WO2019103306A1 - Polypropylene and preparation method therefor - Google Patents

Polypropylene and preparation method therefor Download PDF

Info

Publication number
WO2019103306A1
WO2019103306A1 PCT/KR2018/011638 KR2018011638W WO2019103306A1 WO 2019103306 A1 WO2019103306 A1 WO 2019103306A1 KR 2018011638 W KR2018011638 W KR 2018011638W WO 2019103306 A1 WO2019103306 A1 WO 2019103306A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
homopolypropylene
group
halogen
compound
Prior art date
Application number
PCT/KR2018/011638
Other languages
French (fr)
Korean (ko)
Other versions
WO2019103306A8 (en
Inventor
김태진
채성민
노경섭
정인용
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180116448A external-priority patent/KR102326791B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202211471604.5A priority Critical patent/CN115785313B/en
Priority to EP18881653.2A priority patent/EP3546489A4/en
Priority to CN201880005191.7A priority patent/CN110099934B/en
Priority to US16/464,871 priority patent/US11384180B2/en
Priority to JP2019529231A priority patent/JP6783937B2/en
Publication of WO2019103306A1 publication Critical patent/WO2019103306A1/en
Publication of WO2019103306A8 publication Critical patent/WO2019103306A8/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L13/00Implements for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L13/10Scrubbing; Scouring; Cleaning; Polishing
    • A47L13/16Cloths; Pads; Sponges
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series

Definitions

  • the present invention relates to a polypropylene having a high strength and a low low molecular weight content together with excellent processability and a process for producing the polypropylene.
  • Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, both of which have been developed for their respective characteristics. Since Ziegler - Natta catalyst has been widely applied to existing commercial processes since its invention in the 1950s, it is characterized by a wide molecular weight distribution of the polymer because it is a multi - site catalyst ( 111111 ⁇ - 3 4 6 . , There is a problem that the composition distribution of the comonomer is not uniform and there is a limit in securing desired physical properties.
  • the metallocene catalyst is composed of a combination of a main catalyst, which is a main component of a transition metal compound, and an organometallic compound artificial catalyst,
  • the molecular weight distribution is narrow, the polymer having uniform composition distribution of comonomer is obtained, and the stereoregularity of the polymer, copolymerization characteristics, molecular weight, crystallinity And the like.
  • Homopolypropylene for disposable wiping purpose usually made of Ziegler-Natta catalyst, has the problem of deteriorating physical properties as well as deteriorating workability when the strength is increased or the basis weight is lowered.
  • Disposable wipes made of Ziegler-Natta catalyst are more preferable than homopolypropylene made of a metallocene catalyst Because of the high content of xylene solubles and low molecular weight due to its broad molecular weight distribution, it was unsuitable for use as a detergent because of its soft surface when applied as a scrubber.
  • homopolypropylene satisfying the following conditions:
  • melt index (measured at 230 ⁇ ⁇ under a load of 2.16 kg according to ASTM D1238) 200 to 2000 g / 10 m in
  • a process for producing a homopolypropylene as described above which comprises polymerizing a propylene monomer by introducing hydrogen at 700 to 2500 ppm in the presence of a catalyst composition comprising a compound represented by the following formula Lt; / RTI > 2019/103306 1 »(: 1 ⁇ 1 ⁇ 2018/011638
  • the urine is carbon, silicon or germanium
  • Each of 3 ⁇ 4 and 3 ⁇ 4 is independently halogen
  • Each of 3 ⁇ 4 and 3 ⁇ 4 is independently 0 6-20 aryl substituted with 0 1-20 alkyl
  • Each of 3 ⁇ 4 to 3 ⁇ 4 and 3 ⁇ 4 to 3 ⁇ 4 is independently selected from the group consisting of hydrogen, halogen, 0 1-20 alkyl, 0 2-20 alkenyl, 0 1-20 alkylsilyl, 0 1-20 silylalkyl, 0 1-20 alkoxysilyl, ( ⁇ 20 ether, 0 1-20 silyl ether, 0 1-20 alkoxy, (: 6-20 aryl, 0 7-20 alkylaryl, or 0 7-20 arylalkyl,
  • a resin composition for a nonwoven fabric comprising the above homopolypropylene, and a nonwoven fabric manufactured using the same, more specifically, a nonwoven fabric for washing such as a wool.
  • the homopolypropylene according to the present invention exhibits excellent workability by having a low residual stress ratio and xylene solubles, an optimum range of melt index and a narrow molecular weight distribution, and is excellent in the production of fibers with a thin and uniform thickness and high rigidity 2019/103306 1 »(: 1 ⁇ 1 ⁇ 2018/011638
  • nonwoven fabric It is possible to manufacture a low basis weight nonwoven fabric. In addition, it can give a tougher touch than existing products, and it can realize excellent toughness that is not torn easily even at high strength. Accordingly, it can be useful for the production of nonwoven fabrics requiring high surface roughness and high surface roughness, in particular, cleaning nonwoven fabrics such as scrubbers.
  • the present invention relates to a disposable scrubber made of a conventional Ziegler-Natta catalyst, which is prepared by polymerizing propylenes under the conditions of hydrogen introduction of a controlled amount using a metallocene catalyst described below to prepare a homopolypropylene
  • the produced homopolypropylene has a narrow molecular weight distribution and a low residual stress so that it is possible to produce fibers having a small thickness and uniformity, and as a result, it is possible to produce a low basis weight nonwoven fabric having high rigidity.
  • the homopolypropylene to be produced has a narrow molecular weight distribution and low low molecular weight content due to low xylene solubles, which can provide a rough feeling on the surface, and as a result, it improves the cleaning effect when applied to a cleaning nonwoven fabric .
  • the nonwoven fabric can be produced by only primary processing, thereby improving the processability.
  • the homopolypropylene according to one embodiment of the present invention meets the following conditions:
  • the homopolypropylene according to one embodiment of the present invention 230 ° (according to the 1238: is from 2.161 3 ⁇ 4 a melt index (, 1 1 ⁇ adenomyosis ⁇ measured under a load of 200 to 2001 ⁇ 2 / 10 1 11. 1) can be controlled according to the amount of hydrogen supplied during the polymerization process.
  • the homopolypropylene according to the present invention has the above-mentioned range in consideration of the above-mentioned requirements to physical properties, thereby improving the strength of the radioactive and non- . In a particularly as the processing of the nonwoven fabric using a homopolypropylene 3 ⁇ 4!
  • the homopolypropylene may have a ratio of 220 to 1500/10 11 .
  • the molecular weight distribution is determined by measuring the weight average molecular weight (Mw) and the number average molecular weight (Mn) using gel permeation chromatography (GPC) (Mw / Mn). Specifically, it can be measured using a Waters PL-GPC220 instrument using a Polymer Laborator ies PLgel MIX-B 300 mm length column. At this time, the evaluation temperature is 160 ° C, 1,2,4-trichlorobenzene is used as a solvent, and the flow rate is 1 mL / min. The sample is prepared at a concentration of 10 mg / 10 mL, and then supplied in an amount of 200 uL.
  • GPC gel permeation chromatography
  • Mw and Mn are derived using a calibration curve formed using polystyrene standards.
  • the molecular weight (g / mol) of the polystyrene standard product was 9 kinds of 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000.
  • homopolypropylene according to one embodiment of the invention has a low residual stress ratio of 0.05% or less, together with MI and MWD as described above.
  • the residual stress ratio can be determined by a rheological property test under an environment similar to that of the nonwoven fabric manufacturing process.
  • the stress relaxation test is performed to apply a large strain to the homopolypropylene, From the residual stress value measured at this time, it can be calculated according to the following equation ( 1 ).
  • Residual stress ratio (RSi / RSo) x 100
  • R3 ⁇ 4 is the homopolypropylene under 235 ° C
  • RS Q is a homopolypropylene Represents the residual stress immediately after application of 200% strain (for example, at a point of time less than 0.05 seconds).
  • R? Represents the residual stress within about 1.5 seconds (for example, at a time point (ti) between 0.05 second and 1.50 second) after the toe under the condition of the same RSo.
  • the to can be selected from 0.01 second, 0.015 second, or 0.02 second, or 0.025 second, or 0.03 second, or 0.035 second, or 0.04 second, or 0.045 second.
  • U represents 3 ⁇ 4.05 seconds, or 0.10 seconds, or 0.20 seconds, or 0.30 seconds, or 0.40 seconds, or 0.50 seconds, or 0.60 seconds, or 0.70 seconds, or 0.80 seconds, or 0.90 seconds, Or 1.00 seconds, or 1.10 seconds, or 1.20 seconds, or 1.30 seconds, or 1.40 seconds, or 1.50 seconds.
  • the residual stress ratio of the homopolypropylene is measured under an environment (for example, 235 ° C) similar to the process conditions for performing the melt blowing in the production of the nonwoven fabric.
  • the temperature of 235 ° C corresponds to a temperature suitable for completely melting the homopolypropylene composition to perform melt blowing.
  • the nonwoven fabric is usually produced by spinning into fibers in the molten state of the resin and performing a drawing process in a semi-molten state through cooling. At this time, when the ratio of the residual stress according to Equation (1) is higher than 0.05%, it shows a high resistance to deformation, so that it is difficult to manufacture a fiber having a small thickness but uniformity because of poor radioactivity in the spinning process.
  • the homopolypropylene according to the present invention has a low residual Since it has a stress ratio, it is possible to produce a fiber having a small thickness and uniformity, and it is possible to manufacture a low basis weight nonwoven fabric with high rigidity with excellent processability.
  • the residual stress ratio of the homopolypropylene may be more specifically from 0.005 to 0.05%, more specifically from 0.005 to 0.03%, or from 0.02 to 0.03%, in consideration of the improvement of the fiber workability by the residual stress ratio control.
  • the homopolypropylene exhibits a tacticity as high as 1.0% by weight or less of xylene solubles (Xs).
  • the xylene-soluble fraction is obtained by dissolving homopolypropylene in xylene, determining the content (% by weight) of the polymer soluble in the cooled xylene determined by crystallizing the insoluble portion from the cooling solution, Contains a polymer chain of stereoregularity. Accordingly, the lower the content of the xylene-soluble fraction, the higher the stereoregularity.
  • the homopolypropylene according to one embodiment of the present invention has such a high stereoregularity that it can exhibit excellent rigidity in the production of a nonwoven fabric.
  • the content of the xylene-soluble fraction of the homopolypropylene may be more specifically 0.5 to 1.0% by weight, and more particularly 0.6 to 0.7% by weight.
  • the xylene-soluble fraction was prepared by adding xylene to a homopolypropylene sample, heating it at 135 ° C for 1 hour, cooling it for 30 minutes, pretreating it, min at a low flow rate (f low rate) for 4 hours and the baseline of RI (Reflect ive Index), DP (Pressure across middle of bridge) and IP (inlet pressure through bridge top to bottom) base l ine) is stabilized, the concentration can be measured by plotting the concentration of the pretreated sample and the amount of the injection, and then measuring the peak area.
  • the melting point can be measured using a differential scanning calorimeter (DSC). Specifically, the temperature of the homopolypropylene was increased to 200 ° C, held at that temperature for 5 minutes, then lowered to 30 ° C, and then the temperature was increased to obtain DSCCDi ferent i al Scanning Calorimeter, TA The melting point of the top of the curve can be measured. In this case, the temperature rise and fall rates are respectively 10 ° C / min, and the melting point is the result measured in the second rise of the temperature.
  • DSC differential scanning calorimeter
  • the homopolypropylene according to one embodiment of the invention having such physical properties as described above is characterized in that in the presence of a catalyst composition comprising a compound of the formula (1) as a catalytically active component, hydrogen is added to the propylene monomer in an amount of from 700 to 250, And then polymerizing the propylene monomer.
  • a catalyst composition comprising a compound of the formula (1) as a catalytically active component
  • Each of 3 ⁇ 4 and 3 ⁇ 4 is independently halogen
  • RTI ID 0.0 &gt
  • R3 &lt / RTI > are each independently 0 3-20 aryl
  • To 3 ⁇ 4 3 ⁇ 4, and to 3 ⁇ 4 3 ⁇ 4 are each independently hydrogen, halogen, alkyl, 0 1-20, 0 2-20 alkenyl, alkylsilyl, 0 1-20 alkyl silyl, 0 1-20 alkoxysilyl group, an ether 20, 0 1-20 silyl ether, 0-20 alkoxy, 0 6-20 aryl, 0 7-20 alkylaryl, or 0 7-20 arylalkyl,
  • Halogen (1 1 ⁇ 2 1 (3 ⁇ 4 below) is fluorine ⁇ ) may be, chlorine (a), bromine (H), or iodine (I).
  • the 0 1-20 alkyl group may be a straight chain, branched chain or cyclic alkyl group. Specifically, the 0 1-20 alkyl group may be a 0 1-15 straight-chain alkyl group; 0 1-10 straight chain alkyl group; 0 1-5 straight-chain alkyl group; A C3-20 branched or cyclic alkyl group; 3 ⁇ 4 15- branched or cyclic alkyl group; Or a 0 3 -10 branched or cyclic alkyl group.
  • the -20 alkyl group is preferably a methyl group, an ethyl group, an 11 -propyl group, - propyl group, 11- butyl group, A butyl group, a 7-butylbutyl group, an 11 -pentyl group, - pentyl group or cyclic nucleus group and the like.
  • the 0 2 -20 alkenyl group may be a straight chain, branched chain or cyclic alkenyl group.
  • Specific examples of the 0 2 -20 alkenyl group include 0 2 -20 straight chain alkenyl groups, 02-10 straight chain alkenyl groups, 0 2 -5 straight chain alkenyl groups, 0 3-20 branched chain alkenyl groups, 0 3-15 branched chain alkenyl groups, ( 3) a branched alkenyl group of 3 to 10 carbon atoms, or a cyclic alkenyl group of 1 (3). More specifically, the 0 2 -20 alkenyl group may be an ethenyl group, a propenyl group, a butenyl group, a pentenyl group or a cyclohexenyl group.
  • 0 6-30 Aryl can mean monocyclic, bicyclic or tricyclic aromatic hydrocarbons. Specifically, 0 6-30 aryl may be phenyl, naphthyl or anthracenyl.
  • 0 7-30 Alkylaryl may mean a substituent wherein at least one hydrogen of the aryl is replaced by an alkyl.
  • 0 7-30 alkylaryl is methylphenyl, ethylphenyl,
  • 0 7 -30 arylalkyl may mean a substituent wherein at least one of the hydrogens of the alkyl is substituted by aryl.
  • the 0 7 -30 arylalkyl may be a benzyl group, a phenylpropyl group, or a phenylhexyl group.
  • the catalyst composition used in the preparation of homopolypropylene according to one embodiment of the present invention includes the compound of Formula 1 as a single catalyst. Accordingly, the molecular weight distribution can be significantly narrowed as compared with the homopolypropylene produced in the past when two or more catalysts are used in combination.
  • the compound of formula (1) is a bridge group connecting two ligands including an indenyl group, and includes a bivalent functional group that is substituted with the same alkyl group having 2 or more carbon atoms, thereby increasing the atom size and increasing the usable angle
  • the monomer is easily accessible and can exhibit better catalytic activity.
  • both of the two indenyl groups as the ligand are substituted with the methyl group at the 2-position, and the 4-position 3 ⁇ 4 and R 5) include the alkyl-substituted aryl group, so that the induction effect It can exhibit better catalytic activity than decomposition.
  • the compound of formula (1) contains zirconium (Zr) as a central metal, thereby having more orbitals capable of accepting electrons as compared with the case of containing other Group 14 elements such as Hf and the like, And as a result, it is possible to exhibit a better catalytic activity improving effect.
  • Ri and 3 ⁇ 4 in the above formula (1) may each independently be a Ce-12 aryl group substituted with Ci-io alkyl, and more specifically, tert-butyl 2019/103306 1 »(: 1 ⁇ 1 ⁇ 2018/011638
  • a phenyl group substituted with 0 3-6 branched alkyl groups such as phenyl.
  • the substitution position of the alkyl group for the phenyl group is 3 ⁇ 4 or 1? 5 position and Position 4 corresponding to the position.
  • Y 2 and Y 3 , and Y 3 and Z 4 each independently may be hydrogen, and each of 3 ⁇ 4 and 3 ⁇ 4 may be chloro.
  • the show may be silicon (), and the substituents of the show are the same in that the solubility is increased to improve the carrying efficiency and may be a 0 2 -10 alkyl group, Specifically 0 2 -4 straight chain alkyl groups, more particularly each ethyl group.
  • the compound of formula (1) can be synthesized by applying known reactions, and a more detailed synthesis method can be referred to the following production examples.
  • the compound of Formula 1 may be used as a single component or may be used in the form of a supported catalyst supported on a support.
  • a carrier having a hydroxyl group or a siloxane group having high reactivity on the surface can be used, and a carrier dried and having moisture removed on its surface can be used.
  • the dried silica in a high-temperature, silica-alumina, and silica _ magnesia and the like may be used, all of which are typically ⁇ 20, 3 ⁇ 4 ⁇ 3, 3 ⁇ 4 et 4, and 3 ⁇ 4 word 03) an oxide of 2, such as carbonate, sulfate , And nitrate components.
  • the temperature at which the carrier is dried may be from 200 to 8001:
  • the drying temperature is excessively high, the pores on the surface of the carrier are aggregated to decrease the surface area. Also, the hydroxyl groups on the surface may be abolished, and only the siloxane group may remain, thus reducing the reaction site with the cocatalyst .
  • the hydroxyl groups on the surface may be abolished, and only the siloxane group may remain, thus reducing the reaction site with the cocatalyst .
  • the amount of the hydroxy group on the surface of the carrier can be controlled by the preparation method and conditions of the carrier or by drying conditions such as temperature, time, vacuum or spray drying. If the amount of the hydroxyl group is too low, the site of reaction with the co-catalyst is small.
  • the weight ratio of the compound of Formula 1 to the carrier may be 1: 1 to 1: 100.
  • the carrier and the compound of Formula (1) are contained at the above weight ratio, they exhibit appropriate supported catalyst activity, which can be advantageous in terms of maintaining the activity of the catalyst and economical efficiency. More specifically, the weight ratio of the compound of formula (I) to the carrier may be from 1:10 to 1:30, more specifically from 1:15 to 1:20.
  • the catalyst composition may further include a cocatalyst in terms of improving the activity and the process stability.
  • the promoter may include at least one compound represented by the following general formula (2), (3) or (4).
  • 1 < / RTI &gt may be the same or different from each other and are each independently selected from the group consisting of halogen; 0 1 to 20 hydrocarbons; Or a hydrocarbon substituted with halogen;
  • 1 is aluminum or boron
  • the seedlings are neutral or cationic Lewis bases
  • 0 are the same or differ from each other, and each independently represent a hydrogen atom is at least one halogen, - a second ⁇ substituted hydrocarbon, alkoxy or phenoxy, or in or unsubstituted aryl group or (2 ⁇ alkyl group.
  • Examples of the compound represented by Formula 2 include methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, and butylaluminoxane, and more specifically, methylaluminoxane.
  • Examples of the compound represented by the general formula (3) include trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, triisopropylaluminum, tri-butylaluminum, tricyclopentylaluminum, tri Tri-n-butylaluminum, tri-n-butylaluminum, pentylaluminum, triisopentylaluminum, triunylaluminum, trioctylaluminum, ethyldimethylaluminum, methyldiethylaluminum, triphenylaluminum, tri- 1 -tolylaluminum, dimethylaluminum methoxide, , Triethylboron, triisobutylboron, tripropylboron, tributylboron and the like, and more specifically may be selected from trimethylalumin
  • Examples of the compound represented by the formula (4) include triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, 2019/103306 1 »(: 1 ⁇ 1 ⁇ 2018/011638
  • Tributylammonium tetrapentafluorophenylboron Tributylammonium tetrapentafluorophenylboron, ratiometric diethylanilinium tetraphenylboron, Diethylanilinium tetrapentafluorophenylboron,
  • the weight ratio of the compound of Formula 1 to the cocatalyst may be 1: 1 to 1:20.
  • the catalyst exhibits a proper supported catalyst activity, which is advantageous in view of maintaining the activity of the catalyst and economical efficiency. More specifically, the weight ratio of the compound of formula (I) to the co-catalyst may be from 1: 5 to 1:20, more specifically from 1: 5 to 1:15 2019/103306 1 »(: 1 ⁇ 1 ⁇ 2018/011638
  • the catalyst composition contains both the carrier and the cocatalyst
  • the catalyst composition includes a step of supporting a promoter compound on a support, and a step of supporting the compound represented by the formula 1 on the support
  • the carrying order of the cocatalyst and the compound of formula (1) may be varied as required.
  • hydrocarbon solvents such as pentane, nucleic acid, heptane and the like, or aromatic solvents such as benzene, toluene and the like may be used as a reaction solvent in the preparation of the catalyst composition.
  • the polymerization process can be carried out by contacting the propylene polymer with the catalyst composition containing the compound represented by the formula (1) under hydrogen gas.
  • the hydrogen gas preferably has a mass ratio
  • the molecular weight distribution and the fluidity of the homopolypropylene composition can be controlled within a desired range by controlling the amount of the hydrogen gas used while exhibiting sufficient catalytic activity and thus the homopropylene polymer having appropriate physical properties can be prepared have. If the amount of the hydrogen gas is less than 700, 1 of the produced homopolypropylene may be significantly lowered and the workability may be deteriorated. When the amount of the hydrogen gas is less than 700%, the strength and roughness characteristics of the nonwoven fabric may be lowered . More specifically, the hydrogen gas is 700 And above, or 1503 ⁇ 4 Thyssen 11 or more, or more than 1750, 2503 ⁇ 4) 1 or less Fe, or 2003 ⁇ 4) may be added in an amount up.
  • the polymerization process can be performed by a continuous polymerization process, and various polymerization processes known as polymerization of olefin monomers such as continuous solution polymerization process, bulk polymerization process, suspension polymerization process, slurry polymerization process or emulsion polymerization process are employed .
  • various polymerization processes known as polymerization of olefin monomers such as continuous solution polymerization process, bulk polymerization process, suspension polymerization process, slurry polymerization process or emulsion polymerization process are employed .
  • the polymerization reaction may also be carried out at a temperature of from about 40 to 110 Or about 60 to 100 I: it may be carried out under a pressure of: the temperature and from about 1 to 100 1 3 ⁇ 4 ⁇ .
  • the catalyst may be added in a dissolved or diluted state in a solvent such as pentane, nucleic acid, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like.
  • the homopolypropylene according to one embodiment of the present invention produced by the above production method has an optimum range and a narrow molecular weight distribution together with a low residual stress ratio and xylene solubles, It can be manufactured, and it is possible not only to give rough feeling to the existing product but also to realize excellent toughness which is not torn easily with high strength. Accordingly, it can be particularly useful for the production of nonwoven fabrics requiring high surface roughness and high surface roughness, specifically, cleaning nonwoven fabrics such as scrubbers.
  • a resin composition for a nonwoven fabric including the homopolypropylene and a nonwoven fabric produced using the same.
  • the nonwoven fabric may be a nonwoven fabric for washing such as a scrubbing brush, more specifically, a disposable wipe or the like.
  • the resin composition for a nonwoven fabric and the nonwoven fabric may be produced by a conventional method, except that the homopolypropylene is used. Best Mode for Carrying Out the Invention
  • preferred embodiments are described to facilitate understanding of the present invention. However, the following examples are intended to illustrate the present invention, and the present invention is not limited to the following examples.
  • Step 3 of Preparation Example 1 The procedure of Step 3 of Preparation Example 1 was repeated except that the compound (I) having the following structure was used instead of the transition metal compound prepared in Step 2 of Preparation Example 1 to prepare a silica-supported metallocene catalyst . 2019/103306 1 »(: 1/10 ⁇ 018/011638
  • Example 1 Specific reaction conditions for the polymerization process are shown in Table 1 below. Homopolypropylene was prepared through such polymerization process. Examples 2 to 5
  • Homo propylene was prepared in the same manner as in Example 1 except that the silica-supported metallocene catalyst prepared in Preparation Example 5 was used and the conditions were set forth in Table 1 below.
  • MI Melt Index
  • Xylene Soluble (wt.%): Xylenes were added to each homopolypropylene sample, heated at 135 ° C for 1 hour, cooled for 30 minutes, and pretreated. The injector was flown for 4 hours at a flow rate of 1 mL / min on an OminiSec (Viscotek FIPA) instrument, and the injected oxygen was injected through the RI (Refract ive Index), DP (Pressure across middle bridge) to bottom of the sample was stabilized, the concentration and injection amount of the pretreated sample were written and measured, and then the peak area was calculated.
  • RI Refract ive Index
  • DP Pressure across middle bridge
  • the temperature of the homopolypropylene to be measured was increased to 200 ° C., maintained at that temperature for 5 minutes, then decreased to 30 ° C., and the temperature was again increased to obtain a DSC (Di f ferent ial Scanning Calorimeter, The top of the curve was the melting point. At this time, the rate of rise and fall of the temperature was 10 ° C / min, and the melting point was determined in a period in which the second temperature rises.
  • Mw and Mn values were derived using a calibration curve formed using polystyrene standards.
  • the molecular weight (g / mol) of the polystyrene standard product was 9 kinds of 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10, 000,000.
  • DHR Discovery Hybrid Rheometer
  • Residual stress ratio (Y) (RSi / RS 0) * 100
  • Equation 1 RSo is a residual stress at 200% strain on the sample fall 0.02 seconds (t Q) was under 235 ° C, R3 ⁇ 4 is 1.00 seconds was added to the 200% strain on the sample under 235 ° C () Is the residual stress.
  • the homopolypropylene of Examples 1 to 5 exhibited remarkably reduced xylene solubles and residual stress ratio as compared with the homopolypropylene of Comparative Example 1 produced using the Ziegler-Natta catalyst, and the molecular weight distribution It was remarkably narrow.
  • a spunbonded nonwoven fabric was produced by performing a melt blowing process using the homopolypropylene-containing resin composition according to the above Examples and Comparative Examples.
  • homopolypropylene according to Examples and Comparative Examples was extruded using a 25 mm twin-screw extruder, 2000 ppm of Irganox 1010 TM as an antioxidant,
  • a master batch containing 2000 ppm of Irgafos 168 TM was prepared and then pelletized. Subsequently, the molten masterbatch composition was fed to a melt pump (65 rpm) using a 31 mm Brabender conical twin screw extruder, and then extruded through a discharge port (10 discharge ports 8 m) and a 25 cm wide discharge port Except for the fact that it was supplied to the meltblowing die, 4364 of the Naval Research Laboratories ies, publ i shed May 25, 1954 ent i t led "Manufacture of Superfine Organic Fiber" by Wente, Van.
  • the master batch pellets were extruded into a microfiber web by a process similar to that described in A. Boone, C. D., and Fluharty, E.
  • the melt temperature was 235 ° C
  • the screw speed was 120 rpm
  • the weight of the manufactured nonwoven fabric was measured, and the weight of the nonwoven fabric per unit area was measured.
  • nonwoven fabric was checked for the occurrence of single yarns, and the processability of the nonwoven fabric was evaluated according to the following criteria.
  • the roughness of the nonwoven fabric was measured by ten blind panel evaluations and evaluated according to the following criteria:
  • Comparative Example 1 produced using the Ziegler-Natta catalyst, the workability was poor, and the strength and roughness characteristics were significantly lowered than in Examples 1 to 5.
  • blending and secondary processing with an additive for increasing the roughness property are indispensable in order to manufacture the nonwoven fabric for cleaning using the homopolypropylene produced according to Comparative Example 1.
  • Comparative Examples 2 to 4 using compounds having different structures as the catalytically active material, poor workability was exhibited due to a high residual stress ratio as compared with Example 1 having the same MI, and as a result, web formability (web and the strength was degraded due to poor quality of the film.
  • Comparative Example 5 in which the amount of hydrogen input was excessively low, even when the same catalyst was used, the MI value was lowered to less than 200 g / 10 m < 2 >
  • Comparative Example 6 in which the hydrogen input amount was too high, the degraded roughness characteristics were exhibited due to MI exceeding 2000 g / 10 min, and due to the increase of the high ⁇ D and xylene solubles exceeding 3.3, Compared to the examples.

Abstract

The present invention provides a homo polypropylene having excellent processability, high strength, and a low amount of low molecular weight molecules, and a preparation method therefor.

Description

2019/103306 1»(:1^1{2018/011638  2019/103306 1 »(: 1 ^ 1 {2018/011638
【발명의 명칭】 Title of the Invention
폴리프로필렌및그제조방법  Polypropylene and its production method
【기술분야】  TECHNICAL FIELD
관련출원(들)과의상호인용  Cross-reference with related application (s)
본 출원은 2017년 11월 27일자 한국 특허 출원 제 10-2017-0159736호 및 2018년 9월 28일자 한국 특허 출원 제 10-2018-0116448호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은본명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0159736, dated November 27, 2017, and Korean Patent Application No. 10-2018-0116448, dated September 28, 2018, The entire contents of which are incorporated herein by reference.
본 발명은 우수한 가공성과 함께 높은 강도 및 낮은 저분자량 함량을 갖는폴리프로필렌및그제조방법에 관한것이다.  The present invention relates to a polypropylene having a high strength and a low low molecular weight content together with excellent processability and a process for producing the polypropylene.
【배경기술】 BACKGROUND ART [0002]
올레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 혼재하는 다활성점 촉매(111111^-346 。 )이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다. Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, both of which have been developed for their respective characteristics. Since Ziegler - Natta catalyst has been widely applied to existing commercial processes since its invention in the 1950s, it is characterized by a wide molecular weight distribution of the polymer because it is a multi - site catalyst ( 111111 ^ - 3 4 6 . , There is a problem that the composition distribution of the comonomer is not uniform and there is a limit in securing desired physical properties.
한편, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인유기 금속화합물인조촉매의 조합으로이루어지며, 이와
Figure imgf000002_0001
On the other hand, the metallocene catalyst is composed of a combination of a main catalyst, which is a main component of a transition metal compound, and an organometallic compound artificial catalyst,
Figure imgf000002_0001
단일 활성점 특성에 따라 분자량 분포가 좁으며 , 공단량체의 조성 분포가 균일한고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합조건의 변경에 따라고분자의 입체규칙도, 공중합특성, 분자량, 결정화도등을변화시킬수 있는특성을가지고있다. According to the single active site characteristic, the molecular weight distribution is narrow, the polymer having uniform composition distribution of comonomer is obtained, and the stereoregularity of the polymer, copolymerization characteristics, molecular weight, crystallinity And the like.
통상 지글러-나타 촉매로 제조되는 일회용 수세미 용도의 호모 폴리프로필렌은 강도를 증대시키거나 저평량화 하면 물리적인 물성이 저하될 뿐만 아니라 가공성이 저하되는 문제점이 있다. 또, 지글러-나타 촉매로 제조된 일회용 수세미는, 메탈로센 촉매로 제조된 호모 폴리프로필렌 보다 높은자일렌 가용분 (xylene solubles)과 넓은분자량분포에 따른저분자량의 함량이 높기 때문에, 수세미로적용시 표면이 부드러워 수세미로사용하기에는 부적당하였다. Homopolypropylene for disposable wiping purpose, usually made of Ziegler-Natta catalyst, has the problem of deteriorating physical properties as well as deteriorating workability when the strength is increased or the basis weight is lowered. Disposable wipes made of Ziegler-Natta catalyst are more preferable than homopolypropylene made of a metallocene catalyst Because of the high content of xylene solubles and low molecular weight due to its broad molecular weight distribution, it was unsuitable for use as a detergent because of its soft surface when applied as a scrubber.
이러한 단점을 보완하기 위하여, 종래 지글러-나타 촉매로 생산되는 용융지수 (MI) 230g/10min수준의 폴리프로필렌을 첨가제와블렌드하여 거친 감촉 (feel )과 굵은 섬유를 뽑아 사용하는 방법이 제안되었지만, 지글러-나타 촉매로 제조되는 폴리프로필렌 및 첨가제와 블텐드된 폴리프로필렌 조성물은 방사성이 좋지 않아 불균일한 섬유를 만들어내고, 그로 인해 물성 저하를 일으켰다. 또한건식 혼합 (Dry blending) ->열 가공 (Thermal processing) -> 펠레타이징 (pel let izing) -> 2차 가공 (second processing) -> 생성물 (product)로이어져 가공비용이 높게 발생한다는단점을가지고있다.  In order to compensate for these drawbacks, a method has been proposed in which a polypropylene having a melt index (MI) of 230 g / 10 min produced by a conventional Ziegler-Natta catalyst is blended with an additive to extract a rough feel and a thick fiber, - Natta catalyst and the blended polypropylene composition blended with additives cause poor spinnability and produce uneven fibers, resulting in deterioration of physical properties. In addition, there is a disadvantage that the processing cost is high because it leads to dry blending -> thermal processing -> pel let izing -> second processing -> product Have.
【발명의 상세한설명】 DETAILED DESCRIPTION OF THE INVENTION
【기술적 과제】  [Technical Problem]
이에 본 발명은 지글러-나타 촉매 대신 특정 구조의 메탈로센촉매를 사용함으로써 , 우수한가공성과함께높은강도및낮은저분자량함량을갖는 호모폴리프로필렌및그제조방법을제공하는것을목적으로한다.  Accordingly, it is an object of the present invention to provide a homopolypropylene having a high strength and a low molecular weight content with excellent processability by using a metallocene catalyst having a specific structure instead of a Ziegler-Natta catalyst, and a process for producing the same.
【기술적 해결방법】 [Technical Solution]
본 발명의 일 구현예에 따르면, 하기 조건을 충족하는 호모 폴리프로필렌을제공한다:  According to one embodiment of the present invention, there is provided homopolypropylene satisfying the following conditions:
i ) 용융지수 (ASTM D1238에 따라 230 °C에서 2.16 kg 하중으로 측정) 200내지 2000 g/ 10m in  i) melt index (measured at 230 占 폚 under a load of 2.16 kg according to ASTM D1238) 200 to 2000 g / 10 m in
i i )분자량분포 3.3이하  i i) Molecular weight distribution 3.3 or less
i i i )잔류응력비율 0.05%이하  i i i) Residual stress ratio not more than 0.05%
iv)자일렌가용분 1.0중량%이하  iv) xylene additive 1.0% by weight or less
본 발명의 다른 일 구현예에 따르면, 하기 화학식 1의 화합물을 포함하는 촉매 조성물의 존재 하에, 수소를 700 내지 2500ppm으로 투입하여 프로필렌 단량체를 중합하는 단계를 포함하는, 상기한 호모 폴리프로필렌의 제조방법을제공한다: 2019/103306 1»(:1^1{2018/011638 According to another embodiment of the present invention, there is provided a process for producing a homopolypropylene as described above, which comprises polymerizing a propylene monomer by introducing hydrogen at 700 to 2500 ppm in the presence of a catalyst composition comprising a compound represented by the following formula Lt; / RTI > 2019/103306 1 »(: 1 ^ 1 {2018/011638
[화학식 1] [Chemical Formula 1]
Figure imgf000004_0001
Figure imgf000004_0001
상기 화학식 1에서,  In Formula 1,
요는탄소, 실리콘또는게르마늄이고,  The urine is carbon, silicon or germanium,
¾및 ¾는각각독립적으로할로겐이고,  Each of ¾ and ¾ is independently halogen,
¾및 ¾는각각독립적으로 01-20알킬로차환된 06-20아릴이고, Each of ¾ and ¾ is independently 0 6-20 aryl substituted with 0 1-20 alkyl,
¾내지 ¾, 및 ¾내지 ¾은각각독립적으로수소, 할로겐, 01-20알킬, 02-20 알케닐, 01-20 알킬실릴, 01-20 실릴알킬, 01-20 알콕시실릴, (^20 에테르, 01-20 실릴에테르, 01-20 알콕시, (:6-20 아릴, 07-20 알킬아릴, 또는 07-20 아릴알킬이고,Each of ¾ to ¾ and ¾ to ¾ is independently selected from the group consisting of hydrogen, halogen, 0 1-20 alkyl, 0 2-20 alkenyl, 0 1-20 alkylsilyl, 0 1-20 silylalkyl, 0 1-20 alkoxysilyl, (^ 20 ether, 0 1-20 silyl ether, 0 1-20 alkoxy, (: 6-20 aryl, 0 7-20 alkylaryl, or 0 7-20 arylalkyl,
Figure imgf000004_0002
동일하며, C2-20알킬이다.
Figure imgf000004_0002
And is C2-20 alkyl.
본 발명의 또 다른 일 구현예에 따르면 상기한 호모 폴리프로필렌을 포함하는 부직포용 수지 조성물 , 및 이를 이용하여 제조된 부직포 , 보다 구체적으로는수세미 등세척용부직포를제공한다.  According to another embodiment of the present invention, there is provided a resin composition for a nonwoven fabric comprising the above homopolypropylene, and a nonwoven fabric manufactured using the same, more specifically, a nonwoven fabric for washing such as a wool.
【발명의 효과】 【Effects of the Invention】
본 발명에 따른 호모 폴리프로필렌은, 낮은 잔류응력비율과 자일렌 가용분, 최적 범위의 용융지수 및 좁은 분자량 분포를 가짐으로써, 우수한 가공성을 나타내며, 굵기가 가늘면서도 균일한 섬유의 제조 및 고강성의 2019/103306 1»(:1^1{2018/011638 The homopolypropylene according to the present invention exhibits excellent workability by having a low residual stress ratio and xylene solubles, an optimum range of melt index and a narrow molecular weight distribution, and is excellent in the production of fibers with a thin and uniform thickness and high rigidity 2019/103306 1 »(: 1 ^ 1 {2018/011638
저평량부직포의 제조가가능하다. 또 기존 제품보다거친 촉감을 부여할수 있으며, 높은강도에도쉽게 찢어지지 않는우수한강인성을동시에 구현할수 있다. 이에 따라 고강성과 함께 큰 표면 거칠기가 요구되는 부직포, 특히 수세미와같은세척용부직포의 제조에 유용할수있다. It is possible to manufacture a low basis weight nonwoven fabric. In addition, it can give a tougher touch than existing products, and it can realize excellent toughness that is not torn easily even at high strength. Accordingly, it can be useful for the production of nonwoven fabrics requiring high surface roughness and high surface roughness, in particular, cleaning nonwoven fabrics such as scrubbers.
【발명의 실시를위한최선의 형태】 BEST MODE FOR CARRYING OUT THE INVENTION
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해사용된것으로, 발명을한정하려는의도는아니다. 단수의 표현은문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, ”포함하다" , "구비하다’ 또는 "가지다” 등의 용어는실시된특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는부가가능성을미리 배제하지 않는것으로이해되어야한다.  The terminology used herein is for the purpose of describing exemplary embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, the terms " comprising, " " comprising, " or " having ", are intended to specify the presence of stated features, steps, Components, or combinations thereof, as a matter of convenience, without departing from the spirit and scope of the invention.
발명은다양한변경을가할수있고여러 가지 형태를가질수 있는바, 특정 실시예들을 예시하고하기에서 상세하게 설명하고자한다. 그러나, 이는 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야한다. The invention is capable of various modifications and may take various forms, which illustrate specific embodiments and are described in detail below. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed, but is intended to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention .
이하, 발명의 구체적인 구현예에 따른 호모 폴리프로필렌 및 이의 제조방법 등에 대해설명하기로한다. 본 발명은종래 지글러-나타촉매로 제조되는 일회용수세미를 물성적 특징을 보완하기 위해, 후술하는 메탈로센 촉매를 아용하여 제어된 함량의 수소 투입의 조건 하에 프로필텐을 중합시켜 호모 폴리프로필렌을 제조함으로써, 제조되는 호모 폴리프로필렌의 분자량 분포가 좁고 낮은 잔류응력을가져 굵기가가늘면서도균일한섬유의 제조가가능하고, 그결과 고강성의 저평량 부직포의 제조가 가능하다. 또, 제조되는 호모 폴리프로필렌은 좁은 분자량 분포와 더불어 낮은 자일렌 가용분으로 인해 저분자량의 함량이 적기 때문에, 표면에 거친 느낌을 제공할 수 있으며, 그 결과 세척용 부직포에 적용시 세척 효과를 향상시킬 수 있다. 또 제조되는 2019/103306 1»(:1^1{2018/011638 Hereinafter, homopolypropylene according to a specific embodiment of the present invention, a method for producing the homopolypropylene, and the like will be described. The present invention relates to a disposable scrubber made of a conventional Ziegler-Natta catalyst, which is prepared by polymerizing propylenes under the conditions of hydrogen introduction of a controlled amount using a metallocene catalyst described below to prepare a homopolypropylene The produced homopolypropylene has a narrow molecular weight distribution and a low residual stress so that it is possible to produce fibers having a small thickness and uniformity, and as a result, it is possible to produce a low basis weight nonwoven fabric having high rigidity. In addition, the homopolypropylene to be produced has a narrow molecular weight distribution and low low molecular weight content due to low xylene solubles, which can provide a rough feeling on the surface, and as a result, it improves the cleaning effect when applied to a cleaning nonwoven fabric . Also, 2019/103306 1 »(: 1 ^ 1 {2018/011638
호모폴리프로필렌은첨가제와블렌딩할필요가없기 때문에 1차가공만으로도 부직포를제조할수있어 공정성을향상시킬수있다. 구체적으로 본 발명의 일 구현예에 따른 호모 폴리프로필렌은 하기 조건을충족하는것이다: Since homopolypropylene does not need to be blended with the additive, the nonwoven fabric can be produced by only primary processing, thereby improving the processability. Specifically, the homopolypropylene according to one embodiment of the present invention meets the following conditions:
0용융지수 況 1)1238에 따라 230°(:에서 2.161¾하중으로측정) 200 내지 200 /1(½比 0 Melt index 1) 200 to 200/1 (½ ratio measured at 230 ° (at 2.161 ¾ load) according to 1238
1 1)분자량분포 3.3끼하 1 1) Molecular weight distribution 3.3
0잔류응력비율 0.05%이하  0 Residual stress ratio 0.05% or less
)자일렌가용분 1.0중량%이하 보다구체적으로발명의 일구현예에 따른호모폴리프로필렌은
Figure imgf000006_0001
1238에 따라 230°(:에서 2.161¾ 하중 하에서 측정한 용융지수( , 1 1 比선근幻가 200 내지 200½/101 11이다. !«1는 중합 공정시 투입되는 수소 량에 따라 조절 가능한데, 본 발명에 따른 호모 폴리프로필렌은 상기 ) 내지 물성 요건을 고려하여 상기한 바와 같은 범위의 를 가짐으로써 방사성과 부직포의 강도를 발란스 좋게 개선시킬 수 있다. 특히 호모 폴리프로필렌을 이용한부직포를가공함에 있어서 ¾!1가 200 g/ 10^1111미만이면 가공압력이 상승하여 가공성이 저하될우려가있고, 2000 §/ 10111111를초과할 경우, 제조되는 부직포에서의 고강도 구현이 어렵다. 또 상기한 범위의 값을 갖는 폴리프로필렌을 제조하기 위해서는, 지글러-나타 촉매를 사용하는 경우중합단계에서 높은 함량의 수소가투입되어야하나, 후술할 바와 같은 메탈로센 화합물을 포함하는 촉매를 사용함으로써 상대적으로 낮은 함량의 수소 투입이 가능하므로, 활성 제어가 용이하고, 공정 안정성이 높아지는 이점이 있다. 상기 附 제어에 따른 방사성 및 부직포 강도 개선 효과의 우수함을고려할때, 상기 호모폴리프로필렌의附는 220내지 1500용/101 11일 수있다. 또, 발명의 일 구현예에 따른 상기 호모 폴리프로필렌은 상기한 와 더불어 3.3 이하의 좁은 분자량 분포(■0=1 /1\^)를 갖는다. 이와 같이 좁은 분자량분포를가짐으로써 부직포제조시 우수한강성을나타낼수있다. 보다 구체적으로 상기 호모 폴리프로필렌은 _가 1.5 내지 3.3, 보다 더 구체적으로는 2.5내지 3.3일수있다.
) Xylene content 1.0 wt% or less More specifically, the homopolypropylene according to one embodiment of the present invention
Figure imgf000006_0001
230 ° (according to the 1238: is from 2.161 ¾ a melt index (, 1 1比adenomyosis幻measured under a load of 200 to 200½ / 10 1 11. 1) can be controlled according to the amount of hydrogen supplied during the polymerization process. The homopolypropylene according to the present invention has the above-mentioned range in consideration of the above-mentioned requirements to physical properties, thereby improving the strength of the radioactive and non- . In a particularly as the processing of the nonwoven fabric using a homopolypropylene ¾! 1 is 200 g / 10 ^ 1111, and is less than if the possibility that the workability by processing pressure rises decrease, 2000 § / 10 111 if it exceeds 111, the nonwoven fabric to be produced It is difficult to realize high strength in In the case of using a Ziegler-Natta catalyst in order to produce polypropylene having the above-mentioned range of values, a high content of hydrogen should be added in the polymerization step, but by using a catalyst containing a metallocene compound as described later Since a relatively low content of hydrogen can be introduced, there is an advantage that the activity control is easy and the process stability is enhanced. Considering that the radioactive and nonwoven fabric strength improving effect according to the attached control is excellent, the homopolypropylene may have a ratio of 220 to 1500/10 11 . In addition, the homopolypropylene according to one embodiment of the present invention has a narrow molecular weight distribution (? 0 = 1/1?) Of 3.3 or less as described above. Such narrow By having a molecular weight distribution, excellent rigidity can be exhibited in the production of nonwoven fabric. More specifically, the homopolypropylene may be 1.5 to 3.3, more specifically 2.5 to 3.3.
한편, 본 발명에 있어서, 분자량분포 (MWD)는, 겔투과크로마토그래피 (GPC) 를 이용하여 중량평균 분자량 (Mw) 및 수평균 분자량 (Mn)을 측정한후, 수평균 분자량에 대한 중량평균 분자량의 비 (Mw/Mn)로 결정할 수 있다. 구체적으로는 Polymer Laborator ies PLgel MIX-B 300mm길이 칼럼을 이용하여 Waters PL-GPC220 기기를 이용하여 측정할 수 있으며. 이때, 평가 온도는 160°C이고, 1,2,4 -트리클로로벤젠을 용매로서 사용하며, 유속은 lmL/min로 한다. 또샘플은 lOmg/lOmL의 농도로조제한다음, 200 u L의 양으로공급한다. 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn의 값을 유도한다. 이때 폴리스티렌 표준품의 분자량 (g/mol )은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4, 000, 000 / 10 ,000, 000의 9종을사용하였다. 또, 발명의 일 구현예에 따른 호모 폴리프로필렌은 상술한 바와 같은 MI 및 MWD와함께, 0.05%이하의 낮은잔류응력비율을갖는다.  Meanwhile, in the present invention, the molecular weight distribution (MWD) is determined by measuring the weight average molecular weight (Mw) and the number average molecular weight (Mn) using gel permeation chromatography (GPC) (Mw / Mn). Specifically, it can be measured using a Waters PL-GPC220 instrument using a Polymer Laborator ies PLgel MIX-B 300 mm length column. At this time, the evaluation temperature is 160 ° C, 1,2,4-trichlorobenzene is used as a solvent, and the flow rate is 1 mL / min. The sample is prepared at a concentration of 10 mg / 10 mL, and then supplied in an amount of 200 uL. Values of Mw and Mn are derived using a calibration curve formed using polystyrene standards. In this case, the molecular weight (g / mol) of the polystyrene standard product was 9 kinds of 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000. In addition, homopolypropylene according to one embodiment of the invention has a low residual stress ratio of 0.05% or less, together with MI and MWD as described above.
상기 잔류응력비율은부직포제조공정과유사한환경 하에서 유변학적 물성 테스트를 통해 섬유 가공성을 확인할 수 있는 것으로, 호모 폴리프로필렌에 큰 변형 (strain)을 가하는 응력 완화 테스트 (stress relaxat ion test )를 수행하고, 이때 측정되는 잔류 응력 값으로부터 하기 수학식 1에 따라계산할수있다. The residual stress ratio can be determined by a rheological property test under an environment similar to that of the nonwoven fabric manufacturing process. The stress relaxation test is performed to apply a large strain to the homopolypropylene, From the residual stress value measured at this time, it can be calculated according to the following equation ( 1 ).
[수학식 1]  [Equation 1]
잔류응력비율 = (RSi/RSo) x 100  Residual stress ratio = (RSi / RSo) x 100
상기 수학식 1에서, R¾는 235 °C 하에서 상기 호모 폴리프로필렌에In Equation 1, R¾ is the homopolypropylene under 235 ° C
200%의 변형을가한후 0.05초미만의 어느한시점 (to)에서의 잔류응력이고, 235 °C 하에서 호모폴리프로필렌에 200%의 변형을가한후 0.05초내지 1.50초사이의 어느한시점 (h)에서의 잔류응력이다. 또, 상기 수학식 1에서 RSQ는 235 °C 하에서 호모 폴리프로필렌에 200%의 변형을 가한 직후[예를 들어 0.05초 미만의 어느 한 시점 (to)]에서의 잔류응력을나타낸다. 그리고, 상기 수학식 1에서 R¾은상기 RSo와동일한 조건 하에서 상기 to후 약 1.5초 이내[예를들어 0.05초내지 1.50초사이의 어느한시점 (ti)]에서의 잔류응력을나타낸다. 구체적으로, 상기 수학식 1에서 상기 to는 0.01 초, 혹은 0.015 초, 혹은 0.02초, 혹은 0.025초, 혹은 0.03초, 혹은 0.035초, 혹은 0.04초, 혹은 0.045초에서 선택될수있다. 그리고, 상기 수학식 1에서 U은 ¾.05초, 혹은 0.10 초, 혹은 0.20 초, 혹은 0.30 초, 혹은 0.40 초, 혹은 0.50 초, 혹은 0.60 초, 혹은 0.70 초, 혹은 0.80 초, 혹은 0.90 초, 혹은 1.00 초, 혹은 1.10초, 혹은 1.20초, 혹은 1.30초, 혹은 1.40초, 혹은 1.50초에서 선택될수있다. 바람직하게는, 잔류응력의 측정시 유효한데이터를용이하게 확보를 위하여, 상기 수학식 1에서 to는 0.02 초이고, 은 1.00 초인 것이 유리할수있다. 그리고, 상기 호모폴리프로필렌의 잔류응력비율은부직포제조시 멜트 블로잉의 수행을 위한 공정 조건과 유사한 환경 (예를 들어 235 °C ) 하에서 측정된다. 상기 235°C의 온도는호모폴리프로필렌조성물을완전히 녹여 멜트 블로잉을수행하기에 적합한온도에 해당한다. 통상 부직포는 수지의 용융상태에서 섬유로 방사하고 쿨링 (cool ing)을 통해 반용융상태에서의 연신 공정을수행함으로써 제조되게 된다. 이때 상기 수학식 1에 따른 잔류 응력의 비율이 0.05%를 초과하여 높을 경우, 변형에 대해 높은 저항성을 나타내기 때문에, 방사 공정에서 방사성이 좋지 않아 굵기가 가늘면서도 균일한 섬유의 제조가 어렵다. 또, 단사 발생율이 높기 때문에 섬유 생성 공정 동안에 단사 발생으로 인해 섬유를 생산하지 못하는 시간이 길어지는등가공성이 저하되고, 연속적인방사공정의 수행이 어렵다. 또웹 형성성 (web format ion)이 불량하기 때문에, 강도저하의 우려가있다. 반면 본 발명에 따른 호모 폴리프로필렌은 0.05% 이하의 낮은 잔류 응력 비율을갖기 때문에, 굵기가가늘면서도균일한섬유의 제조가가능하고, 우수한가공성으로고강성의 저평량부직포의 제조가가능하다. 잔류응력비율 제어에 따른 섬유 가공성 개선 효과를 고려할 때, 상기 호모폴리프로필렌의 잔류응력비율은보다구체적으로 0.005내지 0.05%, 보다 더 구체적으로는 0.005내지 0.03%, 혹은 0.02내지 0.03%일수있다. 또한, 상기 호모 폴리프로필렌은 자일렌 가용분 (xylene solubles; Xs)이 1.0중량%이하로높은입체규칙도 (tact i ci ty)를나타낸다. The residual stress at a certain point (to) of less than 0.05 seconds after the strain of 200% is applied and the residual stress at a certain point of time (h) between 0.05 seconds and 1.50 seconds after applying 200% strain to homopolypropylene at 235 ). ≪ / RTI > Also, in the above formula (1), RS Q is a homopolypropylene Represents the residual stress immediately after application of 200% strain (for example, at a point of time less than 0.05 seconds). In the above equation (1), R? Represents the residual stress within about 1.5 seconds (for example, at a time point (ti) between 0.05 second and 1.50 second) after the toe under the condition of the same RSo. Specifically, in Equation (1), the to can be selected from 0.01 second, 0.015 second, or 0.02 second, or 0.025 second, or 0.03 second, or 0.035 second, or 0.04 second, or 0.045 second. In the above equation (1), U represents ¾.05 seconds, or 0.10 seconds, or 0.20 seconds, or 0.30 seconds, or 0.40 seconds, or 0.50 seconds, or 0.60 seconds, or 0.70 seconds, or 0.80 seconds, or 0.90 seconds, Or 1.00 seconds, or 1.10 seconds, or 1.20 seconds, or 1.30 seconds, or 1.40 seconds, or 1.50 seconds. Preferably, in order to easily assure effective data in the measurement of the residual stress, it is advantageous that in the above equation (1), to is 0.02 sec and silver is 1.00 sec. The residual stress ratio of the homopolypropylene is measured under an environment (for example, 235 ° C) similar to the process conditions for performing the melt blowing in the production of the nonwoven fabric. The temperature of 235 ° C corresponds to a temperature suitable for completely melting the homopolypropylene composition to perform melt blowing. The nonwoven fabric is usually produced by spinning into fibers in the molten state of the resin and performing a drawing process in a semi-molten state through cooling. At this time, when the ratio of the residual stress according to Equation (1) is higher than 0.05%, it shows a high resistance to deformation, so that it is difficult to manufacture a fiber having a small thickness but uniformity because of poor radioactivity in the spinning process. In addition, since the single yarn occurrence rate is high, the process time is shortened due to the occurrence of single yarn during the fiber production process, resulting in deterioration in processability and it is difficult to carry out the continuous spinning process. In addition, since the web forming ion is poor, there is a fear of a decrease in strength. On the other hand, the homopolypropylene according to the present invention has a low residual Since it has a stress ratio, it is possible to produce a fiber having a small thickness and uniformity, and it is possible to manufacture a low basis weight nonwoven fabric with high rigidity with excellent processability. The residual stress ratio of the homopolypropylene may be more specifically from 0.005 to 0.05%, more specifically from 0.005 to 0.03%, or from 0.02 to 0.03%, in consideration of the improvement of the fiber workability by the residual stress ratio control. In addition, the homopolypropylene exhibits a tacticity as high as 1.0% by weight or less of xylene solubles (Xs).
본 발명에 있어서 자일렌 가용분은, 호모폴리프로필렌을자일렌 중에 용해시키고, 냉각용액으로부터 불용성 부분을결정화시켜 결정된냉각자일렌 중에 가용성인 중합체의 함량 (중량%)으로, 자일렌 가용분은 낮은 입체 규칙성의 중합체 사슬을 함유한다. 이에 따라, 자일렌 가용분의 함량이 낮을수록 높은 입체 규칙도를 갖는다. 본 발명의 일 구현예에 따른 호모 폴리프로필렌은 이와 같이 높은 입체 규칙도를 가짐에 따라 부직포 제조시 우수한 강성을 나타낼 수 있다. 자일렌 가용분 제어에 따른 개선 효과의 우수함을 고려할 때, 상기 호모 폴리프로필렌의 자일렌 가용분은 보다 구체적으로는 0.5 내지 1.0 중량%, 보다 더 구체적으로는 0.6 내지 0.7 중량%일수있다. 또, 본 발명에 있어서 상기 자일렌 가용분은, 호모 폴리프로필렌 샘플에 자일렌을넣고, 135°C에서 1시간동안가열후 30분간냉각하여 전처리 하고, OminiSec(Vi scotek사 FIPA) 장비에서 lmL/min의 유속 ( f low rate)으로 4시간 동안 자일렌을 를려주어, RI (Refract ive Index) , DP(Pressure across middle of br idge) , IP( Inlet pressure through br idge top to bottom)의 베이스라인 (base l ine)이 안정화되면, 전처리한샘플의 농도및 인젝션 양을 기입하여 측정 후, 피크면적을계산함으로써 측정할수있다. 또한, 상술한 MI , MWD, 잔류응력비율및 자일렌가용분조건과더불어, 상기 호모 폴리프로필렌은 150 내지 155°C , 보다 구체적으로는 152 내지 154 °C의 융점 (Tm)을가질 수 있다. 상기한범위 내의 Tm을가질 경우우수한 방사성 및 생산성을나타낼수있다. In the present invention, the xylene-soluble fraction is obtained by dissolving homopolypropylene in xylene, determining the content (% by weight) of the polymer soluble in the cooled xylene determined by crystallizing the insoluble portion from the cooling solution, Contains a polymer chain of stereoregularity. Accordingly, the lower the content of the xylene-soluble fraction, the higher the stereoregularity. The homopolypropylene according to one embodiment of the present invention has such a high stereoregularity that it can exhibit excellent rigidity in the production of a nonwoven fabric. Considering that the improvement effect of the xylene-soluble fraction control is excellent, the content of the xylene-soluble fraction of the homopolypropylene may be more specifically 0.5 to 1.0% by weight, and more particularly 0.6 to 0.7% by weight. In the present invention, the xylene-soluble fraction was prepared by adding xylene to a homopolypropylene sample, heating it at 135 ° C for 1 hour, cooling it for 30 minutes, pretreating it, min at a low flow rate (f low rate) for 4 hours and the baseline of RI (Reflect ive Index), DP (Pressure across middle of bridge) and IP (inlet pressure through bridge top to bottom) base l ine) is stabilized, the concentration can be measured by plotting the concentration of the pretreated sample and the amount of the injection, and then measuring the peak area. Further, in addition to the aforementioned MI, MWD, residual stress ratio, and xylene loading conditions, the homopolypropylene has a melt index of 150 to 155 ° C, more specifically, Lt; RTI ID = 0.0 > 154 C < / RTI > When Tm is within the above range, excellent radioactivity and productivity can be exhibited.
한편, 본 발명에 있어서 상기 융점은, 시차주사 열량계 (Di f ferent ial Scanning Calor imeter; DSC)를 이용하여 측정할수 있다. 구체적으로는, 호모 폴리프로필렌의 온도를 200°C까지 증가시킨 후, 5분 동안 그 온도에서 유지하고, 그다음 30°C까지 내린후, 다시 온도를증가시켜 DSCCDi f ferent i al Scanning Calor imeter , TA사제조) 곡선의 꼭대기를융점으로하여 측정할수 있다. 이 때, 온도의 상승과 내림의 속도는 각각 10°C /min 이고, 융점은 두 번째온도가상승하는구간에서 측정한결과이다. 상기와 같은 물성적 특징을 갖는 발명의 일 구현예에 따른 호모 폴리프로필렌은, 촉매 활성 성분으로하기 화학식 1의 화합물을포함하는촉매 조성물의 존재 하에, 수소를 프로필렌 단량체 총 중량에 대하여 700 내지 250¾ 으로 투입하여 프로필렌 단량체를 중합하는 단계를 포함하는 제조방법에 의해 제조될수있다: In the present invention, the melting point can be measured using a differential scanning calorimeter (DSC). Specifically, the temperature of the homopolypropylene was increased to 200 ° C, held at that temperature for 5 minutes, then lowered to 30 ° C, and then the temperature was increased to obtain DSCCDi ferent i al Scanning Calorimeter, TA The melting point of the top of the curve can be measured. In this case, the temperature rise and fall rates are respectively 10 ° C / min, and the melting point is the result measured in the second rise of the temperature. The homopolypropylene according to one embodiment of the invention having such physical properties as described above is characterized in that in the presence of a catalyst composition comprising a compound of the formula (1) as a catalytically active component, hydrogen is added to the propylene monomer in an amount of from 700 to 250, And then polymerizing the propylene monomer.
[화학식 1]  [Chemical Formula 1]
Figure imgf000010_0001
Figure imgf000010_0001
상기 화학식 1에서,  In Formula 1,
쇼는탄소, 실리콘또는게르마늄이고, 2019/103306 1»(:1^1{2018/011638 Shows are carbon, silicon or germanium, 2019/103306 1 »(: 1 ^ 1 {2018/011638
¾및 ¾는각각독립적으로할로겐이고, Each of ¾ and ¾ is independently halogen,
및 ¾는각각독립적으로 01-20알킬로치환된 03-20아릴아고,And < RTI ID = 0.0 > R3 < / RTI > are each independently 0 3-20 aryl,
¾내지 ¾, 및 ¾내지 ¾은각각독립적으로수소, 할로겐, 01-20알킬, 02-20 알케닐, 알킬실릴, 01-20 실릴알킬, 01-20 알콕시실릴, 20 에테르, 01-20 실릴에테르, 0 -20 알콕시, 06-20 아릴, 07-20 알킬아릴, 또는 07-20 아릴알킬이고,To ¾ ¾, and to ¾ ¾ are each independently hydrogen, halogen, alkyl, 0 1-20, 0 2-20 alkenyl, alkylsilyl, 0 1-20 alkyl silyl, 0 1-20 alkoxysilyl group, an ether 20, 0 1-20 silyl ether, 0-20 alkoxy, 0 6-20 aryl, 0 7-20 alkylaryl, or 0 7-20 arylalkyl,
Figure imgf000011_0001
동일하며, 02-20알킬이다. 본명세서에서 특별한제한이 없는한다음용어는하기와같이 정의될 수있다.
Figure imgf000011_0001
Lt; / RTI > Unless defined otherwise herein, the following terms may be defined as follows.
할로겐(1½1(¾래)은 불소作), 염소(이), 브롬(아) 또는 요오드(I)일 수 있다. Halogen (1 ½ 1 below) is fluorine作) may be, chlorine (a), bromine (H), or iodine (I).
01-20 알킬기는 직쇄, 분지쇄 또는 고리형 알킬기일 수 있다 . 구체적으로 01-20 알킬기는 01-15 직쇄 알킬기; 01-10 직쇄 알킬기; 01-5 직쇄 알킬기 ; C3-20 분지쇄 또는 고리형 알킬기 ; ¾ 15 분지쇄 또는 고리형 알킬기 ; 또는 03-10분지쇄 또는 고리형 알킬기일 수 있다. 보다구체적으로, -20의 알킬기는 메틸기, 에틸기, 11-프로필기,
Figure imgf000011_0002
-프로필기, 11_부틸기,
Figure imgf000011_0003
-부틸기, 七라卜부틸기, 11-펜틸기 ,
Figure imgf000011_0004
-펜틸기 또는사이클로핵실기 등일수 있다.
The 0 1-20 alkyl group may be a straight chain, branched chain or cyclic alkyl group. Specifically, the 0 1-20 alkyl group may be a 0 1-15 straight-chain alkyl group; 0 1-10 straight chain alkyl group; 0 1-5 straight-chain alkyl group; A C3-20 branched or cyclic alkyl group; ¾ 15- branched or cyclic alkyl group; Or a 0 3 -10 branched or cyclic alkyl group. More specifically, the -20 alkyl group is preferably a methyl group, an ethyl group, an 11 -propyl group,
Figure imgf000011_0002
- propyl group, 11- butyl group,
Figure imgf000011_0003
A butyl group, a 7-butylbutyl group, an 11 -pentyl group,
Figure imgf000011_0004
- pentyl group or cyclic nucleus group and the like.
02-20 알케닐기는 직쇄, 분지쇄 또는 고리형 알케닐기일 수 있다. 구체적으로 02-20 알케닐기는 02-20 직쇄 알케닐기, 02-10 직쇄 알케닐기, 02-5 직쇄 알케닐기 , 03-20 분지쇄 알케닐기, 03-15 분지쇄 알케닐기, 03-10 분지쇄 알케닐기, 의 고리형 알케닐기 또는 ¾ 1()의 고리형 알케닐기일 수 있다 . 보다 구체적으로, 02-20 의 알케닐기는 에테닐기 프로페닐기, 부테닐기, 펜테닐기 또는사이클로핵세닐기 등일수있다. The 0 2 -20 alkenyl group may be a straight chain, branched chain or cyclic alkenyl group. Specific examples of the 0 2 -20 alkenyl group include 0 2 -20 straight chain alkenyl groups, 02-10 straight chain alkenyl groups, 0 2 -5 straight chain alkenyl groups, 0 3-20 branched chain alkenyl groups, 0 3-15 branched chain alkenyl groups, ( 3) a branched alkenyl group of 3 to 10 carbon atoms, or a cyclic alkenyl group of 1 (3). More specifically, the 0 2 -20 alkenyl group may be an ethenyl group, a propenyl group, a butenyl group, a pentenyl group or a cyclohexenyl group.
06-30 아릴은 모노사이클릭, 바이사이클릭 또는 트라이사이클릭 방향족 탄화수소를의미할수 있다. 구체적으로, 06-30아릴은페닐기, 나프틸기 또는 안트라세닐기 등일수있다. 0 6-30 Aryl can mean monocyclic, bicyclic or tricyclic aromatic hydrocarbons. Specifically, 0 6-30 aryl may be phenyl, naphthyl or anthracenyl.
07-30 알킬아릴은 아릴의 1 이상의 수소가 알킬에 의하여 치환된 치환기를 의미할수 있다. 구체적으로 07-30 알킬아릴은 메틸페닐, 에틸페닐,
Figure imgf000012_0001
0 7-30 Alkylaryl may mean a substituent wherein at least one hydrogen of the aryl is replaced by an alkyl. Specifically, 0 7-30 alkylaryl is methylphenyl, ethylphenyl,
Figure imgf000012_0001
또는사이클로핵실페닐등일수있다. Or cyclohexyl phenyl.
07-30 아릴알킬은 알킬의 1 이상의 수소가 아릴에 의하여 치환된 치환기를 의미할 수 있다. 구체적으로, 07-30 아릴알킬은 벤질기, 페닐프로필 또는페닐핵실등일수있다. 본 발명의 일 구현예에 따른 호모 폴리프로필렌의 제조에 사용되는 촉매 조성물은상기 화학식 1의 화합물을단일 촉매로서 포함한다. 이에 따라 종래 2종 이상의 촉매를 혼합하여 사용하는 경우에 비해 제조되는 호모 폴리프로필렌에 비해분자량분포가현저히 좁아질수있다. 더욱이 상기 화학식 1의 화합물은, 인데닐기 포함 두 개의 리간드를 연결하는 브릿지 그룹으로서, 탄소수 2 이상의 동일한 알킬기로 2 치환된 2가의 작용기 쇼를 포함함으로써, 원자 사이즈가 증가하고, 가용 각도가 늘어남에 따라단량체의 접근이 용이하여 보다우수한촉매활성을 나타낼 수 있다. 또, 리간드인 두 개의 인데닐기 모두 2번 위치가 메틸기로 치환되고, 4번 위치 ¾ 및 R5)는 각각 알킬 치환된 아릴기를 포함함으로써, 충분한 전자를공급할수있는유도효과 ( Induct ive ef fect)에 와해보다우수한촉매 활성을나타낼수있다. 또, 상기 화학식 1의 화합물은 중심 금속으로서 지르코늄 (Zr )을 포함함으로써, Hf 등과 같은 다른 14족 원소를 포함할 때와비교하여 전자를 수용할수있는오비탈을더 많이 가지고있어 보다높은친화력으로단량체와 쉽게 결합할수 있으며, 그결과보다우수한촉매 활성 개선 효과를나타낼 수있다. 보다구체적으로 상기 화학식 1에서 Ri 및 ¾는 각각독립적으로 Ci-io 알킬로 치환된 Ce-12 아릴기일 수 있으며, 보다 더 구체적으로는 tert-부틸 2019/103306 1»(:1^1{2018/011638 0 7 -30 arylalkyl may mean a substituent wherein at least one of the hydrogens of the alkyl is substituted by aryl. Specifically, the 0 7 -30 arylalkyl may be a benzyl group, a phenylpropyl group, or a phenylhexyl group. The catalyst composition used in the preparation of homopolypropylene according to one embodiment of the present invention includes the compound of Formula 1 as a single catalyst. Accordingly, the molecular weight distribution can be significantly narrowed as compared with the homopolypropylene produced in the past when two or more catalysts are used in combination. Further, the compound of formula (1) is a bridge group connecting two ligands including an indenyl group, and includes a bivalent functional group that is substituted with the same alkyl group having 2 or more carbon atoms, thereby increasing the atom size and increasing the usable angle The monomer is easily accessible and can exhibit better catalytic activity. In addition, both of the two indenyl groups as the ligand are substituted with the methyl group at the 2-position, and the 4-position ¾ and R 5) include the alkyl-substituted aryl group, so that the induction effect It can exhibit better catalytic activity than decomposition. Further, the compound of formula (1) contains zirconium (Zr) as a central metal, thereby having more orbitals capable of accepting electrons as compared with the case of containing other Group 14 elements such as Hf and the like, And as a result, it is possible to exhibit a better catalytic activity improving effect. More specifically, Ri and ¾ in the above formula (1) may each independently be a Ce-12 aryl group substituted with Ci-io alkyl, and more specifically, tert-butyl 2019/103306 1 »(: 1 ^ 1 {2018/011638
페닐과같은 03-6분지쇄 알킬기로치환된페닐기일수있다 . 또상기 페닐기에 대한알킬기의 치환위치는인데닐기에 결합한 ¾또는 1?5위치와
Figure imgf000013_0001
위치에 해당하는 4번위치일수있다. 또, 상기 화학식 1에서, 요2내지 ¾, 및 ¾내지 ¾은각각독립적으로 수소일수있으며, ¾및 ¾는각각독립적으로클로로일수있다. 또, 상기 화학식 1에서 쇼는 실리콘( )일 수 있으며, 또 상기 쇼의 치환기인 ¾ 및 ¾ᄋ는 용해도를 증대시켜 담지 효율성을 개선하는 측면에서 서로동일하며 , 02-10알킬기일수 있고, 보다구체적으로는 02-4직쇄상알킬기 , 보다 더 구체적으로는 각각 에틸일 수 있다. 이와 같이 브릿지 그룹의 쇼에 대한 치환기로서 서로 동일한 알킬기를 가짐으로써, 종래 브릿지 그룹의 원소에 대한치환기가탄소수 1의 메틸기인 경우 담지 촉매 조제시 용해도가 좋지 않아담지 반응성이 떨어지는문제를해결할수있다. 상기 화학식 1로표시되는화합물의 대표적인 예는다음과같다:
Or a phenyl group substituted with 0 3-6 branched alkyl groups such as phenyl. The substitution position of the alkyl group for the phenyl group is ¾ or 1? 5 position and
Figure imgf000013_0001
Position 4 corresponding to the position. In the above formula (1), Y 2 and Y 3 , and Y 3 and Z 4 each independently may be hydrogen, and each of ¾ and ¾ may be chloro. In the above formula (1), the show may be silicon (), and the substituents of the show are the same in that the solubility is increased to improve the carrying efficiency and may be a 0 2 -10 alkyl group, Specifically 0 2 -4 straight chain alkyl groups, more particularly each ethyl group. By having the same alkyl group as the substituent for the show of the bridge group, if the substituent for the element of the conventional bridge group is a methyl group having 1 carbon atom, solubility in the preparation of the supported catalyst is poor and the problem of poor supporting reaction can be solved. Representative examples of the compound represented by the above formula (1) are as follows:
\¥0 2019/103306 1 1/10公018/011638 \ ¥ 0 2019/103306 1/10/10 Public 018/011638
Figure imgf000014_0001
상기 화학식 1의 화합물은공지의 반응들을응용하여 합성될수 있으며, 보다상세한합성 방법은후술하는제조예를참고할수있다. 한편, 상기 화학식 1의 화합물은 단일 성분으로 사용될 수도 있고, 담체에 담지된담지 촉매의 상태로사용될수도있다 .
Figure imgf000014_0001
The compound of formula (1) can be synthesized by applying known reactions, and a more detailed synthesis method can be referred to the following production examples. The compound of Formula 1 may be used as a single component or may be used in the form of a supported catalyst supported on a support.
상기 담체로는표면에 반응성이 큰하이드록시기 또는실록산기를갖는 담체를사용할수 있으며, 또건조되어 표면에 수분이 제거된 것이 사용될수 있다. 예컨대, 고온에서 건조된 실리카, 실리카-알루미나, 및 실리카_ 마그네시아등이 사용될 수 있고, 이들은통상적으로此20, ¾期3 , ¾4 , 및 ¾ 어03)2등의산화물, 탄산염, 황산염, 및 질산염 성분을함유할수있다. As the carrier, a carrier having a hydroxyl group or a siloxane group having high reactivity on the surface can be used, and a carrier dried and having moisture removed on its surface can be used. For example, the dried silica in a high-temperature, silica-alumina, and silica _ magnesia and the like may be used, all of which are typically此20, ¾期3, ¾ et 4, and ¾ word 03) an oxide of 2, such as carbonate, sulfate , And nitrate components.
상기 담체의 건조시 온도는 200 내지 8001:일 수 있으며, 300 내지
Figure imgf000014_0002
The temperature at which the carrier is dried may be from 200 to 8001:
Figure imgf000014_0002
낮을 경우에는 담체에 잔류하는수분이 너무 많아서 표면의 수분과조촉매가 2019/103306 1»(:1^1{2018/011638 When the temperature is low, the amount of water remaining in the carrier is too high, 2019/103306 1 »(: 1 ^ 1 {2018/011638
반응할 우려가 있고, 건조 온도가 지나치게 높을 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 감소하고, 또한 표면에 하이드록시기가 많이 없어지고실록산기만남게 되어 조촉매와의 반응자리가감소할우려가있다. 일 례로 담체 표면의 하이드록시기 양은 0.1 내지 10^01 또는 0.5 내지 5 1101/용일수있다. 상기 담체 표면에 있는하이드록시기의 양은담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 잔공 또는 스프레이 건조등에 의해 조절할수 있다. 상기 하이드록시기의 양이 지나치게 낮으면 조촉매와의 반응자리가 적고, 지나치게 많으면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한것일가능성이 있다. 또한, 상기 화학식 1의 화합물이 담체에 담지될경우, 상기 화학식 1의 화합물 대 담체의 중량비는 1: 1 내지 1: 100◦일 수 있다. 상기 중량비로 담체 및화학식 1의 화합물을포함할때, 적절한담지 촉매 활성을나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할수있다. 보다구체적으로는화학식 1의 화합물 대 담체의 중량비는 1: 10내지 1:30, 보다더 구체적으로는 1: 15내지 1:20일수있다. 또, 상기 촉매조성물은상기 화학식 1의 화합물및 담체 이외에, 높은 활성과공정 안정성을향상시키는측면에서 조촉매를추가로포함할수 있다. 상기 조촉매는하기 화학식 2, 화학식 3또는화학식 4로표시되는화합물중 1종이상을포함할수있다. If the drying temperature is excessively high, the pores on the surface of the carrier are aggregated to decrease the surface area. Also, the hydroxyl groups on the surface may be abolished, and only the siloxane group may remain, thus reducing the reaction site with the cocatalyst . In turn may be a hydroxyl group amount of 10 days for the 1 / 0.1 to 10 ^ 0, 1, or 0.5 to 51 of the support surface. The amount of the hydroxy group on the surface of the carrier can be controlled by the preparation method and conditions of the carrier or by drying conditions such as temperature, time, vacuum or spray drying. If the amount of the hydroxyl group is too low, the site of reaction with the co-catalyst is small. If the amount of the hydroxyl group is excessively large, it may be due to moisture other than the hydroxyl group present on the surface of the carrier particle. When the compound of Formula 1 is supported on a carrier, the weight ratio of the compound of Formula 1 to the carrier may be 1: 1 to 1: 100. When the carrier and the compound of Formula (1) are contained at the above weight ratio, they exhibit appropriate supported catalyst activity, which can be advantageous in terms of maintaining the activity of the catalyst and economical efficiency. More specifically, the weight ratio of the compound of formula (I) to the carrier may be from 1:10 to 1:30, more specifically from 1:15 to 1:20. In addition to the compound of formula (1) and the carrier, the catalyst composition may further include a cocatalyst in terms of improving the activity and the process stability. The promoter may include at least one compound represented by the following general formula (2), (3) or (4).
[화학식 2]  (2)
_[쇼1 (¾1)-0]111- 상기 화학식 2에서,_ [Show 1 (¾ 1) -0] 111 In the above formula 2,
Figure imgf000015_0001
동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; €1 -
Figure imgf000015_0001
Which may be the same or different, each independently halogen; € 1 -
20의 탄화수소; 또는할로겐으로치환된 의 탄화수소이고; 20 hydrocarbons; Or a hydrocarbon substituted with halogen;
은 2이상의 정수이며 ;  Is an integer of 2 or more;
[화학식 3]  (3)
1(¾2)3 1 (¾ 2 ) 3
상기 화학식 3에서, 2019/103306 1»(:1^1{2018/011638 In Formula 3, 2019/103306 1 »(: 1 ^ 1 {2018/011638
1½는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 01 - 20의 탄화수소; 또는할로겐으로치환된 의 탄화수소이고;1 < / RTI > may be the same or different from each other and are each independently selected from the group consisting of halogen; 0 1 to 20 hydrocarbons; Or a hydrocarbon substituted with halogen;
1는알루미늄또는보론이며 ;  1 is aluminum or boron;
[화학식 4] [Chemical Formula 4]
Figure imgf000016_0001
Figure imgf000016_0001
상기 화학식 4에서,  In Formula 4,
묘는중성 또는양이온성 루이스염기이고;  The seedlings are neutral or cationic Lewis bases;
II는수소원자이며 ;  II is a hydrogen atom;
1는 13족원소이고;  1 is a Group 13 element;
0는서로동일하거나다를수 있으며, 각각독립적으로 1 이상의 수소 원자가 할로겐, -2◦의 탄화수소, 알콕시 또는 페녹시로 치환되거나 또는 비치환된 아릴기 또는( 2ᄋ의 알킬기이다. 상기 화학식 2로 표시되는 화합물의 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 더욱 구체적으로는메틸알루미녹산일수있다. 상기 화학식 3으로 표시되는 화합물의 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리- 부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리핵실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리- 1)- 톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드 , 트리메틸보론 , 트리에틸보론 , 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 포함되며, 보다 구체적으로는 트리메틸알루미늄, 트리에틸알루미늄, 및트리이소부틸알루미늄중에서 선택되는것일수있다. 또, 상기 화학식 4로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 2019/103306 1»(:1^1{2018/011638 0 are the same or differ from each other, and each independently represent a hydrogen atom is at least one halogen, - a second ◦ substituted hydrocarbon, alkoxy or phenoxy, or in or unsubstituted aryl group or (2 ᄋ alkyl group. Examples of the compound represented by Formula 2 include methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, and butylaluminoxane, and more specifically, methylaluminoxane. Examples of the compound represented by the general formula (3) include trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, triisopropylaluminum, tri-butylaluminum, tricyclopentylaluminum, tri Tri-n-butylaluminum, tri-n-butylaluminum, pentylaluminum, triisopentylaluminum, triunylaluminum, trioctylaluminum, ethyldimethylaluminum, methyldiethylaluminum, triphenylaluminum, tri- 1 -tolylaluminum, dimethylaluminum methoxide, , Triethylboron, triisobutylboron, tripropylboron, tributylboron and the like, and more specifically may be selected from trimethylaluminum, triethylaluminum, and triisobutylaluminum. Examples of the compound represented by the formula (4) include triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, 2019/103306 1 »(: 1 ^ 1 {2018/011638
트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라( 톨릴)보론, 트리메틸암모니움테트라(0 , 1)- 디메틸페닐)보론, 트리부틸암모니움테트라(고-트리플로로메틸페닐)보론, 트리메틸암모니움테트라(I) -트리플로로메틸페닐)보론, Trimethyl ammonium tetraphenyl boron, tripropyl ammonium tetraphenyl boron, trimethyl ammonium tetra (tolyl) boron, trimethyl ammonium tetra (0,1) - dimethylphenyl) boron, tri-butyl ammonium tetra (high-to triple Methylphenyl) boron, trimethylammoniumtetra (I) -trifluoromethylphenyl) boron,
트리부틸암모니움테트라펜타플로로페닐보론, 比 디에틸아닐리니움테트라페닐보론,
Figure imgf000017_0001
디에틸아닐리니움테트라펜타플로로페닐보론,
Tributylammonium tetrapentafluorophenylboron, ratiometric diethylanilinium tetraphenylboron,
Figure imgf000017_0001
Diethylanilinium tetrapentafluorophenylboron,
디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄 , 트리부틸암모니움테트라페닐알루미늄 , 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄 , 트리메틸암모니움테트라( 톨릴)알루미늄, 트리프로필암모니움테트라(I) -톨릴)알루미늄 , 트리에틸암모니움테트라(◦,!)-디메틸페닐)알루미늄, 트리부틸암모니움테트라( 트리플로로메틸페닐)알루미늄, 트리메틸암모니움테트라( 트리플로로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플로로페닐알루미늄 , 比 -디에틸아닐리니움테트라페닐알루미늄 , Tetrabutylammonium tetraphenylborate, diethylammonium tetrapentafluorophenylboron, triphenylphosphonium tetraphenylboron, trimethylphosphonium tetraphenylboron, triethylammonium tetraphenyl aluminum, tributylammonium tetraphenyl aluminum, trimethylammonium tetraphenyl aluminum, tri Propylammonium tetraphenyl aluminum, trimethylammonium tetra (tolyl) aluminum, tripropylammonium tetra (I) -tolyl) aluminum, triethylammonium tetra (◦ ! ) -Dimethylphenyl) aluminum, tributylammoniumtetra (trifluoromethylphenyl) aluminum, trimethylammoniumtetra (trifluoromethylphenyl) aluminum, tributylammonium tetrapentafluorophenylaluminum, ratio-diethylanilinium Tetraphenyl aluminum,
디에틸아닐리니움테트라펜타플로로페닐알루미늄, Diethylanilinium tetrapentafluorophenyl aluminum,
디에틸암모니움테트라펜타테트라페닐알루미늄, Diethylammonium tetrapentatetraphenyl aluminum,
트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라(!) -톨릴)보론, 트리에틸암모니움테트라(0!)- 디메틸페닐)보론, 트리부틸암모니움테트라(I) -트리폴로로메틸페닐)보론, 트리페닐카보니움테트라( 트리플로로메틸페닐)보론 , 또는 트리페닐카보니움테트라펜타플로로페닐보론등을들수 있으며, 이들중 어느 하나또는둘이상의 혼합물이 사용될수있다. 상기한 조촉매가 더 포함되는 경우, 상기 화학식 1의 화합물 대 조촉매의 중량비는 1: 1내지 1:20일수있다. 상기 중량비로조촉매 및화학식 1의 화합물을포함할때, 적절한담지 촉매활성을나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할수있다. 보다구체적으로는화학식 1의 화합물대 조촉매의 중량비는 1:5내지 1:20, 보다더 구체적으로는 1:5내지 1: 15일 수 2019/103306 1»(:1^1{2018/011638 Triphenylphosphonium tetraphenyl aluminum, trimethylphosphonium tetraphenyl aluminum, tripropylammonium tetra ( ! ) - tolyl) boron, triethyl ammonium tetra (0,! ) -Dimethylphenyl) boron, tributylammoniumtetra (I) -trifluoromethylphenyl) boron, triphenylcarboniumtetra (trifluoromethylphenyl) boron, or triphenylcarbonium tetrapentafluorophenylboron , And mixtures of any one or more of them may be used. When the above-described cocatalyst is further included, the weight ratio of the compound of Formula 1 to the cocatalyst may be 1: 1 to 1:20. When the cocatalyst and the compound of formula (1) are contained in the weight ratio, the catalyst exhibits a proper supported catalyst activity, which is advantageous in view of maintaining the activity of the catalyst and economical efficiency. More specifically, the weight ratio of the compound of formula (I) to the co-catalyst may be from 1: 5 to 1:20, more specifically from 1: 5 to 1:15 2019/103306 1 »(: 1 ^ 1 {2018/011638
있다. 상기 촉매 조성물이 상기한 담체 및 조촉매를 모두 포함하는 경우, 상기 촉매조성물은담체에 조촉매 화합물을담지시키는단계, 및상기 담체에 상기 화학식 1로 표시되는 화합물을 담지시키는 단계를 포함하는 제조방법에 의해 제조될 수 있으며, 이때 조촉매와 화학식 1의 화합물의 담지 순서는 필요에 따라바뀔수있다. have. In the case where the catalyst composition contains both the carrier and the cocatalyst, the catalyst composition includes a step of supporting a promoter compound on a support, and a step of supporting the compound represented by the formula 1 on the support Wherein the carrying order of the cocatalyst and the compound of formula (1) may be varied as required.
이때, 상기 촉매 조성물의 제조시에 반응 용매로서 펜탄, 핵산, 헵탄 등과 같은 탄화수소계 용매, 또는 벤젠, 톨루엔 등과 같은 방향족계 용매가 사용될수있다. 한편, 발명의 일 구현예에 따른 호모 폴리프로필렌의 제조방법에 있어서 , 상기 중합공정은상기 화학식 1로표시되는화합물을포함하는촉매 조성물과프로필텐을수소기체 하에서 접촉시킴으로써 수행될수있다.  At this time, hydrocarbon solvents such as pentane, nucleic acid, heptane and the like, or aromatic solvents such as benzene, toluene and the like may be used as a reaction solvent in the preparation of the catalyst composition. On the other hand, in the process for producing homopolypropylene according to an embodiment of the present invention, the polymerization process can be carried out by contacting the propylene polymer with the catalyst composition containing the compound represented by the formula (1) under hydrogen gas.
이때, 상기 수소기체는, 프로필렌 단량체 총중량에 대하여 700내지 At this time, the hydrogen gas preferably has a mass ratio
2500卵의 함량으로 투입될 수 있다. 상기 수소 기체의 사용량을조절하여, 충분한 촉매 활성을 나타내면서도 제조되는 호모 폴리프로필렌 조성물의 분자량 분포 및 유동성을 원하는 범위 내로 조절할 수 있으며, 이에 따라 용도에 따라 적절한 물성을 갖는 호모 프로필렌 중합체를 제조할 수 있다. 수소 기체의 투입량이 700 미만이면 제조되는 호모폴리프로필렌의 1가 크게 낮아져 가공성이 저하될 우려가 있고, 250◦抑 III을 초과할 경우 1가 지나치게 높아져 부직포제조시 강도특성 및 거칠기 특성이 저하될수 있다. 보다 구체적으로 상기 수소 기체는 700
Figure imgf000018_0001
이상, 또는 150¾쎈11 이상, 또는 1750 이상이고, 250¾)1페 이하, 또는 200¾) 이하의 함량으로투입될 수 있다. 상기 중합 공정은 연속식 중합 공정으로 수행될 수 있으며, 예컨대, 연속식 용액 중합공정, 벌크중합공정, 현탁중합공정 , 슬러리 중합공정 또는유화중합공정 등올레핀 단량체의 중합반응으로 알려진 다양한중합 공정이 채용될 수 있다. 특히, 균일한 분자량 분포를 얻고, 제품의 상업적 2019/103306 1»(:1^1{2018/011638
It can be put into the contents of 2500 eggs. The molecular weight distribution and the fluidity of the homopolypropylene composition can be controlled within a desired range by controlling the amount of the hydrogen gas used while exhibiting sufficient catalytic activity and thus the homopropylene polymer having appropriate physical properties can be prepared have. If the amount of the hydrogen gas is less than 700, 1 of the produced homopolypropylene may be significantly lowered and the workability may be deteriorated. When the amount of the hydrogen gas is less than 700%, the strength and roughness characteristics of the nonwoven fabric may be lowered . More specifically, the hydrogen gas is 700
Figure imgf000018_0001
And above, or 150¾ Thyssen 11 or more, or more than 1750, 250¾) 1 or less Fe, or 200¾) may be added in an amount up. The polymerization process can be performed by a continuous polymerization process, and various polymerization processes known as polymerization of olefin monomers such as continuous solution polymerization process, bulk polymerization process, suspension polymerization process, slurry polymerization process or emulsion polymerization process are employed . In particular, it is possible to obtain a uniform molecular weight distribution, 2019/103306 1 »(: 1 ^ 1 {2018/011638
생산하는즉면에서는연속식 벌크-슬러리 중합공정이 바람직할수있다. 또 상기 중합 반응은 약 40 내지 110
Figure imgf000019_0001
또는 약 60 내지 100 I:의 온도와약 1내지 100 1¾八: 의 압력 하에서 수행될수있다. 또한, 상기 중합반응에서, 상기 촉매는펜탄, 핵산, 헵탄, 노난, 데칸, 톨루엔, 벤젠, 디클로로메탄, 클로로벤젠등과같은용매에 용해 또는희석된 상태로 투입될 수 있다. 이때, 상기 용매를 소량의 알킬알루미늄 등으로 처리함으로써, 촉매에 악영향을 줄 수 있는 소량의 물 또는 공기 등을 미리 제거할수있다. 상기한 제조방법에 의해 제조된 발명의 일 구현예에 따른 호모 폴리프로필렌은, 낮은잔류응력비율및자일렌가용분과함께, 최적 범위의 및 좁은분자량분포를가짐으로써, 굵기가가늘면서도균일한섬유의 제조가 가능하고, 또 기존 제품보다 거친 촉감을 부여할뿐만 아니라 높은 강도로 쉽게 찢어지지 않는 우수한 강인성을 동시에 구현할 수 있다. 이에 따라 고강성과 함께 큰 표면 거칠기가 요구되는 부직포, 구체적으로는 수세미와 같은세척용부직포의 제조에 특히 유용할수있다. 이에 따라 본 발명의 또 다른 일 구현예에 따르면 상기한 호모 폴리프로필렌을 포함하는 부직포용 수지 조성물 및 이를 이용하여 제조된 부직포가 제공된다. 이때 상기 부직포는 수세미와 같은 세척용 부직포일 수 있으며, 보다더 구체적으로는일회용수세미 등일수있다.
Continuous bulk-slurry polymerization processes may be desirable in the production phase. The polymerization reaction may also be carried out at a temperature of from about 40 to 110
Figure imgf000019_0001
Or about 60 to 100 I: it may be carried out under a pressure of: the temperature and from about 1 to 100 1 ¾八. Further, in the polymerization reaction, the catalyst may be added in a dissolved or diluted state in a solvent such as pentane, nucleic acid, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like. At this time, by treating the solvent with a small amount of alkylaluminum or the like, a small amount of water or air that can adversely affect the catalyst can be removed in advance. The homopolypropylene according to one embodiment of the present invention produced by the above production method has an optimum range and a narrow molecular weight distribution together with a low residual stress ratio and xylene solubles, It can be manufactured, and it is possible not only to give rough feeling to the existing product but also to realize excellent toughness which is not torn easily with high strength. Accordingly, it can be particularly useful for the production of nonwoven fabrics requiring high surface roughness and high surface roughness, specifically, cleaning nonwoven fabrics such as scrubbers. Thus, according to another embodiment of the present invention, there is provided a resin composition for a nonwoven fabric including the homopolypropylene and a nonwoven fabric produced using the same. At this time, the nonwoven fabric may be a nonwoven fabric for washing such as a scrubbing brush, more specifically, a disposable wipe or the like.
상기 부직포용 수지 조성물 및 부직포는 상기한 호모 폴리프로필렌을 사용하는것을제외하고는통상의 방법에 따라제조될수있다. 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 다만, 하기의 실시예들은본발명을예시하기 위한것일뿐, 본발명의 내용이 하기 실시예들에 의하여 한정되는것은아니다.  The resin composition for a nonwoven fabric and the nonwoven fabric may be produced by a conventional method, except that the homopolypropylene is used. Best Mode for Carrying Out the Invention Hereinafter, preferred embodiments are described to facilitate understanding of the present invention. However, the following examples are intended to illustrate the present invention, and the present invention is not limited to the following examples.
제조예 1 단계 1) (디에틸실란-디일)-비스(2 -메틸- 4-(4-tert-부틸- 페닐)인데닐)실란의 제조 Production Example 1 Step 1) Preparation of (diethylsilanediyl) -bis (2-methyl-4- (4-tert-butylphenyl) indenyl) silane
2 -메틸- 4-tert-부틸-페닐인덴(20.0 g)을 톨루엔/ THF의 부피비 =10/1 용액(220 mL)에 용해시킨 후, n-부틸리툼 용액(2.5 M, 핵산용매, 22.2 g)을 (TC에서 천천히 적가한 다음, 상온에서 하루 동안 교반하였다. 결과의 혼합 용액에 대해, -78°C에서 디에틸디클로로실란(6.2 g)을 천천히 적가하고 약 10분동안교반한후, 상온에서 하루동안더 교반하였다. 그후, 물을가하여 유기증을 분리하고, 용매를 감압증류하여 (디에틸실란-디일)-비스(2 -메틸- 4- (4-tert-부틸-페닐)인데닐)실란을얻었다. 단계 2) [(디에틸실란-디일)-비스(2 -메틸- 4-(4-tert-부틸- 페닐)인데닐)]지르코늄디클로라이드의 제조 2-methyl-4-tert-butylphenylindene (20.0 g) was dissolved in a toluene / THF volume ratio of 10/1 solution (220 mL) 22.2 g) was slowly added dropwise (in TC, followed by stirring at room temperature for one day). To the resultant mixed solution, diethyldichlorosilane (6.2 g) was slowly added dropwise at -78 ° C, stirred for about 10 minutes, and then stirred at room temperature for an additional day. Thereafter, water was added to separate the organic phase and the solvent was distilled off under reduced pressure to obtain (diethylsilane-diyl) -bis (2-methyl-4- (4-tert-butylphenyl) indenyl) silane. Step 2) Preparation of [(diethylsilanediyl) -bis (2-methyl-4- (4-tert-butylphenyl) indenyl)] zirconium dichloride
상기 단계 1에서 제조한 (디에틸실란-디일)-비스(2 -메틸- 4-tert-부틸- 페닐인데닐)실란을톨루엔/ THF ] 부피비 =5/1용액(120 mL)에 용해시킨 후, n_ 부틸리튬 용액(2.5 M, 핵산 용매, 22.2 g)을 -78°C에서 천천히 적가하고, 상온에서 하루 동안 교반하였다. 결과로 수득한 반응액에 대해, 지르코늄 클로라이드(8.9 g)를 톨루엔(20 mL)에 희석하여 제조한 용액을 -78°C에서 천천히 적가하고상온에서 하루동안교반하였다. 결과로수득한반응액 중의 용매를감압제거한후, 디클로로메탄을넣고여과하고, 여액을감압증류하여 제거하였다. 톨루엔과 핵산을 사용하여 재결정을 하여 고순도의 rac- [(디에틸실란-디일)-비스(2 -메틸- 4-(4-tert_부틸-페닐)인데닐)]지르코늄 디클로라이드(10. lg, 수율 34%, rac:meso의 중량비 =20: 1)를얻었다. After dissolving the (diethylsilane-diyl) -bis (2-methyl-4-tert-butylphenylindenyl) silane prepared in the above step 1 in toluene / THF] volume ratio = 5/1 solution (120 mL) , A n-butyllithium solution (2.5 M, nucleic acid solvent, 22.2 g) was slowly added dropwise at -78 ° C and stirred at room temperature for one day. To the resulting reaction solution, a solution prepared by diluting zirconium chloride (8.9 g) in toluene (20 mL) was slowly added dropwise at -78 ° C and stirred at room temperature for one day. As a result, the solvent in the resulting reaction solution was removed under reduced pressure, dichloromethane was added thereto, and the mixture was filtered, and the filtrate was distilled off under reduced pressure. (2-methyl-4- (4-tert-butylphenyl) indenyl)] zirconium dichloride (10.0 g) was obtained by recrystallization using toluene and a nucleic acid to obtain a high purity rac- [(diethylsilane-diyl) -bis lg, a yield of 34%, and a weight ratio of rac: meso = 20: 1).
2019/103306 1»(:1^1{2018/011638 2019/103306 1 »(: 1 ^ 1 {2018/011638
Figure imgf000021_0001
Figure imgf000021_0001
단계 3)담지된촉매의 제조  Step 3) Preparation of the supported catalyst
3 I반응기에 실리카 100당과 10중량%의 메틸알루미녹산용액(670 g, 용매: 분루엔)을넣어 90方에서 24시간동안반응시켰다. 반응종료후침전이 끝나면, 상층부용액은제거하고, 남은반응 생성물을톨루엔으로 2회에 걸쳐 세척하였다. 상기 2단계에서 제조한 안사-메탈로센 화합물로서 대(:- [(디에틸실란-디일)-비스(2 -메틸- 4-(4아6 -부틸-페닐)인데닐)]지르코늄 디클로라이드 5.8용을 톨루엔 500미1에 희석시켜 상기 반응기에 첨가하고, 70°(:에서 5시간동안반응시켰다. 반응종료후침전이 끝나면, 상층부용액은 제거하고남은반응생성물을톨루엔으로세척한후, 핵산으로다시 세척하고, 진공건조하여 , 고체 입자형태의 실리카담지 메탈로센촉매 150 §을얻었다. 제조예 2 3 I The reactor was charged with 100 parts by weight of silica and 10% by weight of methylaluminoxane solution (670 g, solvent: toluene) and reacted at 90 ° for 24 hours. After completion of the reaction, when the precipitation was completed, the upper layer solution was removed, and the remaining reaction product was washed twice with toluene. As for the metallocene compound (- A Ansari prepared in step 2: [(diethyl silane-diyl) -bis (2-methyl-4- (4 Ah 6-butyl-phenyl) indenyl)] zirconium dichloride 5.8 was diluted in 500 ml of toluene, added to the reactor, and reacted at 70 ° C for 5 hours. After completion of the reaction, the upper layer solution was removed, and the remaining reaction product was washed with toluene, washed again with nucleic acid, and vacuum-dried to obtain 150 of a silica-supported metallocene catalyst in the form of solid particles. Production Example 2
상기 제조예 1의 단계 2에서 제조한 전이금속 화합물 대신에, 디에틸실란디일(2 -에틸- 4-(4’아라卜부틸-페닐)인데닐)(2 -메틸- 4-(4’아라卜 부틸-페닐)인데닐)지르코늄 디클로라이드(이 느 1311(1 1(2-61±71-4-(4'- tert-butyl -phenyl )_indenyl Khmethyl-ta’-tert-butyl- phenyl ) indenyl )zirconium di chlor ide)를 사용하는 것을 제외하고는, 제조예(2-ethyl-4- (4'-tert-butylphenyl) indenyl) (2-methyl-4- (4 ' Ara卜-butylphenyl) indenyl) zirconium dichloride (a slow 1 311 (1 1 (2- 61 ± 7 1-4- (4'- butyl-phenyl) indenyl) zirconium di chloride) was used in place of the tert-butyl-
1의 단계 3과 동일한 방법으로 수행하여 실리카 담지 메탈로센 촉매를 제조하였다. 제조예 3 1, to thereby produce a silica-supported metallocene catalyst. Production Example 3
상기 제조예 1의 단계 2에서 .제조한 전이금속 화합물 대신에, 디메틸실란디일 비스 (2 -메틸인데닐) 지르코늄 디클로라이드(이11161;11:71 1크1161 1 bi s (2-methyl indenyl )zi rconium dichlor ide)를 사용하는 것을 제외하고는, 제조예 1의 단계 3과 동일한 방법으로수행하여 실리카담지 메탈로센촉매를제조하였다. 제조예 4  (2-methylindenyl) zirconium dichloride instead of the transition metal compound prepared in Step 2 of Preparation Example 1 (2-methylindenyl (2-methylindenyl) zirconium dichloride ) zi rconium dichloride) was used instead of zirconium dichloride, to thereby produce a silica-supported metallocene catalyst. Production Example 4
상기 제조예 1의 단계 2에서 제조한 전이금속 화합물 대신에, 디메틸실란디일 비스 (2 -메틸- 4-(4-tert-부틸페닐)인데닐)지르코늄 디클로라이드 (Dimethylsi lanediyl bi s (2-methyl -4-(4-tert- butylphenyl ) indenyl )zirconium di chloride)를 사용하는 것을 제외하고는, 제조예 1의 단계 3과동일한방밥으로수행하여 실리카담지 메탈로센촉매를 제조하였다. 제조예 5  Dimethylsilanediylbis (2-methyl-4- (4-tert-butylphenyl) indenyl) zirconium dichloride was used instead of the transition metal compound prepared in Step 2 of Preparation Example 1, methyl-4- (4-tert-butylphenyl) indenyl) zirconium di chloride was used as a catalyst, to prepare a silica-supported metallocene catalyst. Production Example 5
상기 제조예 1의 단계 2에서 제조한 전이금속 화합물 대신에, 하기 구조의 화합물 (I)을 사용하는 것을 제외하고는, 제조예 1의 단계 3과 동일한 방법으로수행하여 실리카담지 메탈로센촉매를제조하였다. 2019/103306 1»(:1/10公018/011638 The procedure of Step 3 of Preparation Example 1 was repeated except that the compound (I) having the following structure was used instead of the transition metal compound prepared in Step 2 of Preparation Example 1 to prepare a silica-supported metallocene catalyst . 2019/103306 1 »(: 1/10 公 018/011638
Figure imgf000023_0001
실시예 1
Figure imgf000023_0001
Example 1
상기 제조예 1에서 제조한실리카담지 메탈로센 촉매의 존재 하에서, 연속적인 2기의 루프 반응기를 이용하여 프로필텐의 벌크-슬러리 중합을 진행하였다.  Bulk-slurry polymerization of propylenes was carried out in the presence of the silica-supported metallocene catalyst prepared in Preparation Example 1, using two continuous loop reactors.
이때, 트리에틸알루미늄(그묘 ) 및 수소 기체는 각각 펌프를 이용하여 하기 표 1에 기재된 함량으로투입하였고, 벌크-슬러리 중합을위하여 제조예 1에 따라제조한담지 촉매를 30중량%의 함량이 되도록오일 및그리스에 섞은 머드 촉매 형태로사용하였다. 반응기의 온도는 70(그, 시간당 생산량은 대략
Figure imgf000023_0002
하였다.
At this time, triethylaluminum (grains) and hydrogen gas were charged by the pumps in the amounts shown in the following Table 1, and the amount of the supported catalyst prepared in Production Example 1 for bulk-slurry polymerization was adjusted to 30 wt% Oil and grease mixed with mud catalyst. The temperature of the reactor is 70 (its production per hour is approximately
Figure imgf000023_0002
Respectively.
실시예 1중합공정에 대한구체적인 반응조건은하기 표 1에 나타낸 바와같으며, 이러한중합공정을통해호모폴리프로필렌을제조하였다. 실시예 2내지 5  Example 1 Specific reaction conditions for the polymerization process are shown in Table 1 below. Homopolypropylene was prepared through such polymerization process. Examples 2 to 5
하기 표 1에 기재된 조건으로수행하는 것을 제외하고는, 상기 실시예 1에서와동일한방법으로수행하여 호모프로필텐을제조하였다. 비교예 1 2019/103306 1»(:1^1{2018/011638Homo propylenes were prepared in the same manner as in Example 1, except that the conditions were as shown in Table 1 below. Comparative Example 1 2019/103306 1 »(: 1 ^ 1 {2018/011638
1/^ 호모 폴리프로필렌으로서 시판중인 910® (1石 화학사제)를 사용하였다. 비교예 2내지 4 A 1 / ^ homopolypropylene was used 910 ® (1石Chemical Co., Ltd.) commercially available. Comparative Examples 2 to 4
하기 표 1에 기재된 조건으로수행하는 것을제외하고는, 상기 실시예 Except that the reaction was carried out under the conditions described in the following Table 1,
1에서와동일한방법으로수행하여 호모프로필텐을제조하였다. 비교예 5 1 to prepare homopropyltethene. Comparative Example 5
수소를 50¾) 으로 투입하는 것을 제외하고는, 상기 실시예 1에서와 동일한방법으로수행하여호모프로필텐을제조하였다. 비교예 6  Homopolypropene was prepared in the same manner as in Example 1, except that hydrogen was added in an amount of 50). Comparative Example 6
수소를 3000卵미으로 투입하는 것을 제외하고는, 상기 실시예 1에서와 동일한방법으로수행하여 호모프로필렌을제조하였다. 비교예 7  Homopropylene was prepared in the same manner as in Example 1, except that hydrogen was added in an amount of 3000 eggs. Comparative Example 7
제조예 5에서 제조한실리카담지 메탈로센촉매를사용하고, 하기 표 1에 기재된조건으로수행하는 것을제외하고는, 상기 실시예 1에서와동일한 방법으로수행하여 호모프로필렌을제조하였다.  Homo propylene was prepared in the same manner as in Example 1 except that the silica-supported metallocene catalyst prepared in Preparation Example 5 was used and the conditions were set forth in Table 1 below.
【표 1] [Table 1]
Figure imgf000024_0001
Figure imgf000025_0001
시험예 1
Figure imgf000024_0001
Figure imgf000025_0001
Test Example 1
실시예 및 비교예에서 제조한호모폴리프로필렌에 대하여 다음과같은 방법으로물성 평가를수행하였다.그결과를하기 표 2에 나타내였다.  The properties of the polypropylene prepared in Examples and Comparative Examples were evaluated in the following manner.
(1) 용융지수 (MI, g/10min): ASTM D1238에 따라 230°C에서 2.16 kg 하중으로 측정하였으며, 10분 동안 용융되어 나온 중합체의 무게 (g)로 나타내었다. (1) Melt Index (MI, g / 10 min): Measured at 230 ° C under a load of 2.16 kg according to ASTM D1238 and expressed as the weight (g) of the polymer melted for 10 minutes.
(2)자일렌가용분 (Xylene Soluble, 중량%):각각의 호모폴리프로필렌 샘플에 자일텐을 넣고, 135°C에서 1시간 동안 가열하고, 30분간 냉각하여 전처리를 하였다. OminiSec(Viscotek사 FIPA) 장비에서 1 mL/min의 유속 (flow rate)으로 4시간동안자일렌을흘려주어 , RI (Refract ive Index) , DP(Pressure across middle of bridge) , IP(Inlet pressure through bridge top to bottom)의 베이스 라인 (base line)이 안정화되면, 전처리한 샘플의 농도 및 인젝션양을기입하여 측정한후,피크면적을계산하였다. (2) Xylene Soluble (wt.%): Xylenes were added to each homopolypropylene sample, heated at 135 ° C for 1 hour, cooled for 30 minutes, and pretreated. The injector was flown for 4 hours at a flow rate of 1 mL / min on an OminiSec (Viscotek FIPA) instrument, and the injected oxygen was injected through the RI (Refract ive Index), DP (Pressure across middle bridge) to bottom of the sample was stabilized, the concentration and injection amount of the pretreated sample were written and measured, and then the peak area was calculated.
(3)융점 (Tm, °C) (3) Melting point (Tm, ° C)
측정하고자하는호모폴리프로필렌의 온도를 200C까지 증가시킨 후, 5분 동안 그 온도에서 유지하고, 그 다음 30°C까지 내리고, 다시 온도를 증가시켜 DSC(Di f ferent ial Scanning Calorimeter , TA사 제조) 곡선의 꼭대기를 융점으로 하였다. 이 때, 온도의 상승과 내림의 속도는 10°C/min 이고, 융점은두번째온도가상승하는구간에서 즉정한결과를사용하였다. The temperature of the homopolypropylene to be measured was increased to 200 ° C., maintained at that temperature for 5 minutes, then decreased to 30 ° C., and the temperature was again increased to obtain a DSC (Di f ferent ial Scanning Calorimeter, The top of the curve was the melting point. At this time, the rate of rise and fall of the temperature was 10 ° C / min, and the melting point was determined in a period in which the second temperature rises.
(4) 중합체의 분자량 분포 (MWD, polydispersity index): 분자량분포 (’’Mw/Mn”)는, 겔투과크로마토그래피 (GPC)를 이용하여 Mw및 Mn을측정 후 Mw/Mn의 비로 결정하였다. 구체적으로는 Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 이용하여 Waters PL-GPC220 기기를 이용하여 측정하였다. 이때, 평가온도는 160°C이며, 1,2,4 -트리클로로벤젠을용매로서 사용하였으며, 유속은 lmL/min이었다. 샘플은 lOmg/lOmL의 농도로 조제한 다음, 200 yL의 양으로공급하였다.폴리스티렌표준을이용하여 형성된검정 곡선을이용하여 Mw및 Mn의 값을유도하였다. 폴리스티렌표준품의 분자량 (g/mol)은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10, 000, 000의 9종을사용하였다. (4) Polymer molecular weight distribution (MWD, polydispersity index): molecular weight distribution ("'Mw / Mn") was determined by measuring the Mw and Mn using gel permeation chromatography (GPC) and then determining the ratio of Mw / Mn. Specifically, it was measured using a Waters PL-GPC220 instrument using a Polymer Laboratories PLgel MIX-B 300 mm length column. At this time, the evaluation temperature was 160 ° C, 1,2,4-trichlorobenzene was used as a solvent, and the flow rate was 1 mL / min. Samples were prepared at a concentration of 10 mg / 10 mL and then fed in an amount of 200 yL. Mw and Mn values were derived using a calibration curve formed using polystyrene standards. The molecular weight (g / mol) of the polystyrene standard product was 9 kinds of 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10, 000,000.
(5)잔류응력비율측정  (5) Measurement of residual stress ratio
상기 실시예와 비교예에 따른 호모 폴리프로필렌에 대해 각각 시료를 취하여 235 °C 하에서 200%의 변형 (strain)을 가한후 10분동안 잔류응력의 변화를측정하였다. A sample was taken for the homopolypropylene according to the above Examples and Comparative Examples, and 200% strain was applied at 235 ° C, and the change of the residual stress was measured for 10 minutes.
상기 잔류 응력의 즉정에는 TA Instruments사의 Discovery Hybrid Rheometer (DHR)를 이용하였고, 지름 25 mm인 상하부플레이트 (plate) 사이에 시료를 충분히 로딩하여 235 °C 하에서 녹인 후 캡 (gap)을 1 mm로 고정하여 측정하였다. For the instantaneous residual stresses, a Discovery Hybrid Rheometer (DHR) from TA Instruments was used. The specimen was fully loaded between upper and lower plates with a diameter of 25 mm and melted at 235 ° C. Respectively.
측정된 잔류 응력의 데이터를 토대로, 하기 수학식 1에 따라 잔류 응력의 비율 (RS%)을산측하고하기 표 2에 나타내었다:  Based on the measured residual stress data, the ratio (RS%) of the residual stress according to the following formula (1) is calculated and shown in Table 2 below:
[수학식 1]  [Equation 1]
잔류응력비율 (Y) = (RSi/RS0)*100 Residual stress ratio (Y) = (RSi / RS 0) * 100
상기 수학식 1에서, RSo는 235 °C 하에서 시료에 200%의 변형을가한후 0.02초 (tQ)에서의 잔류응력이고, R¾은 235 °C 하에서 시료에 200%의 변형을 가한후 1.00초 ( )에서의 잔류응력이다. In Equation 1, RSo is a residual stress at 200% strain on the sample fall 0.02 seconds (t Q) was under 235 ° C, R¾ is 1.00 seconds was added to the 200% strain on the sample under 235 ° C () Is the residual stress.
【표 2] [Table 2]
Figure imgf000026_0001
2019/103306 1»(:1^1{2018/011638
Figure imgf000026_0001
2019/103306 1 »(: 1 ^ 1 {2018/011638
Figure imgf000027_0003
실험결과, 본발명에 따른제조방법에 의해 제조된 실시예 1내지 5의 호모폴리프로필렌은, 좁은 _, 및 200내지 2000 10111011범위의
Figure imgf000027_0001
Figure imgf000027_0003
As a result of the tests, the homopolypropylene of Examples 1 to 5 produced by the production method according to the present invention exhibited a narrow range of < RTI ID = 0.0 >
Figure imgf000027_0001
낮은 자일렌 가용분 및 잔류 응력 비율을 나타내었으며, 상기
Figure imgf000027_0002
수소 투입량의 증가에 따라 증가하였다. 또, 실시예 1 내지 5의 호모 폴리프로필렌은, 지글러-나타 촉매를 이용하여 제조한 비교예 1의 호모 폴리프로필렌과 비교하여 현저히 감소된 자일렌 가용분 및 잔류응력 비율을 나타내었으며, 분자량분포또한현저히 좁았다.
Low xylene soluble fraction and residual stress ratio,
Figure imgf000027_0002
And increased with increasing hydrogen input. The homopolypropylene of Examples 1 to 5 exhibited remarkably reduced xylene solubles and residual stress ratio as compared with the homopolypropylene of Comparative Example 1 produced using the Ziegler-Natta catalyst, and the molecular weight distribution It was remarkably narrow.
또, 촉매 활성 물질로서 구조가 상이한 화합물을 사용한 비교예 2 내지 4의 경우, 촉매 구조의 차이에 따른수소 반응성의 차이로 동등수준의 附를갖는중합체 제조에 요구되는수소투입량이 다르지만, 동등수준의附를 갖는 실시예 1과 비교하여 분자량 분포가 증가하고, 잔류응력비율이 크게 증가하였다. 또 리간드구조는 동일하나, 두 개의 리간드를 연결하는브릿기 그룹으로서 알콕시알킬의 테더기를포함하는화합물을사용한비교예 7의 경우, 높은 _ 및 잔류응력비율을 나타내었다. 이로부터 가공성 저하를 확인할수 있다.  In the case of Comparative Examples 2 to 4 in which compounds having different structures as the catalytically active material were used, the amount of hydrogen input required to produce polymers having equivalent levels was different due to the difference in hydrogen reactivity due to differences in catalyst structures, The molecular weight distribution was increased and the residual stress ratio was greatly increased as compared with Example 1 having a bump. In addition, the ligand structure is the same, but in the case of Comparative Example 7 using a compound containing a tether group of an alkoxyalkyl as a bridging group connecting two ligands, a high _ and a residual stress ratio were exhibited. From this, degradation of workability can be confirmed.
또, 동일촉매를사용하더라도수소투입량조건을충족하지 않을경우, 비교예 5 및 6에서와 같이 용융지수가 지나치게 낮거나 또는 높아, 가공성 저하를확인할수있다. 시험예 2 <부직포제조> If the hydrogen supply amount condition is not satisfied even when the same catalyst is used, the melt index is excessively low or high as in Comparative Examples 5 and 6, and the degradation of workability can be confirmed. Test Example 2 <Nonwoven Fabrication>
상기 실시예와 비교예에 따른 호모폴리프로필렌 포함 수지 조성물을 이용하여 멜트블로잉 공정을수행하여 스펀본드부직포를제조하였다.  A spunbonded nonwoven fabric was produced by performing a melt blowing process using the homopolypropylene-containing resin composition according to the above Examples and Comparative Examples.
구체적으로, 25 mm트윈-스크류압출기를이용하여 실시예 및 비교예에 따른 호모 폴리프로필렌과, 산화방지제로서 Irganox 1010™ 2000ppm 및 Specifically, homopolypropylene according to Examples and Comparative Examples was extruded using a 25 mm twin-screw extruder, 2000 ppm of Irganox 1010 ™ as an antioxidant,
Irgafos 168™ 2000ppm을 포함하는 마스터배치를 제조한 후, 이것을 펠렛화하였다. 이어서, 31 mm브라벤더 원추형트윈스크류압출기를이용하여 용융된 마스터배치 조성물을 멜트 펌프 (65 rpm)에 공급한 후에 토출구 (10개 토출구八: m)및 381 _의 토출구직경을갖는 25 cm너비의 멜트블로잉 다이에 공급한 점을 제외하고는, 문헌[Report No. 4364 of the Naval Research Laborator ies , publ i shed May 25, 1954 ent i t led "Manufacture of Superf ine Organi c Fibers" by Wente, Van. A. Boone , C. D. , and Fluharty, E. 니에 기재된 것과 유사한 공정에 의해 마스터배치 펠렛을 극세섬유 웹으로 압출하였다. A master batch containing 2000 ppm of Irgafos 168 ™ was prepared and then pelletized. Subsequently, the molten masterbatch composition was fed to a melt pump (65 rpm) using a 31 mm Brabender conical twin screw extruder, and then extruded through a discharge port (10 discharge ports 8 m) and a 25 cm wide discharge port Except for the fact that it was supplied to the meltblowing die, 4364 of the Naval Research Laboratories ies, publ i shed May 25, 1954 ent i t led "Manufacture of Superfine Organic Fiber" by Wente, Van. The master batch pellets were extruded into a microfiber web by a process similar to that described in A. Boone, C. D., and Fluharty, E.
용융 온도는 235 °C 이었고, 스크류 속도는 120 rpm이었으며, 다이는The melt temperature was 235 ° C, the screw speed was 120 rpm, and the die
235 °C에서 유지되었고, 1차공기 온도 및 압력은각각 300 °C 및 60 kPa(8.7 psi )이었으며, 중합체 처리 속도는 5.44 kg/hr였고, 수집기/다이 거리는 15.2 cm이었다. <부직포의 물성 평가 ñ 235 ° C, primary air temperature and pressure were 300 ° C and 60 kPa (8.7 psi), polymer processing rate was 5.44 kg / hr and collector / die distance was 15.2 cm. <Evaluation of physical properties of nonwoven fabric
상기 실시예와 비교예에 따른 호모 폴리프로필렌을 이용하여 제조한 각각의 스펀본드 부직포에 대하여, 아래와 같은 방법으로 물성 평가를 수행하고, 그의 결과를하기 표 3에 나타내었다.  The properties of each of the spunbond nonwoven fabrics prepared using the homopolypropylene according to the Examples and Comparative Examples were evaluated by the following methods, and the results are shown in Table 3 below.
( 1)부직포의 중량 (gsm)  (1) Weight of nonwoven fabric (gsm)
제조한 부직포 중량을 측정하고, 단위 면적당 부직포 중량을 산측하였다.  The weight of the manufactured nonwoven fabric was measured, and the weight of the nonwoven fabric per unit area was measured.
(2)부직포의 가공성  (2) Processability of nonwoven fabric
부직포 제조시 섬유의 단사 발생 여부를 확인하고, 하기 기준에 따라 부직포의 가공성을평가하였다.  The production of nonwoven fabric was checked for the occurrence of single yarns, and the processability of the nonwoven fabric was evaluated according to the following criteria.
<평가기준> 양호: 섬유의 단사 발생율이 10% 이하, 즉 섬유를 생산하는 24시간을 기준하여, 단사발생으로인해섬유를생산하지 못하는시간이 2.4시간이하인 경우, <Evaluation Criteria> Good: When the single yarn occurrence rate of the fibers is 10% or less, that is, 24 hours when the fibers are produced,
불량: 섬유의 단사 발생율이 10%초과, 즉 섬유를 생산하는 24시간을 기준하여, 단사발생으로인해섬유를생산하지 못하는시간이 2.4시간초과인 경우  Poor: If the yarn incidence rate exceeds 10%, that is, 24 hours when the fiber is produced, and the time during which the fiber can not be produced due to single yarn occurrence is more than 2.4 hours
(3)부직포의 강도  (3) Strength of nonwoven fabric
미국재료시험학회 ASTM D 5035 : 2011(2015) 방법에 따라 5cm 폭 컷스트립법 (Cut-str ip)법에 의해 부직포의 종방향 (MD, machine di rect ion)과 횡방향 (CD, cross di rect ion)에 대한강도 (Strength, N/5cm)를측정하였다  According to ASTM D 5035: 2011 (2015) method of the American Society for Testing and Materials, the machine direction (MD) and transverse direction (CD, cross di rect) of the nonwoven fabric were measured by a 5 cm width cut- ion was measured (Strength, N / 5 cm)
(4)부직포의 거칠기  (4) Roughness of nonwoven fabric
10명의 블라인드 패널 평가를 통해 부직포의 거칠기를 측정하였으며, 하기 기준에 따라평가하였다:  The roughness of the nonwoven fabric was measured by ten blind panel evaluations and evaluated according to the following criteria:
<평가기준>  <Evaluation Criteria>
◎ : 부직포감촉에 대하여 거칠다는평가가 7명 이상인 경우에·우수한 것으로판단  ◎: When there is more than 7 people in the evaluation of roughness on the feeling of nonwoven fabric, it is judged to be excellent
O : 부직포 감촉에 대하여 거칠다는평가가 4~6명인 경우에는 양호한 것으로판단  O: It is judged to be good when 4 ~ 6 persons are evaluated as rough for the feeling of nonwoven fabric
A : 부직포 감촉에 대하여 거칠다는 평가가 2~3명인 경우에는 보통으로판단  A: When there are 2 or 3 persons who are roughly evaluated to feel the nonwoven fabric feel,
X : 부직포감촉에 대하여 거칠다는평가가 1명 이하인 경우불량으로 판단  X: judged to be bad when the evaluation of roughness on the feeling of nonwoven fabric is 1 or less
【표 3】  [Table 3]
Figure imgf000029_0001
Figure imgf000030_0001
본 발명의 일 구현예에 따라 MI, MWD, 자일렌 가용분 및 잔류응력 비율을 모두 최적화한 실시예 1 내지 5의 호모 폴리프로필렌을 이용하여 제조한 부직포는 우수한 가공성과 함께 고강도 및 거칠기를 나타내었다. 더욱이 실시예 1 내지 5에 따른 호모 폴리프로필렌의 높은 거칠기 특성으로부터, 첨가제와의 블렌딩 없이 1차가공만으로도, 높은거칠기 특성이 요구되는세척용부직포의 제조가가능함을알수있다.
Figure imgf000029_0001
Figure imgf000030_0001
According to one embodiment of the present invention, the nonwoven fabric prepared using the homopolypropylene of Examples 1 to 5, in which the MI, MWD, xylene solubles and the residual stress ratio were all optimized, exhibited excellent workability as well as high strength and roughness . Furthermore, it can be seen from the high roughness characteristics of the homopolypropylene according to Examples 1 to 5 that it is possible to manufacture a cleaning nonwoven fabric which requires high roughness characteristics, even without first blending with additives.
한편, 지글러-나타촉매를이용하여 제조한비교예 1의 경우, 가공성이 불량하고 , 강도 및 거칠기 특성이 실시예 1 내지 5와 비교하여 크게 저하되었다. 특히 낮은 거칠가특성으로부터, 비교예 1에 따라 제조된 호모 폴리프로필렌을 이용하여 세척용부직포를 제조하기 위해서는, 거칠기 특성을 증가시키기 위한첨가제와의 블렌딩 및 2차가공이 필수적임을알수있다. 또, 촉매 활성 물질로서 구조가상이한화합물을사용한비교예 2내지 4의 경우, 동일 MI를 갖는 실시예 1과 비교하여 높은 잔류응력 비율로 인해 가공성 불량을 나타내었으며, 그 결과로서 웹 형성성 (web format i on)이 불량하여 강도저하가발생하였다.  On the other hand, in the case of Comparative Example 1 produced using the Ziegler-Natta catalyst, the workability was poor, and the strength and roughness characteristics were significantly lowered than in Examples 1 to 5. In particular, from the low roughness characteristics, it can be seen that blending and secondary processing with an additive for increasing the roughness property are indispensable in order to manufacture the nonwoven fabric for cleaning using the homopolypropylene produced according to Comparative Example 1. In the case of Comparative Examples 2 to 4 using compounds having different structures as the catalytically active material, poor workability was exhibited due to a high residual stress ratio as compared with Example 1 having the same MI, and as a result, web formability (web and the strength was degraded due to poor quality of the film.
또, 동일 촉매를 사용하더라도 수소 투입량 조건을 벗어나 수소 투입량이 지나치게 낮은 비교예 5의 경우, MI 값이 200 g/ 10m i n 미만으로 낮아져 불량한 가공성을 나타내었다. 반면 수소 투입량이 지나치게 높은 비교예 6의 경우 2000 g/10min을 초과하는 MI로 인해 저하된 거칠기 특성을 나타내었고, 또 3.3초과의 높은 ·D및 자일렌 가용분의 증가로 인해, 강도 특성 또한실시예들에 비해저하되었다.  Also, in Comparative Example 5 in which the amount of hydrogen input was excessively low, even when the same catalyst was used, the MI value was lowered to less than 200 g / 10 m &lt; 2 &gt; On the other hand, in Comparative Example 6, in which the hydrogen input amount was too high, the degraded roughness characteristics were exhibited due to MI exceeding 2000 g / 10 min, and due to the increase of the high · D and xylene solubles exceeding 3.3, Compared to the examples.
또, 리간드 구조는 동일하나, 두 개의 리간드를 연결하는 브릿기 그룹으로서 알콕시알킬의 테더기를포함하는화합물을사용한비교예 7의 경우, 제조되는 호모 폴리프로필렌이 높은 MWD 및 잔류응력을 가짐에 따라 가공성 불량을나타내었다. 이 같은결과로부터 본발명에 따른물성 요건을충족하는 호모 폴리프로필렌의 구현을 위해서는 화학식 1의 구조를 갖는 전이금속 화합물이 바람직함을확인할수있다.  In the case of Comparative Example 7 in which a compound containing a tether group of an alkoxyalkyl was used as a bridging group connecting two ligands, the homopolypropylene produced had high MWD and residual stress, Respectively. From these results, it can be confirmed that the transition metal compound having the structure of the formula (1) is preferable for realizing the homopolypropylene satisfying the physical properties according to the present invention.

Claims

2019/103306 1»(:1^1{2018/011638  2019/103306 1 »(: 1 ^ 1 {2018/011638
【청구의 범위】 Claims:
【청구항 11  Claim 11
하기 조건을충족하는호모폴리프로필렌:  Homopolypropylene satisfying the following conditions:
0용융지수 況 1)1238에 따라 230 에서 2.161¾하중으로측정) 200 내지 200½/101 11 0 Melt index 1) Measured from 230 to 2.161 ¾ load according to 1238) 200 to 200½ / 101 11
)분자량분포 3.3이하
Figure imgf000031_0001
【청구항 2]
) Molecular weight distribution 3.3 or less
Figure imgf000031_0001
[Claim 2]
제 1항에 있어서,  The method according to claim 1,
상기 호모 폴리프로필렌은 분자량 분포가 2.5 내지 3.3인, 호모 폴리프로필렌. 【청구항 3]  Wherein the homopolypropylene has a molecular weight distribution of 2.5 to 3.3. [3]
제 1항에 있어서,  The method according to claim 1,
상기 호모 폴리프로필렌은 잔류응력비율이 0.02 내지 0.03%인, 호모 폴리프로필렌. 【청구항 4]  The homopolypropylene has a residual stress ratio of 0.02 to 0.03%. [4]
제 1항에 있어서,  The method according to claim 1,
상기 호모폴리프로필렌은자알렌가용분이 0.6내지 0.7중량%인, 호모 폴리프로필렌. 【청구항 5] ·  Wherein the homopolypropylene is a homopolypropylene having a selfalloy soluble fraction of 0.6 to 0.7% by weight. [5]
제 1항에 있어서,  The method according to claim 1,
상기 호모 폴리프로필렌은 융점이 150 내지 1551:인, 호모 폴리프로필렌. 【청구항 6] 2019/103306 1»(:1^1{2018/011638 Wherein the homopolypropylene has a melting point of 150 to 1551:. [Claim 6] 2019/103306 1 »(: 1 ^ 1 {2018/011638
하기 화학식 1의 화합물을포함하는촉매 조성물의 존재 하에, 수소를 700내지 250如抑1으로투입하여 프로필렌단량체를중합하는단계를포함하는, 제 1항의 호모폴리프로필렌의 제조방법 : Methods Preparation of the presence of a catalyst composition comprising a compound of formula (1), by introducing hydrogen to 700 to 250如抑1 including the step of polymerizing a propylene monomer, paragraph (1) homopolypropylene:
[화학식 1]  [Chemical Formula 1]
Figure imgf000032_0001
Figure imgf000032_0001
상기 화학식 1에서,  In Formula 1,
- 쇼는탄소, 실리콘또는게르마늄이고,  - Show is carbon, silicon or germanium,
XI및 2는각각독립적으로할로겐이고, XI and 2 are each independently halogen,
¾및 ¾는각각독립적으로 01-20알킬로치환된 06-20아릴이고, ¾내지 ¾및 ¾내지 ¾은각각독립적으로수소, 할로겐, 01-20알킬,Each of ¾ and ¾ is independently 0 6-20 aryl substituted with 0 1-20 alkyl, each of ¾ to ¾ and ¾ to ¾ is independently hydrogen, halogen, 0 1-20 alkyl,
02-20 알케닐, 01-20 알킬실릴, 01-20 실될알킬, 01-20 알콕시실릴, ( 20 에테르, 01-20 실릴에테르, 01-20 알콕시, 06-20 아릴, 07-20 알킬아릴, 또는 07-20 아릴알킬이고, 0 2-20 alkenyl, 0 1-20 alkylsilyl, 0 1-20 alkyl, 0 1-20 alkoxysilyl, ( 20 ether, 0 1-20 silylether, 0 1-20 alkoxy, 0 6-20 aryl , 0 7-20 alkylaryl, or 0 7-20 arylalkyl,
¾및 ¾◦은서로동일하며, -20알킬이다 . ¾ and ¾ ° are the same as in the formula, and are -20 alkyl.
【청구항 7] [7]
제 6항에 있어서,  The method according to claim 6,
상기요는실리콘인, 호모폴리프로필렌의 제조방법 . 2019/103306 1»(:1^1{2018/011638 Wherein the urine is silicon. 2019/103306 1 »(: 1 ^ 1 {2018/011638
【청구항 8】 8.
제 6항에 있어서,  The method according to claim 6,
상기 ¾및 ¾는각각독립적으로 03-6분지쇄 알킬기로치환된페닐기인, 호모폴리프로필렌의 제조방법 . Wherein each of the above-mentioned ¾ and ¾ is independently a phenyl group substituted with 0 3-6 branched alkyl groups.
5  5
【청구항 9]  9]
제 6항에 있어서 7. The method of claim 6,
Figure imgf000033_0001
Figure imgf000033_0001
제조방법.  Gt;
10  10
【청구항 10】  Claim 10
제 6항에 있어서, The method according to claim 6,
Figure imgf000033_0002
Figure imgf000033_0002
15 【청구항 11】 15 [Claim 11]
제 6항에 있어서,  The method according to claim 6,
상기 화학식 1의 화합물은하기 화학식 로표시되는화합물인, 호모 폴리프로필렌의 제조방법.  Wherein the compound of formula (1) is a compound represented by the following formula.
[화학식 13] [Formula 3]
2019/103306 1»(:1^1{2018/011638 2019/103306 1 »(: 1 ^ 1 {2018/011638
Figure imgf000034_0001
Figure imgf000034_0001
【청구항 12】 Claim 12
제 6항에 있어서,  The method according to claim 6,
상기 화학식 1의 화합물은 담체에 담지된, 호모 폴리프로필렌의 제조방법.  Wherein the compound of Formula 1 is supported on a carrier.
【청구항 13】 Claim 13
제 6항에 있어서,  The method according to claim 6,
상기 촉매 조성물은 하기 화학식 2로 표시되는 화합물, 화학식 3으로 표시되는 화합물 및 화학식 4로 표시되는 화합물 중 1종 이상을 추가로 포함하는, 호모폴리프로필렌의 제조방법 :  Wherein the catalyst composition further comprises at least one of a compound represented by the following formula (2), a compound represented by the following formula (3), and a compound represented by the following formula (4)
[화학식 2]  (2)
-[사 (¾1)-0]„ - [(¾ 1 ) -0] "
상기 화학식 2에서, 2019/103306 1»(:1^1{2018/011638
Figure imgf000035_0001
In Formula 2, 2019/103306 1 »(: 1 ^ 1 {2018/011638
Figure imgf000035_0001
ᅳ탄화수소;또는할로겐으로치환된 -20의 탄화수소이고; A hydrocarbon having up to 20 hydrocarbons substituted with halogen;
미은 2이상의 정수이며 ;  Mee is an integer of 2 or more;
[화학식 3] (3)
1 (¾2)3  1 (¾ 2) 3
. 상기 화학식 3에서,  . In Formula 3,
1?12는 서로 동일하거나 상이하며, 각각 독립적으로 할로겐; ( 20의 탄화수소; 또는할로겐으로치환된 ( 20의 탄화수소이고;One? 12 are the same or different from each other, and each independently halogen; ( 20 hydrocarbons; or substituted with halogen ( 20 hydrocarbons;
1는알루미늄또는보론이며 ;  1 is aluminum or boron;
[화학식 4] [Chemical Formula 4]
내] + [2¾]-또는 [리 + [2¾ My] + [2¾] - or Re + [2¾
상기 화학식 4에서,  In Formula 4,
표는중성 또는양이온성 루이스염기이고;  The table is a neutral or cationic Lewis base;
II는수소원자이며 ;  II is a hydrogen atom;
å는 13족원소이고;  a group 13 element;
요는서로동일하거나상이하며, 각각독립적으로 1이상의 수소원자가 할로겐, 의 탄화수소, 알콕시 또는 페녹시로 치환되거나 또는 비치환된, 05-20의 아릴기 또는 -20의 알킬기이다. 【청구항 ½】 Each of which is the same or different from each other, is independently an aryl group of 0 5 to 20 or an alkyl group of -20 , wherein at least one hydrogen atom is substituted with halogen, a hydrocarbon, alkoxy or phenoxy or unsubstituted. (Ii)
.제 1항에 따른호모폴리프로필렌을포함하는세척용부직포.  A cleaning nonwoven fabric comprising homopolypropylene according to claim 1.
PCT/KR2018/011638 2017-11-27 2018-10-01 Polypropylene and preparation method therefor WO2019103306A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202211471604.5A CN115785313B (en) 2017-11-27 2018-10-01 Polypropylene and preparation method thereof
EP18881653.2A EP3546489A4 (en) 2017-11-27 2018-10-01 Polypropylene and preparation method therefor
CN201880005191.7A CN110099934B (en) 2017-11-27 2018-10-01 Polypropylene and preparation method thereof
US16/464,871 US11384180B2 (en) 2017-11-27 2018-10-01 Polypropylene and method for preparing the same
JP2019529231A JP6783937B2 (en) 2017-11-27 2018-10-01 Polypropylene and its manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0159736 2017-11-27
KR20170159736 2017-11-27
KR10-2018-0116448 2018-09-28
KR1020180116448A KR102326791B1 (en) 2017-11-27 2018-09-28 Polypropylene and method for preparing the same

Publications (2)

Publication Number Publication Date
WO2019103306A1 true WO2019103306A1 (en) 2019-05-31
WO2019103306A8 WO2019103306A8 (en) 2019-08-01

Family

ID=66631024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011638 WO2019103306A1 (en) 2017-11-27 2018-10-01 Polypropylene and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2019103306A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070092217A (en) * 2004-12-01 2007-09-12 노볼렌 테크놀로지 홀딩스 씨.브이. Metallocene catalysts, their synthesis and their use for the polymerization of olefins
KR20150037652A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Method for preparing polypropylene and polypropylene prepared therefrom
KR20150052803A (en) * 2013-11-06 2015-05-14 주식회사 엘지화학 Polypropylene
KR20170046461A (en) * 2015-10-21 2017-05-02 주식회사 엘지화학 Metallocene polypropylene and filament comprising the same
KR20180051222A (en) * 2016-11-08 2018-05-16 주식회사 엘지화학 Process for preparing polypropylene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070092217A (en) * 2004-12-01 2007-09-12 노볼렌 테크놀로지 홀딩스 씨.브이. Metallocene catalysts, their synthesis and their use for the polymerization of olefins
KR20150037652A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Method for preparing polypropylene and polypropylene prepared therefrom
KR20150052803A (en) * 2013-11-06 2015-05-14 주식회사 엘지화학 Polypropylene
KR20170046461A (en) * 2015-10-21 2017-05-02 주식회사 엘지화학 Metallocene polypropylene and filament comprising the same
KR20180051222A (en) * 2016-11-08 2018-05-16 주식회사 엘지화학 Process for preparing polypropylene

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3546489A4
WENTE, V. A.BOONE, C. D.FLUHARTY, E. L.: "Report No. 4364", 25 May 1954, NAVAL RESEARCH LABORATORIES, article "Manufacture of Superfine Organic Fibers"

Also Published As

Publication number Publication date
WO2019103306A8 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
JP6783937B2 (en) Polypropylene and its manufacturing method
EP3572441B1 (en) Homopolypropylene and method for preparing the same
KR102317015B1 (en) Homo polypropylene resin for non-woven fabric and preparation method thereof
CN111683977A (en) Polypropylene resin pellet and preparation method thereof
JP7070989B2 (en) Propylene copolymer resin composition and its production method
KR102238159B1 (en) Propylene-butene copolymer resin composition and preparation method thereof
WO2019103306A1 (en) Polypropylene and preparation method therefor
KR102353755B1 (en) Homo polypropylene and nonwoven fabric comprising the same
KR20200049589A (en) Nonwoven fabric and its preparation method
EP3733765B1 (en) Resin composition for bi-component fiber
KR20190078393A (en) Homo polypropylene and method for preparing the same
KR20190078380A (en) Preparation method for polypropylene resin and non-woven fabric
KR102524951B1 (en) Propylene-butene copolymer and preparation method thereof
KR20200145768A (en) Polypropylene and method for preparing the same
KR20220003927A (en) Propylene-ethylene-1-butene terpolymer and method for preparing the same
KR20200145767A (en) Propylene-1-butene copolymer and method for preparing the same
WO2019093789A1 (en) Homopolypropylene resin for non-woven fabric and manufacturing method therefor
KR20220041669A (en) Polyethylene and method for preparing the same
KR20210004469A (en) Propylene-ethylene random copolymer
KR20210061954A (en) Hybride supported metallocene catalyst and method for preparing polyethylene copolymer using the same
CN101511853A (en) Preparation of diphenyl-bridged substituted cyclopentadienyl-fluorenyl ligands
KR20190071315A (en) Polypropylene for filament and method for preparing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019529231

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018881653

Country of ref document: EP

Effective date: 20190627

NENP Non-entry into the national phase

Ref country code: DE