JP2020201754A5 - A current shunt circuit and a reference voltage generation circuit having the current shunt circuit - Google Patents

A current shunt circuit and a reference voltage generation circuit having the current shunt circuit Download PDF

Info

Publication number
JP2020201754A5
JP2020201754A5 JP2019108772A JP2019108772A JP2020201754A5 JP 2020201754 A5 JP2020201754 A5 JP 2020201754A5 JP 2019108772 A JP2019108772 A JP 2019108772A JP 2019108772 A JP2019108772 A JP 2019108772A JP 2020201754 A5 JP2020201754 A5 JP 2020201754A5
Authority
JP
Japan
Prior art keywords
circuit
input end
source
effect transistor
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019108772A
Other languages
Japanese (ja)
Other versions
JP7292117B2 (en
JP2020201754A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2019108772A priority Critical patent/JP7292117B2/en
Priority claimed from JP2019108772A external-priority patent/JP7292117B2/en
Priority to CN202010446240.XA priority patent/CN112068625A/en
Priority to TW109117545A priority patent/TW202046045A/en
Publication of JP2020201754A publication Critical patent/JP2020201754A/en
Publication of JP2020201754A5 publication Critical patent/JP2020201754A5/en
Application granted granted Critical
Publication of JP7292117B2 publication Critical patent/JP7292117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電流分流回路及び当該電流分流回路を有する基準電圧発生回路に関する。 The present invention relates to a current shunt circuit and a reference voltage generation circuit having the current shunt circuit .

本発明は、上記課題を解決するため、電源電圧が急激に変動した場合においても、当該変動に起因する出力電圧の振幅の変動を低減可能な電流分流回路及び当該電流分流回路を有する基準電圧発生回路を提供することを目的とする。 In order to solve the above problems, the present invention has a current shunt circuit capable of reducing fluctuations in the output voltage amplitude caused by the fluctuations even when the power supply voltage suddenly fluctuates, and a reference voltage generation having the current shunt circuit. The purpose is to provide a circuit.

本発明に係る基準電圧発生回路は、上述した課題を解決するため、第1の入力端及び第2の入力端と、電源入力端と、第1から第3の出力端と、前記第1の入力端と接続されるゲートと、前記電源入力端と接続されるドレインと、ソースとを含み、前記電源入力端を介して第1の電源と電気的に接続される第1の電界効果トランジスタと、前記第1の電界効果トランジスタの前記ソースと接続されるソースと、前記第2の入力端と接続されるゲートと、前記第1の出力端と接続されるドレインとを含む第2の電界効果トランジスタと、前記第1の電界効果トランジスタの前記ソースと接続されるソースと、前記第2の入力端と接続されるゲートと、前記第2の出力端と接続されるドレインを含む第3の電界効果トランジスタと、前記第1の電界効果トランジスタの前記ソースと接続されるソースと、前記第2の入力端と接続されるゲートと、前記第3の出力端と接続されるドレインを含む第4の電界効果トランジスタと、を有する電流分流回路と、抵抗及びダイオードを有し、一端が前記電流分流回路の前記第1の出力端と接続され、他端が第2の電源に接続される第1の抵抗ダイオード回路と、抵抗及びダイオードを有し、一端が前記電流分流回路の前記第2の出力端と接続され、他端が前記第2の電源に接続される第2の抵抗ダイオード回路と、前記第1の抵抗ダイオード回路の前記一端と接続される第1の入力端と、前記第2の抵抗ダイオード回路の前記一端と接続される第2の入力端と、前記電流分流回路の前記第1の入力端と接続される出力端と、を含む帰還制御回路と、抵抗を有し、一端が前記電流分流回路の前記第3の出力端と接続され、他端が前記第2の電源に接続される抵抗回路と、前記電流分流回路の前記第3の出力端及び前記抵抗回路の前記一端と接続される出力端子と、を備え、前記第1の電界効果トランジスタは、n型及びp型の一方である第1の極性を有し、前記第2から第4の電界効果トランジスタは、前記n型及びp型の他方である第2の極性を有することを特徴とする。
本発明に係る電流分流回路は、上述した課題を解決するため、第1の入力端及び第2の入力端と、電源入力端と、第1から第3の出力端と、前記第1の入力端と接続されるゲートと、前記電源入力端と接続されるドレインと、ソースとを含み、前記電源入力端を介して第1の電源と電気的に接続される第1の電界効果トランジスタと、前記第1の電界効果トランジスタの前記ソースと接続されるソースと、前記第2の入力端と接続されるゲートと、前記第1の出力端と接続されるドレインとを含む第2の電界効果トランジスタと、前記第1の電界効果トランジスタの前記ソースと接続されるソースと、前記第2の入力端と接続されるゲートと、前記第2の出力端と接続されるドレインを含む第3の電界効果トランジスタと、前記第1の電界効果トランジスタの前記ソースと接続されるソースと、前記第2の入力端と接続されるゲートと、前記第3の出力端と接続されるドレインを含む第4の電界効果トランジスタと、を有し、前記第1の電界効果トランジスタは、n型及びp型の一方である第1の極性を有し、前記第2から第4の電界効果トランジスタは、前記n型及びp型の他方である第2の極性を有することを特徴とする。
In the reference voltage generation circuit according to the present invention, in order to solve the above-mentioned problems, the first input end, the second input end, the power supply input end, the first to third output ends, and the first A first field effect transistor that includes a gate connected to the input end, a drain connected to the power input end, and a source, and is electrically connected to the first power source via the power input end. A second field effect including a source connected to the source of the first field effect transistor, a gate connected to the second input end, and a drain connected to the first output end. A third electric field including a transistor, a source connected to the source of the first field effect transistor, a gate connected to the second input end, and a drain connected to the second output end. A fourth including an effect transistor, a source connected to the source of the first field effect transistor, a gate connected to the second input end, and a drain connected to the third output end. A first that has a current diversion circuit with a field effect transistor, a resistor and a diode, one end connected to the first output end of the current diversion circuit and the other end connected to a second power source. A second resistance transistor circuit having a resistance transistor circuit and a resistor and a transistor, one end of which is connected to the second output end of the current diversion circuit and the other end of which is connected to the second power supply, and the above. A first input end connected to the one end of the first resistance transistor circuit, a second input end connected to the one end of the second resistance transistor circuit, and the first of the current diversion circuit. It has a feedback control circuit including an output end connected to an input end and a resistor, one end connected to the third output end of the current diversion circuit and the other end connected to the second power supply. The first field effect transistor is one of n-type and p-type. The second to fourth field effect transistors have a first polarity, which is the other of the n-type and the p-type.
In order to solve the above-mentioned problems, the current divergence circuit according to the present invention has a first input end, a second input end, a power supply input end, first to third output ends, and the first input. A first field effect transistor that includes a gate connected to the end, a drain connected to the power input end, and a source, and is electrically connected to the first power supply via the power input end. A second field effect transistor including a source connected to the source of the first field effect transistor, a gate connected to the second input end, and a drain connected to the first output end. And a third field effect including a source connected to the source of the first field effect transistor, a gate connected to the second input end, and a drain connected to the second output end. A fourth field including a transistor, a source connected to the source of the first field effect transistor, a gate connected to the second input end, and a drain connected to the third output end. The first field-effect transistor has an effect transistor, the first field-effect transistor has a first polarity that is one of the n-type and the p-type, and the second to fourth field-effect transistors have the n-type and the p-type. It is characterized by having a second polarity, which is the other of the p-type.

第1の実施形態に係る電流分流回路及び当該電流分流回路を有する基準電圧発生回路の第1の構成例を示す回路図。The circuit diagram which shows the 1st structural example of the current shunt circuit which concerns on 1st Embodiment, and the reference voltage generation circuit which has the current shunt circuit . 第1の実施形態に係る電流分流回路及び当該電流分流回路を有する基準電圧発生回路の第2の構成例を示す回路図。The circuit diagram which shows the 2nd structural example of the current shunt circuit which concerns on 1st Embodiment, and the reference voltage generation circuit which has the current shunt circuit . 第2の実施形態に係る電流分流回路及び当該電流分流回路を有する基準電圧発生回路の構成例を示す回路図。The circuit diagram which shows the structural example of the current shunt circuit which concerns on 2nd Embodiment, and the reference voltage generation circuit which has the current shunt circuit . (A)及び(B)は、それぞれ、電流分流回路と抵抗ダイオード回路との間に接続される位相補償回路の構成例を示す回路図。(A) and (B) are circuit diagrams showing a configuration example of a phase compensation circuit connected between a current shunt circuit and a resistance diode circuit, respectively. 第3の実施形態に係る電流分流回路及び当該電流分流回路を有する基準電圧発生回路の構成例を示す回路図。The circuit diagram which shows the structural example of the current shunt circuit which concerns on 3rd Embodiment, and the reference voltage generation circuit which has the current shunt circuit . 第1の変形例に係る電流分流回路及び当該電流分流回路を有する基準電圧発生回路の構成例を示す回路図。The circuit diagram which shows the structural example of the current shunt circuit which concerns on 1st modification, and the reference voltage generation circuit which has the current shunt circuit. 第2の変形例に係る電流分流回路及び当該電流分流回路を有する基準電圧発生回路の構成例を示す回路図。The circuit diagram which shows the structural example of the current shunt circuit which concerns on the 2nd modification, and the reference voltage generation circuit which has the current shunt circuit. 従前の電流分流回路及び当該電流分流回路を有する基準電圧発生回路の構成例を示す回路図。The circuit diagram which shows the structural example of the conventional current shunt circuit and the reference voltage generation circuit which has the current shunt circuit.

以下、本発明の実施形態に係る電流分流回路及び当該電流分流回路を有する基準電圧発生回路を、図面を参照して説明する。
[第1の実施形態]
図1は、第1の実施形態に係る電流分流回路及び当該電流分流回路を有する基準電圧発生回路の一例である電流分流回路10及び基準電圧発生回路1Aの構成を示す回路図である。
Hereinafter, the current shunt circuit according to the embodiment of the present invention and the reference voltage generation circuit having the current shunt circuit will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a circuit diagram showing the configurations of the current shunt circuit 10 and the reference voltage generation circuit 1A, which are examples of the current shunt circuit according to the first embodiment and the reference voltage generation circuit having the current shunt circuit.

[第3の実施形態]
図5は、第3の実施形態に係る電流分流回路及び当該電流分流回路を有する基準電圧発生回路の一例である電流分流回路80及び基準電圧発生回路1Dの構成を示す回路図である。
[Third Embodiment]
FIG. 5 is a circuit diagram showing the configurations of the current shunt circuit 80 and the reference voltage generation circuit 1D, which are examples of the current shunt circuit according to the third embodiment and the reference voltage generation circuit having the current shunt circuit.

図6は、第1の変形例に係る電流分流回路及び当該電流分流回路を有する基準電圧発生回路の一例である電流分流回路90及び基準電圧発生回路1Eの構成例を示す回路図である。図7は、第2の変形例に係る電流分流回路及び当該電流分流回路を有する基準電圧発生回路の一例である電流分流回路90及び基準電圧発生回路1Fの構成例を示す回路図である。 FIG. 6 is a circuit diagram showing a configuration example of the current shunt circuit 90 and the reference voltage generation circuit 1E, which are examples of the current shunt circuit according to the first modification and the reference voltage generation circuit having the current shunt circuit . FIG. 7 is a circuit diagram showing a configuration example of the current shunt circuit 90 and the reference voltage generation circuit 1F, which are examples of the current shunt circuit according to the second modification and the reference voltage generation circuit having the current shunt circuit .

Claims (7)

第1の入力端及び第2の入力端と、電源入力端と、第1から第3の出力端と、前記第1の入力端と接続されるゲートと、前記電源入力端と接続されるドレインと、ソースとを含み、前記電源入力端を介して第1の電源と電気的に接続される第1の電界効果トランジスタと、前記第1の電界効果トランジスタの前記ソースと接続されるソースと、前記第2の入力端と接続されるゲートと、前記第1の出力端と接続されるドレインとを含む第2の電界効果トランジスタと、前記第1の電界効果トランジスタの前記ソースと接続されるソースと、前記第2の入力端と接続されるゲートと、前記第2の出力端と接続されるドレインを含む第3の電界効果トランジスタと、前記第1の電界効果トランジスタの前記ソースと接続されるソースと、前記第2の入力端と接続されるゲートと、前記第3の出力端と接続されるドレインを含む第4の電界効果トランジスタと、を有する電流分流回路と、
抵抗及びダイオードを有し、一端が前記電流分流回路の前記第1の出力端と接続され、他端が第2の電源に接続される第1の抵抗ダイオード回路と、
抵抗及びダイオードを有し、一端が前記電流分流回路の前記第2の出力端と接続され、他端が前記第2の電源に接続される第2の抵抗ダイオード回路と、
前記第1の抵抗ダイオード回路の前記一端と接続される第1の入力端と、前記第2の抵抗ダイオード回路の前記一端と接続される第2の入力端と、前記電流分流回路の前記第1の入力端と接続される出力端と、を含む帰還制御回路と、
抵抗を有し、一端が前記電流分流回路の前記第3の出力端と接続され、他端が前記第2の電源に接続される抵抗回路と、
前記電流分流回路の前記第3の出力端及び前記抵抗回路の前記一端と接続される出力端子と、を備え、
前記第1の電界効果トランジスタは、n型及びp型の一方である第1の極性を有し、
前記第2から第4の電界効果トランジスタは、前記n型及びp型の他方である第2の極性を有する
ことを特徴とする基準電圧発生回路。
A first input end, a second input end, a power input end, a first to third output ends, a gate connected to the first input end, and a drain connected to the power input end. A first field effect transistor including a source and electrically connected to the first power source via the power input end, and a source connected to the source of the first field effect transistor. A second field-effect transistor including a gate connected to the second input end and a drain connected to the first output end, and a source connected to the source of the first field-effect transistor. , A third field-effect transistor including a gate connected to the second input end, a drain connected to the second output end, and the source of the first field-effect transistor. A current diversion circuit having a source, a gate connected to the second input end, and a fourth field effect transistor including a drain connected to the third output end.
A first resistance diode circuit having a resistor and a diode, one end connected to the first output end of the current shunt circuit and the other end connected to a second power source.
A second resistance diode circuit having a resistor and a diode, one end connected to the second output end of the current shunt circuit and the other end connected to the second power source.
A first input end connected to the end of the first resistance diode circuit, a second input end connected to the end of the second resistance diode circuit, and the first of the current shunt circuit. The feedback control circuit, including the input end and the output end connected to,
A resistance circuit having a resistance, one end connected to the third output end of the current shunt circuit and the other end connected to the second power supply.
The third output end of the current shunt circuit and the output terminal connected to the one end of the resistance circuit are provided.
The first field effect transistor has a first polarity that is one of n-type and p-type.
The second to fourth field effect transistors are reference voltage generation circuits having a second polarity, which is the other of the n-type and the p-type.
前記抵抗回路は、直列に接続された第1の抵抗及び第2の抵抗を含み、前記第1の抵抗と前記第2の抵抗との接続点が前記電流分流回路の前記第2の入力端と接続される抵抗分圧回路である請求項1記載の基準電圧発生回路。 The resistance circuit includes a first resistor and a second resistor connected in series, and the connection point between the first resistor and the second resistor is the second input end of the current voltage divider circuit. The reference voltage generation circuit according to claim 1, which is a resistance voltage dividing circuit to be connected. 前記電流分流回路の前記第2の入力端は、前記第2の電源と電気的に接続される請求項1に記載の基準電圧発生回路。 The reference voltage generation circuit according to claim 1, wherein the second input end of the current shunt circuit is electrically connected to the second power supply. キャパシタを含み、前記帰還制御回路の出力端と前記第2の電源との間に接続される第1の位相補償回路、キャパシタを含み、前記出力端子と前記第2の電源との間に接続される第2の位相補償回路キャパシタを含み、前記電流分流回路の、前記第2の入力端と前記第3の出力端との間に接続される第3の位相補償回路、キャパシタを含み、前記電流分流回路の前記第1の出力端と前記第1の抵抗ダイオード回路との間と前記第2の電源との間に接続される第4の位相補償回路、及びキャパシタを含み、前記電流分流回路の前記第2の出力端と前記第2の抵抗ダイオード回路との間と前記第2の電源との間に接続される第5の位相補償回路の5つの位相補償回路のうち、少なくとも何れか1つの位相補償回路を備える請求項1からの何れか一項に記載の基準電圧発生回路。 A first phase compensation circuit including a capacitor and connected between the output end of the feedback control circuit and the second power supply, including a capacitor, connected between the output terminal and the second power supply. A third phase compensating circuit , including a capacitor, and a third phase compensating circuit , a capacitor, which is connected between the second input end and the third output end of the current diversion circuit. The current diversion circuit includes a fourth phase compensation circuit connected between the first output end of the current diversion circuit, the first resistance diode circuit, and the second power supply, and a capacitor. Of the five phase compensating circuits of the fifth phase compensating circuit connected between the second output end of the above, the second resistance diode circuit, and the second power supply, at least one of them. The reference voltage generation circuit according to any one of claims 1 to 3 , further comprising one phase compensation circuit. 前記帰還制御回路の前記第2の入力端と前記第2の抵抗ダイオード回路の前記一端との間に接続される抵抗を備える請求項1から4の何れか一項に記載の基準電圧発生回路。 The reference voltage generation circuit according to any one of claims 1 to 4, further comprising a resistor connected between the second input end of the feedback control circuit and the one end of the second resistance diode circuit. 前記帰還制御回路は、自己の前記第1の入力端に入力される第1の入力電圧と自己の前記第2の入力端に入力される第2の入力電圧との差を増幅した電圧を、自己の前記出力端から出力する差動増幅回路を有する請求項1から5の何れか一項に記載の基準電圧発生回路。 The feedback control circuit amplifies the voltage obtained by amplifying the difference between the first input voltage input to the first input terminal of the self and the second input voltage input to the second input terminal of the self. The reference voltage generation circuit according to any one of claims 1 to 5, which has a differential amplifier circuit that outputs from its own output end . 第1の入力端及び第2の入力端と、The first input end, the second input end, and
電源入力端と、Power input end and
第1から第3の出力端と、With the first to third output ends,
前記第1の入力端と接続されるゲートと、前記電源入力端と接続されるドレインと、ソースとを含み、前記電源入力端を介して第1の電源と電気的に接続される第1の電界効果トランジスタと、A first that includes a gate connected to the first input end, a drain connected to the power input end, and a source, and is electrically connected to the first power source via the power input end. Field effect transistor and
前記第1の電界効果トランジスタの前記ソースと接続されるソースと、前記第2の入力端と接続されるゲートと、前記第1の出力端と接続されるドレインとを含む第2の電界効果トランジスタと、A second field-effect transistor including a source connected to the source of the first field-effect transistor, a gate connected to the second input end, and a drain connected to the first output end. When,
前記第1の電界効果トランジスタの前記ソースと接続されるソースと、前記第2の入力端と接続されるゲートと、前記第2の出力端と接続されるドレインを含む第3の電界効果トランジスタと、A source connected to the source of the first field effect transistor, a gate connected to the second input end, and a third field effect transistor including a drain connected to the second output end. ,
前記第1の電界効果トランジスタの前記ソースと接続されるソースと、前記第2の入力端と接続されるゲートと、前記第3の出力端と接続されるドレインを含む第4の電界効果トランジスタと、を有し、A source connected to the source of the first field effect transistor, a gate connected to the second input end, and a fourth field effect transistor including a drain connected to the third output end. Have,
前記第1の電界効果トランジスタは、n型及びp型の一方である第1の極性を有し、The first field effect transistor has a first polarity that is one of n-type and p-type.
前記第2から第4の電界効果トランジスタは、前記n型及びp型の他方である第2の極性を有することを特徴とする電流分流回路。The second to fourth field effect transistors are current shunting circuits characterized by having a second polarity, which is the other of the n-type and the p-type.
JP2019108772A 2019-06-11 2019-06-11 Reference voltage generator Active JP7292117B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019108772A JP7292117B2 (en) 2019-06-11 2019-06-11 Reference voltage generator
CN202010446240.XA CN112068625A (en) 2019-06-11 2020-05-25 Reference voltage generating circuit
TW109117545A TW202046045A (en) 2019-06-11 2020-05-26 Reference voltage generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019108772A JP7292117B2 (en) 2019-06-11 2019-06-11 Reference voltage generator

Publications (3)

Publication Number Publication Date
JP2020201754A JP2020201754A (en) 2020-12-17
JP2020201754A5 true JP2020201754A5 (en) 2022-03-08
JP7292117B2 JP7292117B2 (en) 2023-06-16

Family

ID=73657357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019108772A Active JP7292117B2 (en) 2019-06-11 2019-06-11 Reference voltage generator

Country Status (3)

Country Link
JP (1) JP7292117B2 (en)
CN (1) CN112068625A (en)
TW (1) TW202046045A (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3586073B2 (en) * 1997-07-29 2004-11-10 株式会社東芝 Reference voltage generation circuit
JP2003173212A (en) * 2001-12-06 2003-06-20 Seiko Epson Corp Cmos reference voltage generating circuit and power supply monitoring circuit
JP2005038482A (en) * 2003-07-17 2005-02-10 Toshiba Microelectronics Corp Semiconductor device
US7199646B1 (en) * 2003-09-23 2007-04-03 Cypress Semiconductor Corp. High PSRR, high accuracy, low power supply bandgap circuit
JP5078502B2 (en) * 2007-08-16 2012-11-21 セイコーインスツル株式会社 Reference voltage circuit
JP4759015B2 (en) * 2008-04-25 2011-08-31 株式会社リコー Constant voltage circuit
JP6638340B2 (en) * 2015-11-12 2020-01-29 セイコーエプソン株式会社 Circuit device, oscillator, electronic equipment and moving object

Similar Documents

Publication Publication Date Title
JP4834347B2 (en) Constant current circuit
KR102110110B1 (en) Amplifier circuit and voltage regulator
JP5522818B2 (en) Amplifier circuit
US8854136B2 (en) Fully differential operational amplifier with common-mode feedback circuit
US10171052B2 (en) Operational amplifier and differential amplifying circuit thereof
US10474173B2 (en) Voltage regulator having a phase compensation circuit
JP4699856B2 (en) Current generation circuit and voltage generation circuit
US7317358B2 (en) Differential amplifier circuit
US20150270811A1 (en) Operational amplifier and driving circuit
TW201512803A (en) Voltage regulator
JP2015095830A (en) Differential amplification circuit
SG10201803548PA (en) Terminal device including reference voltage circuit
US20140340148A1 (en) Variable Gain Amplifier
US8742845B2 (en) Amplifier circuits with reduced power consumption
JP5833938B2 (en) Voltage regulator
JP2020201754A5 (en) A current shunt circuit and a reference voltage generation circuit having the current shunt circuit
US9209761B2 (en) Combined input stage for transconductance amplifier having gain linearity over increased input voltage range
JP6344583B1 (en) Constant voltage circuit
US6542034B2 (en) Operational amplifier with high gain and symmetrical output-current capability
KR20150071646A (en) Voltage regulator
CN111342778B (en) Capacitance amplifying circuit
JP2013128173A (en) Clipping circuit, differential amplification circuit and amplification circuit
JP5438523B2 (en) High frequency amplifier
CN108155882B (en) Operational amplifier and differential amplification circuit thereof
JP6571518B2 (en) Differential amplifier circuit