前記チャネルに入るデバインド流体の供給の排出及び補充を行い、前記チャネルを通る流体流を加速させ、前記デバインドを促進する方法。
  28. 請求項20に記載の方法であって、さらに、
    前記高密度化リンクプラットフォーム及び前記所望のパーツを囲んでいるデバインド流体のバスの排出及び補充を行い、前記デバインドを促進する方法。
JP2019529482A 2016-12-02 2017-12-01 高密度化リンクプラットフォームを有する焼結付加製造パーツ Pending JP2020513478A (ja)

Applications Claiming Priority (19)

Application Number Priority Date Filing Date Title
US201662429711P 2016-12-02 2016-12-02
US62/429,711 2016-12-02
US201662430902P 2016-12-06 2016-12-06
US62/430,902 2016-12-06
US201762442395P 2017-01-04 2017-01-04
US62/442,395 2017-01-04
US201762480331P 2017-03-31 2017-03-31
US62/480,331 2017-03-31
US201762489410P 2017-04-24 2017-04-24
US62/489,410 2017-04-24
US201762505081P 2017-05-11 2017-05-11
US62/505,081 2017-05-11
US201762519138P 2017-06-13 2017-06-13
US62/519,138 2017-06-13
US201762545966P 2017-08-15 2017-08-15
US62/545,966 2017-08-15
US201762575219P 2017-10-20 2017-10-20
US62/575,219 2017-10-20
PCT/US2017/064298 WO2018102739A1 (en) 2016-12-02 2017-12-01 Sintering additively manufactured parts with a densification linking platform

Publications (1)

Publication Number Publication Date
JP2020513478A true JP2020513478A (ja) 2020-05-14

Family

ID=62239990

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019529482A Pending JP2020513478A (ja) 2016-12-02 2017-12-01 高密度化リンクプラットフォームを有する焼結付加製造パーツ
JP2019529488A Pending JP2020501018A (ja) 2016-12-02 2017-12-01 デバインド加速を有する付加製造パーツ
JP2019529547A Pending JP2020501019A (ja) 2016-12-02 2017-12-01 付加的に製造されるパーツにおける応力の緩和

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2019529488A Pending JP2020501018A (ja) 2016-12-02 2017-12-01 デバインド加速を有する付加製造パーツ
JP2019529547A Pending JP2020501019A (ja) 2016-12-02 2017-12-01 付加的に製造されるパーツにおける応力の緩和

Country Status (8)

Country Link
US (4) US20180154580A1 (ja)
EP (3) EP3548212B1 (ja)
JP (3) JP2020513478A (ja)
CN (3) CN110023010A (ja)
AU (3) AU2017368322A1 (ja)
CA (3) CA3043047A1 (ja)
IL (3) IL266887A (ja)
WO (3) WO2018102754A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021000752A (ja) * 2019-06-21 2021-01-07 日産自動車株式会社 エアレスタイヤの製造方法及びエアレスタイヤ
US11890676B2 (en) 2021-02-15 2024-02-06 Raytheon Missiles & Defense (RMD) Waveguide fence support

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10105876B2 (en) * 2015-12-07 2018-10-23 Ut-Battelle, Llc Apparatus for generating and dispensing a powdered release agent
US20170297099A1 (en) * 2016-04-14 2017-10-19 Desktop Metal, Inc. Fused filament fabrication system configured to fabricate interface layers for breakaway support
EP3523123A4 (en) 2016-10-10 2020-06-17 PostProcess Technologies Inc. SELF-MODIFYING STIRRING METHOD AND DEVICE TO SUPPORT DISTANCE IN GENERATIVE MANUFACTURING AND 3D PRINTING MATERIAL
US10800108B2 (en) 2016-12-02 2020-10-13 Markforged, Inc. Sinterable separation material in additive manufacturing
US10000011B1 (en) 2016-12-02 2018-06-19 Markforged, Inc. Supports for sintering additively manufactured parts
CA3040921C (en) * 2016-12-06 2024-02-20 Markforged, Inc. Additive manufacturing with heat-flexed material feeding
WO2018170395A1 (en) * 2017-03-17 2018-09-20 Deskstop Metal, Inc. Base plate in additive manufacturing
US20180304541A1 (en) * 2017-04-19 2018-10-25 Carbon, Inc. 3d lattice supports for additive manufacturing
WO2018195191A1 (en) 2017-04-21 2018-10-25 Desktop Metal, Inc. Metering build material in three-dimensional (3d) printing using a tool
US10583647B2 (en) * 2017-05-17 2020-03-10 Ford Motor Company Method of controlling warping in 3D printing
DE102017208520A1 (de) * 2017-05-19 2018-11-22 Premium Aerotec Gmbh Verfahren zur Herstellung eines Objekts mittels generativer Fertigung, Bauteil, insbesondere für ein Luft- oder Raumfahrzeug, und computerlesbares Medium
US10746301B2 (en) * 2017-08-22 2020-08-18 Caterpillar Inc. Seal and a method of manufacturing the seal
US10421124B2 (en) * 2017-09-12 2019-09-24 Desktop Metal, Inc. Debinder for 3D printed objects
DE102017217122A1 (de) * 2017-09-26 2019-03-28 Schunk Kohlenstofftechnik Gmbh Hochtemperaturbauteil und Verfahren zur Herstellung
US10940533B2 (en) 2017-12-26 2021-03-09 Desktop Metal, Inc. System and method for controlling powder bed density for 3D printing
US10906249B2 (en) * 2018-01-05 2021-02-02 Desktop Metal, Inc. Method for reducing layer shifting and smearing during 3D printing
US11351696B2 (en) * 2018-02-19 2022-06-07 Rolls-Royce Corporation Additive layer method for application of slurry-based features
JP7130999B2 (ja) 2018-03-14 2022-09-06 セイコーエプソン株式会社 三次元造形物の製造方法
WO2019210285A2 (en) 2018-04-26 2019-10-31 San Diego State University Selective sintering-based fabrication of fully dense complex shaped parts
WO2019210056A1 (en) 2018-04-26 2019-10-31 Markforged, Inc. System and method for minimizing deviations in 3d printed and sintered parts
US10520923B2 (en) 2018-05-22 2019-12-31 Mantle Inc. Method and system for automated toolpath generation
US20210197268A1 (en) * 2018-06-08 2021-07-01 Hewlett-Packard Development Company, L.P. Coprinted supports with printed parts
US11511347B2 (en) 2018-06-11 2022-11-29 Desktop Metal, Inc. Method of forming multi-layer sintering object support structure
CN108746626B (zh) * 2018-07-04 2020-12-01 珠海天威飞马打印耗材有限公司 一种熔融沉积成型的金属三维打印机的打印方法
TWI716704B (zh) * 2018-07-09 2021-01-21 三緯國際立體列印科技股份有限公司 噴墨寬度調整方法以及立體列印設備
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
JP6511577B1 (ja) * 2018-08-21 2019-05-15 独立行政法人国立高等専門学校機構 成形装置および成形方法
CN112888568A (zh) * 2018-08-29 2021-06-01 三全音科技有限公司 特别用于金属及/或陶瓷的硬化方法及设备
US11648612B2 (en) * 2018-09-29 2023-05-16 Hewlett-Packard Development Company, L.P. Break away support for 3D printing
WO2020072018A1 (en) * 2018-10-01 2020-04-09 Orta Dogu Teknik Universitesi Production method with molten filaments on a powder bed
US11084208B2 (en) * 2018-10-17 2021-08-10 General Electric Company Additive manufacturing systems and methods including louvered particulate containment wall
DE102018126079A1 (de) * 2018-10-19 2020-04-23 Xerion Berlin Laboratories GmbH Vorrichtung zur Herstellung metallischer oder keramischer Teile
JP2022506523A (ja) 2018-11-02 2022-01-17 インクビット, エルエルシー インテリジェント付加製造方法
US11354466B1 (en) 2018-11-02 2022-06-07 Inkbit, LLC Machine learning for additive manufacturing
US10532577B1 (en) * 2018-11-07 2020-01-14 Electronics For Imaging, Inc. Unitary ink tank for printer system
DE102018132938A1 (de) * 2018-12-19 2020-06-25 Volkswagen Aktiengesellschaft Verfahren zur generativen Herstellung wenigstens eines Gegenstands, Verwendung eines Druckkopfs und Kraftfahrzeug
CN113329863B (zh) * 2018-12-20 2023-08-25 捷普有限公司 组合增材制造打印类型的设备、系统和方法
US20200198005A1 (en) * 2018-12-24 2020-06-25 GM Global Technology Operations LLC Additive manufacturing using two or more sources of atomized metal particles
US11668528B2 (en) 2019-01-04 2023-06-06 Hewlett-Packard Development Company, L.P. Transmitting and detecting light with optical fiber during sintering
US11045999B2 (en) * 2019-01-08 2021-06-29 Shanghai Fusion Tech Co., Ltd. Throat structures for 3D printers, and nozzle apparatus and 3D printers having throat structures
EP3884237A1 (en) 2019-01-08 2021-09-29 Inkbit, LLC Depth reconstruction in additive fabrication
WO2020146481A1 (en) * 2019-01-08 2020-07-16 Inkbit, LLC Reconstruction of surfaces for additive manufacturing
CN109703022B (zh) * 2019-01-15 2023-09-22 南京工程学院 一种可选式单混色双出3d打印喷头装置
EP3718729B1 (de) * 2019-04-02 2023-10-04 OWL AM Additive Manufacturing GmbH Fertigungsverfahren mit additiver bauteilherstellung und nachbearbeitung
DE102019207111A1 (de) * 2019-05-16 2020-11-19 Universität Stuttgart Verfahren zum Herstellen eines Bauteils mittels eines additiven Fertigungsverfahrens unter Verwendung eines Lasers
US11383451B2 (en) 2019-05-17 2022-07-12 Markforged, Inc. 3D printing and measurement apparatus and method
US20200376547A1 (en) * 2019-05-28 2020-12-03 Desktop Metal, Inc. Furnace for sintering printed objects
DE102019114918A1 (de) * 2019-06-04 2020-12-10 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur additiven Herstellung eines zumindest abschnittsweise mit Hohlräumen versehenen porösen Formkörpers
DE102019114915A1 (de) * 2019-06-04 2020-12-10 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur additiven Herstellung eines zumindest abschnittsweise mit Hohlräumen versehenen porösen Formkörpers
US11814324B2 (en) 2019-07-18 2023-11-14 Northrop Grumman Systems Corporation Additive manufacturing methods for forming high-temperature composite structures and related structures
US20210016508A1 (en) * 2019-07-19 2021-01-21 Southwest Research Institute Powder Fluidization for Use in Additive Manufacturing for Object Removal and Removal of Powder from Object
KR102115529B1 (ko) * 2019-07-25 2020-05-26 (주)시지바이오 Fdm 3d 프린터용 조성물, 이의 제조방법 및 성형품
US20220266342A1 (en) * 2019-07-30 2022-08-25 Commonwealth Scientific And Industrial Research Organisation Method of determining a tool path for controlling a printing tool
EP3804885A1 (de) * 2019-10-11 2021-04-14 Heraeus Additive Manufacturing GmbH Verfahren zur herstellung eines metallischen bauteils, das einen abschnitt mit hohem aspektverhältnis aufweist
US11232996B2 (en) * 2019-10-18 2022-01-25 Industry-University Cooperation Foundation Hanyang University Erica Campus Semiconductor device package comprising thermal interface layer and method of fabricating of the same
FR3102690B1 (fr) * 2019-10-30 2021-12-03 Safran Aircraft Engines Procédé de séparation d’une ébauche de pièce d’un support, par dilatation de fluide dans le support fabriqué additivement
US11712837B2 (en) 2019-11-01 2023-08-01 Inkbit, LLC Optical scanning for industrial metrology
DE102020130987A1 (de) 2020-01-24 2021-07-29 Schaeffler Technologies AG & Co. KG Verfahren zur Herstellung eines Bauteils eines Elektromotors, Elektromotorbauteil und Elektromotor
US11686208B2 (en) 2020-02-06 2023-06-27 Rolls-Royce Corporation Abrasive coating for high-temperature mechanical systems
KR20220139387A (ko) * 2020-02-14 2022-10-14 셀라니즈 인터내셔날 코포레이션 무기 입자 소결용 결합제 조성물 및 이의 사용 방법
DE102020104296A1 (de) 2020-02-19 2021-08-19 Grob-Werke Gmbh & Co. Kg Verfahren und vorrichtung zur additiven fertigung eines bauteils
WO2021202261A1 (en) * 2020-03-30 2021-10-07 University Of Florida Research Foundation, Incorporated Systems, methods, and apparatuses for printing 3d metallic parts from powder suspensions
KR102215528B1 (ko) * 2020-04-16 2021-02-16 주식회사 웨이브피아 3d프린터용 rf 가열 장치를 적용한 노즐 구조
US11766832B2 (en) * 2020-05-13 2023-09-26 The Boeing Company System and method for additively manufacturing an object
DE102020113047A1 (de) 2020-05-14 2021-11-18 Schaeffler Technologies AG & Co. KG Elektromotorbauteil und Verfahren zur Herstellung eines Elektromotorbauteils eines Axialflussmotors
CN111873359A (zh) * 2020-06-04 2020-11-03 武义斯汀纳睿三维科技有限公司 一种连续纤维芯状复合线材的制备方法及3d打印头
US20220004173A1 (en) * 2020-07-02 2022-01-06 Board Of Regents, The University Of Texas System Metal Additive Manufacturing Qualification Test Artifact
US10994490B1 (en) 2020-07-31 2021-05-04 Inkbit, LLC Calibration for additive manufacturing by compensating for geometric misalignments and distortions between components of a 3D printer
US11887766B2 (en) * 2020-08-24 2024-01-30 Ge Aviation Systems Llc Magnetic component and method of forming
JP2022038879A (ja) * 2020-08-27 2022-03-10 三菱重工業株式会社 異材接合品、積層造形用ベースプレート、積層造形装置及び積層造形方法
TWI792094B (zh) * 2020-11-13 2023-02-11 財團法人工業技術研究院 多孔結構及其製法
CN112828303A (zh) * 2020-12-31 2021-05-25 华中科技大学 一种微滴喷射成形低收缩率金属零件的方法及产品
US20220227057A1 (en) 2021-01-19 2022-07-21 Markforged, Inc Z-scale and misalignment calibration for 3d printing
US20220227052A1 (en) * 2021-01-20 2022-07-21 Mark L. Jaster In situ deposition debinding and sintering or melting of strategically deposited media for an improved additive manufacturing process
WO2022164790A1 (en) * 2021-01-26 2022-08-04 Desktop Metal, Inc. Improved interface material formulations for additive fabrication
CN115139520A (zh) * 2021-03-29 2022-10-04 碳塑科技股份有限公司 增材制造系统以及增材制造方法
CA3214568A1 (en) * 2021-04-07 2022-10-13 Harris Taylor Nozzles, nozzle assemblies, and related methods
EP4086023A1 (en) * 2021-05-06 2022-11-09 Sandvik Machining Solutions AB Method for additively manufacturing an article comprising a groove
CN113771364B (zh) * 2021-09-18 2024-03-01 重庆理工大学 一种产品增材制造方法
CN113665105B (zh) * 2021-09-18 2023-09-19 重庆理工大学 一种高质量三维粉末粘接3d打印方法
JP2023087907A (ja) * 2021-12-14 2023-06-26 キオクシア株式会社 半導体装置、及び半導体装置の製造方法
US11890677B2 (en) 2021-12-23 2024-02-06 Xerox Corporation Fracturable support structure and method of forming the structure
CN114818248B (zh) * 2022-01-12 2023-10-10 四川大学 一种针对增材制造的模型切片处理方法
US20230241685A1 (en) * 2022-02-01 2023-08-03 Divergent Technologies, Inc. Pressurized flexible hose for demolition of objects
CN114799202B (zh) * 2022-05-19 2023-12-05 贵州航天风华精密设备有限公司 一种粘结剂喷射金属3d打印翼面的制造方法
JP2024007828A (ja) * 2022-07-06 2024-01-19 新東工業株式会社 中空構造体、軸受部材及び中空構造体の製造方法
US20240009737A1 (en) * 2022-07-06 2024-01-11 Markforged, Inc Additive manufacturing process for forming a metal part using ceramic support and bodies formed thereby
US20240009935A1 (en) * 2022-07-07 2024-01-11 Xerox Corporation Fracturable support structure and method of forming the structure
CN115921910B (zh) * 2023-01-20 2023-07-25 杭州爱新凯科技有限公司 一种振镜喷头多材料3d打印设备及打印方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257657A (en) 1990-07-11 1993-11-02 Incre, Inc. Method for producing a free-form solid-phase object from a material in the liquid phase
US5286573A (en) * 1990-12-03 1994-02-15 Fritz Prinz Method and support structures for creation of objects by layer deposition
US5337961A (en) 1992-12-07 1994-08-16 General Electric Company Ceramic tip and compliant attachment interface for a gas turbine fuel nozzle
US5598200A (en) 1995-01-26 1997-01-28 Gore; David W. Method and apparatus for producing a discrete droplet of high temperature liquid
US5745834A (en) * 1995-09-19 1998-04-28 Rockwell International Corporation Free form fabrication of metallic components
US5738817A (en) * 1996-02-08 1998-04-14 Rutgers, The State University Solid freeform fabrication methods
US6202734B1 (en) 1998-08-03 2001-03-20 Sandia Corporation Apparatus for jet application of molten metal droplets for manufacture of metal parts
US6558606B1 (en) * 2000-01-28 2003-05-06 3D Systems, Inc. Stereolithographic process of making a three-dimensional object
US20020171177A1 (en) * 2001-03-21 2002-11-21 Kritchman Elisha M. System and method for printing and supporting three dimensional objects
EP2295227A3 (en) 2002-12-03 2018-04-04 Stratasys Ltd. Apparatus and method for printing of three-dimensional objects
US20050242473A1 (en) * 2004-04-28 2005-11-03 3D Systems, Inc. Uniform thermal distribution imaging
EP1803567A1 (en) 2005-12-27 2007-07-04 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Material jet system
GB0715621D0 (en) * 2007-08-10 2007-09-19 Rolls Royce Plc Support architecture
US7942987B2 (en) * 2008-06-24 2011-05-17 Stratasys, Inc. System and method for building three-dimensional objects with metal-based alloys
JP5061062B2 (ja) * 2008-08-08 2012-10-31 パナソニック株式会社 三次元形状造形物の製造方法
JP5714613B2 (ja) 2010-03-18 2015-05-07 オセ−テクノロジーズ ビーブイ プリントヘッドの噴出性能を監視する方法
US8871355B1 (en) * 2010-10-08 2014-10-28 Clemson University Microstructure enhanced sinter bonding of metal injection molded part to a support substrate
WO2013010108A1 (en) * 2011-07-13 2013-01-17 Nuvotronics, Llc Methods of fabricating electronic and mechanical structures
SE536670C2 (sv) * 2011-08-26 2014-05-13 Digital Metal Ab Skiktbaserad tillverkning av friformade mikrokomponenter avmultimaterial
US9636868B2 (en) * 2012-08-16 2017-05-02 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US9815268B2 (en) 2013-03-22 2017-11-14 Markforged, Inc. Multiaxis fiber reinforcement for 3D printing
US9694544B2 (en) * 2013-03-22 2017-07-04 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US9415438B2 (en) * 2013-04-19 2016-08-16 United Technologies Corporation Method for forming single crystal parts using additive manufacturing and remelt
US10201929B2 (en) * 2013-06-12 2019-02-12 Makerbot Industries, Llc Raft techniques in three-dimensional printing
EP3019648B1 (en) * 2013-07-11 2021-02-17 Tundra Composites, LLC Composite filament comprising surface modified particulate, and sintered extruded products
EP3835031A1 (en) * 2013-09-19 2021-06-16 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US9669586B2 (en) * 2013-10-01 2017-06-06 Autodesk, Inc. Material dispensing system
CA2866285A1 (en) * 2013-10-01 2015-04-01 Summet Sys Inc. A moldless three-dimensional printing apparatus and method
WO2015053940A1 (en) * 2013-10-07 2015-04-16 United Technologies Corporation Additively grown enhanced impact resistance features for improved structure and joint protection
IL294425B2 (en) * 2013-10-17 2023-09-01 Xjet Ltd Auxiliary ink for 3D printing
US20150145169A1 (en) * 2013-11-26 2015-05-28 Full Spectrum Laser Llc Fabricating an Object With a Removable Raft by Additive Manufacturing
US9339975B2 (en) 2013-12-31 2016-05-17 Nike, Inc. 3D printer with native spherical control
US9616494B2 (en) 2014-03-28 2017-04-11 Scott Vader Conductive liquid three dimensional printer
TW201609894A (zh) 2014-07-22 2016-03-16 巴斯夫歐洲公司 用於熔結絲的製造方法中的混合物
US20160039006A1 (en) * 2014-08-05 2016-02-11 Caterpillar Inc. Shell and Core Additive Manufacture
GB2531704A (en) * 2014-10-17 2016-05-04 Airbusgroup Ltd Method of additive maufacturing and heat treatment
EP3345742A1 (en) * 2014-11-17 2018-07-11 Markforged, Inc. Multilayer fiber reinforcement design for 3d printing
WO2016109111A1 (en) * 2014-12-30 2016-07-07 Smith International, Inc. Variable density, variable composition or complex geometry components for high pressure presses made by additive manufacturing methods
CN106273438B (zh) * 2015-05-11 2019-11-05 三纬国际立体列印科技股份有限公司 立体打印成型结构
US9975182B2 (en) 2015-05-13 2018-05-22 Kennametal Inc. Cutting tool made by additive manufacturing
CN204772942U (zh) * 2015-07-02 2015-11-18 吴南星 一种陶瓷粉末激光烧结快速成型机
JP6841811B2 (ja) 2015-07-14 2021-03-10 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se 被覆されたコア材料をベースとするフィラメント
CN105108154B (zh) * 2015-09-21 2017-06-23 深圳艾利门特科技有限公司 一种利用粉末注射成形技术制备异形复杂零件的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021000752A (ja) * 2019-06-21 2021-01-07 日産自動車株式会社 エアレスタイヤの製造方法及びエアレスタイヤ
JP7263939B2 (ja) 2019-06-21 2023-04-25 日産自動車株式会社 エアレスタイヤの製造方法
US11890676B2 (en) 2021-02-15 2024-02-06 Raytheon Missiles & Defense (RMD) Waveguide fence support

Also Published As

Publication number Publication date
JP2020501019A (ja) 2020-01-16
IL266881A (en) 2019-07-31
US20180154439A1 (en) 2018-06-07
EP3548212A1 (en) 2019-10-09
WO2018102754A1 (en) 2018-06-07
CA3043048A1 (en) 2018-06-07
EP3548212B1 (en) 2023-03-08
CA3043047A1 (en) 2018-06-07
EP3548214A4 (en) 2020-09-02
EP3548257B1 (en) 2022-09-28
CN110023059A (zh) 2019-07-16
EP3548212A4 (en) 2020-09-30
EP3548257A4 (en) 2020-07-08
IL266887A (en) 2019-07-31
US20180154438A1 (en) 2018-06-07
WO2018102739A1 (en) 2018-06-07
IL266884A (en) 2019-07-31
AU2017366705A1 (en) 2019-05-02
EP3548257A1 (en) 2019-10-09
AU2017368322A1 (en) 2019-05-02
JP2020501018A (ja) 2020-01-16
US20180154574A1 (en) 2018-06-07
CA3040929C (en) 2023-08-01
CN110023010A (zh) 2019-07-16
US20180154580A1 (en) 2018-06-07
EP3548214A1 (en) 2019-10-09
EP3548214B1 (en) 2023-02-01
WO2018102731A1 (en) 2018-06-07
CA3040929A1 (en) 2018-06-07
AU2017366697A1 (en) 2019-05-09
CN110023059B (zh) 2021-09-17
CN110035845A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
CA3040929C (en) Sintering additively manufactured parts with a densification linking platform
US10800108B2 (en) Sinterable separation material in additive manufacturing
JP6908705B2 (ja) 熱屈曲材料供給による付加製造
EP3634724B1 (en) Rapid debinding via internal fluid channels
WO2018200515A1 (en) Sintering additively manufactured parts in microwave oven
WO2019226815A1 (en) Sinterable separation material in additive manufacturing
WO2019079704A2 (en) INTERNAL OPEN SPACE FOR 3D PRINTING
EP3819049B1 (en) Method for minimizing stress-related deformations in 3d printed and sintered parts

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20191010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191010