JP2020204049A - Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC MATERIAL, POWDER-COMPACTED MAGNETIC CORE, ELECTRIC-ELECTRONIC RELATED COMPONENT AND DEVICE - Google Patents

Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC MATERIAL, POWDER-COMPACTED MAGNETIC CORE, ELECTRIC-ELECTRONIC RELATED COMPONENT AND DEVICE Download PDF

Info

Publication number
JP2020204049A
JP2020204049A JP2017167295A JP2017167295A JP2020204049A JP 2020204049 A JP2020204049 A JP 2020204049A JP 2017167295 A JP2017167295 A JP 2017167295A JP 2017167295 A JP2017167295 A JP 2017167295A JP 2020204049 A JP2020204049 A JP 2020204049A
Authority
JP
Japan
Prior art keywords
atomic
based alloy
alloy composition
magnetic material
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017167295A
Other languages
Japanese (ja)
Inventor
祐輔 佐藤
Yusuke Sato
祐輔 佐藤
寿人 小柴
Hisato Koshiba
寿人 小柴
岡本 淳
Atsushi Okamoto
淳 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Alpine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Alpine Co Ltd filed Critical Alps Alpine Co Ltd
Priority to JP2017167295A priority Critical patent/JP2020204049A/en
Priority to PCT/JP2018/023572 priority patent/WO2019044132A1/en
Publication of JP2020204049A publication Critical patent/JP2020204049A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

To provide an Fe-based alloy composition capable of forming a magnetic powder suitable for a powder-compacted magnetic core excellent in heat resistance.SOLUTION: There is provided an Fe-based alloy composition capable of forming a soft magnetic material containing an amorphous phase having a glass transition temperature Tg, wherein the compositional formula is represented by (Fe1-aTa)100atom%-(x+y+z+b+c+d)MxBbCcSidPyCrz, M is one or two optional added elements selected from Co and Ni, M is one or more optional added elements selected from the group consisting of Ti, V, Zr, Nb, Mo, Hf, Ta, W and Al and satisfies the following conditions: 0≤a≤0.3, 6 atom%≤b≤14 atom%, 0.5 atom%≤c≤6 atom%, 0.5 atom%≤d≤6 atom%, 0 atom%≤x≤4 atom%, 4 atom%≤y≤9 atom% and 0.5 atom%≤z≤8 atom%.SELECTED DRAWING: Figure 2

Description

本発明は、Fe基合金組成物、このFe基合金組成物から形成された軟磁性材料、この軟磁性材料の磁性粉末を含有する圧粉磁心、この圧粉磁心を備える電気・電子関連部品、およびこの電気・電子関連部品を備える機器に関する。 The present invention relates to an Fe-based alloy composition, a soft magnetic material formed from the Fe-based alloy composition, a dust core containing the magnetic powder of the soft magnetic material, and an electric / electronic related component having the powder magnetic core. And related to equipment equipped with this electrical / electronic related part.

ハイブリッド自動車等の昇圧回路や、発電、変電設備に用いられるリアクトル、トランスやチョークコイル等に使用される圧粉磁心は、長時間の高温状態におかれる環境下を想定して、磁気特性の熱安定性が求められる。かかる要請に応えるべく、特許文献1には、軟磁性粉末及び絶縁性結着材を有する混合物を圧縮成形し、熱処理して得られる圧粉磁心であって、前記絶縁性結着材は、バインダー樹脂と、ガラスとを有してなり、前記ガラスのガラス転移温度(Tg)は前記熱処理の温度よりも低いことを特徴とする圧粉磁心が記載されている。 The dust core used in booster circuits of hybrid automobiles, reactors used in power generation and substation equipment, transformers, choke coils, etc. is assumed to be in a high temperature state for a long time, and has magnetic characteristics. Stability is required. In order to meet such a demand, Patent Document 1 describes a dust core obtained by compression-molding a mixture having a soft magnetic powder and an insulating binder and heat-treating it, and the insulating binder is a binder. Described is a dust core comprising a resin and a glass, wherein the glass transition temperature (Tg) of the glass is lower than the temperature of the heat treatment.

特開2012−212853号公報Japanese Unexamined Patent Publication No. 2012-212853

本発明は、特許文献1に記載される発明とは異なるアプローチで、磁気特性の熱安定性(本明細書において「耐熱性」ともいう。)に優れる圧粉磁心を提供すること、およびかかる圧粉磁心の構成材料に適した軟磁性材料およびこの材料を形成可能なFe基合金組成物を提供することを目的とする。本発明は、上記の圧粉磁心を備える電気・電子関連部品、およびかかる電子・電気関連部品を備える機器を提供することをも目的とする。 The present invention uses an approach different from that described in Patent Document 1 to provide a dust core having excellent thermal stability of magnetic properties (also referred to as “heat resistance” in the present specification), and to apply a pressure. It is an object of the present invention to provide a soft magnetic material suitable for a constituent material of a powder magnetic core and an Fe-based alloy composition capable of forming this material. It is also an object of the present invention to provide an electric / electronic related component having the above-mentioned dust core and an apparatus provided with such an electronic / electric related component.

上記の課題を解決するために提供される本発明は、一態様において、ガラス転移温度Tgを有するアモルファス相を含有する軟磁性材料を形成可能なFe基合金組成物であって、組成式が(Fe1−a100原子%−(x+y+z+b+c+d)SiCrで表され、Tは任意添加元素であってCoおよびNiより選ばれる1種または2種であり、Mは任意添加元素であって、Ti,V,Zr,Nb,Mo,Hf,Ta,WおよびAlからなる群から選ばれる1種または2種以上からなり、下記の条件を満たすことを特徴とするFe基合金組成物である。
0≦a≦0.3
4原子%≦b≦14原子%、
0.5原子%≦c≦6原子%、
0.5原子%≦d≦6原子%、
0原子%≦x≦4原子%、
4原子%≦y≦9原子%、かつ
0.5原子%≦z≦8原子%
The present invention provided to solve the above problems is, in one embodiment, an Fe-based alloy composition capable of forming a soft magnetic material containing an amorphous phase having a glass transition temperature Tg, wherein the composition formula is ( Fe 1-a T a ) 100 atomic%-(x + y + z + b + c + d) M x B b C c C c S d P y Cr z , T is an optional additive element and is one or two selected from Co and Ni. Yes, M is an optional additive element, and is composed of one or more selected from the group consisting of Ti, V, Zr, Nb, Mo, Hf, Ta, W and Al, and satisfies the following conditions. It is a characteristic Fe-based alloy composition.
0 ≤ a ≤ 0.3
4 atomic% ≤ b ≤ 14 atomic%,
0.5 atomic% ≤ c ≤ 6 atomic%,
0.5 atomic% ≤ d ≤ 6 atomic%,
0 atomic% ≤ x ≤ 4 atomic%,
4 atomic% ≤ y ≤ 9 atomic% and 0.5 atomic% ≤ z ≤ 8 atomic%

特許文献1に記載される圧粉磁心では、圧粉磁心に含まれるバインダの耐熱性を高めることにより、圧粉磁心の耐熱性を高めている。これに対し、本発明では、圧粉磁心に含まれる磁性粉末の耐熱性を高めることにより、圧粉磁心の耐熱性を高めることとしている。具体的には、磁性粉末を形成するためのFe基合金組成物についてPの添加量を比較的低めに設定して、Fe基合金組成物から形成された磁性粉末の耐酸化性を向上させる。このように耐酸化性が向上した磁性粉末を含む圧粉磁心は、高温環境下に長時間置かれても、磁気特性、特にコアロスPcvに与える影響が大きい保持力Hcが大きくなりにくい。 In the dust core described in Patent Document 1, the heat resistance of the dust core is enhanced by increasing the heat resistance of the binder contained in the dust core. On the other hand, in the present invention, the heat resistance of the powder magnetic core is increased by increasing the heat resistance of the magnetic powder contained in the powder magnetic core. Specifically, the amount of P added to the Fe-based alloy composition for forming the magnetic powder is set to be relatively low to improve the oxidation resistance of the magnetic powder formed from the Fe-based alloy composition. Even if the dust core containing the magnetic powder having improved oxidation resistance is left for a long time in a high temperature environment, the holding force Hc, which has a large influence on the magnetic characteristics, particularly the core loss Pcv, is unlikely to increase.

前記組成式において、100原子%−(x+y+z+b+c+d)が70原子%以上79原子%以下であることが好ましい場合がある。 In the composition formula, it may be preferable that 100 atomic% − (x + y + z + b + c + d) is 70 atomic% or more and 79 atomic% or less.

前記組成式において、yが6.8原子%以下であることが好ましい場合があり、6.0原子%以下であることがより好ましい場合がある。 In the composition formula, y may be preferably 6.8 atomic% or less, and more preferably 6.0 atomic% or less.

前記組成式において、dが5.2原子%以下であることが好ましい場合があり、5.0原子%以下であることがより好ましい場合がある。 In the composition formula, d may be preferably 5.2 atomic% or less, and more preferably 5.0 atomic% or less.

本発明は、他の一態様として、上記のFe基合金組成物の組成を有し、ガラス転移温度Tgを有するアモルファス相を含有することを特徴とする軟磁性材料を提供する。前記軟磁性材料の結晶化開始温度Txと前記ガラス転移温度Tgとの温度差(Tx−Tg)により定義される過冷却液体領域ΔTxは、20℃以上であることが好ましい場合があり、30℃以上であることがより好ましい場合があり、40℃以上であることが特に好ましい場合がある。 As another aspect of the present invention, there is provided a soft magnetic material having the composition of the above Fe-based alloy composition and containing an amorphous phase having a glass transition temperature Tg. The supercooled liquid region ΔTx defined by the temperature difference (Tx−Tg) between the crystallization start temperature Tx of the soft magnetic material and the glass transition temperature Tg may be preferably 20 ° C. or higher, and may be 30 ° C. The above may be more preferable, and 40 ° C. or higher may be particularly preferable.

本発明は、別の一態様として、上記の軟磁性材料の磁性粉末を含有する圧粉磁心を提供する。また、本発明は、さらに別の態様として、上記の圧粉磁心を備える電気・電子関連部品、および上記の電気・電子関連部品を備える機器を提供する。 As another aspect, the present invention provides a dust core containing the magnetic powder of the above-mentioned soft magnetic material. Further, as yet another aspect, the present invention provides an electric / electronic related component having the above-mentioned dust core, and an apparatus having the above-mentioned electric / electronic related component.

本発明によれば、磁気特性の熱安定性に優れる圧粉磁心、この圧粉磁心の構成材料として適した軟磁性材料、およびこの軟磁性材料を形成可能なFe基合金組成物が提供される。本発明によれば、上記の圧粉磁心を備える電気・電子関連部品、およびかかる電子・電気関連部品を備える機器も提供される。 According to the present invention, there are provided a dust core having excellent thermal stability of magnetic properties, a soft magnetic material suitable as a constituent material of the powder magnetic core, and an Fe-based alloy composition capable of forming the soft magnetic material. .. According to the present invention, an electric / electronic-related component having the above-mentioned dust core and an apparatus having such an electronic / electric-related component are also provided.

本発明の一実施形態に係るトロイダルコアを示す斜視図である。It is a perspective view which shows the toroidal core which concerns on one Embodiment of this invention. 実施例において調製したFeの含有量が74.3原子%であるFe基合金組成物から形成された磁性粉末を用いて作製したトロイダルコアからなる圧粉磁心について、保磁力Hcの変化率とFe基合金組成物のP添加量との関係を示すグラフである。The rate of change in coercive force Hc and Fe for a dust core composed of a toroidal core prepared using a magnetic powder formed from an Fe-based alloy composition having an Fe content of 74.3 atomic% prepared in Examples. It is a graph which shows the relationship with P addition amount of a base alloy composition. 実施例において調製したFeの含有量が76.4原子%であるFe基合金組成物から形成された磁性粉末を用いて作製したトロイダルコアからなる圧粉磁心について、保磁力Hcの変化率とFe基合金組成物のP添加量との関係を示すグラフである。The rate of change in coercive force Hc and Fe for a dust core composed of a toroidal core prepared using a magnetic powder formed from an Fe-based alloy composition having an Fe content of 76.4 atomic% prepared in Examples. It is a graph which shows the relationship with P addition amount of a base alloy composition. 実施例において調製したFeの含有量が76.4原子%であるFe基合金組成物から形成された磁性粉末を用いて作製したトロイダルコアからなる圧粉磁心について、保磁力Hcの変化率とFe基合金組成物のSi添加量との関係を示すグラフである。The rate of change in coercive force Hc and Fe for a dust core composed of a toroidal core prepared using a magnetic powder formed from an Fe-based alloy composition having an Fe content of 76.4 atomic% prepared in Examples. It is a graph which shows the relationship with the Si addition amount of a base alloy composition. 実施例において作製したリボン状試料の表面分析に基づく、トロイダルコアからなる圧粉磁心の保磁力Hcと試料の酸素の検出深さとの関係を示すグラフである。It is a graph which shows the relationship between the coercive force Hc of the dust core made of a toroidal core, and the detection depth of oxygen of a sample based on the surface analysis of the ribbon-shaped sample produced in an Example. 実施例において作製したリボン状試料の表面分析に基づく、トロイダルコアからなる圧粉磁心の保磁力Hcと表面におけるFeの存在割合との関係を示すグラフである。It is a graph which shows the relationship between the coercive force Hc of the dust core made of a toroidal core, and the abundance ratio of Fe 2 O 3 on the surface based on the surface analysis of the ribbon-shaped sample prepared in an Example. 実施例において作製したリボン状試料の表面分析に基づく、トロイダルコアからなる圧粉磁心の保磁力Hcと表面におけるFeOの存在割合との関係を示すグラフである。3 is a graph showing the relationship between the coercive force Hc of a dust core made of a toroidal core and the abundance ratio of FeO on the surface based on the surface analysis of the ribbon-shaped sample prepared in the examples.

以下、本発明の実施形態について詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail.

本発明の一実施形態に係るFe基合金組成物は、ガラス転移温度Tgを有するアモルファス相を含有する軟磁性材料を形成可能なFe基合金組成物であって、組成式が(Fe1−a100原子%−(x+y+z+b+c+d)MSiCrで表され、下記式を満たす。Tは任意添加元素であってCoおよびNiより選ばれる1種または2種であり、Mは任意添加元素であって、Ti,V,Zr,Nb,Mo,Hf,Ta,WおよびAlからなる群から選ばれる1種または2種以上からなる。
0≦a≦0.3
4原子%≦b≦14原子%、
0.5原子%≦c≦6原子%、
0.5原子%≦d≦6原子%、
0原子%≦x≦4原子%、
4原子%≦y≦9原子%、かつ
0.5原子%≦z≦8原子%
The Fe-based alloy composition according to the embodiment of the present invention is an Fe-based alloy composition capable of forming a soft magnetic material containing an amorphous phase having a glass transition temperature Tg, and has a composition formula (Fe 1-a). T a) 100 atomic% - (x + y + z + b + c + d) is represented by M x B b C c Si d P y Cr z, satisfies the following expression. T is an optional additive element and is one or two selected from Co and Ni, and M is an optional additive element and consists of Ti, V, Zr, Nb, Mo, Hf, Ta, W and Al. It consists of one or more species selected from the group.
0 ≤ a ≤ 0.3
4 atomic% ≤ b ≤ 14 atomic%,
0.5 atomic% ≤ c ≤ 6 atomic%,
0.5 atomic% ≤ d ≤ 6 atomic%,
0 atomic% ≤ x ≤ 4 atomic%,
4 atomic% ≤ y ≤ 9 atomic% and 0.5 atomic% ≤ z ≤ 8 atomic%

以下、各成分元素について説明する。本発明の一実施形態に係るFe基合金組成物は、下記の成分以外に、不可避的不純物を含有していてもよい。 Hereinafter, each component element will be described. The Fe-based alloy composition according to the embodiment of the present invention may contain unavoidable impurities in addition to the following components.

Bは優れたアモルファス形成能を有する。したがって、Fe基合金組成物におけるBの添加量bは4原子%以上とされる。しかしながら、Fe基合金組成物内にBを過度に添加させると、合金の融点Tmが高くなり、アモルファス形成が難しくなる場合がある。したがって、Fe基合金組成物におけるBの添加量bは、14原子%以下とされる。Fe基合金組成物から形成された軟磁性材料の磁気特性をより安定的に高める観点から、Fe基合金組成物におけるBの添加量bを、4.2原子%以上11.6原子%以下とすることが好ましく、5原子%以上10.7原子%以下とすることがより好ましい。 B has an excellent amorphous forming ability. Therefore, the addition amount b of B in the Fe-based alloy composition is set to 4 atomic% or more. However, if B is excessively added to the Fe-based alloy composition, the melting point Tm of the alloy becomes high, and amorphous formation may become difficult. Therefore, the addition amount b of B in the Fe-based alloy composition is 14 atomic% or less. From the viewpoint of more stably enhancing the magnetic properties of the soft magnetic material formed from the Fe-based alloy composition, the addition amount b of B in the Fe-based alloy composition is set to 4.2 atomic% or more and 11.6 atomic% or less. It is preferably 5 atomic% or more and 10.7 atomic% or less.

Cは、Fe基合金組成物の熱的安定性を高め、優れたアモルファス形成能を有する。したがって、本発明の一実施形態に係るFe基合金組成物ではCの添加量cは0.5原子%以上とされる。Fe基合金組成物のアモルファス形成能を高める観点から、Cの添加量cは、1.2原子%以上とすることが好ましい場合があり、2.0原子%以上とすることがより好ましい場合があり、2.2原子%以上とすることが特に好ましい場合がある。一方、Fe基合金組成物内にCを過度に添加させると、合金化が難しい場合がある。また、Cの添加量cが増えるとFe基合金組成物から形成された軟磁性材料のガラス転移温度Tgが上昇しやすくなり、Cの添加量cが過度に高い場合には、ガラス転移温度Tgが消失する場合もある。したがって、Fe基合金組成物におけるCの添加量cは、6原子%以下とされる。Fe基合金組成物の融点Tmをより安定的に低くしたり、軟磁性材料のガラス転移温度Tgを適切な温度域に発生させたりする観点から、Fe基合金組成物におけるCの添加量cを、4.4原子%以下とすることが好ましい場合がある。 C enhances the thermal stability of the Fe-based alloy composition and has an excellent amorphous forming ability. Therefore, in the Fe-based alloy composition according to the embodiment of the present invention, the addition amount c of C is 0.5 atomic% or more. From the viewpoint of enhancing the amorphous forming ability of the Fe-based alloy composition, the addition amount c of C may be preferably 1.2 atomic% or more, and more preferably 2.0 atomic% or more. Yes, it may be particularly preferable to be 2.2 atomic% or more. On the other hand, if C is excessively added to the Fe-based alloy composition, alloying may be difficult. Further, when the addition amount c of C increases, the glass transition temperature Tg of the soft magnetic material formed from the Fe-based alloy composition tends to increase, and when the addition amount c of C is excessively high, the glass transition temperature Tg May disappear. Therefore, the addition amount c of C in the Fe-based alloy composition is set to 6 atomic% or less. From the viewpoint of lowering the melting point Tm of the Fe-based alloy composition more stably and generating the glass transition temperature Tg of the soft magnetic material in an appropriate temperature range, the amount of C added in the Fe-based alloy composition c is set. It may be preferably 4.4 atomic% or less.

Siは、Fe基合金組成物の熱的安定性を高め、優れたアモルファス形成能を有する。また、Fe基合金組成物におけるSiの添加量dを増大させると、Fe基合金組成物から形成された軟磁性材料について、ガラス転移温度Tgよりも結晶化開始温度Txを優先的に高め、過冷却液体領域ΔTxを広げることができる。また、Fe基合金組成物におけるSiの添加量dを増大させると、Fe基合金組成物から形成された軟磁性材料のキュリー温度Tcを高めることが可能である。さらに、Fe基合金組成物におけるSiの添加量dを増大させることによりFe基合金組成物の融点Tmを低下させ、溶湯を用いた作業性を向上させることができる。加えて、Siは、Fe基合金組成物から形成された軟磁性材料の耐酸化性を向上させることにも寄与する。軟磁性材料が適切な耐酸化性を有していない場合には、軟磁性材料の磁性粉末を含む圧粉磁心が高温環境下に長時間置かれた際に、保磁力Hcが高まりやすくなってしまう。この保持力Hcを低くする観点から、本発明の一実施形態に係るFe基合金組成物はSiを含有し、Siの添加量dは、0.5原子%以上とされ、1.0原子%以上とすることが好ましい場合がある。 Si enhances the thermal stability of the Fe-based alloy composition and has an excellent amorphous forming ability. Further, when the addition amount d of Si in the Fe-based alloy composition is increased, the crystallization start temperature Tx is preferentially increased over the glass transition temperature Tg for the soft magnetic material formed from the Fe-based alloy composition, resulting in supercooling. The cooling liquid region ΔTx can be expanded. Further, by increasing the addition amount d of Si in the Fe-based alloy composition, it is possible to increase the Curie temperature Tc of the soft magnetic material formed from the Fe-based alloy composition. Further, by increasing the addition amount d of Si in the Fe-based alloy composition, the melting point Tm of the Fe-based alloy composition can be lowered, and the workability using the molten metal can be improved. In addition, Si also contributes to improving the oxidation resistance of the soft magnetic material formed from the Fe-based alloy composition. When the soft magnetic material does not have appropriate oxidation resistance, the coercive force Hc tends to increase when the dust core containing the magnetic powder of the soft magnetic material is left in a high temperature environment for a long time. It ends up. From the viewpoint of lowering the holding power Hc, the Fe-based alloy composition according to the embodiment of the present invention contains Si, and the addition amount d of Si is 0.5 atomic% or more, 1.0 atomic% or more. It may be preferable to do the above.

しかしながら、Fe基合金組成物内にSiを過度に添加すると、Fe基合金組成物から形成された軟磁性材料のガラス転移温度Tgが急激に上昇し、過冷却液体領域ΔTxを広げることが困難となる。また、Fe基合金組成物内にSiを過度に添加すると、Fe基合金組成物から形成された軟磁性材料の耐酸化性が逆に低くなる傾向を示す場合もある。したがって、Fe基合金組成物におけるSiの添加量dは6原子%以下とされ、5.2原子%以下とすることが好ましい場合があり、5.0原子%以下とすることがより好ましい場合がある。 However, when Si is excessively added to the Fe-based alloy composition, the glass transition temperature Tg of the soft magnetic material formed from the Fe-based alloy composition rises sharply, making it difficult to widen the supercooled liquid region ΔTx. Become. Further, when Si is excessively added to the Fe-based alloy composition, the oxidation resistance of the soft magnetic material formed from the Fe-based alloy composition may be conversely lowered. Therefore, the addition amount d of Si in the Fe-based alloy composition is 6 atomic% or less, preferably 5.2 atomic% or less, and more preferably 5.0 atomic% or less. is there.

Pは、上記のB,CおよびSiと同様にアモルファス形成能を有するため、Fe基合金組成物内にPを添加すると、Fe基合金組成物から軟磁性材料を形成することが容易となる。また、Fe基合金組成物内にPを添加することにより、Fe基合金組成物から形成された軟磁性材料にガラス転移温度Tgが発現しやすくなる。したがって、Fe基合金組成物におけるPの添加量yは4原子%以上が好ましく、4.2原子%以上がさらに好ましく、4.4原子%以上とすることでより安定的にガラス転移温度Tgを発現させることが可能となる。一方、PはFe基合金組成物から形成された軟磁性材料の耐酸化性を低下させる場合があるため、Fe基合金組成物におけるPの添加量yを9原子%以下とすることにより、Fe基合金組成物から形成された軟磁性材料に適切な耐酸化性を付与することが可能となる。上記のとおり、軟磁性材料が適切な耐酸化性を有していることは、軟磁性材料の磁性粉末を含む圧粉磁心が高温環境下におかれた場合でも保磁力Hcを低く維持できることに寄与する。この保磁力Hcを低くする観点から、Fe基合金組成物におけるPの添加量yは、6.8原子%以下とすることが好ましい場合があり、6.0原子%以下とすることがより好ましい場合がある。 Since P has an amorphous forming ability like the above B, C and Si, adding P into the Fe-based alloy composition facilitates the formation of a soft magnetic material from the Fe-based alloy composition. Further, by adding P to the Fe-based alloy composition, the glass transition temperature Tg is likely to be expressed in the soft magnetic material formed from the Fe-based alloy composition. Therefore, the addition amount y of P in the Fe-based alloy composition is preferably 4 atomic% or more, more preferably 4.2 atomic% or more, and more stably the glass transition temperature Tg by setting it to 4.4 atomic% or more. It can be expressed. On the other hand, P may reduce the oxidation resistance of the soft magnetic material formed from the Fe-based alloy composition. Therefore, by setting the addition amount y of P in the Fe-based alloy composition to 9 atomic% or less, Fe It is possible to impart appropriate oxidation resistance to the soft magnetic material formed from the base alloy composition. As described above, the fact that the soft magnetic material has appropriate oxidation resistance means that the coercive force Hc can be kept low even when the dust core containing the magnetic powder of the soft magnetic material is placed in a high temperature environment. Contribute. From the viewpoint of lowering the coercive force Hc, the addition amount y of P in the Fe-based alloy composition may be preferably 6.8 atomic% or less, and more preferably 6.0 atomic% or less. In some cases.

Crは、Fe基合金組成物から形成された軟磁性材料の磁性粉末の表面に不動態層の形成を促進でき、Fe基非晶質合金の耐食性が向上する。例えば、水アトマイズ法を用いて磁性粉末を作製する際において、Fe基合金組成物の溶湯が直接水に触れたとき、さらには水アトマイズ後の粉末形状に成形された軟磁性材料の磁性粉末の乾燥工程における腐食の発生を防ぐことができる。したがって、Fe基合金組成物におけるCrの添加量zは0.5原子%以上とされる。一方、Fe基合金組成物にCrを添加することにより、Fe基合金組成物から形成された軟磁性材料の飽和磁束密度Bsが低下しやすくなり、また軟磁性材料のガラス転移温度Tgが高くなりやすい。したがって、Fe基合金組成物におけるCrの添加量は8原子%以下とされ、その添加量は必要最小限に抑えることが効果的である。 Cr can promote the formation of a passivation layer on the surface of the magnetic powder of the soft magnetic material formed from the Fe-based alloy composition, and the corrosion resistance of the Fe-based amorphous alloy is improved. For example, when producing a magnetic powder using the water atomization method, when the molten metal of the Fe-based alloy composition comes into direct contact with water, and further, the magnetic powder of the soft magnetic material formed into a powder shape after water atomization. It is possible to prevent the occurrence of corrosion in the drying process. Therefore, the addition amount z of Cr in the Fe-based alloy composition is 0.5 atomic% or more. On the other hand, by adding Cr to the Fe-based alloy composition, the saturation magnetic flux density Bs of the soft magnetic material formed from the Fe-based alloy composition tends to decrease, and the glass transition temperature Tg of the soft magnetic material increases. Cheap. Therefore, the amount of Cr added to the Fe-based alloy composition is set to 8 atomic% or less, and it is effective to keep the amount added to the minimum necessary.

本発明の一実施形態に係るFe基合金組成物には、上記の添加元素(B,C,Si,P,Cr)に加えて、CoおよびNiより選ばれる1種または2種からなる元素(任意添加元素)Tを添加してもよい。NiおよびCoはFeと同様に室温で強磁性を示す元素である。Feの一部をCoやNiに置換することにより、Fe基合金組成物から形成された軟磁性材料の磁気特性を調整することができる。元素TはFeの添加量(単位:原子%)に対して3/10以下程度置換するのが好ましい。元素TがCoの場合、Feの添加量(単位:原子%)に対して2/10程度置換すると飽和磁化も大きくなるが、Coは高価であるためあまり多く置換するのは好ましくない。また、元素TがNiの場合、置換量を増加させると融点Tmが下がるため好ましいが、置換量を多くすると飽和磁化が小さくなるため好ましくない。この観点からFeの添加量(単位:原子%)に対して元素Tの置換量は2/10以下がより好ましい。 In the Fe-based alloy composition according to the embodiment of the present invention, in addition to the above-mentioned additive elements (B, C, Si, P, Cr), an element consisting of one or two selected from Co and Ni ( Optional additive element) T may be added. Like Fe, Ni and Co are elements that exhibit ferromagnetism at room temperature. By substituting a part of Fe with Co or Ni, the magnetic properties of the soft magnetic material formed from the Fe-based alloy composition can be adjusted. The element T is preferably substituted by about 3/10 or less with respect to the amount of Fe added (unit: atomic%). When the element T is Co, the saturation magnetization becomes large when it is replaced by about 2/10 with respect to the amount of Fe added (unit: atomic%), but it is not preferable to replace too much because Co is expensive. Further, when the element T is Ni, it is preferable to increase the substitution amount because the melting point Tm decreases, but it is not preferable to increase the substitution amount because the saturation magnetization decreases. From this viewpoint, the substitution amount of the element T is more preferably 2/10 or less with respect to the addition amount of Fe (unit: atomic%).

本発明の一実施形態に係るFe基合金組成物には、上記の添加元素(B,C,Si,P,Cr)に加えて、Ti,V,Zr,Nb,Mo,Hf,Ta,WおよびAlからなる群から選ばれる1種または2種以上からなる任意添加元素Mを添加してもよい。これらの元素は、Feの置換元素として機能したり、アモルファス化元素として機能したりする。Fe基合金組成物における任意添加元素Mの添加量xが過度に高い場合には、上記の添加元素(B,C,Si,P,Cr)の添加量やFeの添加量が相対的に低下して、これらの元素を添加したことに基づく利益を享受しにくくなることもある。任意添加元素Mの添加量xの上限は、この点を考慮して4原子%以下とされる。 In the Fe-based alloy composition according to the embodiment of the present invention, in addition to the above-mentioned additive elements (B, C, Si, P, Cr), Ti, V, Zr, Nb, Mo, Hf, Ta, W And an optional additive element M consisting of one or more selected from the group consisting of Al may be added. These elements function as a substitution element for Fe or as an amorphizing element. When the addition amount x of the optional additive element M in the Fe-based alloy composition is excessively high, the addition amount of the above-mentioned additive elements (B, C, Si, P, Cr) and the addition amount of Fe are relatively reduced. As a result, it may be difficult to enjoy the benefits of adding these elements. The upper limit of the addition amount x of the optional additive element M is set to 4 atomic% or less in consideration of this point.

Fe基合金組成物における上記の添加元素(B,C,Si,P,Cr)および任意添加元素M以外の含有量は、100原子%−(x+y+z+b+c+d)で表される。以下、この含有量をαともいう。含有量αは、Feおよび元素Tの含有量を意味する。含有量αが高いほどFe基合金組成物から形成された軟磁性材料の磁気特性を高めることが容易になるが、含有量αが過度に高い場合には、Fe基合金組成物からアモルファス材料を形成することが困難となる。Fe基合金組成物から軟磁性材料を形成することを容易とするとともに、形成された軟磁性材料の磁気特性を可能な限り高める観点から、含有量αは、70原子%以上82原子%以下であることが好ましい場合があり、70原子%以上80原子%以下であることがより好ましい場合があり、70原子%以上79原子%以下であることが特に好ましい場合がある。 The content of the Fe-based alloy composition other than the above-mentioned additive elements (B, C, Si, P, Cr) and the optional additive element M is represented by 100 atomic% − (x + y + z + b + c + d). Hereinafter, this content is also referred to as α. The content α means the content of Fe and the element T. The higher the content α, the easier it is to enhance the magnetic properties of the soft magnetic material formed from the Fe-based alloy composition. However, when the content α is excessively high, the amorphous material is used from the Fe-based alloy composition. It becomes difficult to form. From the viewpoint of facilitating the formation of a soft magnetic material from the Fe-based alloy composition and enhancing the magnetic properties of the formed soft magnetic material as much as possible, the content α is 70 atomic% or more and 82 atomic% or less. In some cases, it is preferably 70 atomic% or more and 80 atomic% or less, and in some cases it is particularly preferable that it is 70 atomic% or more and 79 atomic% or less.

本発明の一実施形態に係る軟磁性材料は、上記の本発明の一実施形態に係るFe基合金組成物の組成を有し、ガラス転移温度Tgを有するアモルファス相を含有する軟磁性材料である。本発明の一実施形態に係る軟磁性材料におけるアモルファス相は軟磁性材料の主相であることが好ましい。本明細書において、「主相」とは、軟磁性材料の組織において、最も体積分率が高い相を意味する。本発明の一実施形態に係る軟磁性材料は、実質的にアモルファス相からなることがより好ましい。本明細書において、「実質的にアモルファス相からなる」とは、軟磁性材料のX線回折測定により得られたX線回折スペクトルに際立ったピークが認められないことを意味する。 The soft magnetic material according to one embodiment of the present invention is a soft magnetic material having the composition of the Fe-based alloy composition according to the above embodiment of the present invention and containing an amorphous phase having a glass transition temperature Tg. .. The amorphous phase in the soft magnetic material according to the embodiment of the present invention is preferably the main phase of the soft magnetic material. As used herein, the term "main phase" means the phase having the highest volume fraction in the structure of a soft magnetic material. It is more preferable that the soft magnetic material according to the embodiment of the present invention is substantially composed of an amorphous phase. As used herein, the phrase "consisting of a substantially amorphous phase" means that no significant peak is observed in the X-ray diffraction spectrum obtained by the X-ray diffraction measurement of the soft magnetic material.

本発明の一実施形態に係るFe基合金組成物から本発明の一実施形態に係る軟磁性材料を製造する方法は限定されない。主相がアモルファスである軟磁性材料、あるいは、実質的にアモルファス相からなる軟磁性材料を得ることを容易にする観点から、単ロール法、双ロール法等の急冷薄帯法、ガスアトマイズ法、水アトマイズ法等のアトマイズ法などにより製造することが好ましい。水アトマイズ法により製造する場合には、Fe基合金組成物の溶湯が水に接触するため、製造された軟磁性材料に酸化が生じる可能性が相対的に高い。しかしながら、前述のように、本発明の一実施形態に係るFe基合金組成物は、添加元素として、耐酸化性の向上に寄与するCrおよびSiを適切に含み、その一方で耐酸化性の低下が生じにくくなるようにPの添加量が適切に設定されている。このため、本発明の一実施形態に係るFe基合金組成物から形成された軟磁性材料は耐酸化性に優れ、水アトマイズ法によって形成された場合であっても、酸化に起因する不具合が生じにくい。 The method for producing the soft magnetic material according to the embodiment of the present invention from the Fe-based alloy composition according to the embodiment of the present invention is not limited. From the viewpoint of facilitating the acquisition of a soft magnetic material having an amorphous main phase or a soft magnetic material substantially composed of an amorphous phase, a quenching thin band method such as a single roll method or a double roll method, a gas atomizing method, or water. It is preferable to manufacture by an atomizing method such as an atomizing method. In the case of production by the water atomization method, since the molten metal of the Fe-based alloy composition comes into contact with water, there is a relatively high possibility that the produced soft magnetic material will be oxidized. However, as described above, the Fe-based alloy composition according to the embodiment of the present invention appropriately contains Cr and Si, which contribute to the improvement of oxidation resistance, as additive elements, while the oxidation resistance is lowered. The amount of P added is appropriately set so that Therefore, the soft magnetic material formed from the Fe-based alloy composition according to the embodiment of the present invention has excellent oxidation resistance, and even when it is formed by the water atomization method, problems due to oxidation occur. Hateful.

本発明の一実施形態に係る軟磁性材料を製造する方法として液体急冷法を用いた場合には、得られた軟磁性材料は帯型の形状を有する。この帯型の形状を有する軟磁性材料を粉砕することにより、粉体の形状を有する軟磁性材料を得ることができる。本発明の一実施形態に係る軟磁性材料を製造する方法としてアトマイズ法を用いた場合には、得られた軟磁性材料は粉体の形状を有する。 When the liquid quenching method is used as a method for producing the soft magnetic material according to the embodiment of the present invention, the obtained soft magnetic material has a band shape. By pulverizing the soft magnetic material having the band shape, the soft magnetic material having the powder shape can be obtained. When the atomizing method is used as a method for producing the soft magnetic material according to the embodiment of the present invention, the obtained soft magnetic material has a powder shape.

本明細書において、軟磁性材料の熱物性パラメータであるキュリー温度Tc、ガラス転移温度Tgおよび結晶化開始温度Txは、軟磁性材料を測定対象として、昇温速度を40℃/分とする示差走査熱量測定(測定装置として、ネッチゲレイテバウ社製「STA449/A23 jupiter」が例示される。)を行うことにより得られたDSCチャートに基づいて設定される。過冷却液体領域ΔTxは、上記のガラス転移温度Tgおよび結晶化開始温度Txから算出される。 In the present specification, the Curie temperature Tc, the glass transition temperature Tg, and the crystallization start temperature Tx, which are the thermophysical property parameters of the soft magnetic material, are differential scanning at a temperature rising rate of 40 ° C./min for the soft magnetic material as a measurement target. It is set based on the DSC chart obtained by performing calorific value measurement (as a measuring device, "STA449 / A23 jupiter" manufactured by Netchgeritebau is exemplified). The supercooled liquid region ΔTx is calculated from the above-mentioned glass transition temperature Tg and crystallization start temperature Tx.

本発明の一実施形態に係る軟磁性材料における過冷却液体領域ΔTxは、かかる軟磁性材料を含有する磁性部材の熱処理を容易にする観点から、20℃以上であることが好ましく、30℃以上であることがより好ましく、40℃以上であることがさらに好ましい。 The supercooled liquid region ΔTx in the soft magnetic material according to the embodiment of the present invention is preferably 20 ° C. or higher, preferably 30 ° C. or higher, from the viewpoint of facilitating the heat treatment of the magnetic member containing the soft magnetic material. It is more preferable that the temperature is 40 ° C. or higher.

本発明の一実施形態に係る軟磁性材料におけるキュリー温度Tcは、500℃以上であることが好ましく、600℃以上であることがより好ましい。キュリー温度Tcが高いことは、本発明の一実施形態に係る軟磁性材料の磁性粉末を含有する圧粉磁心を備える電気・電子関連部品の動作保障温度を高めることになり、好ましい。 The Curie temperature Tc in the soft magnetic material according to the embodiment of the present invention is preferably 500 ° C. or higher, more preferably 600 ° C. or higher. A high Curie temperature Tc is preferable because it raises the operation guarantee temperature of the electrical / electronic related parts including the dust core containing the magnetic powder of the soft magnetic material according to the embodiment of the present invention.

本発明の一実施形態に係る圧粉磁心は、上記の本発明の一実施形態に係る軟磁性材料の磁性粉末を含有する。本発明の一実施形態に係る圧粉磁心の具体的な形状および製造方法は限定されない。本発明の一実施形態に係る圧粉磁心の製造方法の一例として、上記の本発明の一実施形態に係る軟磁性材料の磁性粉末を含む粉体材料を圧粉成形することが挙げられる。図1にはそのような磁性コアの一例として、リング形状を有するトロイダルコア1を示した。本発明の一実施形態に係る圧粉磁心の他の例として、コイルが埋設されたコイル埋設コアが挙げられる。 The dust core according to one embodiment of the present invention contains the magnetic powder of the soft magnetic material according to one embodiment of the present invention described above. The specific shape and manufacturing method of the dust core according to the embodiment of the present invention are not limited. As an example of the method for producing a powder magnetic core according to an embodiment of the present invention, powder material containing the magnetic powder of the soft magnetic material according to the embodiment of the present invention may be powder-molded. FIG. 1 shows a toroidal core 1 having a ring shape as an example of such a magnetic core. Another example of the dust core according to one embodiment of the present invention is a coil-embedded core in which a coil is embedded.

軟磁性材料の調製過程(例えば粉砕)や、圧粉磁心の製造過程(例えば圧粉成形)などによって、圧粉磁心内の軟磁性材料に歪が蓄積されると、圧粉磁心を備える電気・電子関連部品の磁気特性(鉄損、直流重畳特性などが具体例として挙げられる。)の低下をもたらす場合がある。このような場合には、圧粉磁心に対してアニール処理を行って、圧粉磁心内の歪に基づく応力を緩和して、圧粉磁心を備える電気・電子関連部品の磁気特性の低下を抑制することが一般的に行われる。 When strain is accumulated in the soft magnetic material in the dust core due to the preparation process of the soft magnetic material (for example, crushing) or the manufacturing process of the dust core (for example, dust molding), the electricity provided with the dust core The magnetic properties of electronic-related parts (iron loss, DC superimposition characteristics, etc. are given as specific examples) may be deteriorated. In such a case, the dust core is annealed to relieve the stress based on the strain in the dust core and suppress the deterioration of the magnetic properties of the electrical and electronic related parts equipped with the dust core. Is commonly done.

本発明の一実施形態に係る圧粉磁心は、これに含有される軟磁性材料がガラス転移温度Tgを有するアモルファス相を含み、好ましい一例では過冷却液体領域ΔTxが20℃以上であるため、アニール処理を容易に行うことができる。したがって、本発明の一実施形態に係る圧粉磁心を備える電気・電子関連部品は、優れた磁気特性を有することができる。そのような本発明の一実施形態に係る電気・電子関連部品の具体例として、インダクタ、モータ、トランス、電磁干渉抑制部材などが挙げられる。 The powder magnetic core according to the embodiment of the present invention is annealed because the soft magnetic material contained therein contains an amorphous phase having a glass transition temperature Tg, and in a preferable example, the supercooled liquid region ΔTx is 20 ° C. or higher. The process can be easily performed. Therefore, the electric / electronic related component provided with the dust core according to the embodiment of the present invention can have excellent magnetic characteristics. Specific examples of such electrical / electronic related parts according to an embodiment of the present invention include inductors, motors, transformers, electromagnetic interference suppression members, and the like.

本発明の一実施形態に係る機器は、上記の本発明の一実施形態に係る電気・電子関連部品を備える。かかる機器の具体例として、スマートフォン、ノートパソコン、タブレット端末等の携帯電子機器;パーソナルコンピューター、サーバー等の電子計算機;自動車、二輪車等の輸送機器;発電設備、トランス、蓄電設備などの電気関連機器などが例示される。 The device according to the embodiment of the present invention includes the above-mentioned electrical / electronic related parts according to the embodiment of the present invention. Specific examples of such devices include portable electronic devices such as smartphones, laptop computers, and tablet terminals; electronic computers such as personal computers and servers; transportation devices such as automobiles and motorcycles; electrical related devices such as power generation facilities, transformers, and power storage facilities. Is exemplified.

以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiments described above are described for facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and the like, but the scope of the present invention is not limited to these Examples and the like.

表1および表2に示される組成のFe基合金組成物を調製した。 Fe-based alloy compositions having the compositions shown in Tables 1 and 2 were prepared.

調製したFe基合金組成物から、液体急冷法(単ロール法)により得たリボン状の試料を粉砕して粉末形状を有するFe基軟磁性材料、すなわち磁性粉末を製造した。この磁性粉末について、X線回折測定(線源:CuKα)を行い、X線回折スペクトルを得た。これらのスペクトルから、各実施例に係る磁性粉末の組織を分類した。その結果を表3および表4に示す。これらの表における記号の意味は次のとおりである。
A:アモルファス
B:アモルファス+結晶
C:アモルファス+結晶(Feのbccが認められた。)
D:化合物
From the prepared Fe-based alloy composition, a ribbon-shaped sample obtained by a liquid quenching method (single-roll method) was pulverized to produce an Fe-based soft magnetic material having a powder shape, that is, a magnetic powder. X-ray diffraction measurement (source: CuKα) was performed on this magnetic powder to obtain an X-ray diffraction spectrum. From these spectra, the structure of the magnetic powder according to each example was classified. The results are shown in Tables 3 and 4. The meanings of the symbols in these tables are as follows.
A: Amorphous B: Amorphous + Crystal C: Amorphous + Crystal (Bcc of Fe was observed)
D: Compound

また、得られた磁性粉末について、示差走査熱量計(DSC)を用いて、キュリー温度Tc(単位:℃)、ガラス転移温度Tg(単位:℃)、結晶化開始温度Tx(単位:℃)および融点Tm(単位:℃)を測定し、得られたDSCチャートに基づいて、過冷却液体領域ΔTx(単位:℃)を算出した。結果を表3および4に示した。表3および表4には、Tg/TmおよびTx/Tmの算出結果も示した。なお、表3および表4における空欄は未測定であることを示している。また、表3および表4には、次に示すように、DSCチャートにおいて、ガラス転移温度Tgが認められたか否か、およびガラス転移温度Tgが認められた場合において明瞭に認められたか否かについて示した(Tgの明瞭さ)。
A:ガラス転移温度Tgが明瞭に認められた
B:ガラス転移温度Tgが認められたが明瞭ではなかった
C:ガラス転移温度Tgが認められなかった
上記の評価で、ガラス転移温度Tgが明瞭に認められなかった実施例は、ガラス転移温度Tgを安定的に発現しうる組成とはいえないため、比較例とした。具体的には、Fe基合金組成物におけるCの添加量が6%を超える場合には、ガラス転移温度Tgが明瞭に認められなかった。
Further, with respect to the obtained magnetic powder, using a differential scanning calorimetry (DSC), the curry temperature Tc (unit: ° C.), the glass transition temperature Tg (unit: ° C.), the crystallization start temperature Tx (unit: ° C.) and The melting point Tm (unit: ° C.) was measured, and the supercooled liquid region ΔTx (unit: ° C.) was calculated based on the obtained DSC chart. The results are shown in Tables 3 and 4. Tables 3 and 4 also show the calculation results of Tg / Tm and Tx / Tm. The blanks in Tables 3 and 4 indicate that the measurements have not been made. Further, in Tables 3 and 4, as shown below, whether or not the glass transition temperature Tg was observed in the DSC chart and whether or not the glass transition temperature Tg was clearly observed when it was observed. Shown (Clarity of Tg).
A: Glass transition temperature Tg was clearly observed B: Glass transition temperature Tg was observed but not clear C: Glass transition temperature Tg was not observed In the above evaluation, the glass transition temperature Tg was clearly observed. The example that was not observed was used as a comparative example because it cannot be said that the composition can stably express the glass transition temperature Tg. Specifically, when the amount of C added to the Fe-based alloy composition exceeded 6%, the glass transition temperature Tg was not clearly observed.

上記の磁性粉末について、磁性粉末97.2質量部、アクリル樹脂およびフェノール樹脂からなる絶縁性結着材を2〜3質量部、およびステアリン酸亜鉛からなる潤滑剤0〜0.5質量部を、溶媒としての水に混合してスラリーを得た。得られたスラリーから造粒粉を得た。 Regarding the above magnetic powder, 97.2 parts by mass of magnetic powder, 2 to 3 parts by mass of an insulating binder made of acrylic resin and phenol resin, and 0 to 0.5 parts by mass of a lubricant made of zinc stearate. A slurry was obtained by mixing with water as a solvent. Granulated powder was obtained from the obtained slurry.

得られた造粒粉を金型に充填し、面圧0.5〜1.5GPaで加圧成形して、外径20mm×内径12mm×厚さ3mmのリング形状を有する成形製造物を得た。 The obtained granulated powder was filled in a mold and pressure-molded at a surface pressure of 0.5 to 1.5 GPa to obtain a molded product having a ring shape having an outer diameter of 20 mm, an inner diameter of 12 mm and a thickness of 3 mm. ..

得られた成形製造物を、窒素気流雰囲気の炉内に載置し、炉内温度を、室温(23℃)から昇温速度10℃/分で390℃まで加熱し、この温度にて1時間保持し、その後、炉内で室温まで冷却する熱処理を行い、圧粉コアからなるトロイダルコアを得た。 The obtained molded product was placed in a furnace in a nitrogen air flow atmosphere, and the temperature inside the furnace was heated from room temperature (23 ° C.) to 390 ° C. at a heating rate of 10 ° C./min for 1 hour at this temperature. It was held and then heat-treated to cool it to room temperature in a furnace to obtain a toroidal core composed of a dust core.

得られたトロイダルコアについて、質量磁化σs(単位:Wbm/kg)および保磁力Hc(単位:Am−1)を測定した。保磁力Hcについては、250℃の環境下に1000時間放置する耐熱試験後にも測定した。表5および表6にこれらの測定結果および耐熱試験後の保磁力Hcの耐熱試験前の保磁力Hcに対する比を変化率として示した。なお、表5および表6における空欄は未測定であることを示している。 The mass magnetization σs (unit: Wbm / kg) and coercive force Hc (unit: Am- 1 ) were measured for the obtained toroidal core. The coercive force Hc was also measured after a heat resistance test in which it was left in an environment of 250 ° C. for 1000 hours. Tables 5 and 6 show the measurement results and the ratio of the coercive force Hc after the heat resistance test to the coercive force Hc before the heat resistance test as the rate of change. The blanks in Tables 5 and 6 indicate that the measurements have not been made.

表1から表6に示される結果から、Feの含有量が74.3原子%である実施例21、22、25のFe基合金組成物から形成された磁性粉末を用いて作製したトロイダルコアからなる圧粉磁心について、保磁力Hcの変化率とFe基合金組成物のP添加量との関係を示すグラフ(図2)を作成した。Feの含有量が76.4原子%の場合についても、実施例27、29、32、35における保磁力Hcの変化率とFe基合金組成物のP添加量との関係を示すグラフ(図3)および実施例28、29、33、34における保磁力Hcの変化率とFe基合金組成物のSi添加量との関係を示すグラフ(図4)を作成した。 From the results shown in Tables 1 to 6, from the toroidal core prepared using the magnetic powder formed from the Fe-based alloy compositions of Examples 21, 22 and 25 having an Fe content of 74.3 atomic%. A graph (FIG. 2) showing the relationship between the rate of change of the coercive force Hc and the amount of P added to the Fe-based alloy composition was created for the dust core. A graph showing the relationship between the rate of change in coercive force Hc and the amount of P added to the Fe-based alloy composition in Examples 27, 29, 32, and 35 even when the Fe content is 76.4 atomic% (FIG. 3). ) And the graph (FIG. 4) showing the relationship between the rate of change of the coercive force Hc in Examples 28, 29, 33 and 34 and the amount of Si added to the Fe-based alloy composition.

図2および図3に示されるように、Pの添加量が9原子%を超えると保磁力Hcの変化率は15以上となりやすく、耐熱試験による保磁力Hcの増加が顕著となってしまう。保磁力Hcの変化率が過大になることを安定的に抑制する観点から、Pの添加量は、8原子%以下であることが好ましく、7原子%以下であることがより好ましいことが、これらの図から理解される。また、Pの添加量が6原子%以下あるいは4.8原子%以下である場合には、保磁力Hcの変化率を2以下にすることが安定的に実現されることも理解される。なお、図4に示されるように、Siの添加量が2〜5原子%で変化率が小さくなり、この範囲外であると保磁力Hcの変化率が大きくなる傾向が見られる。 As shown in FIGS. 2 and 3, when the amount of P added exceeds 9 atomic%, the rate of change of the coercive force Hc tends to be 15 or more, and the increase in the coercive force Hc by the heat resistance test becomes remarkable. From the viewpoint of stably suppressing the rate of change of the coercive force Hc from becoming excessive, the amount of P added is preferably 8 atomic% or less, and more preferably 7 atomic% or less. It is understood from the figure of. It is also understood that when the amount of P added is 6 atomic% or less or 4.8 atomic% or less, the rate of change of the coercive force Hc is stably realized to be 2 or less. As shown in FIG. 4, when the amount of Si added is 2 to 5 atomic%, the rate of change is small, and when it is outside this range, the rate of change of the coercive force Hc tends to be large.

実施例1から実施例5、実施例9および実施例10により作製したリボン状試料について、X線光電子分光測定およびスパッタリングを組み合わせて、表面およびその近傍の組成分析を行った。測定は耐熱試験前の試料および耐熱試験後の試料について行い、耐熱試験の影響を評価した。 The ribbon-shaped samples prepared according to Examples 1 to 5, 9 and 10 were subjected to composition analysis on the surface and its vicinity by combining X-ray photoelectron spectroscopy and sputtering. The measurement was performed on the sample before the heat resistance test and the sample after the heat resistance test, and the influence of the heat resistance test was evaluated.

まず、表面近傍の組成分析を行い、酸素に基づくピークが実質的に検出されなくなる深さ(単位:nm)を測定した。その深さ(検出深さ)と保磁力Hcとの関係を図5に示した。図5に示されるように、耐熱試験前は、検出深さは10nm以下であり、試料のごく表層だけが酸化された状態であったが、耐熱試験後は、酸化が10nmよりも深い領域にまで及び、100nm以上まで酸化が進行する場合もあった。また、検出深さと保磁力Hcとの間には基本的に正の相関が認められ、酸化が進行するほど保磁力Hcが増加する傾向にあるが認められた。 First, the composition analysis near the surface was performed, and the depth (unit: nm) at which the oxygen-based peak was substantially not detected was measured. The relationship between the depth (detection depth) and the coercive force Hc is shown in FIG. As shown in FIG. 5, before the heat resistance test, the detection depth was 10 nm or less, and only the very surface layer of the sample was oxidized, but after the heat resistance test, the oxidation was in a region deeper than 10 nm. In some cases, oxidation proceeded to 100 nm or more. In addition, a positive correlation was basically observed between the detection depth and the coercive force Hc, and it was observed that the coercive force Hc tended to increase as the oxidation progressed.

また、表面の組成分析を行い、表面におけるFeの酸化物、具体的にはFeおよびFeOの存在割合を測定した(単位:原子%)。その結果と保磁力Hcとの関係を図6および図7に示した。耐熱試験前よりも耐熱試験後の方が表面におけるFeの酸化物の存在割合が高く、FeおよびFeOのいずれについても、存在割合と保持力Hcとの間には基本的に正の相関が認められ、これらの結果からも、表面において酸化が進行するほど保持力Hcが増加する傾向にあることが認められた。 In addition, the composition of the surface was analyzed, and the abundance ratio of Fe oxide, specifically Fe 2 O 3 and Fe O, on the surface was measured (unit: atomic%). The relationship between the result and the coercive force Hc is shown in FIGS. 6 and 7. The abundance ratio of Fe oxide on the surface is higher after the heat resistance test than before the heat resistance test, and for both Fe 2 O 3 and Fe O, the abundance ratio and the holding power Hc are basically positive. A correlation was observed, and from these results, it was confirmed that the holding power Hc tends to increase as the oxidation progresses on the surface.

この表面分析において本発明例は実施例9のみであり、試験前および試験後のいずれについても、保磁力Hcが最低であった。したがって、図5から図7における白丸「○」および黒丸「●」のうち保磁力Hcが最も低いものが実施例9の結果を示している。これらの結果から、本発明に係る軟磁性材料は、耐熱試験前の酸素の検出深さが際立って浅いとはいえないものの、耐熱試験後の酸素の検出深さが浅いこと(図5)、および耐熱試験前についてはFeの酸化物の存在割合が際立って少ないとはいえないものの、耐熱試験後についてはFeの酸化物の存在割合が明らかに少ないこと(図6および図7)が、確認された。 In this surface analysis, the example of the present invention was only Example 9, and the coercive force Hc was the lowest both before and after the test. Therefore, among the white circles “◯” and the black circles “●” in FIGS. 5 to 7, the one having the lowest coercive force Hc shows the result of Example 9. From these results, it cannot be said that the soft magnetic material according to the present invention has a remarkable oxygen detection depth before the heat resistance test, but the oxygen detection depth after the heat resistance test is shallow (FIG. 5). It was confirmed that the abundance ratio of Fe oxide was not remarkably low before the heat resistance test, but the abundance ratio of Fe oxide was clearly low after the heat resistance test (FIGS. 6 and 7). Was done.

本発明の一実施形態に係るFe基合金組成物から形成された軟磁性材料の磁性粉末を含む圧粉磁心は、耐熱性に優れるため、かかる圧粉磁心を備えた電気・電子部品は、ハイブリッド自動車等の昇圧回路や、発電、変電設備に用いられるリアクトル、トランスやチョークコイル等として好適に使用されうる。 Since the dust core containing the magnetic powder of the soft magnetic material formed from the Fe-based alloy composition according to the embodiment of the present invention has excellent heat resistance, the electric / electronic component provided with the dust core is a hybrid. It can be suitably used as a booster circuit of an automobile or the like, a reactor used in power generation or substation equipment, a transformer, a choke coil, or the like.

1 トロイダルコア 1 toroidal core

Claims (9)

ガラス転移温度Tgを有するアモルファス相を含有する軟磁性材料を形成可能なFe基合金組成物であって、
組成式が(Fe1−a100原子%−(x+y+z+b+c+d)SiCrで表され、
Tは任意添加元素であってCoおよびNiより選ばれる1種または2種であり、Mは任意添加元素であって、Ti,V,Zr,Nb,Mo,Hf,Ta,WおよびAlからなる群から選ばれる1種または2種以上からなり、
下記の条件を満たすことを特徴とするFe基合金組成物。
0≦a≦0.3
6原子%≦b≦14原子%、
0.5原子%≦c≦6原子%、
0.5原子%≦d≦6原子%、
0原子%≦x≦4原子%、
4原子%≦y≦9原子%、かつ
0.5原子%≦z≦8原子%
An Fe-based alloy composition capable of forming a soft magnetic material containing an amorphous phase having a glass transition temperature of Tg.
The composition formula is (Fe 1-a T a ) 100 atomic% − (x + y + z + b + c + d) M x B b C c C c S d P y Cr z .
T is an optional additive element and is one or two selected from Co and Ni, and M is an optional additive element and consists of Ti, V, Zr, Nb, Mo, Hf, Ta, W and Al. Consists of one or more species selected from the group,
An Fe-based alloy composition characterized by satisfying the following conditions.
0 ≤ a ≤ 0.3
6 atomic% ≤ b ≤ 14 atomic%,
0.5 atomic% ≤ c ≤ 6 atomic%,
0.5 atomic% ≤ d ≤ 6 atomic%,
0 atomic% ≤ x ≤ 4 atomic%,
4 atomic% ≤ y ≤ 9 atomic% and 0.5 atomic% ≤ z ≤ 8 atomic%
前記組成式において、100原子%−(x+y+z+b+c+d)が70原子%以上79原子%以下である、請求項1に記載のFe基合金組成物。 The Fe-based alloy composition according to claim 1, wherein in the composition formula, 100 atomic% − (x + y + z + b + c + d) is 70 atomic% or more and 79 atomic% or less. 前記組成式において、yが6.8原子%以下である、請求項1または請求項2に記載のFe基合金組成物。 The Fe-based alloy composition according to claim 1 or 2, wherein y is 6.8 atomic% or less in the composition formula. 前記組成式において、dが5.2原子%以下である、請求項1から請求項3のいずれか一項に記載のFe基合金組成物。 The Fe-based alloy composition according to any one of claims 1 to 3, wherein d is 5.2 atomic% or less in the composition formula. 請求項1から請求項4のいずれか一項に記載されるFe基合金組成物の組成を有し、ガラス転移温度Tgを有するアモルファス相を含有することを特徴とする軟磁性材料。 A soft magnetic material having the composition of the Fe-based alloy composition according to any one of claims 1 to 4, and containing an amorphous phase having a glass transition temperature Tg. 前記軟磁性材料の結晶化開始温度Txと前記ガラス転移温度Tgとの温度差(Tx−Tg)により定義される過冷却液体領域ΔTxは、20℃以上である、請求項5に記載の軟磁性材料。 The soft magnetic material according to claim 5, wherein the supercooled liquid region ΔTx defined by the temperature difference (Tx−Tg) between the crystallization start temperature Tx of the soft magnetic material and the glass transition temperature Tg is 20 ° C. or higher. material. 請求項5または請求項6に記載される軟磁性材料の磁性粉末を含有することを特徴とする圧粉磁心。 A dust core containing the magnetic powder of the soft magnetic material according to claim 5 or 6. 請求項7に記載される圧粉磁心を備える電気・電子関連部品。 An electrical / electronic related component having a dust core according to claim 7. 請求項8に記載される電気・電子関連部品を備える機器。 A device including the electrical / electronic related parts according to claim 8.
JP2017167295A 2017-08-31 2017-08-31 Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC MATERIAL, POWDER-COMPACTED MAGNETIC CORE, ELECTRIC-ELECTRONIC RELATED COMPONENT AND DEVICE Pending JP2020204049A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017167295A JP2020204049A (en) 2017-08-31 2017-08-31 Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC MATERIAL, POWDER-COMPACTED MAGNETIC CORE, ELECTRIC-ELECTRONIC RELATED COMPONENT AND DEVICE
PCT/JP2018/023572 WO2019044132A1 (en) 2017-08-31 2018-06-21 Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC MATERIAL, POWDER MAGNETIC CORE, ELECTRIC/ELECTRONIC-RELATED COMPONENT, AND DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017167295A JP2020204049A (en) 2017-08-31 2017-08-31 Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC MATERIAL, POWDER-COMPACTED MAGNETIC CORE, ELECTRIC-ELECTRONIC RELATED COMPONENT AND DEVICE

Publications (1)

Publication Number Publication Date
JP2020204049A true JP2020204049A (en) 2020-12-24

Family

ID=65527563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017167295A Pending JP2020204049A (en) 2017-08-31 2017-08-31 Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC MATERIAL, POWDER-COMPACTED MAGNETIC CORE, ELECTRIC-ELECTRONIC RELATED COMPONENT AND DEVICE

Country Status (2)

Country Link
JP (1) JP2020204049A (en)
WO (1) WO2019044132A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110379578B (en) * 2019-05-30 2021-03-12 宁波金科磁业有限公司 Low-cost rare earth-free magnetic material and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562022B2 (en) * 2004-04-22 2010-10-13 アルプス・グリーンデバイス株式会社 Amorphous soft magnetic alloy powder and powder core and electromagnetic wave absorber using the same
JP5170776B2 (en) * 2008-05-26 2013-03-27 トピー工業株式会社 Soft magnetic material
WO2010084900A1 (en) * 2009-01-23 2010-07-29 アルプス電気株式会社 Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy
KR101158070B1 (en) * 2010-08-20 2012-06-22 주식회사 포스코 Fe Based Amorphous Alloys with High Carbon Content by using hot pig iron and the manufacturing Method thereof
KR101649019B1 (en) * 2011-07-28 2016-08-17 알프스 그린 디바이스 가부시키가이샤 Fe-BASED AMORPHOUS ALLOY, AND DUST CORE OBTAINED USING Fe-BASED AMORPHOUS ALLOY POWDER
CN103060724B (en) * 2013-01-04 2015-02-18 大连理工大学 Iron-based bulk metallic glass alloy with large supercooled liquid phase region
JP6282952B2 (en) * 2014-07-22 2018-02-21 アルプス電気株式会社 Fe-based alloy composition, molded member, method for manufacturing molded member, dust core, electronic component, electronic device, magnetic sheet, communication component, communication device, and electromagnetic interference suppressing member
JP6486262B2 (en) * 2015-01-29 2019-03-20 アルプスアルパイン株式会社 Fe-based amorphous alloy, magnetic metal powder, magnetic member, magnetic component, and electrical / electronic equipment

Also Published As

Publication number Publication date
WO2019044132A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
JP6472939B2 (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic parts and dust core
US10847291B2 (en) Soft magnetic powder, dust core, magnetic compound and method of manufacturing dust core
JP6046357B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP5419302B2 (en) Fe-based amorphous alloy, dust core using the Fe-based amorphous alloy, and coil-filled dust core
JP6025864B2 (en) High silicon steel plate excellent in productivity and magnetic properties and method for producing the same
JP2009174034A (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
JPWO2011024580A1 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same
JP2009293099A (en) Highly corrosion-resistant amorphous alloy
JP5912239B2 (en) Fe-based alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP2009120927A (en) Soft magnetic amorphous alloy
JP2015167183A (en) Nanocrystal soft magnetic alloy powder and powder-compact magnetic core arranged by use thereof
JP2016104900A (en) Metallic soft magnetic alloy, magnetic core, and production method of the same
JP6548059B2 (en) Fe-based alloy composition, soft magnetic material, magnetic member, electric / electronic related parts and devices
JP4850764B2 (en) Manufacturing method of dust core
JP2020204049A (en) Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC MATERIAL, POWDER-COMPACTED MAGNETIC CORE, ELECTRIC-ELECTRONIC RELATED COMPONENT AND DEVICE
JP2021105212A (en) Soft magnetic alloy, soft magnetic alloy ribbon, method of manufacturing the same, magnetic core, and component
JP2018016829A (en) Fe-based alloy composition
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP7291203B2 (en) Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet
JP6080115B2 (en) Manufacturing method of dust core
JP5967357B2 (en) Iron-based amorphous alloy ribbon
JP2023075104A (en) Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet
US20210388474A1 (en) High magnetic flux density soft magnetic fe-based amorphous alloy
JP2021193204A (en) HIGH MAGNETIC FLUX DENSITY SOFT-MAGNETIC Fe-BASED AMORPHOUS ALLOY
JP2021086941A (en) Fe-BASED SOFT MAGNETIC ALLOY, THIN STRIP, POWDER, MAGNETIC CORE, AND COIL COMPONENT