JP2020502309A - Polypropylene and method for producing the same - Google Patents
Polypropylene and method for producing the same Download PDFInfo
- Publication number
- JP2020502309A JP2020502309A JP2019529231A JP2019529231A JP2020502309A JP 2020502309 A JP2020502309 A JP 2020502309A JP 2019529231 A JP2019529231 A JP 2019529231A JP 2019529231 A JP2019529231 A JP 2019529231A JP 2020502309 A JP2020502309 A JP 2020502309A
- Authority
- JP
- Japan
- Prior art keywords
- homopolypropylene
- chemical formula
- group
- halogen
- independently
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 36
- -1 Polypropylene Polymers 0.000 title claims description 43
- 239000004743 Polypropylene Substances 0.000 title claims description 8
- 229920001155 polypropylene Polymers 0.000 title claims description 8
- 229920005629 polypropylene homopolymer Polymers 0.000 claims abstract description 74
- 239000004745 nonwoven fabric Substances 0.000 claims description 49
- 150000001875 compounds Chemical class 0.000 claims description 38
- 239000003054 catalyst Substances 0.000 claims description 37
- 239000000126 substance Substances 0.000 claims description 28
- 125000000217 alkyl group Chemical group 0.000 claims description 23
- 238000009826 distribution Methods 0.000 claims description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 21
- 229910052739 hydrogen Inorganic materials 0.000 claims description 20
- 239000001257 hydrogen Substances 0.000 claims description 20
- 229910052736 halogen Inorganic materials 0.000 claims description 18
- 150000002367 halogens Chemical class 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 16
- 238000002844 melting Methods 0.000 claims description 14
- 230000008018 melting Effects 0.000 claims description 14
- 125000003118 aryl group Chemical group 0.000 claims description 13
- 239000004215 Carbon black (E152) Substances 0.000 claims description 11
- 229930195733 hydrocarbon Natural products 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 238000004140 cleaning Methods 0.000 claims description 9
- 150000002430 hydrocarbons Chemical class 0.000 claims description 9
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 9
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 9
- 239000000178 monomer Substances 0.000 claims description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 7
- 229910052796 boron Chemical group 0.000 claims description 7
- 125000003358 C2-C20 alkenyl group Chemical group 0.000 claims description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims description 5
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 5
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 5
- 150000002431 hydrogen Chemical class 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 125000003545 alkoxy group Chemical group 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 125000005370 alkoxysilyl group Chemical group 0.000 claims description 3
- 125000005103 alkyl silyl group Chemical group 0.000 claims description 3
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- 125000005353 silylalkyl group Chemical group 0.000 claims description 3
- 239000002879 Lewis base Substances 0.000 claims description 2
- 229910052795 boron group element Inorganic materials 0.000 claims description 2
- 230000007935 neutral effect Effects 0.000 claims description 2
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 2
- 125000003860 C1-C20 alkoxy group Chemical group 0.000 claims 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 20
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 18
- 239000000835 fiber Substances 0.000 description 18
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 18
- 239000008096 xylene Substances 0.000 description 18
- 238000006116 polymerization reaction Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 239000012968 metallocene catalyst Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000003426 co-catalyst Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 125000003342 alkenyl group Chemical group 0.000 description 9
- 230000000704 physical effect Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 239000003446 ligand Substances 0.000 description 7
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 150000003623 transition metal compounds Chemical class 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000155 melt Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 5
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 125000006165 cyclic alkyl group Chemical group 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000011342 resin composition Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 4
- VPGLGRNSAYHXPY-UHFFFAOYSA-L zirconium(2+);dichloride Chemical compound Cl[Zr]Cl VPGLGRNSAYHXPY-UHFFFAOYSA-L 0.000 description 4
- 239000004594 Masterbatch (MB) Substances 0.000 description 3
- DXQXWMYUGOTNGJ-UHFFFAOYSA-N [4-(trifluoromethyl)phenyl]boron Chemical compound [B]C1=CC=C(C(F)(F)F)C=C1 DXQXWMYUGOTNGJ-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- CPOFMOWDMVWCLF-UHFFFAOYSA-N methyl(oxo)alumane Chemical compound C[Al]=O CPOFMOWDMVWCLF-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- IMFACGCPASFAPR-UHFFFAOYSA-O tributylazanium Chemical compound CCCC[NH+](CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-O 0.000 description 3
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 3
- VKMQKNJWQNCEQV-UHFFFAOYSA-N (4-methylphenyl)boron Chemical compound [B]C1=CC=C(C)C=C1 VKMQKNJWQNCEQV-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- BYLOHCRAPOSXLY-UHFFFAOYSA-N dichloro(diethyl)silane Chemical compound CC[Si](Cl)(Cl)CC BYLOHCRAPOSXLY-UHFFFAOYSA-N 0.000 description 2
- GGSUCNLOZRCGPQ-UHFFFAOYSA-O diethyl(phenyl)azanium Chemical compound CC[NH+](CC)C1=CC=CC=C1 GGSUCNLOZRCGPQ-UHFFFAOYSA-O 0.000 description 2
- 208000006047 familial isolated pituitary adenoma Diseases 0.000 description 2
- 208000036974 gastrointestinal defects and immunodeficiency syndrome 1 Diseases 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005453 pelletization Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 2
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- YWWDBCBWQNCYNR-UHFFFAOYSA-O trimethylphosphanium Chemical compound C[PH+](C)C YWWDBCBWQNCYNR-UHFFFAOYSA-O 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- WCFQIFDACWBNJT-UHFFFAOYSA-N $l^{1}-alumanyloxy(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]O[Al] WCFQIFDACWBNJT-UHFFFAOYSA-N 0.000 description 1
- GWUXLTRGPPIDJA-UHFFFAOYSA-N (4-methylphenyl)alumane Chemical compound CC1=CC=C([AlH2])C=C1 GWUXLTRGPPIDJA-UHFFFAOYSA-N 0.000 description 1
- YVSMQHYREUQGRX-UHFFFAOYSA-N 2-ethyloxaluminane Chemical compound CC[Al]1CCCCO1 YVSMQHYREUQGRX-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- KORWGADMWFSOKW-UHFFFAOYSA-N C(C)[Si](CC)=[Si](C1C(=CC2=C(C=CC=C12)C1=CC=C(C=C1)C(C)(C)C)C)C1C(=CC2=C(C=CC=C12)C1=CC=C(C=C1)C(C)(C)C)C Chemical compound C(C)[Si](CC)=[Si](C1C(=CC2=C(C=CC=C12)C1=CC=C(C=C1)C(C)(C)C)C)C1C(=CC2=C(C=CC=C12)C1=CC=C(C=C1)C(C)(C)C)C KORWGADMWFSOKW-UHFFFAOYSA-N 0.000 description 1
- PLGVIJOQDDMWAO-UHFFFAOYSA-N CCCCN(CCCC)CCCC.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F Chemical compound CCCCN(CCCC)CCCC.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F PLGVIJOQDDMWAO-UHFFFAOYSA-N 0.000 description 1
- JEVCOCKVSCRHMR-UHFFFAOYSA-N CCN(CC)C1=CC=CC=C1.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F Chemical compound CCN(CC)C1=CC=CC=C1.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F.FC(C(F)=C(C([Al+2])=C1F)F)=C1F JEVCOCKVSCRHMR-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- SHPVKUQHCZKKRP-UHFFFAOYSA-N [B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.CCCCN(CCCC)CCCC Chemical compound [B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.CCCCN(CCCC)CCCC SHPVKUQHCZKKRP-UHFFFAOYSA-N 0.000 description 1
- RPXNIXOOFOQCKJ-UHFFFAOYSA-N [B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.CCNCC Chemical compound [B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.[B+2]C(C(F)=C(C(F)=C1F)F)=C1F.CCNCC RPXNIXOOFOQCKJ-UHFFFAOYSA-N 0.000 description 1
- CIEKISJGSVFBFH-UHFFFAOYSA-L [Cl-].[Cl-].C[Si](=[Zr+2](C1C(=CC2=C(C=CC=C12)C1=CC=C(C=C1)C(C)(C)C)C)C1C(=CC2=C(C=CC=C12)C1=CC=C(C=C1)C(C)(C)C)C)C Chemical compound [Cl-].[Cl-].C[Si](=[Zr+2](C1C(=CC2=C(C=CC=C12)C1=CC=C(C=C1)C(C)(C)C)C)C1C(=CC2=C(C=CC=C12)C1=CC=C(C=C1)C(C)(C)C)C)C CIEKISJGSVFBFH-UHFFFAOYSA-L 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000005234 alkyl aluminium group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910052800 carbon group element Inorganic materials 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000010960 commercial process Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- MYBJXSAXGLILJD-UHFFFAOYSA-N diethyl(methyl)alumane Chemical compound CC[Al](C)CC MYBJXSAXGLILJD-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-O diethylammonium Chemical compound CC[NH2+]CC HPNMFZURTQLUMO-UHFFFAOYSA-O 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- JGHYBJVUQGTEEB-UHFFFAOYSA-M dimethylalumanylium;chloride Chemical compound C[Al](C)Cl JGHYBJVUQGTEEB-UHFFFAOYSA-M 0.000 description 1
- MWNKMBHGMZHEMM-UHFFFAOYSA-N dimethylalumanylium;ethanolate Chemical compound CCO[Al](C)C MWNKMBHGMZHEMM-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- SHGOGDWTZKFNSC-UHFFFAOYSA-N ethyl(dimethyl)alumane Chemical compound CC[Al](C)C SHGOGDWTZKFNSC-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- BQBCXNQILNPAPX-UHFFFAOYSA-N methoxy(dimethyl)alumane Chemical compound [O-]C.C[Al+]C BQBCXNQILNPAPX-UHFFFAOYSA-N 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- MWSOLOKEHHPOBC-UHFFFAOYSA-N pentylaluminum Chemical compound CCCCC[Al] MWSOLOKEHHPOBC-UHFFFAOYSA-N 0.000 description 1
- 125000004344 phenylpropyl group Chemical group 0.000 description 1
- 238000010094 polymer processing Methods 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229920000576 tactic polymer Polymers 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- NDUUEFPGQBSFPV-UHFFFAOYSA-N tri(butan-2-yl)alumane Chemical compound CCC(C)[Al](C(C)CC)C(C)CC NDUUEFPGQBSFPV-UHFFFAOYSA-N 0.000 description 1
- SQBBHCOIQXKPHL-UHFFFAOYSA-N tributylalumane Chemical compound CCCC[Al](CCCC)CCCC SQBBHCOIQXKPHL-UHFFFAOYSA-N 0.000 description 1
- CMHHITPYCHHOGT-UHFFFAOYSA-N tributylborane Chemical compound CCCCB(CCCC)CCCC CMHHITPYCHHOGT-UHFFFAOYSA-N 0.000 description 1
- PYLGJXLKFZZEBJ-UHFFFAOYSA-N tricyclopentylalumane Chemical compound C1CCCC1[Al](C1CCCC1)C1CCCC1 PYLGJXLKFZZEBJ-UHFFFAOYSA-N 0.000 description 1
- LALRXNPLTWZJIJ-UHFFFAOYSA-N triethylborane Chemical compound CCB(CC)CC LALRXNPLTWZJIJ-UHFFFAOYSA-N 0.000 description 1
- ORYGRKHDLWYTKX-UHFFFAOYSA-N trihexylalumane Chemical compound CCCCCC[Al](CCCCCC)CCCCCC ORYGRKHDLWYTKX-UHFFFAOYSA-N 0.000 description 1
- WXRGABKACDFXMG-UHFFFAOYSA-N trimethylborane Chemical compound CB(C)C WXRGABKACDFXMG-UHFFFAOYSA-N 0.000 description 1
- LFXVBWRMVZPLFK-UHFFFAOYSA-N trioctylalumane Chemical compound CCCCCCCC[Al](CCCCCCCC)CCCCCCCC LFXVBWRMVZPLFK-UHFFFAOYSA-N 0.000 description 1
- JQPMDTQDAXRDGS-UHFFFAOYSA-N triphenylalumane Chemical compound C1=CC=CC=C1[Al](C=1C=CC=CC=1)C1=CC=CC=C1 JQPMDTQDAXRDGS-UHFFFAOYSA-N 0.000 description 1
- RIOQSEWOXXDEQQ-UHFFFAOYSA-O triphenylphosphanium Chemical compound C1=CC=CC=C1[PH+](C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-O 0.000 description 1
- CNWZYDSEVLFSMS-UHFFFAOYSA-N tripropylalumane Chemical compound CCC[Al](CCC)CCC CNWZYDSEVLFSMS-UHFFFAOYSA-N 0.000 description 1
- ZMPKTELQGVLZTD-UHFFFAOYSA-N tripropylborane Chemical compound CCCB(CCC)CCC ZMPKTELQGVLZTD-UHFFFAOYSA-N 0.000 description 1
- XDSSGQHOYWGIKC-UHFFFAOYSA-N tris(2-methylpropyl)borane Chemical compound CC(C)CB(CC(C)C)CC(C)C XDSSGQHOYWGIKC-UHFFFAOYSA-N 0.000 description 1
- WSITXTIRYQMZHM-UHFFFAOYSA-N tris(4-methylphenyl)alumane Chemical compound C1=CC(C)=CC=C1[Al](C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 WSITXTIRYQMZHM-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/04—Monomers containing three or four carbon atoms
- C08F110/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/04—Monomers containing three or four carbon atoms
- C08F210/06—Propene
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L13/00—Implements for cleaning floors, carpets, furniture, walls, or wall coverings
- A47L13/10—Scrubbing; Scouring; Cleaning; Polishing
- A47L13/16—Cloths; Pads; Sponges
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F17/00—Metallocenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/52—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/642—Component covered by group C08F4/64 with an organo-aluminium compound
- C08F4/6428—Component covered by group C08F4/64 with an organo-aluminium compound with an aluminoxane, i.e. a compound containing an Al-O-Al- group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/643—Component covered by group C08F4/64 with a metal or compound covered by group C08F4/44 other than an organo-aluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/6592—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
- C08F4/65922—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
- C08F4/65927—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4282—Addition polymers
- D04H1/4291—Olefin series
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/005—Synthetic yarns or filaments
- D04H3/007—Addition polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/12—Melt flow index or melt flow ratio
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65916—Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2321/00—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D10B2321/02—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
- D10B2321/022—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Textile Engineering (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Nonwoven Fabrics (AREA)
Abstract
本発明では、優れた加工性と共に、高い強度および低い低分子量含有量を有するホモポリプロピレンおよびその製造方法が提供される。The present invention provides a homopolypropylene having high strength and a low low molecular weight content, as well as excellent processability, and a method for producing the same.
Description
[関連出願との相互参照]
本出願は、2017年11月27日付の韓国特許出願第10−2017−0159736号および2018年9月28日付の韓国特許出願第10−2018−0116448号に基づく優先権の利益を主張し、当該韓国特許出願の文献に開示されたすべての内容は本明細書の一部として含まれる。
[Cross-reference with related application]
This application claims the benefit of priority from Korean Patent Application No. 10-2017-0159736 filed on November 27, 2017 and Korean Patent Application No. 10-2018-0116448 filed on September 28, 2018. All the contents disclosed in the Korean patent application literature are included as a part of this specification.
本発明は、優れた加工性と共に、高い強度および低い低分子量含有量を有するポリプロピレンおよびその製造方法に関する。 The present invention relates to polypropylene having high strength and low low molecular weight content, as well as excellent processability, and a method for producing the same.
オレフィン重合触媒系は、チーグラー・ナッタおよびメタロセン触媒系に分類することができ、これら2種の高活性触媒系はそれぞれの特徴に合わせて発展してきた。チーグラー・ナッタ触媒は、1950年代に発明されて以来、既存の商業プロセスに幅広く適用されてきたが、活性点が数個混在する多活性点触媒(multi−site catalyst)であるため、重合体の分子量分布が広いことが特徴であり、共単量体の組成分布が均一でなくて所望の物性の確保に限界があるという問題点がある。 Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have evolved to suit their respective characteristics. Ziegler-Natta catalysts have been widely applied to existing commercial processes since they were invented in the 1950's, but because they are multi-site catalysts with several active sites mixed, the polymer It is characterized by a wide molecular weight distribution, and has a problem that the composition distribution of the comonomer is not uniform and there is a limit in securing desired physical properties.
一方、メタロセン触媒は、遷移金属化合物が主成分である主触媒と、アルミニウムが主成分の有機金属化合物である助触媒との組み合わせからなり、このような触媒は、均一系錯体触媒で単一活性点触媒(single site catalyst)であり、単一活性点の特性によって分子量分布が狭く、共単量体の組成分布が均一である高分子が得られ、触媒のリガンド構造の変形および重合条件の変更によって高分子の立体規則度、共重合特性、分子量、結晶化度などを変化させる特性がある。 On the other hand, metallocene catalysts consist of a combination of a main catalyst composed mainly of a transition metal compound and a cocatalyst composed of an organometallic compound composed mainly of aluminum. Such a catalyst is a homogeneous complex catalyst having a single activity. A single site catalyst, a polymer having a narrow molecular weight distribution and a uniform comonomer composition distribution due to the characteristics of a single active site is obtained, and the ligand structure of the catalyst is changed and the polymerization conditions are changed. There are characteristics that change the tacticity, copolymerization characteristics, molecular weight, crystallinity, etc. of the polymer.
通常、チーグラー・ナッタ触媒で製造される使い捨てたわし用途のホモポリプロピレンは、強度を増大させたり低坪量化すると、物理的な物性が低下するだけでなく、加工性が低下する問題点がある。また、チーグラー・ナッタ触媒で製造された使い捨てたわしは、メタロセン触媒で製造されたホモポリプロピレンより高いキシレン可溶分(xylene solubles)と広い分子量分布による低分子量の含有量が高いため、たわしに適用時、表面が柔らかくてたわしへの使用に不向きであった。 Normally, homopolypropylene for disposable scourers manufactured using a Ziegler-Natta catalyst has a problem that when the strength is increased or the basis weight is reduced, not only physical properties are lowered but also processability is lowered. In addition, the disposable scourer manufactured with Ziegler-Natta catalyst has a higher xylene solubles than homopolypropylene manufactured with metallocene catalyst and a high content of low molecular weight due to a wide molecular weight distribution. The surface was soft and unsuitable for use on scourers.
このような欠点を補完するために、従来チーグラー・ナッタ触媒で生産される溶融指数(MI)230g/10min水準のポリプロピレンを添加剤とブレンドして、粗い感触(feel)と太い繊維を紡いで使用する方法が提案されたが、チーグラー・ナッタ触媒で製造されるポリプロピレンおよび添加剤とブレンドされたポリプロピレン組成物は、紡糸性が良くなくて不均一な繊維を作り出し、それによって物性の低下をもたらした。また、乾式混合(Dry blending)→熱加工(Thermal processing)→ペレタイジング(pelletizing)→2次加工(second processing)→生成物(product)につながり加工費用が高く発生するという欠点がある。 In order to compensate for these drawbacks, polypropylene having a melt index (MI) of 230 g / 10 min, which is conventionally produced using a Ziegler-Natta catalyst, is blended with an additive to spin a coarse feel and a thick fiber. However, a polypropylene composition made with Ziegler-Natta catalyst and a polypropylene composition blended with additives produced non-uniform fibers with poor spinnability, thereby resulting in reduced physical properties. . In addition, there is a drawback that dry blending → thermal processing → pelletizing → second processing → products leads to high processing costs.
そこで、本発明は、チーグラー・ナッタ触媒の代わりに特定構造のメタロセン触媒を用いることによって、優れた加工性と共に、高い強度および低い低分子量含有量を有するホモポリプロピレンおよびその製造方法を提供することを目的とする。 Therefore, the present invention provides a homopolypropylene having high strength and low low molecular weight content with excellent processability by using a metallocene catalyst having a specific structure instead of the Ziegler-Natta catalyst, and a method for producing the same. Aim.
本発明の一実施形態によれば、下記の条件を満たすホモポリプロピレンを提供する:
i)溶融指数(ASTM D1238により、230℃、2.16kg荷重で測定)200〜2000g/10min
ii)分子量分布3.3以下
iii)残留応力比率0.05%以下
iv)キシレン可溶分1.0重量%以下
According to one embodiment of the present invention, there is provided a homopolypropylene satisfying the following conditions:
i) Melting index (measured according to ASTM D1238 at 230 ° C. under a load of 2.16 kg) 200 to 2000 g / 10 min
ii) Molecular weight distribution 3.3 or less iii) Residual stress ratio 0.05% or less iv) Xylene soluble matter 1.0% by weight or less
本発明の他の実施形態によれば、下記化学式1の化合物を含む触媒組成物の存在下、水素を700〜2500ppm投入してプロピレン単量体を重合する段階を含む、前記ホモポリプロピレンの製造方法を提供する:
前記化学式1において、
Aは、炭素、シリコン、またはゲルマニウムであり、
X1およびX2は、それぞれ独立して、ハロゲンであり、
R1およびR5は、それぞれ独立して、C1-20アルキルで置換されたC6-20アリールであり、
R2〜R4、およびR6〜R8は、それぞれ独立して、水素、ハロゲン、C1-20アルキル、C2-20アルケニル、C1-20アルキルシリル、C1-20シリルアルキル、C1-20アルコキシシリル、C1-20エーテル、C1-20シリルエーテル、C1-20アルコキシ、C6-20アリール、C7-20アルキルアリール、またはC7-20アリールアルキルであり、
R9およびR10は、互いに同一であり、C2-20アルキルである。
In the above chemical formula 1,
A is carbon, silicon, or germanium;
X 1 and X 2 are each independently halogen,
R 1 and R 5 are each independently C 6-20 aryl substituted with C 1-20 alkyl;
R 2 to R 4 and R 6 to R 8 each independently represent hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, 1-20 alkoxysilyl, C 1-20 ether, C 1-20 silyl ether, C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl;
R 9 and R 10 are the same as each other and are C 2-20 alkyl.
本発明のさらに他の実施形態によれば、前記ホモポリプロピレンを含む不織布用樹脂組成物、およびこれを用いて製造された不織布、より具体的には、たわしなどの洗浄用不織布を提供する。 According to still another embodiment of the present invention, there is provided a resin composition for a nonwoven fabric containing the homopolypropylene, and a nonwoven fabric produced using the same, more specifically, a nonwoven fabric for cleaning such as scourers.
本発明によるホモポリプロピレンは、低い残留応力比率とキシレン可溶分、最適範囲の溶融指数および狭い分子量分布を有することによって、優れた加工性を示し、太さが細いながらも均一な繊維の製造および高剛性の低坪量不織布の製造が可能である。また、既存の製品より粗い触感を付与することができ、高い強度にも簡単に破れない優れた強靭性を同時に実現することができる。これにより、高剛性と共に大きい表面粗さが要求される不織布、特にたわしのような洗浄用不織布の製造に有用である。 The homopolypropylene according to the present invention exhibits excellent processability by having a low residual stress ratio and a xylene-soluble content, an optimum range of a melting index and a narrow molecular weight distribution, and is capable of producing a uniform fiber having a small thickness. Production of high rigidity low basis weight nonwoven fabric is possible. In addition, it is possible to provide a rougher feel than existing products, and it is possible to simultaneously realize excellent toughness that is not easily broken even at high strength. This is useful for the production of nonwoven fabrics that require high rigidity and large surface roughness, especially nonwoven fabrics for cleaning such as scourers.
本明細書で使用される用語は、単に例示的な実施例を説明するために使用されたもので、発明を限定しようとする意図ではない。単数の表現は、文脈上、明らかに異なって意味しない限り、複数の表現を含む。本明細書において、「含む」、「備える」または「有する」などの用語は、実施された特徴、段階、構成要素またはこれらを組み合わせたものが存在することを指定しようとするものであって、1つまたはそれ以上の他の特徴や段階、構成要素またはこれらを組み合わせたものの存在または付加の可能性を予め排除しないことが理解されなければならない。 The terms used in the specification are merely used to describe illustrative embodiments and are not intended to limit the invention. The singular expression includes the plural unless the context clearly indicates otherwise. As used herein, terms such as "comprising", "comprising" or "having" are intended to specify the presence of implemented features, steps, components, or combinations thereof, It is to be understood that the possibility of the presence or addition of one or more other features or steps, components or combinations thereof is not excluded in advance.
発明は多様な変更が加えられて様々な形態を有しうることから、特定の実施例を例示して下記に詳細に説明する。しかし、これは発明を特定の開示形態について限定しようとするものではなく、発明の思想および技術範囲に含まれるあらゆる変更、均等物乃至代替物を含むことが理解されなければならない。 Since the present invention can have various forms with various modifications, the present invention will be described in detail with reference to specific embodiments. It should be understood, however, that this is not intended to limit the invention to the particular disclosure and that it includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
以下、発明の具体的な実施形態によるホモポリプロピレンおよびその製造方法などについて説明する。 Hereinafter, a homopolypropylene according to a specific embodiment of the present invention and a method for producing the same will be described.
本発明は、従来チーグラー・ナッタ触媒で製造される使い捨てたわしを物性的特徴を補完するために、後述するメタロセン触媒を用いて制御された含有量の水素投入の条件下でプロピレンを重合させてホモポリプロピレンを製造することにより、製造されるホモポリプロピレンの分子量分布が狭く低い残留応力を有し、太さが細いながらも均一な繊維の製造が可能であり、その結果、高剛性の低坪量不織布の製造が可能である。また、製造されるホモポリプロピレンは、狭い分子量分布と共に、低いキシレン可溶分によって低分子量の含有量が少ないため、表面に粗い感じを提供することができ、その結果、洗浄用不織布に適用時、洗浄効果を向上させることができる。さらに、製造されるホモポリプロピレンは添加剤とブレンディングする必要がないため、1次加工だけでも不織布を製造可能で工程性を向上させることができる。 In order to supplement the physical characteristics of a disposable scourer conventionally produced with a Ziegler-Natta catalyst, the present invention homogenizes propylene by polymerizing propylene under a controlled content of hydrogen and using a metallocene catalyst described below. By producing polypropylene, the molecular weight distribution of the produced homopolypropylene is narrow and has low residual stress, and it is possible to produce uniform fibers with a small thickness, and as a result, a high rigidity low basis weight nonwoven fabric Can be manufactured. In addition, the homopolypropylene to be produced has a narrow molecular weight distribution and a low content of low molecular weight due to low xylene solubles, so it can provide a rough feel to the surface, and as a result, when applied to a nonwoven fabric for cleaning, The cleaning effect can be improved. Furthermore, since the produced homopolypropylene does not need to be blended with an additive, a nonwoven fabric can be produced only by the primary processing, and the processability can be improved.
具体的には、本発明の一実施形態によるホモポリプロピレンは、下記の条件を満たすものである:
i)溶融指数(ASTM D1238により、230℃、2.16kg荷重で測定)200〜2000g/10min
ii)分子量分布3.3以下
iii)残留応力比率0.05%以下
iv)キシレン可溶分1.0重量%以下
Specifically, the homopolypropylene according to one embodiment of the present invention satisfies the following conditions:
i) Melting index (measured according to ASTM D1238 at 230 ° C. under a load of 2.16 kg) 200 to 2000 g / 10 min
ii) Molecular weight distribution 3.3 or less iii) Residual stress ratio 0.05% or less iv) Xylene soluble matter 1.0% by weight or less
より具体的には、発明の一実施形態によるホモポリプロピレンは、ASTM D1238により、230℃、2.16kg荷重下で測定した溶融指数(MI、melt index)が200〜2000g/10minである。MIは、重合工程時に投入される水素量に応じて調節可能であるが、本発明によるホモポリプロピレンは、前記ii)〜iv)の物性要件を考慮して前記のような範囲のMIを有することによって、紡糸性と不織布の強度をバランス良く改善させることができる。特に、ホモポリプロピレンを用いた不織布を加工するにあたり、MIが200g/10min未満であれば、加工圧力が上昇して加工性が低下する恐れがあり、2000g/10minを超える場合、製造される不織布における高強度の実現が難しい。また、前記範囲のMI値を有するポリプロピレンを製造するためには、チーグラー・ナッタ触媒を用いる場合、重合段階で高い含有量の水素が投入されなければならないが、後述するようなメタロセン化合物を含む触媒を用いることによって、相対的に低い含有量の水素投入が可能なため、活性制御が容易であり、工程安定性が高まるという利点がある。前記MI制御による紡糸性および不織布強度改善効果の優秀さを考慮する時、前記ホモポリプロピレンのMIは、220〜1500g/10minであってもよい。 More specifically, the homopolypropylene according to one embodiment of the present invention has a melt index (MI, melt index) measured at 230 ° C. under a load of 2.16 kg of 200 to 2000 g / 10 min according to ASTM D1238. The MI can be adjusted according to the amount of hydrogen supplied during the polymerization step. However, the homopolypropylene according to the present invention has an MI within the above range in consideration of the physical property requirements of ii) to iv). Thereby, spinnability and strength of the nonwoven fabric can be improved in a well-balanced manner. In particular, when processing a nonwoven fabric using homopolypropylene, if MI is less than 200 g / 10 min, the processing pressure may increase and processability may decrease. It is difficult to achieve high strength. In addition, in order to produce a polypropylene having an MI value in the above range, when a Ziegler-Natta catalyst is used, a high content of hydrogen must be introduced in the polymerization stage, but a catalyst containing a metallocene compound as described later is used. By using, it is possible to input a relatively low content of hydrogen, so that there is an advantage that activity control is easy and process stability is enhanced. When considering the spinnability and the nonwoven fabric strength improving effect by the MI control, the MI of the homopolypropylene may be 220 to 1500 g / 10 min.
また、発明の一実施形態による前記ホモポリプロピレンは、前記MIと共に、3.3以下の狭い分子量分布(MWD=Mw/Mn)を有する。このように狭い分子量分布を有することによって、不織布の製造時、優れた剛性を示すことができる。より具体的には、前記ホモポリプロピレンは、MWDが1.5〜3.3、さらにより具体的には2.5〜3.3であってもよい。 Further, the homopolypropylene according to an embodiment of the present invention has a narrow molecular weight distribution (MWD = Mw / Mn) of 3.3 or less together with the MI. By having such a narrow molecular weight distribution, excellent rigidity can be exhibited during the production of the nonwoven fabric. More specifically, the homopolypropylene may have a MWD of 1.5 to 3.3, and even more specifically, 2.5 to 3.3.
一方、本発明において、分子量分布(MWD)は、ゲル透過クロマトグラフィー(GPC)を用いて重量平均分子量(Mw)および数平均分子量(Mn)を測定した後、数平均分子量に対する重量平均分子量の比(Mw/Mn)で決定できる。具体的には、Polymer Laboratories PLgel MIX−B300mm長さのカラムを用いて、Waters PL−GPC220機器を用いて測定することができ、この時、評価温度は160℃であり、1,2,4−トリクロロベンゼンを溶媒として用い、流速は1mL/minとする。また、サンプルは10mg/10mLの濃度に調製した後、200μLの量で供給する。ポリスチレン標準を利用して形成された検定曲線を用いてMwおよびMnの値を誘導する。この時、ポリスチレン標準品の分子量(g/mol)は、2,000/10,000/30,000/70,000/200,000/700,000/2,000,000/4,000,000/10,000,000の9種を使用した。 On the other hand, in the present invention, the molecular weight distribution (MWD) is determined by measuring the weight average molecular weight (Mw) and the number average molecular weight (Mn) using gel permeation chromatography (GPC), and then measuring the ratio of the weight average molecular weight to the number average molecular weight. (Mw / Mn). Specifically, it can be measured using a Waters PL-GPC220 instrument using a Polymer Laboratories PLgel MIX-B 300 mm long column. At this time, the evaluation temperature is 160 ° C., and 1,2,4- Trichlorobenzene is used as a solvent, and the flow rate is 1 mL / min. After adjusting the concentration of the sample to 10 mg / 10 mL, the sample is supplied in an amount of 200 μL. Mw and Mn values are derived using a calibration curve formed utilizing polystyrene standards. At this time, the molecular weight (g / mol) of the standard polystyrene was 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000. Nine kinds of / 10,000,000 were used.
また、発明の一実施形態によるホモポリプロピレンは、上述のようなMIおよびMWDと共に、0.05%以下の低い残留応力比率を有する。 Further, the homopolypropylene according to one embodiment of the present invention has a low residual stress ratio of 0.05% or less together with MI and MWD as described above.
前記残留応力比率は、不織布の製造工程と類似の環境下、レオロジー物性テストにより繊維加工性を確認できるもので、ホモポリプロピレンに大きな変形(strain)を加える応力緩和テスト(stress relaxation test)を行い、この時測定される残留応力値から下記数式1により計算できる。 The residual stress ratio can be checked for fiber workability by a rheological property test under an environment similar to the nonwoven fabric manufacturing process, and a stress relaxation test (stress relaxation test) for applying a large strain to homopolypropylene is performed. From the residual stress value measured at this time, it can be calculated by the following equation 1.
[数式1]
残留応力比率=(RS1/RS0)×100
前記数式1中、RS0は、235℃下で前記ホモポリプロピレンに200%の変形を加えてから0.05秒未満のある一時点(t0)での残留応力であり、RS1は、235℃下でホモポリプロピレンに200%の変形を加えてから0.05秒〜1.50秒の間のある一時点(t1)での残留応力である。
[Formula 1]
Residual stress ratio = (RS 1 / RS 0 ) × 100
In the above formula 1, RS 0 is the residual stress at a certain point (t 0 ) less than 0.05 seconds after applying 200% deformation to the homopolypropylene at 235 ° C., and RS 1 is 235 This is the residual stress at a point in time (t 1 ) between 0.05 and 1.50 seconds after 200% deformation of the homopolypropylene at 0 ° C.
また、前記数式1中、RS0は、235℃下でホモポリプロピレンに200%の変形を加えた直後[例えば、0.05秒未満のある一時点(t0)]での残留応力を示す。そして、前記数式1中、RS1は、前記RS0と同一の条件下、前記t0の後約1.5秒以内[例えば、0.05秒〜1.50秒の間のある一時点(t1)]での残留応力を示す。 In the above formula 1, RS 0 indicates the residual stress immediately after a 200% deformation of the homopolypropylene at 235 ° C. [for example, at a certain point (t 0 ) of less than 0.05 seconds]. Then, in Equation 1, RS 1 is within about 1.5 seconds after the t 0 under the same conditions as the RS 0 [for example, a certain time point between 0.05 seconds to 1.50 seconds ( t 1 )].
具体的には、前記数式1中、前記t0は、0.01秒、あるいは0.015秒、あるいは0.02秒、あるいは0.025秒、あるいは0.03秒、あるいは0.035秒、あるいは0.04秒、あるいは0.045秒から選択される。そして、前記数式1中、t1は、0.05秒、あるいは0.10秒、あるいは0.20秒、あるいは0.30秒、あるいは0.40秒、あるいは0.50秒、あるいは0.60秒、あるいは0.70秒、あるいは0.80秒、あるいは0.90秒、あるいは1.00秒、あるいは1.10秒、あるいは1.20秒、あるいは1.30秒、あるいは1.40秒、あるいは1.50秒から選択される。好ましくは、残留応力の測定時、有効なデータを容易に確保するために、前記数式1中、t0は0.02秒であり、t1は1.00秒であるのが有利でありうる。 Specifically, in Equation 1, wherein t 0 is 0.01 seconds, or 0.015 seconds, or 0.02 seconds, or 0.025 seconds, or 0.03 seconds, or 0.035 seconds, Alternatively, 0.04 seconds or 0.045 seconds is selected. In the above formula 1, t 1 is 0.05 seconds, 0.10 seconds, 0.20 seconds, 0.30 seconds, 0.40 seconds, 0.50 seconds, or 0.60 seconds. Seconds, or 0.70 seconds, or 0.80 seconds, or 0.90 seconds, or 1.00 seconds, or 1.10 seconds, or 1.20 seconds, or 1.30 seconds, or 1.40 seconds, Alternatively, it is selected from 1.50 seconds. Preferably, in the measurement of the residual stress, in order to easily secure valid data, in Expression 1, t 0 is 0.02 seconds, and t 1 may be advantageously 1.00 seconds. .
そして、前記ホモポリプロピレンの残留応力比率は、不織布の製造時、メルトブローイングを行うための工程条件と類似の環境(例えば、235℃)下で測定される。前記235℃の温度は、ホモポリプロピレン組成物を完全に溶かしてメルトブローイングを行うのに適した温度に相当する。 The residual stress ratio of the homopolypropylene is measured in an environment (for example, 235 ° C.) similar to the process conditions for performing melt blowing during the production of the nonwoven fabric. The temperature of 235 ° C. corresponds to a temperature suitable for completely dissolving the homopolypropylene composition and performing meltblowing.
通常、不織布は、樹脂の溶融状態で繊維に紡糸し、クーリング(cooling)により半溶融状態での延伸工程を行うことにより製造される。この時、前記数式1による残留応力比率が0.05%超過と高い場合、変形に対して高い抵抗性を示すため、紡糸工程で紡糸性が良くなくて、太さが細いながらも均一な繊維の製造が難しい。また、断糸発生率が高いため、繊維生成工程中に断糸発生によって繊維を生産できない時間が長くなるなど加工性が低下し、連続的な紡糸工程の実行が難しい。さらに、ウェブ形成性(web formation)が不良であるため、強度低下の恐れがある。 Usually, a nonwoven fabric is produced by spinning a fiber in a molten state of a resin and performing a drawing step in a semi-molten state by cooling. At this time, when the residual stress ratio according to Equation 1 is as high as more than 0.05%, high resistance to deformation is exhibited, so that the spinning process has poor spinnability, and a thin but uniform fiber. Is difficult to manufacture. In addition, since the yarn breakage occurrence rate is high, the processability is deteriorated, for example, the time during which the fiber cannot be produced due to the yarn breakage during the fiber generation process is reduced, and it is difficult to continuously execute the spinning process. Furthermore, since the web formation is poor, the strength may be reduced.
これに対し、本発明によるホモポリプロピレンは、0.05%以下の低い残留応力比率を有するため、太さが細いながらも均一な繊維の製造が可能であり、優れた加工性で高剛性の低坪量不織布の製造が可能である。 On the other hand, the homopolypropylene according to the present invention has a low residual stress ratio of 0.05% or less, so that it is possible to produce a uniform fiber having a small thickness, and has excellent workability and high rigidity. The production of basis weight nonwoven fabric is possible.
残留応力比率の制御による繊維加工性の改善効果を考慮する時、前記ホモポリプロピレンの残留応力比率は、より具体的には0.005〜0.05%、さらにより具体的には0.005〜0.03%、あるいは0.02〜0.03%であってもよい。 When considering the effect of improving the fiber workability by controlling the residual stress ratio, the residual stress ratio of the homopolypropylene is more specifically 0.005 to 0.05%, still more specifically 0.005 to 0.05%. It may be 0.03%, or 0.02 to 0.03%.
また、前記ホモポリプロピレンは、キシレン可溶分(xylene solubles;Xs)が1.0重量%以下と高い立体規則度(tacticity)を示す。 Further, the homopolypropylene has a high tacticity of 1.0% by weight or less in xylene solubles (Xs).
本発明において、キシレン可溶分は、ホモポリプロピレンをキシレン中に溶解させ、冷却溶液から不溶性部分を結晶化させて、結晶化された冷却キシレン中における可溶性の重合体の含有量(重量%)で、キシレン可溶分は低い立体規則性の重合体鎖を含有する。これにより、キシレン可溶分の含有量が低いほど、高い立体規則度を有する。本発明の一実施形態によるホモポリプロピレンは、このように高い立体規則度を有することによって、不織布の製造時、優れた剛性を示すことができる。キシレン可溶分の制御による改善効果の優秀さを考慮する時、前記ホモポリプロピレンのキシレン可溶分は、より具体的には0.5〜1.0重量%、さらにより具体的には0.6〜0.7重量%であってもよい。 In the present invention, the xylene-soluble component is obtained by dissolving homopolypropylene in xylene, crystallizing an insoluble portion from a cooling solution, and calculating a content (% by weight) of a soluble polymer in the crystallized cooling xylene. The xylene solubles contain low stereoregular polymer chains. Thus, the lower the content of the xylene-soluble component, the higher the stereoregularity. The homopolypropylene according to an embodiment of the present invention has such a high stereoregularity, so that it can exhibit excellent rigidity when manufacturing a nonwoven fabric. When considering the improvement effect by controlling the xylene-soluble content, the xylene-soluble content of the homopolypropylene is more specifically 0.5 to 1.0% by weight, and even more specifically, 0.1 to 1.0% by weight. It may be 6 to 0.7% by weight.
また、本発明において、前記キシレン可溶分は、ホモポリプロピレンサンプルにキシレンを入れて、135℃で1時間加熱後、30分間冷却して前処理し、OminiSec(Viscotek社のFIPA)装備で1mL/minの流速(flow rate)で4時間キシレンを流して、RI(Refractive Index)、DP(Pressure across middle of bridge)、IP(Inlet pressure through bridge top to bottom)のベースライン(base line)が安定化されると、前処理したサンプルの濃度およびインジェクション量を記入して測定後、ピーク面積を計算することにより測定できる。 In addition, in the present invention, the xylene-soluble component is prepared by adding xylene to a homopolypropylene sample, heating at 135 ° C. for 1 hour, pre-cooling for 30 minutes, and using an OminiSec (FIPA from Viscotek) at 1 mL / mL. Xylene is flowed for 4 hours at a flow rate of min, and RI (Refractive Index), DP (Pressure cross middle of bridge), and IP (Inlet pressure through line top to bottom stabilization). Then, the concentration and the injection amount of the pretreated sample are entered and measured, and then the peak area can be calculated.
さらに、上述したMI、MWD、残留応力比率、およびキシレン可溶分条件と共に、前記ホモポリプロピレンは、150〜155℃、より具体的には152〜154℃の融点(Tm)を有することができる。前記範囲内のTmを有する場合、優れた紡糸性および生産性を示すことができる。 Further, along with the MI, MWD, residual stress ratio, and xylene solubles conditions described above, the homopolypropylene can have a melting point (Tm) of 150-155 ° C, more specifically 152-154 ° C. When it has a Tm within the above range, excellent spinnability and productivity can be exhibited.
一方、本発明において、前記融点は、示差走査熱量計(Differential Scanning Calorimeter;DSC)を用いて測定できる。具体的には、ホモポリプロピレンの温度を200℃まで上昇させた後、5分間その温度で維持し、次に、30℃まで下降させた後、再び温度を上昇させて、DSC(Differential Scanning Calorimeter、TA社製造)曲線の頂点を融点として測定できる。この時、温度の上昇と下降の速度は、それぞれ10℃/minであり、融点は、2番目に温度が上昇する区間で測定した結果である。 Meanwhile, in the present invention, the melting point can be measured by using a differential scanning calorimeter (DSC). Specifically, after raising the temperature of the homopolypropylene to 200 ° C., maintaining the temperature for 5 minutes, then lowering the temperature to 30 ° C., then raising the temperature again, and using DSC (Differential Scanning Calorimeter, The peak of the curve can be measured as the melting point. At this time, the rate of temperature rise and fall is 10 ° C./min, respectively, and the melting point is the result of measurement in the second temperature rise section.
このような物性的特徴を有する発明の一実施形態によるホモポリプロピレンは、触媒活性成分として下記化学式1の化合物を含む触媒組成物の存在下、水素をプロピレン単量体の総重量に対して700〜2500ppm投入してプロピレン単量体を重合する段階を含む製造方法によって製造される: The homopolypropylene according to an embodiment of the present invention having such physical characteristics has a hydrogen content of 700 to 700 wt% based on the total weight of the propylene monomer in the presence of a catalyst composition containing a compound of the following chemical formula 1 as a catalytically active component. Produced by a production method including the step of polymerizing propylene monomer at a dosage of 2500 ppm:
前記化学式1において、
Aは、炭素、シリコン、またはゲルマニウムであり、
X1およびX2は、それぞれ独立して、ハロゲンであり、
R1およびR5は、それぞれ独立して、C1-20アルキルで置換されたC6-20アリールであり、
R2〜R4、およびR6〜R8は、それぞれ独立して、水素、ハロゲン、C1-20アルキル、C2-20アルケニル、C1-20アルキルシリル、C1-20シリルアルキル、C1-20アルコキシシリル、C1-20エーテル、C1-20シリルエーテル、C1-20アルコキシ、C6-20アリール、C7-20アルキルアリール、またはC7-20アリールアルキルであり、
R9およびR10は、互いに同一であり、C2-20アルキルである。
In the above chemical formula 1,
A is carbon, silicon, or germanium;
X 1 and X 2 are each independently halogen,
R 1 and R 5 are each independently C 6-20 aryl substituted with C 1-20 alkyl;
R 2 to R 4 and R 6 to R 8 each independently represent hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, 1-20 alkoxysilyl, C 1-20 ether, C 1-20 silyl ether, C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl;
R 9 and R 10 are the same as each other and are C 2-20 alkyl.
本明細書において、特別な制限がない限り、次の用語は下記のように定義される。 In this specification, unless stated otherwise, the following terms are defined as follows.
ハロゲン(halogen)は、フッ素(F)、塩素(Cl)、臭素(Br)、またはヨウ素(I)であってもよい。 The halogen (halogen) may be fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).
C1-20アルキル基は、直鎖、分枝鎖または環状アルキル基であってもよい。具体的には、C1-20アルキル基は、C1-15直鎖アルキル基;C1-10直鎖アルキル基;C1-5直鎖アルキル基;C3-20分枝鎖または環状アルキル基;C3-15分枝鎖または環状アルキル基;またはC3-10分枝鎖または環状アルキル基であってもよい。より具体的には、C1-20のアルキル基は、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基、n−ペンチル基、iso−ペンチル基、neo−ペンチル基、またはシクロヘキシル基などであってもよい。 The C 1-20 alkyl group may be a straight, branched or cyclic alkyl group. Specifically, a C 1-20 alkyl group is a C 1-15 linear alkyl group; a C 1-10 linear alkyl group; a C 1-5 linear alkyl group; a C 3-20 branched or cyclic alkyl group. A C 3-15 branched or cyclic alkyl group; or a C 3-10 branched or cyclic alkyl group. More specifically, the C 1-20 alkyl group is a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, an n-pentyl group. , An iso-pentyl group, a neo-pentyl group, or a cyclohexyl group.
C2-20アルケニル基は、直鎖、分枝鎖または環状アルケニル基であってもよい。具体的には、C2-20アルケニル基は、C2-20直鎖アルケニル基、C2-10直鎖アルケニル基、C2-5直鎖アルケニル基、C3-20分枝鎖アルケニル基、C3-15分枝鎖アルケニル基、C3-10分枝鎖アルケニル基、C5-20の環状アルケニル基、またはC5-10の環状アルケニル基であってもよい。より具体的には、C2-20のアルケニル基は、エテニル基、プロペニル基、ブテニル基、ペンテニル基、またはシクロヘキセニル基などであってもよい。 The C 2-20 alkenyl group may be a straight, branched or cyclic alkenyl group. Specifically, the C 2-20 alkenyl group is a C 2-20 linear alkenyl group, a C 2-10 linear alkenyl group, a C 2-5 linear alkenyl group, a C 3-20 branched alkenyl group, It may be a C 3-15 branched alkenyl group, a C 3-10 branched alkenyl group, a C 5-20 cyclic alkenyl group, or a C 5-10 cyclic alkenyl group. More specifically, the C 2-20 alkenyl group may be an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, a cyclohexenyl group, or the like.
C6-30アリールは、モノサイクリック、ビサイクリックまたはトリサイクリック芳香族炭化水素を意味することができる。具体的には、C6-30アリールは、フェニル基、ナフチル基、またはアントラセニル基などであってもよい。 C 6-30 aryl can mean a monocyclic, bicyclic or tricyclic aromatic hydrocarbon. Specifically, the C 6-30 aryl may be a phenyl group, a naphthyl group, an anthracenyl group, or the like.
C7-30アルキルアリールは、アリールの1以上の水素がアルキルによって置換された置換基を意味することができる。具体的には、C7-30アルキルアリールは、メチルフェニル、エチルフェニル、n−プロピルフェニル、iso−プロピルフェニル、n−ブチルフェニル、iso−ブチルフェニル、tert−ブチルフェニル、またはシクロヘキシルフェニルなどであってもよい。 C 7-30 alkylaryl can mean a substituent in which one or more hydrogens of an aryl is replaced by an alkyl. Specifically, C7-30 alkylaryl is methylphenyl, ethylphenyl, n-propylphenyl, iso-propylphenyl, n-butylphenyl, iso-butylphenyl, tert-butylphenyl, cyclohexylphenyl, or the like. You may.
C7-30アリールアルキルは、アルキルの1以上の水素がアリールによって置換された置換基を意味することができる。具体的には、C7-30アリールアルキルは、ベンジル基、フェニルプロピル、またはフェニルヘキシルなどであってもよい。 C 7-30 arylalkyl can mean a substituent in which one or more hydrogens of the alkyl have been replaced by an aryl. Specifically, the C7-30 arylalkyl may be a benzyl group, phenylpropyl, or phenylhexyl and the like.
本発明の一実施形態によるホモポリプロピレンの製造に使用される触媒組成物は、前記化学式1の化合物を単一触媒として含む。これにより、従来2種以上の触媒を混合して使用する場合に製造されるホモポリプロピレンに比べて、分子量分布が顕著に狭くなりうる。 A catalyst composition used for preparing a homopolypropylene according to an embodiment of the present invention includes the compound of Formula 1 as a single catalyst. As a result, the molecular weight distribution may be significantly narrower than a homopolypropylene conventionally produced when two or more catalysts are used in combination.
さらに、前記化学式1の化合物は、インデニル基を含む2つのリガンドを連結するブリッジグループとして、炭素数2以上の同一のアルキル基で2置換された2価の官能基Aを含むことによって、原子サイズが増加し、可溶角度が増加するにつれて単量体の接近が容易で、より優れた触媒活性を示すことができる。 Further, the compound of Formula 1 includes a bivalent functional group A disubstituted with the same alkyl group having 2 or more carbon atoms as a bridge group connecting two ligands including an indenyl group, thereby increasing the atomic size. As the solubility angle increases and the solubility angle increases, the monomer can be easily accessed, and a better catalytic activity can be exhibited.
また、リガンドの2つのインデニル基とも、2番位置がメチル基で置換され、4番位置(R1およびR5)はそれぞれアルキル置換されたアリール基を含むことによって、十分な電子を供給できる誘導効果(Inductive effect)によってより優れた触媒活性を示すことができる。 In addition, both of the two indenyl groups of the ligand are substituted with a methyl group at the second position, and the fourth position (R 1 and R 5 ) contains an alkyl-substituted aryl group, so that sufficient electrons can be supplied. An excellent catalytic activity can be exhibited by the inductive effect.
さらに、前記化学式1の化合物は、中心金属としてジルコニウム(Zr)を含むことによって、Hfなどのような他の14族元素を含む時と比較して、電子を収容できるオービタルをさらに多く有していて、より高い親和力で単量体と簡単に結合することができ、その結果、より優れた触媒活性の改善効果を示すことができる。 Further, the compound of Formula 1 includes zirconium (Zr) as a central metal, and thus has more orbitals capable of accommodating electrons as compared with the case of including other Group 14 elements such as Hf. As a result, it is possible to easily bind to the monomer with a higher affinity, and as a result, it is possible to exhibit a more excellent effect of improving the catalytic activity.
より具体的には、前記化学式1において、R1およびR5は、それぞれ独立して、C1-10アルキルで置換されたC6-12アリール基であってもよいし、さらにより具体的には、tert−ブチルフェニルのようなC3-6分枝鎖アルキル基で置換されたフェニル基であってもよい。さらに、前記フェニル基に対するアルキル基の置換位置は、インデニル基に結合したR1またはR5位置とpara位置に相当する4番位置であってもよい。 More specifically, in Formula 1, R 1 and R 5 may each independently be a C 6-12 aryl group substituted with C 1-10 alkyl, or more specifically May be a phenyl group substituted with a C 3-6 branched alkyl group such as tert-butylphenyl. Further, the substitution position of the alkyl group with respect to the phenyl group may be the R 1 or R 5 position bonded to the indenyl group and the fourth position corresponding to the para position.
また、前記化学式1において、R2〜R4、およびR6〜R8は、それぞれ独立して、水素であってもよいし、X1およびX2は、それぞれ独立して、クロロであってもよい。 In Formula 1, R 2 to R 4 and R 6 to R 8 may each independently be hydrogen, and X 1 and X 2 each independently represent chloro. Is also good.
なお、前記化学式1において、Aは、シリコン(Si)であってもよいし、さらに、前記Aの置換基のR9およびR10は、溶解度を増大させて担持効率性を改善する側面から互いに同一であり、C2-10アルキル基であってもよく、より具体的には、C2-4直鎖状アルキル基、さらにより具体的には、それぞれエチルであってもよい。このようにブリッジグループのAに対する置換基として互いに同一のアルキル基を有することによって、従来ブリッジグループの元素に対する置換基が炭素数1のメチル基の場合、担持触媒の調製時、溶解度が良くなくて担持反応性が低下する問題を解決することができる。 In the chemical formula 1, A may be silicon (Si), and R 9 and R 10 of the substituents of A may be mutually different from the viewpoint of increasing the solubility and improving the carrying efficiency. It may be the same and may be a C 2-10 alkyl group, more specifically a C 2-4 linear alkyl group, and even more specifically each may be ethyl. As described above, by having the same alkyl group as a substituent for A in the bridge group, when the substituent for the element of the conventional bridge group is a methyl group having 1 carbon atom, the solubility is not good when preparing a supported catalyst. The problem that the loading reactivity decreases can be solved.
前記化学式1で表される化合物の代表的な例は、次の通りである: Representative examples of the compound represented by Formula 1 are as follows:
前記化学式1の化合物は、公知の反応を応用して合成され、より詳細な合成方法は、後述する製造例を参照することができる。 The compound of Formula 1 is synthesized by applying a known reaction. For a more detailed synthesis method, the production examples described below can be referred to.
一方、前記化学式1の化合物は、単一成分で使用されてもよく、担体に担持された担持触媒の状態で使用されてもよい。 Meanwhile, the compound of Formula 1 may be used as a single component, or may be used in the state of a supported catalyst supported on a carrier.
前記担体としては、表面に反応性が高いヒドロキシ基またはシロキサン基を有する担体を用いることができ、また、乾燥して表面に水分の除去されたものが使用可能である。例えば、高温で乾燥したシリカ、シリカ−アルミナ、およびシリカ−マグネシアなどが使用可能であり、これらは、通常、Na2O、K2CO3、BaSO4、およびMg(NO3)2などの酸化物、炭酸塩、硫酸塩、および硝酸塩成分を含有することができる。 As the carrier, a carrier having a highly reactive hydroxy group or siloxane group on its surface can be used, and a carrier whose surface has been dried to remove moisture can be used. For example, silica was dried at high temperatures, silica - alumina, and silica - magnesia, etc. can be used, oxidation of these are usually, Na 2 O, K 2 CO 3, BaSO 4, and Mg (NO 3) such as 2 , Carbonate, sulfate, and nitrate components.
前記担体の乾燥時、温度は、200〜800℃であってもよいし、300〜600℃または300〜400℃であってもよい。前記担体の乾燥温度が低すぎる場合には、担体に残留する水分が多すぎて表面の水分と助触媒とが反応する恐れがあり、乾燥温度が高すぎる場合には、担体表面の気孔が合わされるにつれて表面積が減少し、また、表面にヒドロキシ基が多く無くなってシロキサン基のみ残るようになって、助触媒との反応サイトが減少する恐れがある。 At the time of drying the carrier, the temperature may be 200 to 800C, or 300 to 600C or 300 to 400C. If the drying temperature of the carrier is too low, there is a risk that the moisture remaining on the carrier is too much and the surface moisture and the co-catalyst react.If the drying temperature is too high, the pores on the carrier surface are combined. As the surface area decreases, more hydroxyl groups are lost on the surface and only siloxane groups remain, which may reduce the number of reaction sites with the cocatalyst.
一例として、担体表面のヒドロキシ基の量は、0.1〜10mmol/gまたは0.5〜5mmol/gであってもよい。前記担体表面にあるヒドロキシ基の量は、担体の製造方法および条件または乾燥条件、例えば、温度、時間、真空またはスプレー乾燥などによって調節可能である。前記ヒドロキシ基の量が低すぎると、助触媒との反応サイトが少なく、多すぎると、担体粒子の表面に存在するヒドロキシ基以外に水分に起因するものである可能性がある。 As an example, the amount of hydroxy groups on the carrier surface may be 0.1 to 10 mmol / g or 0.5 to 5 mmol / g. The amount of the hydroxy group on the surface of the carrier can be adjusted by the method and conditions for producing the carrier or the drying conditions, such as temperature, time, vacuum or spray drying. If the amount of the hydroxy group is too low, the number of reaction sites with the co-catalyst is small, and if the amount is too large, it may be caused by moisture other than the hydroxyl group present on the surface of the carrier particles.
また、前記化学式1の化合物が担体に担持される場合、前記化学式1の化合物に対する担体の重量比は、1:1〜1:1000であってもよい。前記重量比で担体および化学式1の化合物を含む時、適切な担持触媒活性を示して、触媒の活性維持および経済性の側面から有利でありうる。より具体的には、化学式1の化合物に対する担体の重量比は、1:10〜1:30、さらにより具体的には1:15〜1:20であってもよい。 In addition, when the compound of Formula 1 is supported on a carrier, the weight ratio of the carrier to the compound of Formula 1 may be 1: 1 to 1: 1000. When the carrier and the compound of Formula 1 are included in the weight ratio, the catalyst may exhibit an appropriate supported catalyst activity, and may be advantageous in terms of maintaining the activity of the catalyst and economical aspects. More specifically, the weight ratio of the carrier to the compound of Formula 1 may be from 1:10 to 1:30, and even more specifically, from 1:15 to 1:20.
さらに、前記触媒組成物は、前記化学式1の化合物および担体のほか、高い活性と工程安定性を向上させる側面から、助触媒を追加的に含んでもよい。前記助触媒は、下記化学式2、化学式3、または化学式4で表される化合物のうちの1種以上を含むことができる。 In addition, the catalyst composition may further include a co-catalyst in addition to the compound of Formula 1 and the carrier, from the aspect of improving high activity and process stability. The co-catalyst may include at least one of compounds represented by the following Chemical Formula 2, Chemical Formula 3, or Chemical Formula 4.
[化学式2]
−[Al(R11)−O]m−
前記化学式2において、
R11は、互いに同一または異なっていてもよいし、それぞれ独立して、ハロゲン;C1-20の炭化水素;またはハロゲンで置換されたC1-20の炭化水素であり;
mは、2以上の整数であり;
[化学式3]
J(R12)3
前記化学式3において、
R12は、互いに同一または異なっていてもよいし、それぞれ独立して、ハロゲン;C1-20の炭化水素;またはハロゲンで置換されたC1-20の炭化水素であり;
Jは、アルミニウムまたはボロンであり;
[化学式4]
[E−H]+[ZQ4]-または[E]+[ZQ4]-
前記化学式4において、
Eは、中性または陽イオン性ルイス塩基であり;
Hは、水素原子であり;
Zは、13族元素であり;
Qは、互いに同一または異なっていてもよいし、それぞれ独立して、1以上の水素原子がハロゲン、C1-20の炭化水素、アルコキシまたはフェノキシで置換されるかもしくは非置換である、C6-20のアリール基またはC1-20のアルキル基である。
[Chemical formula 2]
- [Al (R 11) -O ] m -
In the above chemical formula 2,
R 11 may be the same or different from each other and are each independently a halogen; a C 1-20 hydrocarbon; or a C 1-20 hydrocarbon substituted with a halogen;
m is an integer of 2 or more;
[Chemical formula 3]
J (R 12 ) 3
In the above chemical formula 3,
R 12 may be the same or different from each other and are each independently a halogen; a C 1-20 hydrocarbon; or a C 1-20 hydrocarbon substituted with a halogen;
J is aluminum or boron;
[Chemical formula 4]
[E-H] + [ZQ 4] - or [E] + [ZQ 4] -
In the above chemical formula 4,
E is a neutral or cationic Lewis base;
H is a hydrogen atom;
Z is a Group 13 element;
Q may be the same as or different from each other, or independently of each other, C 6 , wherein one or more hydrogen atoms are substituted or unsubstituted with halogen, C 1-20 hydrocarbon, alkoxy or phenoxy; -20 aryl group or C 1-20 alkyl group.
前記化学式2で表される化合物の例としては、メチルアルミノキサン、エチルアルミノキサン、イソブチルアルミノキサン、ブチルアルミノキサンなどがあり、さらに具体的には、メチルアルミノキサンであってもよい。 Examples of the compound represented by Chemical Formula 2 include methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, butylaluminoxane, and more specifically, methylaluminoxane.
前記化学式3で表される化合物の例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリプロピルアルミニウム、トリブチルアルミニウム、ジメチルクロロアルミニウム、トリイソプロピルアルミニウム、トリ−s−ブチルアルミニウム、トリシクロペンチルアルミニウム、トリペンチルアルミニウム、トリイソペンチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、エチルジメチルアルミニウム、メチルジエチルアルミニウム、トリフェニルアルミニウム、トリ−p−トリルアルミニウム、ジメチルアルミニウムメトキシド、ジメチルアルミニウムエトキシド、トリメチルボロン、トリエチルボロン、トリイソブチルボロン、トリプロピルボロン、トリブチルボロンなどが含まれ、より具体的には、トリメチルアルミニウム、トリエチルアルミニウム、およびトリイソブチルアルミニウムの中から選択されるものであってもよい。 Examples of the compound represented by Formula 3 include trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, triisopropylaluminum, tri-s-butylaluminum, tricyclopentylaluminum, Pentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri-p-tolyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide, trimethyl boron, triethyl boron , Triisobutyl boron, tripropyl boron, tributyl boron Etc. include, more specifically, trimethylaluminum, or may be selected from among triethylaluminum, and triisobutylaluminum.
また、前記化学式4で表される化合物の例としては、トリエチルアンモニウムテトラフェニルボロン、トリブチルアンモニウムテトラフェニルボロン、トリメチルアンモニウムテトラフェニルボロン、トリプロピルアンモニウムテトラフェニルボロン、トリメチルアンモニウムテトラ(p−トリル)ボロン、トリメチルアンモニウムテトラ(o,p−ジメチルフェニル)ボロン、トリブチルアンモニウムテトラ(p−トリフルオロメチルフェニル)ボロン、トリメチルアンモニウムテトラ(p−トリフルオロメチルフェニル)ボロン、トリブチルアンモニウムテトラペンタフルオロフェニルボロン、N,N−ジエチルアニリニウムテトラフェニルボロン、N,N−ジエチルアニリニウムテトラペンタフルオロフェニルボロン、ジエチルアンモニウムテトラペンタフルオロフェニルボロン、トリフェニルホスホニウムテトラフェニルボロン、トリメチルホスホニウムテトラフェニルボロン、トリエチルアンモニウムテトラフェニルアルミニウム、トリブチルアンモニウムテトラフェニルアルミニウム、トリメチルアンモニウムテトラフェニルアルミニウム、トリプロピルアンモニウムテトラフェニルアルミニウム、トリメチルアンモニウムテトラ(p−トリル)アルミニウム、トリプロピルアンモニウムテトラ(p−トリル)アルミニウム、トリエチルアンモニウムテトラ(o,p−ジメチルフェニル)アルミニウム、トリブチルアンモニウムテトラ(p−トリフルオロメチルフェニル)アルミニウム、トリメチルアンモニウムテトラ(p−トリフルオロメチルフェニル)アルミニウム、トリブチルアンモニウムテトラペンタフルオロフェニルアルミニウム、N,N−ジエチルアニリニウムテトラフェニルアルミニウム、N,N−ジエチルアニリニウムテトラペンタフルオロフェニルアルミニウム、ジエチルアンモニウムテトラペンタテトラフェニルアルミニウム、トリフェニルホスホニウムテトラフェニルアルミニウム、トリメチルホスホニウムテトラフェニルアルミニウム、トリプロピルアンモニウムテトラ(p−トリル)ボロン、トリエチルアンモニウムテトラ(o,p−ジメチルフェニル)ボロン、トリブチルアンモニウムテトラ(p−トリフルオロメチルフェニル)ボロン、トリフェニルカルボニウムテトラ(p−トリフルオロメチルフェニル)ボロン、またはトリフェニルカルボニウムテトラペンタフルオロフェニルボロンなどが挙げられ、これらのうちのいずれか1または2以上の混合物が使用できる。 Examples of the compound represented by Formula 4 include triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, trimethylammonium tetra (p-tolyl) boron, Trimethylammonium tetra (o, p-dimethylphenyl) boron, tributylammonium tetra (p-trifluoromethylphenyl) boron, trimethylammonium tetra (p-trifluoromethylphenyl) boron, tributylammonium tetrapentafluorophenylboron, N, N -Diethylanilinium tetraphenylboron, N, N-diethylaniliniumtetrapentafluorophenylboron, diethylammonium Tetrapentafluorophenyl boron, triphenyl phosphonium tetraphenyl boron, trimethyl phosphonium tetraphenyl boron, triethyl ammonium tetraphenyl aluminum, tributyl ammonium tetraphenyl aluminum, trimethyl ammonium tetraphenyl aluminum, tripropyl ammonium tetraphenyl aluminum, trimethyl ammonium tetraphenyl (p -Tolyl) aluminum, tripropylammoniumtetra (p-tolyl) aluminum, triethylammoniumtetra (o, p-dimethylphenyl) aluminum, tributylammoniumtetra (p-trifluoromethylphenyl) aluminum, trimethylammoniumtetra (p-trifluoro) Methylphenyl) aluminum , Tributylammonium tetrapentafluorophenylaluminum, N, N-diethylanilinium tetraphenylaluminum, N, N-diethylanilinium tetrapentafluorophenylaluminum, diethylammonium tetrapentatetraphenylaluminum, triphenylphosphoniumtetraphenylaluminum, trimethylphosphonium Tetraphenylaluminum, tripropylammonium tetra (p-tolyl) boron, triethylammoniumtetra (o, p-dimethylphenyl) boron, tributylammoniumtetra (p-trifluoromethylphenyl) boron, triphenylcarboniumtetra (p-tolyl) Fluoromethylphenyl) boron or triphenylcarbonium tetrapentafluorophene Nilboron and the like, and any one or a mixture of two or more of them can be used.
前記助触媒がさらに含まれる場合、前記化学式1の化合物に対する助触媒の重量比は、1:1〜1:20であってもよい。前記重量比で助触媒および化学式1の化合物を含む時、適切な担持触媒活性を示して、触媒の活性維持および経済性の側面から有利でありうる。より具体的には、化学式1の化合物に対する助触媒の重量比は、1:5〜1:20、さらにより具体的には1:5〜1:15であってもよい。 When the co-catalyst is further included, the weight ratio of the co-catalyst to the compound of Formula 1 may be 1: 1 to 1:20. When the co-catalyst and the compound of the formula 1 are included in the above weight ratio, the catalyst exhibits appropriate supported catalyst activity, which may be advantageous in terms of maintaining the activity of the catalyst and economical aspects. More specifically, the weight ratio of co-catalyst to compound of Formula 1 may be from 1: 5 to 1:20, and even more specifically, from 1: 5 to 1:15.
前記触媒組成物が前記担体および助触媒をすべて含む場合、前記触媒組成物は、担体に助触媒化合物を担持させる段階と、前記担体に前記化学式1で表される化合物を担持させる段階とを含む製造方法によって製造され、この時、助触媒と化学式1の化合物の担持順序は、必要に応じて変化可能である。 When the catalyst composition includes all of the carrier and the co-catalyst, the catalyst composition includes a step of supporting a co-catalyst compound on a carrier, and a step of supporting the compound represented by Formula 1 on the carrier. In this case, the order of loading the co-catalyst and the compound of Formula 1 can be changed as needed.
この時、前記触媒組成物の製造時に、反応溶媒として、ペンタン、ヘキサン、ヘプタンなどのような炭化水素系溶媒、またはベンゼン、トルエンなどのような芳香族系溶媒が使用できる。 At this time, a hydrocarbon solvent such as pentane, hexane, heptane, or the like, or an aromatic solvent such as benzene, toluene, or the like can be used as a reaction solvent when the catalyst composition is manufactured.
一方、発明の一実施形態によるホモポリプロピレンの製造方法において、前記重合工程は、前記化学式1で表される化合物を含む触媒組成物とプロピレンとを水素気体下で接触させることにより行われる。 On the other hand, in the method for producing a homopolypropylene according to one embodiment of the present invention, the polymerization step is performed by bringing a catalyst composition containing the compound represented by the chemical formula 1 into contact with propylene under a hydrogen gas.
この時、前記水素気体は、プロピレン単量体の総重量に対して700〜2500ppmの含有量で投入される。前記水素気体の使用量を調節して、十分な触媒活性を示しながらも、製造されるホモポリプロピレン組成物の分子量分布および流動性を所望の範囲内に調節可能であり、これにより、用途に応じて適切な物性を有するホモプロピレン重合体を製造することができる。水素気体の投入量が700ppm未満であれば、製造されるホモポリプロピレンのMIが大きく低くなって、加工性が低下する恐れがあり、2500ppmを超える場合、MIが過度に高くなって、不織布の製造時、強度特性および粗さ特性が低下しうる。より具体的には、前記水素気体は、700ppm以上、または1500ppm以上、または1750ppm以上かつ、2500ppm以下、または2000ppm以下の含有量で投入される。 At this time, the hydrogen gas is introduced at a content of 700 to 2500 ppm based on the total weight of the propylene monomer. By adjusting the amount of the hydrogen gas used, it is possible to adjust the molecular weight distribution and the fluidity of the produced homopolypropylene composition within a desired range while exhibiting a sufficient catalytic activity. Thus, a homopropylene polymer having appropriate physical properties can be produced. If the input amount of the hydrogen gas is less than 700 ppm, the MI of the produced homopolypropylene is significantly reduced, and the processability may be reduced. If the amount exceeds 2500 ppm, the MI becomes excessively high, and the production of the nonwoven fabric is increased. At the same time, strength properties and roughness properties may be reduced. More specifically, the hydrogen gas is introduced at a content of 700 ppm or more, or 1500 ppm or more, or 1750 ppm or more, and 2500 ppm or less or 2000 ppm or less.
前記重合工程は、連続式重合工程で行われ、例えば、連続式溶液重合工程、バルク重合工程、懸濁重合工程、スラリー重合工程、または乳化重合工程など、オレフィン単量体の重合反応として知られた多様な重合工程が採用可能である。特に、均一な分子量分布を得て、製品の商業的生産の側面からは、連続式バルク−スラリー重合工程が好ましい。 The polymerization step is performed in a continuous polymerization step, such as a continuous solution polymerization step, a bulk polymerization step, a suspension polymerization step, a slurry polymerization step, or an emulsion polymerization step, which is known as a polymerization reaction of olefin monomers. Various polymerization processes can be employed. In particular, a continuous bulk-slurry polymerization step is preferred from the viewpoint of obtaining a uniform molecular weight distribution and commercial production of the product.
また、前記重合反応は、約40〜110℃または約60〜100℃の温度と、約1〜100kgf/cm2の圧力下で行われる。 Further, the polymerization reaction is performed at a temperature of about 40 to 110 ° C. or about 60 to 100 ° C. under a pressure of about 1 to 100 kgf / cm 2 .
さらに、前記重合反応において、前記触媒は、ペンタン、ヘキサン、ヘプタン、ノナン、デカン、トルエン、ベンゼン、ジクロロメタン、クロロベンゼンなどのような溶媒に溶解または希釈した状態で投入される。この時、前記溶媒を少量のアルキルアルミニウムなどで処理することによって、触媒に悪影響を及ぼしうる少量の水または空気などを予め除去することができる。 Further, in the polymerization reaction, the catalyst is added in a state of being dissolved or diluted in a solvent such as pentane, hexane, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like. At this time, by treating the solvent with a small amount of alkyl aluminum or the like, a small amount of water or air, which may have an adverse effect on the catalyst, can be removed in advance.
前記製造方法によって製造された発明の一実施形態によるホモポリプロピレンは、低い残留応力比率およびキシレン可溶分と共に、最適範囲のMIおよび狭い分子量分布を有することによって、太さが細いながらも均一な繊維の製造が可能であり、さらに、既存の製品より粗い触感を付与するだけでなく、高い強度で簡単に破れない優れた強靭性を同時に実現することができる。これにより、高剛性と共に、大きい表面粗さが要求される不織布、具体的には、たわしのような洗浄用不織布の製造に特に有用である。 The homopolypropylene according to an embodiment of the present invention, which is manufactured by the above manufacturing method, has a low residual stress ratio and a xylene-soluble content, and has an MI in an optimum range and a narrow molecular weight distribution. Not only can give a rougher feel than existing products, but also can realize high toughness that is not easily broken with high strength. This is particularly useful in the production of nonwoven fabrics that require high rigidity and large surface roughness, specifically, nonwoven fabrics for cleaning such as scourers.
これにより、本発明のさらに他の実施形態によれば、前記ホモポリプロピレンを含む不織布用樹脂組成物およびこれを用いて製造された不織布が提供される。この時、前記不織布は、たわしのような洗浄用不織布であってもよいし、さらにより具体的には、使い捨てたわしなどであってもよい。 Thus, according to still another embodiment of the present invention, there is provided a nonwoven fabric resin composition containing the homopolypropylene and a nonwoven fabric manufactured using the same. At this time, the nonwoven fabric may be a cleaning nonwoven fabric such as a scourer, or more specifically, a disposable scourer.
前記不織布用樹脂組成物および不織布は、前記ホモポリプロピレンを用いることを除けば、通常の方法により製造可能である。 The nonwoven fabric resin composition and the nonwoven fabric can be manufactured by a usual method except that the homopolypropylene is used.
以下、本発明の理解のために好ましい実施例を提示する。ただし、下記の実施例は本発明を例示するためのものに過ぎず、本発明の内容が下記の実施例によって限定されるものではない。 Hereinafter, preferred embodiments will be presented for understanding the present invention. However, the following examples are only for illustrating the present invention, and the contents of the present invention are not limited by the following examples.
(製造例1)
段階1)(ジエチルシラン−ジイル)−ビス(2−メチル−4−(4−tert−ブチル−フェニル)インデニル)シランの製造
2−メチル−4−tert−ブチル−フェニルインデン(20.0g)をトルエン/THFの体積比=10/1溶液(220mL)に溶解させた後、n−ブチルリチウム溶液(2.5M、ヘキサン溶媒、22.2g)を0℃でゆっくり滴加した後、常温で1日間撹拌した。結果の混合溶液に対して、−78℃でジエチルジクロロシラン(6.2g)をゆっくり滴加して約10分間撹拌した後、常温で1日間さらに撹拌した。その後、水を加えて有機層を分離し、溶媒を減圧蒸留して、(ジエチルシラン−ジイル)−ビス(2−メチル−4−(4−tert−ブチル−フェニル)インデニル)シランを得た。
(Production Example 1)
Step 1) Preparation of (diethylsilane-diyl) -bis (2-methyl-4- (4-tert-butyl-phenyl) indenyl) silane 2-methyl-4-tert-butyl-phenylindene (20.0 g) was prepared. After dissolving in a toluene / THF volume ratio = 10/1 solution (220 mL), an n-butyllithium solution (2.5 M, hexane solvent, 22.2 g) was slowly added dropwise at 0 ° C., and then added at room temperature. Stirred for days. Diethyldichlorosilane (6.2 g) was slowly added dropwise to the resulting mixed solution at -78 ° C, and the mixture was stirred for about 10 minutes, and further stirred at room temperature for 1 day. Thereafter, water was added to separate the organic layer, and the solvent was distilled under reduced pressure to obtain (diethylsilane-diyl) -bis (2-methyl-4- (4-tert-butyl-phenyl) indenyl) silane.
段階2)[(ジエチルシラン−ジイル)−ビス(2−メチル−4−(4−tert−ブチル−フェニル)インデニル)]ジルコニウムジクロライドの製造
前記段階1で製造した(ジエチルシラン−ジイル)−ビス(2−メチル−4−tert−ブチル−フェニルインデニル)シランをトルエン/THFの体積比=5/1溶液(120mL)に溶解させた後、n−ブチルリチウム溶液(2.5M、ヘキサン溶媒、22.2g)を−78℃でゆっくり滴加し、常温で1日間撹拌した。結果として得られた反応液に対して、ジルコニウムクロライド(8.9g)をトルエン(20mL)に希釈して製造した溶液を−78℃でゆっくり滴加し、常温で1日間撹拌した。結果として得られた反応液中の溶媒を減圧除去した後、ジクロロメタンを入れて濾過し、濾液を減圧蒸留して除去した。トルエンとヘキサンを用いて再結晶をして、高純度のrac−[(ジエチルシラン−ジイル)−ビス(2−メチル−4−(4−tert−ブチル−フェニル)インデニル)]ジルコニウムジクロライド(10.1g、収率34%、rac:mesoの重量比=20:1)を得た。
Step 2) Preparation of [(diethylsilane-diyl) -bis (2-methyl-4- (4-tert-butyl-phenyl) indenyl)] zirconium dichloride (Diethylsilane-diyl) -bis ( After dissolving 2-methyl-4-tert-butyl-phenylindenyl) silane in a toluene / THF volume ratio = 5/1 solution (120 mL), an n-butyllithium solution (2.5 M, hexane solvent, 22 .2g) was slowly added dropwise at -78 ° C and stirred at room temperature for 1 day. A solution prepared by diluting zirconium chloride (8.9 g) in toluene (20 mL) was slowly added dropwise to the resulting reaction solution at -78 ° C, and the mixture was stirred at room temperature for 1 day. After the solvent in the resulting reaction solution was removed under reduced pressure, dichloromethane was added and filtered, and the filtrate was removed by distillation under reduced pressure. After recrystallization using toluene and hexane, rac-[(diethylsilane-diyl) -bis (2-methyl-4- (4-tert-butyl-phenyl) indenyl)] zirconium dichloride (10. 1 g, a yield of 34%, and a weight ratio of rac: meso = 20: 1) were obtained.
段階3)担持された触媒の製造
3L反応器にシリカ100gと10重量%のメチルアルミノキサン溶液(670g、溶媒:トルエン)を入れて、90℃で24時間反応させた。反応終了後に沈澱が終わると、上層部溶液は除去し、残りの反応生成物をトルエンで2回にわたって洗浄した。前記段階2で製造したアンサ−メタロセン化合物としてrac−[(ジエチルシラン−ジイル)−ビス(2−メチル−4−(4−tert−ブチル−フェニル)インデニル)]ジルコニウムジクロライド5.8gをトルエン500mlに希釈させて前記反応器に添加し、70℃で5時間反応させた。反応終了後に沈澱が終わると、上層部溶液は除去し、残りの反応生成物をトルエンで洗浄した後、ヘキサンで再び洗浄し、真空乾燥して、固体粒子形態のシリカ担持メタロセン触媒150gを得た。
Step 3) Production of Supported Catalyst 100 g of silica and a 10% by weight methylaluminoxane solution (670 g, solvent: toluene) were placed in a 3 L reactor and reacted at 90 ° C. for 24 hours. When precipitation was completed after the completion of the reaction, the upper layer solution was removed, and the remaining reaction product was washed twice with toluene. 5.8 g of rac-[(diethylsilane-diyl) -bis (2-methyl-4- (4-tert-butyl-phenyl) indenyl)] zirconium dichloride as the answer metallocene compound prepared in Step 2 was added to 500 ml of toluene. It diluted and added to the said reactor, and it was made to react at 70 degreeC for 5 hours. When precipitation was completed after the completion of the reaction, the upper layer solution was removed, and the remaining reaction product was washed with toluene, washed again with hexane, and dried under vacuum to obtain 150 g of a silica-supported metallocene catalyst in the form of solid particles. .
(製造例2)
前記製造例1の段階2で製造した遷移金属化合物の代わりに、ジエチルシランジイル(2−エチル−4−(4’−tert−ブチル−フェニル)インデニル)(2−メチル−4−(4’−tert−ブチル−フェニル)インデニル)ジルコニウムジクロライド(Diethylsilandiyl(2−ethyl−4−(4’−tert−butyl−phenyl)−indenyl)(2−methyl−4−(4’−tert−butyl−phenyl)indenyl)zirconium dichloride)を用いることを除けば、製造例1の段階3と同様の方法で行って、シリカ担持メタロセン触媒を製造した。
(Production Example 2)
Instead of the transition metal compound prepared in Step 2 of Preparation Example 1, diethylsilanediyl (2-ethyl-4- (4'-tert-butyl-phenyl) indenyl) (2-methyl-4- (4'- tert-butyl-phenyl) indenyl) zirconium dichloride (Diethylsilandiyl (2-ethyl-4- (4′-tert-butyl-phenyl) -indenyl) (2-methyl-4- (4′-tert-butyl-phenyl) indenyl) A) Silica-supported metallocene catalyst was prepared in the same manner as in Step 3 of Preparation Example 1 except that zirconium dichloride) was used.
(製造例3)
前記製造例1の段階2で製造した遷移金属化合物の代わりに、ジメチルシランジイルビス(2−メチルインデニル)ジルコニウムジクロライド(Dimethylsilanediyl bis(2−methylindenyl)zirconium dichloride)を用いることを除けば、製造例1の段階3と同様の方法で行って、シリカ担持メタロセン触媒を製造した。
(Production Example 3)
Preparation example except that dimethylsilanediylbis (2-methylindenyl) zirconium dichloride (2-methylindenyl) zirconium dichloride was used instead of the transition metal compound prepared in step 2 of Preparation example 1. In the same manner as in Step 3 of Step 1, a silica-supported metallocene catalyst was produced.
(製造例4)
前記製造例1の段階2で製造した遷移金属化合物の代わりに、ジメチルシランジイルビス(2−メチル−4−(4−tert−ブチルフェニル)インデニル)ジルコニウムジクロライド(Dimethylsilanediyl bis(2−methyl−4−(4−tert−butylphenyl)indenyl)zirconium dichloride)を用いることを除けば、製造例1の段階3と同様の方法で行って、シリカ担持メタロセン触媒を製造した。
(Production Example 4)
Instead of the transition metal compound prepared in Step 2 of Preparation Example 1, dimethylsilanediylbis (2-methyl-4- (4-tert-butylphenyl) indenyl) zirconium dichloride (Dimethylsilanediyl bis (2-methyl-4-) A silica-supported metallocene catalyst was prepared in the same manner as in Step 3 of Preparation Example 1 except that (4-tert-butylphenyl) indenyl) zirconium dichloride was used.
(製造例5)
前記製造例1の段階2で製造した遷移金属化合物の代わりに、下記構造の化合物(I)を用いることを除けば、製造例1の段階3と同様の方法で行って、シリカ担持メタロセン触媒を製造した。
(Production Example 5)
Except for using the compound (I) having the following structure in place of the transition metal compound prepared in Step 2 of Preparation Example 1, a silica-supported metallocene catalyst was prepared in the same manner as in Step 3 of Preparation Example 1. Manufactured.
(実施例1)
前記製造例1で製造したシリカ担持メタロセン触媒の存在下、連続的な2基のループ反応器を用いてプロピレンのバルク−スラリー重合を進行させた。
(Example 1)
In the presence of the metallocene catalyst supported on silica prepared in Preparation Example 1, bulk-slurry polymerization of propylene was carried out using two continuous loop reactors.
この時、トリエチルアルミニウム(TEAL)および水素気体はそれぞれポンプを用いて下記表1に記載の含有量で投入し、バルク−スラリー重合のために、製造例1により製造した担持触媒を30重量%の含有量となるようにオイルおよびグリースに混合したマッド触媒形態で使用した。反応器の温度は70℃、時間あたりの生産量は略40kgで運転をした。 At this time, triethylaluminum (TEAL) and hydrogen gas were respectively supplied at the contents shown in Table 1 below using a pump, and the supported catalyst prepared according to Preparation Example 1 was used in an amount of 30% by weight for bulk-slurry polymerization. It was used in the form of a mud catalyst mixed with oil and grease to obtain a content. The reactor was operated at a temperature of 70 ° C. and a production amount per hour of about 40 kg.
実施例1の重合工程についての具体的な反応条件は、下記表1に示した通りであり、このような重合工程によりホモポリプロピレンを製造した。 Specific reaction conditions for the polymerization step of Example 1 are as shown in Table 1 below, and a homopolypropylene was produced by such a polymerization step.
(実施例2〜5)
下記表1に記載の条件で行うことを除けば、前記実施例1と同様の方法で行って、ホモプロピレンを製造した。
(Examples 2 to 5)
A homopropylene was produced in the same manner as in Example 1 except that the reaction was performed under the conditions shown in Table 1 below.
(比較例1)
Z/Nホモポリプロピレンとして市販のH7910○R(LG化学社製)を使用した。
(Comparative Example 1)
As Z / N homopolypropylene using commercially available H7910 ○ R (LG Chemical Co., Ltd.).
(比較例2〜4)
下記表1に記載の条件で行うことを除けば、前記実施例1と同様の方法で行って、ホモプロピレンを製造した。
(Comparative Examples 2 to 4)
A homopropylene was produced in the same manner as in Example 1 except that the reaction was performed under the conditions shown in Table 1 below.
(比較例5)
水素を500ppm投入することを除けば、前記実施例1と同様の方法で行って、ホモプロピレンを製造した。
(Comparative Example 5)
Homopropylene was produced in the same manner as in Example 1 except that 500 ppm of hydrogen was introduced.
(比較例6)
水素を3000ppm投入することを除けば、前記実施例1と同様の方法で行って、ホモプロピレンを製造した。
(Comparative Example 6)
Homopropylene was produced in the same manner as in Example 1 except that 3000 ppm of hydrogen was introduced.
(比較例7)
製造例5で製造したシリカ担持メタロセン触媒を用い、下記表1に記載の条件で行うことを除けば、前記実施例1と同様の方法で行って、ホモプロピレンを製造した。
(Comparative Example 7)
Using the silica-supported metallocene catalyst prepared in Preparation Example 5, homopropylene was prepared in the same manner as in Example 1 except that the reaction was performed under the conditions shown in Table 1 below.
(試験例1)
実施例および比較例で製造したホモポリプロピレンに対して、次の方法で物性評価を行った。その結果を下記表2に示した。
(Test Example 1)
Physical properties of the homopolypropylenes produced in Examples and Comparative Examples were evaluated by the following methods. The results are shown in Table 2 below.
(1)溶融指数(MI、g/10min):ASTM D1238により、230℃、2.16kg荷重で測定し、10分間溶融して出た重合体の重量(g)で示した。 (1) Melting index (MI, g / 10 min): Measured at 230 ° C. under a load of 2.16 kg according to ASTM D1238, and indicated by the weight (g) of the polymer melted for 10 minutes.
(2)キシレン可溶分(Xylene Soluble、重量%):それぞれのホモポリプロピレンサンプルにキシレンを入れて、135℃で1時間加熱し、30分間冷却して前処理をした。OminiSec(Viscotek社のFIPA)装備で1mL/minの流速(flow rate)で4時間キシレンを流して、RI(Refractive Index)、DP(Pressure across middle of bridge)、IP(Inlet pressure through bridge top to bottom)のベースライン(base line)が安定化されると、前処理したサンプルの濃度およびインジェクション量を記入して測定した後、ピーク面積を計算した。 (2) Xylene solubles (Xylene Soluble, wt%): Each homopolypropylene sample was charged with xylene, heated at 135 ° C. for 1 hour, cooled for 30 minutes, and pretreated. Xylene is flowed at a flow rate of 1 mL / min for 4 hours using a MiniSec (FIPA of Viscotek) equipment, and RI (Refractive Index), DP (Pressure cross-middle toe bleed bridge), and IP (Inlet bleed-through bleed-through bleed). When the base line was stabilized, the concentration and the injection amount of the pretreated sample were recorded and measured, and then the peak area was calculated.
(3)融点(Tm、℃)
測定しようとするホモポリプロピレンの温度を200℃まで上昇させた後、5分間その温度で維持し、次に、30℃まで下降させ、再び温度を上昇させて、DSC(Differential Scanning Calorimeter、TA社製造)曲線の頂点を融点とした。この時、温度の上昇と下降の速度は10℃/minであり、融点は2番目に温度が上昇する区間で測定した結果を用いた。
(3) Melting point (Tm, ° C)
After the temperature of the homopolypropylene to be measured is raised to 200 ° C., the temperature is maintained at that temperature for 5 minutes, then lowered to 30 ° C., and the temperature is raised again to obtain a DSC (Differential Scanning Calorimeter, manufactured by TA Company). ) The top of the curve was taken as the melting point. At this time, the rate of temperature rise and fall was 10 ° C./min, and the melting point used was the result measured in the second temperature rise section.
(4)重合体の分子量分布(MWD、polydispersity index):分子量分布(「Mw/Mn」)は、ゲル透過クロマトグラフィー(GPC)を用いてMwおよびMnを測定後、Mw/Mnの比で決定した。具体的には、Polymer Laboratories PLgel MIX−B300mm長さのカラムを用いて、Waters PL−GPC220機器を用いて測定した。この時、評価温度は160℃であり、1,2,4−トリクロロベンゼンを溶媒として用い、流速は1mL/minであった。サンプルは10mg/10mLの濃度に調製した後、200μLの量で供給した。ポリスチレン標準を利用して形成された検定曲線を用いてMwおよびMnの値を誘導した。ポリスチレン標準品の分子量(g/mol)は、2,000/10,000/30,000/70,000/200,000/700,000/2,000,000/4,000,000/10,000,000の9種を使用した。 (4) Molecular weight distribution (MWD, polydispersity index) of the polymer: The molecular weight distribution (“Mw / Mn”) is determined by measuring Mw and Mn using gel permeation chromatography (GPC) and then determining the ratio of Mw / Mn. did. Specifically, the measurement was performed using a Waters PL-GPC220 instrument using a Polymer Laboratories PLgel MIX-B 300 mm long column. At this time, the evaluation temperature was 160 ° C., 1,2,4-trichlorobenzene was used as a solvent, and the flow rate was 1 mL / min. The sample was prepared at a concentration of 10 mg / 10 mL and supplied in a volume of 200 μL. Mw and Mn values were derived using a calibration curve formed utilizing polystyrene standards. The molecular weight (g / mol) of the polystyrene standard is 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000. 9,000,000 were used.
(5)残留応力比率の測定
前記実施例と比較例によるホモポリプロピレンに対して、それぞれ試料を取って、235℃下で200%の変形(strain)を加えてから10分間残留応力の変化を測定した。
(5) Measurement of Residual Stress Ratio A sample was taken of each of the homopolypropylenes according to the examples and the comparative examples, and a change in the residual stress was measured for 10 minutes after applying 200% strain at 235 ° C. did.
前記残留応力の測定にはTA Instruments社のDiscovery Hybrid Rheometer(DHR)を用い、直径25mmの上下部プレート(plate)の間に試料を十分にローディングして、235℃下で溶かした後、ギャップ(gap)を1mmに固定して測定した。 For the measurement of the residual stress, using a Discovery Hybrid Rheometer (DHR) manufactured by TA Instruments, a sample was sufficiently loaded between upper and lower plates (25 mm in diameter), melted at 235 ° C., and then melted at 235 ° C. gap) was fixed at 1 mm and measured.
測定された残留応力のデータに基づき、下記数式1により残留応力比率(RS%)を算測し、下記表2に示した:
[数式1]
残留応力比率(Y)=(RS1/RS0)*100
前記数式1中、RS0は、235℃下で試料に200%の変形を加えてから0.02秒(t0)での残留応力であり、RS1は、235℃下で試料に200%の変形を加えてから1.00秒(t1)での残留応力である。
Based on the measured residual stress data, the residual stress ratio (RS%) was calculated according to the following Equation 1 and shown in Table 2 below:
[Formula 1]
Residual stress ratio (Y) = (RS 1 / RS 0 ) * 100
In Equation 1, RS 0 is the residual stress at 0.02 seconds (t 0 ) after applying 200% deformation to the sample at 235 ° C., and RS 1 is 200% at 235 ° C. Is the residual stress at 1.00 seconds (t 1 ) after the deformation was applied.
実験結果、本発明による製造方法によって製造された実施例1〜5のホモポリプロピレンは、狭いMWD、および200〜2000g/10minの範囲のMIと共に、低いキシレン可溶分および残留応力比率を示し、前記MIは水素投入量の増加に伴って増加した。また、実施例1〜5のホモポリプロピレンは、チーグラー・ナッタ触媒を用いて製造した比較例1のホモポリプロピレンと比較して、顕著に減少したキシレン可溶分および残留応力比率を示し、分子量分布も顕著に狭かった。 Experimental results show that the homopolypropylenes of Examples 1 to 5 produced by the production method according to the present invention show low xylene solubles and residual stress ratio with narrow MWD and MI in the range of 200 to 2000 g / 10 min. MI increased with increasing hydrogen input. In addition, the homopolypropylenes of Examples 1 to 5 showed significantly reduced xylene solubles and residual stress ratio as compared with the homopolypropylene of Comparative Example 1 produced using a Ziegler-Natta catalyst, and also had a molecular weight distribution. Notably narrow.
また、触媒活性物質として構造が異なる化合物を用いた比較例2〜4の場合、触媒構造の差による水素反応性の差で同等水準のMIを有する重合体の製造に要求される水素投入量が異なるが、同等水準のMIを有する実施例1と比較して、分子量分布が増加し、残留応力比率が大きく増加した。なお、リガンド構造は同一であるが、2つのリガンドを連結するブリッジグループとしてアルコキシアルキルのテザー基を含む化合物を用いた比較例7の場合、高いMWDおよび残留応力比率を示した。これから加工性の低下を確認できる。 Further, in the case of Comparative Examples 2 to 4 using compounds having different structures as the catalytically active substance, the hydrogen input amount required for producing a polymer having the same level of MI due to the difference in hydrogen reactivity due to the difference in the catalyst structure was reduced. Although different, the molecular weight distribution was increased and the residual stress ratio was significantly increased as compared with Example 1 having the same level of MI. In the case of Comparative Example 7, which has the same ligand structure but uses a compound containing a tether group of alkoxyalkyl as a bridge group connecting two ligands, a high MWD and a high residual stress ratio were exhibited. From this, a reduction in workability can be confirmed.
また、同一の触媒を使用しても水素投入量の条件を満たさない場合、比較例5および6のように溶融指数が過度に低かったりまたは高くて、加工性の低下を確認できる。 In addition, when the same catalyst is not used and the condition of the hydrogen input amount is not satisfied, the melting index is excessively low or high as in Comparative Examples 5 and 6, and a decrease in workability can be confirmed.
(試験例2)
<不織布の製造>
前記実施例と比較例によるホモポリプロピレンを含む樹脂組成物を用いて、メルトブローイング工程を行ってスパンボンド不織布を製造した。
(Test Example 2)
<Manufacture of nonwoven fabric>
A spunbonded nonwoven fabric was manufactured by performing a melt blowing process using the resin composition containing the homopolypropylene according to the example and the comparative example.
具体的には、25mmのツインスクリュー押出機を用いて、実施例および比較例によるホモポリプロピレンと、酸化防止剤としてIrganox 1010TM 2000ppmおよびIrgafos 168TM 2000ppmを含むマスターバッチを製造した後、これをペレット化した。次に、31mmのブラベンダー円錘状ツインスクリュー押出機を用いて溶融したマスターバッチ組成物をメルトポンプ(65rpm)に供給した後に、土出口(10個の土出口/cm)および381μmの土出口の直径を有する25cm幅のメルトブローイングダイに供給した点を除けば、文献[Report No.4364 of the Naval Research Laboratories、published May25、1954 entitled『Manufacture of Superfine Organic Fibers』by Wente、Van.A.Boone、C.D.、and Fluharty、E.L.]に記載のものと類似の工程によってマスターバッチペレットを極細繊維ウェブに押出した。 Specifically, using a 25 mm twin screw extruder, a master batch containing 2000 ppm of Irganox 1010 ™ and 2000 ppm of Irgafos 168 ™ as antioxidants and homopolypropylene according to Examples and Comparative Examples, and then pelletizing the same. It has become. Next, after feeding the melted master batch composition using a 31 mm Brabender conical twin screw extruder to a melt pump (65 rpm), a soil outlet (10 soil outlets / cm) and a 381 μm soil outlet were used. Reference No. [Report No. 1] except that it was fed to a 25 cm wide meltblowing die having a diameter of 4364 of the Naval Research Laboratories, published May 25, 1954 entitled "Manufacture of Superfine Organic Fibers" by Wente, Van. A. Boone, C.I. D. And Fluharty, E.C. L. The masterbatch pellets were extruded into a microfiber web by a process similar to that described above.
溶融温度は235℃であり、スクリュー速度は120rpmであり、ダイは235℃で維持され、1次空気温度および圧力はそれぞれ300℃および60kPa(8.7psi)であり、重合体の処理速度は5.44kg/hrであり、収集器/ダイの距離は15.2cmであった。 The melt temperature is 235 ° C., the screw speed is 120 rpm, the die is maintained at 235 ° C., the primary air temperature and pressure are 300 ° C. and 60 kPa (8.7 psi), respectively, and the polymer processing speed is 5 ° C. 0.44 kg / hr and the collector / die distance was 15.2 cm.
<不織布の物性評価>
前記実施例と比較例によるホモポリプロピレンを用いて製造したそれぞれのスパンボンド不織布に対して、下記の方法で物性評価を行い、その結果を下記表3に示した。
<Evaluation of physical properties of nonwoven fabric>
Physical properties of the spunbonded nonwoven fabrics manufactured using the homopolypropylenes of the above Examples and Comparative Examples were evaluated by the following methods, and the results are shown in Table 3 below.
(1)不織布の重量(gsm)
製造した不織布の重量を測定し、単位面積あたりの不織布の重量を算測した。
(1) Nonwoven fabric weight (gsm)
The weight of the manufactured nonwoven fabric was measured, and the weight of the nonwoven fabric per unit area was calculated.
(2)不織布の加工性
不織布の製造時、繊維の断糸発生の有無を確認し、下記の基準により不織布の加工性を評価した。
<評価基準>
良好:繊維の断糸発生率が10%以下、つまり、繊維を生産する24時間を基準として、断糸発生によって繊維を生産できない時間が2.4時間以下の場合、
不良:繊維の断糸発生率が10%超過、つまり、繊維を生産する24時間を基準として、断糸発生によって繊維を生産できない時間が2.4時間超過の場合
(2) Processability of nonwoven fabric During the production of the nonwoven fabric, the presence or absence of fiber breakage was confirmed, and the processability of the nonwoven fabric was evaluated according to the following criteria.
<Evaluation criteria>
Good: when the rate of fiber breakage is 10% or less, that is, when the time during which fiber cannot be produced due to breakage is 2.4 hours or less based on 24 hours of fiber production,
Defective: The rate of occurrence of fiber breakage exceeds 10%, that is, the time during which fiber cannot be produced due to breakage exceeds 2.4 hours based on 24 hours during which fiber is manufactured.
(3)不織布の強度
米国材料試験学会ASTM D5035:2011(2015)方法により、5cm幅カットストリップ法(Cut−strip)法によって不織布の縦方向(MD、machine direction)と横方向(CD、cross direction)に対する強度(Strength、N/5cm)を測定した。
(3) Strength of Nonwoven Fabric According to the method of American Society for Testing and Materials, ASTM D5035: 2011 (2015), the longitudinal direction (MD, machine direction) and the transverse direction (CD, cross direction) of the nonwoven fabric are determined by 5 cm width cut-strip method. ) Was measured (Strength, N / 5 cm).
(4)不織布の粗さ
10名のブラインドパネル評価により不織布の粗さを測定し、下記の基準により評価した:
<評価基準>
◎:不織布の感触について粗いとの評価が7名以上の場合に優れていると判断
○:不織布の感触について粗いとの評価が4〜6名の場合には良好と判断
△:不織布の感触について粗いとの評価が2〜3名の場合には普通と判断
×:不織布の感触について粗いとの評価が1名以下の場合に不良と判断
(4) Roughness of Nonwoven Fabric The roughness of the nonwoven fabric was measured by blind panel evaluation of 10 persons and evaluated according to the following criteria:
<Evaluation criteria>
◎: Judged that the evaluation of the feel of the nonwoven fabric as coarse was excellent when 7 or more people were good. ○: Judged as good when the evaluation of the feel of the nonwoven fabric was rough was 4 to 6 people. Δ: About the feel of the nonwoven fabric. If the evaluation of coarse is 2 or 3 people, it is judged as normal. X: The texture of the nonwoven fabric is judged as poor if the evaluation of being coarse is 1 or less.
本発明の一実施形態によりMI、MWD、キシレン可溶分、および残留応力比率をすべて最適化した実施例1〜5のホモポリプロピレンを用いて製造した不織布は、優れた加工性と共に、高強度および粗さを示した。さらに、実施例1〜5によるホモポリプロピレンの高い粗さ特性から、添加剤とのブレンディングなしに1次加工だけでも、高い粗さ特性が要求される洗浄用不織布の製造が可能であることが分かる。 According to one embodiment of the present invention, the nonwoven fabric manufactured using the homopolypropylenes of Examples 1 to 5, in which MI, MWD, xylene-soluble components, and residual stress ratios are all optimized, has high processability, high strength and The roughness was indicated. Furthermore, from the high roughness characteristics of the homopolypropylenes according to Examples 1 to 5, it can be seen that a nonwoven fabric for cleaning requiring high roughness characteristics can be produced only by primary processing without blending with an additive. .
一方、チーグラー・ナッタ触媒を用いて製造した比較例1の場合、加工性が不良であり、強度および粗さ特性が実施例1〜5と比較して大きく低下した。特に低い粗さ特性から、比較例1により製造されたホモポリプロピレンを用いて洗浄用不織布を製造するためには、粗さ特性を増加させるための添加剤とのブレンディングおよび2次加工が必須であることが分かる。 On the other hand, in the case of Comparative Example 1 manufactured using the Ziegler-Natta catalyst, the workability was poor, and the strength and roughness characteristics were significantly reduced as compared with Examples 1 to 5. In order to produce a nonwoven fabric for cleaning using the homopolypropylene produced according to Comparative Example 1 particularly from the low roughness characteristics, blending with an additive for increasing the roughness characteristics and secondary processing are essential. You can see that.
また、触媒活性物質として構造が異なる化合物を用いた比較例2〜4の場合、同一のMIを有する実施例1と比較して、高い残留応力比率によって加工性不良を示し、その結果としてウェブ形成性(web formation)が不良で強度の低下が発生した。 Also, in Comparative Examples 2 to 4 using compounds having different structures as the catalytically active substance, compared to Example 1 having the same MI, poor workability was exhibited due to a higher residual stress ratio, resulting in web formation. The strength was poor due to poor web formation.
なお、同一の触媒を使用しても、水素投入量の条件から外れて水素投入量が低すぎる比較例5の場合、MI値が200g/10min未満と低くなって不良な加工性を示した。反面、水素投入量が高すぎる比較例6の場合、2000g/10minを超えるMIによって低下した粗さ特性を示し、さらに、3.3超過の高いMWDおよびキシレン可溶分の増加によって、強度特性も実施例に比べて低下した。 In addition, even if the same catalyst was used, in the case of Comparative Example 5 in which the amount of hydrogen input was too low, deviating from the conditions of the amount of hydrogen input, the MI value was lower than 200 g / 10 min, indicating poor workability. On the other hand, in the case of Comparative Example 6 in which the amount of hydrogen input was too high, the roughness characteristic was lowered by the MI exceeding 2000 g / 10 min, and the strength characteristics were also increased by the increase of the MWD and the xylene solubles exceeding 3.3. The value was lower than that of the example.
また、リガンド構造は同一であるが、2つのリガンドを連結するブリッジグループとしてアルコキシアルキルのテザー基を含む化合物を用いた比較例7の場合、製造されるホモポリプロピレンが高いMWDおよび残留応力を有することによって加工性不良を示した。このような結果から、本発明による物性要件を満たすホモポリプロピレンの実現のためには、化学式1の構造を有する遷移金属化合物が好ましいことを確認できる。 Further, in the case of Comparative Example 7 in which a compound having an alkoxyalkyl tether group is used as a bridge group for linking two ligands having the same ligand structure, the produced homopolypropylene has high MWD and residual stress. Indicated poor workability. From these results, it can be confirmed that a transition metal compound having the structure of Chemical Formula 1 is preferable for realizing a homopolypropylene satisfying the physical properties according to the present invention.
Claims (14)
i)溶融指数(ASTM D1238により、230℃、2.16kg荷重で測定)200〜2000g/10min
ii)分子量分布3.3以下
iii)残留応力比率0.05%以下
iv)キシレン可溶分1.0重量%以下。 Homopolypropylene meeting the following conditions:
i) Melting index (measured according to ASTM D1238 at 230 ° C. under a load of 2.16 kg) 200 to 2000 g / 10 min
ii) Molecular weight distribution of 3.3 or less iii) Residual stress ratio of 0.05% or less iv) Xylene-soluble content of 1.0% by weight or less.
Aは、炭素、シリコン、またはゲルマニウムであり、
X1およびX2は、それぞれ独立して、ハロゲンであり、
R1およびR5は、それぞれ独立して、C1-20アルキルで置換されたC6-20アリールであり、
R2〜R4およびR6〜R8は、それぞれ独立して、水素、ハロゲン、C1-20アルキル、C2-20アルケニル、C1-20アルキルシリル、C1-20シリルアルキル、C1-20アルコキシシリル、C1-20エーテル、C1-20シリルエーテル、C1-20アルコキシ、C6-20アリール、C7-20アルキルアリール、またはC7-20アリールアルキルであり、
R9およびR10は、互いに同一であり、C2-20アルキルである。 The method for producing a homopolypropylene according to claim 1, comprising a step of introducing 700 to 2500 ppm of hydrogen to polymerize a propylene monomer in the presence of a catalyst composition containing a compound of the following Chemical Formula 1:
A is carbon, silicon, or germanium;
X 1 and X 2 are each independently halogen,
R 1 and R 5 are each independently C 6-20 aryl substituted with C 1-20 alkyl;
R 2 to R 4 and R 6 to R 8 each independently represent hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1 -20 alkoxysilyl, C1-20 ether, C1-20 silyl ether, C1-20 alkoxy, C6-20 aryl, C7-20 alkylaryl, or C7-20 arylalkyl;
R 9 and R 10 are the same as each other and are C 2-20 alkyl.
[化学式2]
−[Al(R11)−O]m−
前記化学式2において、
R11は、互いに同一または異なり、それぞれ独立して、ハロゲン;C1-20の炭化水素;またはハロゲンで置換されたC1-20の炭化水素であり;
mは、2以上の整数であり;
[化学式3]
J(R12)3
前記化学式3において、
R12は、互いに同一または異なり、それぞれ独立して、ハロゲン;C1-20の炭化水素;またはハロゲンで置換されたC1-20の炭化水素であり;
Jは、アルミニウムまたはボロンであり;
[化学式4]
[E−H]+[ZQ4]-または[E]+[ZQ4]-
前記化学式4において、
Eは、中性または陽イオン性ルイス塩基であり;
Hは、水素原子であり;
Zは、13族元素であり;
Qは、互いに同一または異なり、それぞれ独立して、1以上の水素原子がハロゲン、C1-20の炭化水素、アルコキシまたはフェノキシで置換されるかもしくは非置換である、C6-20のアリール基またはC1-20のアルキル基である。 The homogenous composition according to claim 6, wherein the catalyst composition further comprises at least one of a compound represented by the following Chemical Formula 2, a compound represented by the Chemical Formula 3, and a compound represented by the Chemical Formula 4. Production method of polypropylene:
[Chemical formula 2]
- [Al (R 11) -O ] m -
In the above chemical formula 2,
R 11 are the same or different and are each independently a halogen; a C 1-20 hydrocarbon; or a C 1-20 hydrocarbon substituted with halogen;
m is an integer of 2 or more;
[Chemical formula 3]
J (R 12 ) 3
In the above chemical formula 3,
R 12 are the same or different and are each independently a halogen; a C 1-20 hydrocarbon; or a C 1-20 hydrocarbon substituted with halogen;
J is aluminum or boron;
[Chemical formula 4]
[E-H] + [ZQ 4] - or [E] + [ZQ 4] -
In the above chemical formula 4,
E is a neutral or cationic Lewis base;
H is a hydrogen atom;
Z is a Group 13 element;
Q is the same or different and is each independently a C 6-20 aryl group wherein one or more hydrogen atoms are substituted or unsubstituted by halogen, C 1-20 hydrocarbon, alkoxy or phenoxy Or a C 1-20 alkyl group.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170159736 | 2017-11-27 | ||
KR10-2017-0159736 | 2017-11-27 | ||
KR10-2018-0116448 | 2018-09-28 | ||
KR1020180116448A KR102326791B1 (en) | 2017-11-27 | 2018-09-28 | Polypropylene and method for preparing the same |
PCT/KR2018/011638 WO2019103306A1 (en) | 2017-11-27 | 2018-10-01 | Polypropylene and preparation method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020502309A true JP2020502309A (en) | 2020-01-23 |
JP6783937B2 JP6783937B2 (en) | 2020-11-11 |
Family
ID=66844984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019529231A Active JP6783937B2 (en) | 2017-11-27 | 2018-10-01 | Polypropylene and its manufacturing method |
Country Status (5)
Country | Link |
---|---|
US (1) | US11384180B2 (en) |
EP (1) | EP3546489A4 (en) |
JP (1) | JP6783937B2 (en) |
KR (1) | KR102326791B1 (en) |
CN (2) | CN115785313B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019132421A1 (en) * | 2017-12-26 | 2019-07-04 | 주식회사 엘지화학 | Homopolypropylene and preparation method therefor |
KR102388031B1 (en) | 2018-11-06 | 2022-04-19 | 주식회사 엘지화학 | Polypropylene resin pellet and method for preparing the same |
KR102482938B1 (en) * | 2019-09-30 | 2022-12-29 | 주식회사 엘지화학 | Pellet-type polypropylene resin composition and method for preparing the same |
WO2021112623A1 (en) * | 2019-12-04 | 2021-06-10 | 주식회사 엘지화학 | Polypropylene resin, polypropylene fiber and method for preparing same |
KR102600514B1 (en) * | 2019-12-04 | 2023-11-09 | 주식회사 엘지화학 | Polypropylene resin, polypropylene fiber and method for preparing the same |
EP3916023A1 (en) * | 2020-05-27 | 2021-12-01 | Borealis AG | Polypropylene coating composition |
WO2022203463A1 (en) * | 2021-03-26 | 2022-09-29 | 주식회사 엘지화학 | Polypropylene resin composition and non-woven fabric prepared using same |
US20240101732A1 (en) * | 2021-03-26 | 2024-03-28 | Lg Chem, Ltd. | Polypropylene Resin Composition and Method for Preparing the Same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007145914A (en) * | 2005-11-24 | 2007-06-14 | Japan Polypropylene Corp | Polypropylene particle for melt blown formed nonwoven fabric and polypropylene nonwoven fabric |
JP2008522013A (en) * | 2004-12-01 | 2008-06-26 | ノボレン テクノロジー ホールディングス シー・ブイ | Metallocene catalysts, their synthesis and their use in olefin polymerization |
JP2009512751A (en) * | 2005-10-21 | 2009-03-26 | バーゼル・ポリオレフィン・ゲーエムベーハー | Propylene polymer |
WO2009054833A2 (en) * | 2007-10-25 | 2009-04-30 | Novolen Technology Holdings, C.V. | Metallocene compounds, catalysts comprising them, process for producing an olefin polymer by use of the catalysts, and olefin homo and copolymers |
JP2009525375A (en) * | 2006-02-02 | 2009-07-09 | バーゼル・ポリオレフィン・ゲーエムベーハー | Propylene melt blown resin, propylene melt blown resin fiber, non-woven fabric produced therefrom, and method for producing the same |
WO2011042364A1 (en) * | 2009-10-09 | 2011-04-14 | Borealis Ag | Glass fibre composite of improved processability |
WO2012016928A1 (en) * | 2010-08-02 | 2012-02-09 | Borealis Ag | Melt blown media for air filtration |
US20160208028A1 (en) * | 2013-09-30 | 2016-07-21 | Lg Chem, Ltd. | A PREPARATION METHOD OF A POLYPROPYLENE AND A POLYPROPYLENE OBTAINED THEREFROM (AS Amended) |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001163771A (en) | 1999-09-30 | 2001-06-19 | Mitsubishi Chem Mkv Co | Film for patch material |
WO2007045590A1 (en) | 2005-10-21 | 2007-04-26 | Basell Polyolefine Gmbh | Polypropylene for injection molding |
JP5084353B2 (en) | 2007-06-05 | 2012-11-28 | 旭化成ケミカルズ株式会社 | Heat shrinkable multilayer film |
DE102007049031A1 (en) * | 2007-10-11 | 2009-04-16 | Fiberweb Corovin Gmbh | polypropylene blend |
WO2013066109A1 (en) | 2011-11-03 | 2013-05-10 | 주식회사 엘지화학 | Non-supported heterogeneous polyolefin polymerization catalyst composition and method for preparing same |
KR101499819B1 (en) | 2011-11-03 | 2015-03-10 | 주식회사 엘지화학 | Non-supported heterogeous catalyst composition for polymerizing polyolefin and preparation method of the same |
WO2015047030A1 (en) | 2013-09-30 | 2015-04-02 | 주식회사 엘지화학 | Method for preparing propylene-1-butene copolymer and propylene-1-butene copolymer obtained thereby |
KR101738139B1 (en) * | 2013-11-06 | 2017-05-19 | 주식회사 엘지화학 | Polypropylene |
KR101653356B1 (en) | 2014-10-17 | 2016-09-01 | 주식회사 엘지화학 | Metallocene catalyst for preparing polyolefin with high molecular weight |
KR20160061774A (en) * | 2014-11-24 | 2016-06-01 | 롯데케미칼 주식회사 | Polypropylene resin composition for non-woven fabric having excellent rupture strength and soft property and manufactured by using the same |
KR101753867B1 (en) | 2015-06-26 | 2017-07-04 | (주) 미벨라 | Elastic composite nonwoven fabric and manufacturing apparatus thereof |
KR102006939B1 (en) * | 2015-10-21 | 2019-08-02 | 주식회사 엘지화학 | Metallocene polypropylene and filament comprising the same |
KR20170059668A (en) | 2015-11-23 | 2017-05-31 | 도레이첨단소재 주식회사 | Nonwoven fabric having an improved strength via control of stereoregularity and manufacturing method thereof |
KR102124102B1 (en) * | 2015-12-18 | 2020-06-17 | 주식회사 엘지화학 | Supported hybrid catalyst and method for preparing of olefin based polymer using the same |
KR102288988B1 (en) | 2016-11-08 | 2021-08-10 | 주식회사 엘지화학 | Process for preparing polypropylene |
WO2019132421A1 (en) * | 2017-12-26 | 2019-07-04 | 주식회사 엘지화학 | Homopolypropylene and preparation method therefor |
-
2018
- 2018-09-28 KR KR1020180116448A patent/KR102326791B1/en active IP Right Grant
- 2018-10-01 EP EP18881653.2A patent/EP3546489A4/en active Pending
- 2018-10-01 CN CN202211471604.5A patent/CN115785313B/en active Active
- 2018-10-01 CN CN201880005191.7A patent/CN110099934B/en active Active
- 2018-10-01 US US16/464,871 patent/US11384180B2/en active Active
- 2018-10-01 JP JP2019529231A patent/JP6783937B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008522013A (en) * | 2004-12-01 | 2008-06-26 | ノボレン テクノロジー ホールディングス シー・ブイ | Metallocene catalysts, their synthesis and their use in olefin polymerization |
JP2011231328A (en) * | 2004-12-01 | 2011-11-17 | Lummus Novolen Technology Gmbh | Metallocene catalysts, their synthesis and their use for the polymerization of olefins |
JP2009512751A (en) * | 2005-10-21 | 2009-03-26 | バーゼル・ポリオレフィン・ゲーエムベーハー | Propylene polymer |
JP2007145914A (en) * | 2005-11-24 | 2007-06-14 | Japan Polypropylene Corp | Polypropylene particle for melt blown formed nonwoven fabric and polypropylene nonwoven fabric |
JP2009525375A (en) * | 2006-02-02 | 2009-07-09 | バーゼル・ポリオレフィン・ゲーエムベーハー | Propylene melt blown resin, propylene melt blown resin fiber, non-woven fabric produced therefrom, and method for producing the same |
WO2009054833A2 (en) * | 2007-10-25 | 2009-04-30 | Novolen Technology Holdings, C.V. | Metallocene compounds, catalysts comprising them, process for producing an olefin polymer by use of the catalysts, and olefin homo and copolymers |
WO2011042364A1 (en) * | 2009-10-09 | 2011-04-14 | Borealis Ag | Glass fibre composite of improved processability |
WO2012016928A1 (en) * | 2010-08-02 | 2012-02-09 | Borealis Ag | Melt blown media for air filtration |
US20160208028A1 (en) * | 2013-09-30 | 2016-07-21 | Lg Chem, Ltd. | A PREPARATION METHOD OF A POLYPROPYLENE AND A POLYPROPYLENE OBTAINED THEREFROM (AS Amended) |
Also Published As
Publication number | Publication date |
---|---|
CN115785313B (en) | 2024-02-23 |
EP3546489A4 (en) | 2020-03-25 |
CN115785313A (en) | 2023-03-14 |
CN110099934B (en) | 2023-01-31 |
CN110099934A (en) | 2019-08-06 |
EP3546489A1 (en) | 2019-10-02 |
US20200140583A1 (en) | 2020-05-07 |
JP6783937B2 (en) | 2020-11-11 |
US11384180B2 (en) | 2022-07-12 |
KR102326791B1 (en) | 2021-11-16 |
KR20190062163A (en) | 2019-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020502309A (en) | Polypropylene and method for producing the same | |
US11117990B2 (en) | Homopolypropylene and method for preparing the same | |
KR20200026125A (en) | Polyethylene and its chlorinated polyethylene | |
KR101969123B1 (en) | Polypropylene having high rigidity and for reducing energy in foaming | |
KR102080640B1 (en) | Supported hybrid catalyst and method for preparing of olefin based polymer using the same | |
KR102482938B1 (en) | Pellet-type polypropylene resin composition and method for preparing the same | |
US11345767B2 (en) | Propylene copolymer resin composition and method for preparing the same | |
KR20200077331A (en) | Supported hybrid metallocene catalyst and method for preparing polyolefine using the same | |
KR102353755B1 (en) | Homo polypropylene and nonwoven fabric comprising the same | |
US20220135715A1 (en) | Polypropylene Resin, Polypropylene Fiber And Method For Preparing The Same | |
EP3733765B1 (en) | Resin composition for bi-component fiber | |
KR102550083B1 (en) | Supported hybrid catalyst and method for preparing polypropylene using the same | |
KR20200048253A (en) | Propylene-butene copolymer and preparation method thereof | |
KR102464410B1 (en) | Polypropylene for filament and method for preparing the same | |
WO2019103306A1 (en) | Polypropylene and preparation method therefor | |
KR20240135380A (en) | Polypropylene resin composition and polypropylene fiber prepared using the same | |
KR20200145768A (en) | Polypropylene and method for preparing the same | |
KR20220041669A (en) | Polyethylene and method for preparing the same | |
KR20210070224A (en) | Polypropylene resin, polypropylene fiber and method for preparing the same | |
KR20200145767A (en) | Propylene-1-butene copolymer and method for preparing the same | |
KR20200057167A (en) | Polypropylene resin composition and method for preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190530 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200721 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200930 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201013 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201022 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6783937 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |