JP2020200226A - Single crystal growth method of iron-gallium alloy - Google Patents

Single crystal growth method of iron-gallium alloy Download PDF

Info

Publication number
JP2020200226A
JP2020200226A JP2019109299A JP2019109299A JP2020200226A JP 2020200226 A JP2020200226 A JP 2020200226A JP 2019109299 A JP2019109299 A JP 2019109299A JP 2019109299 A JP2019109299 A JP 2019109299A JP 2020200226 A JP2020200226 A JP 2020200226A
Authority
JP
Japan
Prior art keywords
single crystal
iron
gallium
melt
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019109299A
Other languages
Japanese (ja)
Other versions
JP7318884B2 (en
Inventor
聖志 泉
Kiyoshi Izumi
聖志 泉
勝彦 岡野
Katsuhiko Okano
勝彦 岡野
圭吾 干川
Keigo Hoshikawa
圭吾 干川
敏則 太子
Toshinori Taishi
敏則 太子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Shinshu University NUC
Original Assignee
Sumitomo Metal Mining Co Ltd
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Shinshu University NUC filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019109299A priority Critical patent/JP7318884B2/en
Publication of JP2020200226A publication Critical patent/JP2020200226A/en
Application granted granted Critical
Publication of JP7318884B2 publication Critical patent/JP7318884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide a single crystal growth method of an iron-gallium alloy capable of removing bubbles existing in melt of a mixture of iron and gallium or the like without generating scatter of the melt caused by sudden boiling.SOLUTION: In a single crystal growth method of an iron-gallium alloy, including a bubble removal step for removing bubbles in melt by decompressing the melt of a mixture of iron and gallium placed under an inert atmosphere, the decompression has the first decompression for decompressing the melt to 300-500 Pa, and the second decompression for decompressing the melt from a pressure obtained by the first decompression to 200 Pa or lower at a decompression gradient of 2-6 Pa/min.SELECTED DRAWING: Figure 1

Description

本発明は、鉄ガリウム合金(FeGa合金)の単結晶育成方法に関し、特に、垂直ブリッジマン法(Vertical Bridgman method、以下「VB法」と略記する場合がある)や垂直温度勾配凝固法(Vertical Gradient Freeze method、以下「VGF法」と略記する場合がある)に代表される融液を坩堝中で固化させる、一方向凝固結晶成長法により形成された超磁歪特性を有するFeGa合金単結晶の育成方法に関する。 The present invention relates to a method for growing a single crystal of an iron-gall alloy (FeGa alloy), in particular, a vertical Bridgman method (hereinafter sometimes abbreviated as "VB method") and a vertical temperature gradient solidification method (Vertical Grade). A method for growing a FeGa alloy single crystal having supermagnetic strain characteristics formed by a unidirectional solidification crystal growth method, in which a melt typified by Freeze method (hereinafter sometimes abbreviated as "VGF method") is solidified in a pit. Regarding.

FeGa合金は、機械加工が可能であり、100〜350ppm程度の大きな磁歪を示すため、磁歪式振動発電やアクチュエータ等に用いられる素材として好適であり、近年、注目されている。 The FeGa alloy is machinable and exhibits a large magnetostriction of about 100 to 350 ppm, and is therefore suitable as a material used for magnetostrictive vibration power generation and actuators, and has been attracting attention in recent years.

さらに、FeGa合金は、結晶の特定方位に大きな磁気歪みを現出させることができるため、磁歪部材の磁歪を必要とする方向と結晶の磁気歪みが最大となる方位を一致させた単結晶の部材としての用途が最適であると考えられる。 Further, since the FeGa alloy can cause a large magnetostriction to appear in a specific orientation of the crystal, the single crystal member in which the direction in which the magnetostriction is required and the orientation in which the magnetostriction of the crystal is maximized are matched. It is considered that the application as is optimal.

FeGa合金の多結晶の製造方法においては、粉末冶金法や、急冷凝固法(例えば、特許文献1)、液体急冷凝固法により製造した薄片状や粉末状の原料を加圧焼結して製造する方法(例えば、特許文献2)等が提案されている。しかし、これらの種々の製造方法は、いずれも部材内は単結晶にならず多結晶となり、部材内の全ての結晶方位を磁気歪みが最大となる方位に一致させることは不可能で、単結晶の部材より磁歪特性が劣る。 In the method for producing a polycrystal of FeGa alloy, a flaky or powdery raw material produced by a powder metallurgy method, a quenching solidification method (for example, Patent Document 1), or a liquid quenching solidification method is pressure-sintered. Methods (eg, Patent Document 2) and the like have been proposed. However, in all of these various manufacturing methods, the inside of the member does not become a single crystal but becomes a polycrystal, and it is impossible to match all the crystal orientations in the member with the orientation in which the magnetostriction is maximized. The magnetostrictive characteristics are inferior to those of the members of.

一方で、単結晶の製造には、引き上げ法があるが、この単結晶製造方法は極めて製造コストが高いという問題がある。例えば、特許文献3には、引き上げ法(チョクラルスキー法)による単結晶の育成方法が記載されている。しかしながら、この方法は、高周波誘導加熱方式により原料融解を行うため、電源コストが高くなる。また、装置構成が複雑であり、装置コストが高いため、引き上げ法では結果的に製造コストが高くなってしまう。 On the other hand, there is a pull-up method for producing a single crystal, but this single crystal production method has a problem that the production cost is extremely high. For example, Patent Document 3 describes a method for growing a single crystal by a pulling method (Czochralski method). However, in this method, the raw material is melted by the high frequency induction heating method, so that the power supply cost is high. In addition, since the device configuration is complicated and the device cost is high, the manufacturing cost is high as a result of the pulling method.

また、特許文献4には、一方向凝固法による多結晶の育成方法が記載されている。この方法では、比較的安価である一般的な溶解設備や鋳造設備を使用できる。しかしながら、特許文献4は多結晶の育成方法であるため、単結晶を得るためには多結晶から単結晶部分を分離することとなるため、非常に生産効率が低い。また、出発原料にFeGa合金を使用するため、まず、FeGa合金を作製する必要があり、原料コストも高く、製造コストの増加に繋がってしまう。 Further, Patent Document 4 describes a method for growing polycrystals by a one-way solidification method. In this method, general melting equipment and casting equipment, which are relatively inexpensive, can be used. However, since Patent Document 4 is a method for growing a polycrystal, a single crystal portion is separated from the polycrystal in order to obtain a single crystal, so that the production efficiency is very low. Further, since the FeGa alloy is used as the starting material, it is necessary to first prepare the FeGa alloy, and the raw material cost is high, which leads to an increase in the manufacturing cost.

特許第4053328号公報Japanese Patent No. 4053328 特許第4814085号公報Japanese Patent No. 4814085 特開2016−28831号公報Japanese Unexamined Patent Publication No. 2016-28831 特開2016−138028号公報Japanese Unexamined Patent Publication No. 2016-138028

このように、特許文献1〜4等に記載の従来の方法では、鉄ガリウム合金の単結晶を廉価かつ大量に製造することは困難である。 As described above, it is difficult to inexpensively and mass-produce a single crystal of an iron-gallium alloy by the conventional methods described in Patent Documents 1 to 4 and the like.

これらと比較し、VB法やVGF法に代表される、融液を坩堝中で固化させる一方向凝固結晶成長法により、超磁歪特性を有するFeGa合金単結晶を廉価に製造することができる。 Compared with these, a FeGa alloy single crystal having supermagnetic strain characteristics can be produced at a low cost by a unidirectional solidification crystal growth method in which the melt is solidified in a crucible, which is represented by the VB method and the VGF method.

一方向凝固結晶成長法においては、種結晶の上部に鉄とガリウムの混合物を配置し、当該混合物を融解した後に、種結晶の結晶方位を引き継ぎながら融解物を種結晶側から上に向かって固化する必要がある。よって、種結晶と融解物の間や融解物の内部に気泡が発生するという問題がある。 In the one-way solidification crystal growth method, a mixture of iron and gallium is placed on top of the seed crystal, the mixture is melted, and then the melt is solidified from the seed crystal side upward while inheriting the crystal orientation of the seed crystal. There is a need to. Therefore, there is a problem that bubbles are generated between the seed crystal and the melt and inside the melt.

これらの気泡の除去のために、混合物の融解後に減圧することが有効となる。しかし、短時間で減圧した場合には、融解物の突沸により坩堝上部の開放部より融解物が飛散するおそれがあり、この場合には炉内の構成物に付着して単結晶製造を中断することになる。一方で、長時間かけて徐々に減圧した場合には、不活性ガスの供給量が減少することにより、徐々に融解物の温度が上昇し種結晶が融解してしまい、シーディングできない状態となるおそれがある。 To remove these bubbles, it is effective to reduce the pressure after melting the mixture. However, when the pressure is reduced in a short time, the melt may be scattered from the open portion of the upper part of the crucible due to the sudden boiling of the melt. In this case, the melt adheres to the constituents in the furnace and the single crystal production is interrupted. It will be. On the other hand, when the pressure is gradually reduced over a long period of time, the supply amount of the inert gas decreases, so that the temperature of the melt gradually rises and the seed crystal melts, resulting in a state in which seeding cannot be performed. There is a risk.

本発明は、このような事情に鑑み、突沸による融解物の飛散を発生させることなく、鉄とガリウムの混合物の融解物内等に存在する気泡を除去することができる、鉄ガリウム合金の単結晶育成方法を提供することを目的とする。 In view of these circumstances, the present invention is a single crystal of an iron-gallium alloy capable of removing bubbles existing in a melt of a mixture of iron and gallium without causing scattering of the melt due to sudden boiling. The purpose is to provide a training method.

不活性雰囲気下におかれた鉄とガリウムの混合物の融解物を減圧し、当該融解物中の気泡を除去する気泡除去工程を種々の条件にて行い、繰り返し融解物を観察したところ、融解物が250Pa付近の圧力に減圧された場合に融解物の液面が揺れ、気泡が抜けていることが分かった。また、長時間の減圧により種結晶の融解が進み、特に500Pa以下の低圧下ではおおよそ3時間を超えて減圧を続けると、融解物の下にある種結晶が完全に融解する事態が発生する場合があることが分かった。 The melt of the mixture of iron and gallium placed in an inert atmosphere was depressurized, the bubble removal step of removing the bubbles in the melt was performed under various conditions, and the melt was repeatedly observed. It was found that when the pressure was reduced to around 250 Pa, the liquid level of the melt shook and bubbles were removed. In addition, the seed crystals are melted by depressurization for a long time, and if the depressurization is continued for more than about 3 hours, especially under a low pressure of 500 Pa or less, the seed crystals under the melt may be completely melted. It turned out that there is.

上記の知見に基づき、気泡除去工程において、炉内圧を500Pa以下まで一機に減圧し、その後200Pa以下の圧力になるまでゆっくり減圧することにより、突沸による当該融解物の飛散の防止と種結晶の完全な融解の防止を同時に達成しつつ、気泡を除去できることを見出し、本発明を想到するに至った。 Based on the above findings, in the bubble removal step, the pressure inside the furnace is reduced to 500 Pa or less, and then slowly reduced to a pressure of 200 Pa or less to prevent the melt from scattering due to bumping and to prevent the seed crystal from scattering. We have found that air bubbles can be removed while simultaneously achieving complete prevention of melting, and have come up with the present invention.

すなわち、上記課題を解決するため、本発明の鉄ガリウム合金の単結晶育成方法は、不活性雰囲気下におかれた鉄とガリウムの混合物の融解物を減圧し、当該融解物中の気泡を除去する気泡除去工程を含み、前記減圧は、前記融解物を300〜500Paに減圧する第一の減圧と、2〜6Pa/分の減圧勾配で前記融解物を前記第一の減圧による圧力から200Pa以下に減圧する第二の減圧を有する。 That is, in order to solve the above problems, the method for growing a single crystal of an iron-gallium alloy of the present invention depressurizes a melt of a mixture of iron and gallium placed in an inert atmosphere and removes air bubbles in the melt. The depressurization includes a first depressurization of depressurizing the melt to 300 to 500 Pa and a depressurization gradient of 2 to 6 Pa / min to 200 Pa or less from the pressure of the first decompression. Has a second decompression to decompress.

前記混合物のガリウム含有量は、原子量%で18.0%〜23.0%であってもよい。 The gallium content of the mixture may be 18.0% to 23.0% in terms of atomic weight%.

鉄ガリウム合金の単結晶の育成は、垂直ブリッジマン法または垂直温度勾配凝固法によって行ってもよい。 The single crystal of the iron-gallium alloy may be grown by the vertical Bridgeman method or the vertical temperature gradient solidification method.

本発明の鉄ガリウム合金の単結晶育成方法によれば、鉄ガリウム合金の単結晶を廉価かつ大量に製造することができる。 According to the method for growing a single crystal of an iron-gallium alloy of the present invention, a single crystal of an iron-gallium alloy can be produced at low cost and in a large amount.

鉄ガリウム合金の単結晶を育成する育成装置の概略断面図である。It is the schematic sectional drawing of the growth apparatus which grows a single crystal of an iron-gallium alloy.

以下、本発明の一実施形態にかかる鉄ガリウム合金の単結晶育成方法について説明する。 Hereinafter, a method for growing a single crystal of an iron-gallium alloy according to an embodiment of the present invention will be described.

超磁歪特性を有する鉄ガリウム合金の単結晶は、例えば鉄とガリウムの融解物を坩堝中で固化させて育成することができ、具体的には、VB法やVGF法に代表される、一方向凝固結晶成長法により育成することができる。 A single crystal of an iron-gallium alloy having supermagnetic strain characteristics can be grown by solidifying a melt of iron and gallium in a crucible, and specifically, one direction represented by the VB method and the VGF method. It can be grown by the solidification crystal growth method.

[気泡除去工程]
鉄ガリウム合金の単結晶の育成では、まず、鉄とガリウムを出発原料とし、酸化物や窒化物が生じないよう、不活性雰囲気下でこれらの混合物を融解させて融解物を得る。当該融解物には気泡が混入するため、気泡除去工程では融解物を減圧して気泡を除去する。減圧することで、鉄やガリウムよりも比重の小さい空気等の気泡が融解物の液面から脱気される。
[Bubble removal process]
In the growth of a single crystal of an iron-gallium alloy, first, iron and gallium are used as starting materials, and a mixture thereof is melted in an inert atmosphere so as not to generate oxides or nitrides to obtain a melt. Since bubbles are mixed in the melt, the melt is depressurized to remove the bubbles in the bubble removing step. By reducing the pressure, bubbles such as air having a specific gravity smaller than that of iron or gallium are degassed from the liquid surface of the melt.

融解物からの気泡の脱気は、250Pa付近で発生するが、より効率的に脱気するため、200Pa以下の圧力まで融解物を減圧する必要がある。500Pa以下では当該融解物の温度が上昇するために、長時間500Pa以下の減圧状態を維持することにより、種結晶が融解するおそれがある。よって、融解物の圧力を例えば標準大気圧(101.325kPa)から300〜500Paとなるように一機に減圧する第一の減圧と、第一の減圧による圧力から200Pa以下になるまで2〜6Pa/分の減圧勾配で減圧する第二の減圧にて脱気する。 Degassing of bubbles from the melt occurs at around 250 Pa, but in order to degas more efficiently, it is necessary to reduce the pressure of the melt to a pressure of 200 Pa or less. Since the temperature of the melt rises at 500 Pa or less, the seed crystal may melt by maintaining the reduced pressure state at 500 Pa or less for a long time. Therefore, the first decompression that reduces the pressure of the melt to 300 to 500 Pa from the standard atmospheric pressure (101.325 kPa), and 2 to 6 Pa from the pressure due to the first decompression to 200 Pa or less. Depressurize with a second decompression gradient of / min.

(第一の減圧)
第一の減圧では、融解物を300〜500Paに減圧するが、融解物の突沸や種結晶の完全な融解を防止する観点から、好ましくは350Paに減圧する。例えば、融解物の圧力が標準大気圧より10〜30分程度で300〜500Paに到達するように、第一の減圧の条件を適宜調整することができる。
(First decompression)
In the first depressurization, the melt is reduced to 300 to 500 Pa, but is preferably reduced to 350 Pa from the viewpoint of preventing sudden boiling of the melt and complete melting of the seed crystal. For example, the first depressurization condition can be appropriately adjusted so that the pressure of the melt reaches 300 to 500 Pa in about 10 to 30 minutes from the standard atmospheric pressure.

(第二の減圧)
第二の減圧では、6Pa/分を超える短時間で減圧した場合には、融解物が突沸しやすくなる。逆に、2Pa/分未満という条件で長時間かけて減圧した場合には、種結晶が完全に融解しやすくなる。2〜6Pa/分の勾配で融解物を減圧することにより、これらの突沸や種結晶の完全な融解を回避できる。
(Second decompression)
In the second depressurization, when the depressurization is performed in a short time exceeding 6 Pa / min, the melt tends to boil. On the contrary, when the pressure is reduced for a long time under the condition of less than 2 Pa / min, the seed crystal is easily completely melted. By depressurizing the melt at a gradient of 2-6 Pa / min, these bumps and complete melting of the seed crystals can be avoided.

減圧の条件の一例として、融解物の突沸による坩堝揺れの防止および種結晶の完全融解を安定的に避けるためには、第一の減圧を標準大気圧から350Paまで10〜30分で減圧する条件とし、第二の減圧を第一の減圧による圧力から200Paまで2.5〜5Pa/分の減圧勾配で行うのがよい。 As an example of the depressurization condition, in order to prevent the swaying of the melt due to the sudden boiling of the melt and to stably avoid the complete melting of the seed crystal, the first decompression condition is reduced from the standard atmospheric pressure to 350 Pa in 10 to 30 minutes. The second depressurization is preferably performed from the pressure due to the first decompression to 200 Pa with a decompression gradient of 2.5 to 5 Pa / min.

また、減圧下で2時間を越えて長時間融解物を保持した場合、種結晶が完全溶解しやすくなる。このため、第一の減圧の開始時から第二の減圧を終了するまでの融解物の保持時間は、2時間以内がよい。第一の減圧後は、炉内の減圧条件が安定しない場合には、これが安定するよう更なる減圧処理を行わずに一定時間圧力を保持する必要があり、また、炉内の状態に応じて第二の減圧の減圧速度を考慮し、その条件を適宜決定することができる。例えば、第一の減圧を標準大気圧から350Paまでとし、炉内を安定させるために第一の減圧後30分圧力を保持し、その後、第二の減圧を25分から60分かけて行ってもよい。なお、炉内の減圧条件に問題が無い場合には、圧力の保持は不要であり、第一の減圧と第2の減圧を連続して行ってもよい。 Further, when the melt is held under reduced pressure for a long time for more than 2 hours, the seed crystal is easily completely dissolved. Therefore, the retention time of the melt from the start of the first depressurization to the end of the second depressurization is preferably within 2 hours. After the first depressurization, if the depressurizing conditions in the furnace are not stable, it is necessary to maintain the pressure for a certain period of time without further depressurizing treatment so that it becomes stable, and depending on the state in the furnace. The conditions can be appropriately determined in consideration of the decompression rate of the second decompression. For example, the first decompression may be set from standard atmospheric pressure to 350 Pa, the pressure may be maintained for 30 minutes after the first decompression to stabilize the inside of the furnace, and then the second decompression may be performed over 25 to 60 minutes. Good. If there is no problem with the depressurizing conditions in the furnace, it is not necessary to maintain the pressure, and the first depressurization and the second depressurization may be continuously performed.

融解物中の気泡が除去されないまま、育成を開始すると、気泡が育成の邪魔をして多結晶が生じやすくなる。多結晶は、振動等により結晶粒界で割れてしまうおそれがあるため、磁歪式振動発電やアクチュエータ等の部材としては好ましくない。また、特許文献4のように、多結晶から単結晶部分を分離することもできるが、単結晶の生産効率が低くなってしまう。減圧時間が長く種結晶が完全に融解された場合には、種結晶の結晶方位が引き継がれず、任意の育成方位の結晶が育成される。本発明であれば、気泡除去工程によって融解物中の気泡を除去してから育成を開始することで、磁歪式振動発電やアクチュエータ等の部材として好適な結晶方位で、内部に欠陥等の無い鉄ガリウム合金の単結晶を廉価かつ大量に育成することができる。 If growth is started without removing the bubbles in the melt, the bubbles interfere with the growth and polycrystals are likely to occur. Polycrystals are not preferable as members for magnetostrictive vibration power generation and actuators because they may be broken at grain boundaries due to vibration or the like. Further, as in Patent Document 4, it is possible to separate the single crystal portion from the polycrystal, but the production efficiency of the single crystal is lowered. When the reduced pressure time is long and the seed crystal is completely melted, the crystal orientation of the seed crystal is not inherited, and a crystal having an arbitrary growth orientation is grown. According to the present invention, iron in a crystal orientation suitable for a member such as a magnetostrictive vibration power generator or an actuator by removing bubbles in the melt by a bubble removing step and then starting growth, and having no internal defects or the like. Single crystals of gallium alloy can be grown at low cost and in large quantities.

本発明では、鉄ガリウム合金の単結晶を育成するにあたり、鉄とガリウムをそれぞれ坩堝等の容器に入れて育成を行うこともできるが、粒子状の鉄の表面にガリウムが被覆したものを混合物として用いることができる。この混合物を出発原料とすれば、鉄とガリウムが均一な状態となっていることにより、合金化や単結晶化がより容易となり、また、融解物中への気泡の混入も抑制することができる。 In the present invention, when growing a single crystal of an iron-gallium alloy, iron and gallium can be grown in a container such as a crucible, respectively, but a mixture of granular iron surface coated with gallium is used as a mixture. Can be used. If this mixture is used as a starting material, iron and gallium are in a uniform state, which facilitates alloying and single crystallization, and also suppresses the mixing of air bubbles in the melt. ..

また、混合物として、粒状の鉄と粒状のガリウムを混合したもの、粒状の鉄と液体ガリウムを混合したもの、アーク融解等で予め鉄ガリウム合金としたものを使用することができる。さらに、多結晶化した鉄ガリウム合金を一部または全量を容器に入れて、鉄ガリウム合金の単結晶の育成を行うこともできる。容器に入れた状態での隙間が気泡の原因となるために、原料を容器へなるべく隙間なく入れることで、融解物中への気泡の混入を抑制することができる。 Further, as the mixture, a mixture of granular iron and granular gallium, a mixture of granular iron and liquid gallium, and an iron-gallium alloy previously prepared by arc melting or the like can be used. Further, it is also possible to grow a single crystal of the iron-gallium alloy by putting a part or the whole amount of the polycrystalline iron-gallium alloy in a container. Since the gaps in the container cause air bubbles, it is possible to suppress the mixing of air bubbles into the melt by putting the raw material into the container as closely as possible.

[混合物形成工程]
混合物の一例として紹介した、粒子状の鉄の表面にガリウムが被覆した混合物は、例えば混合物形成工程により得ることができる。すなわち、粒子状の鉄をガリウム融液に浸して攪拌後、鉄が浸されたガリウム融液をガリウムの凝固点以下に冷却することで、当該混合物を得ることができる。具体的には、テフロン(登録商標)等のガリウム融液に対し濡れ性が低い容器内に、固体のガリウム原料を入れ、湯煎等によりガリウムの融点である30℃以上まで昇温し、固体ガリウムを融解させる。次に、ガリウム融液中に粒子状の鉄原料を投入し、攪拌させた後、30℃以下まで冷却する。ガリウム融液は、鉄に対し非常に濡れ性が高いため、攪拌することで、鉄の表面をガリウムで被覆させることができる。
[Mixture forming step]
The mixture in which the surface of particulate iron is coated with gallium, which was introduced as an example of the mixture, can be obtained, for example, by a mixture forming step. That is, the mixture can be obtained by immersing particulate iron in a gallium melt and stirring it, and then cooling the iron-soaked gallium melt below the freezing point of gallium. Specifically, a solid gallium raw material is placed in a container having low wettability to a gallium melt such as Teflon (registered trademark), and the temperature is raised to 30 ° C. or higher, which is the melting point of gallium, by boiling water or the like, and solid gallium. To melt. Next, the particulate iron raw material is put into the gallium melt, stirred, and then cooled to 30 ° C. or lower. Since the gallium melt has a very high wettability with respect to iron, the surface of iron can be coated with gallium by stirring.

混合物の原料となる粒子状の鉄のメディアン径(D50)は、40μm〜3mmであることが好ましい。鉄のメディアン径が40μm未満の場合では、比表面積が大きくなるため、鉄表面の酸化被膜の割合が高くなり、原料中に取り込まれる酸化物の比率が大きくなることで、単結晶の育成が阻害されるおそれがある。さらに、粉塵爆発の危険を伴うため、取り扱いに非常に手間がかかる場合がある。一方、鉄のメディアン径が3mmを越える場合、比表面積が小さくなりすぎるため、鉄表面にガリウムを均一に被覆することが困難となるおそれがある。鉄のメディアン径(D50)が40μm〜3mmであれば、粉塵爆発の危険がなく、鉄の表面にガリウムを均一に被覆することが容易であり、酸化被膜の割合が低いことで、鉄ガリウム合金の単結晶を育成することが、より容易となる。 The median diameter (D50) of the particulate iron used as the raw material of the mixture is preferably 40 μm to 3 mm. When the median diameter of iron is less than 40 μm, the specific surface area becomes large, so that the proportion of the oxide film on the iron surface increases, and the proportion of oxides incorporated into the raw material increases, which hinders the growth of single crystals. May be done. In addition, there is a risk of dust explosion, which can be very time-consuming to handle. On the other hand, when the median diameter of iron exceeds 3 mm, the specific surface area becomes too small, which may make it difficult to uniformly coat the iron surface with gallium. When the median diameter (D50) of iron is 40 μm to 3 mm, there is no danger of dust explosion, it is easy to uniformly coat the surface of iron with gallium, and the proportion of oxide film is low, so that the iron gallium alloy It becomes easier to grow a single crystal of.

育成された鉄ガリウム合金単結晶は、ガリウムを原子量%で18〜23%含有してもよい。この範囲でガリウムを含有させれば、鉄ガリウム合金は高い磁歪特性を得ることができる。 The grown iron-gallium alloy single crystal may contain 18 to 23% of gallium in terms of atomic weight. If gallium is contained in this range, the iron-gallium alloy can obtain high magnetostrictive characteristics.

このような高い磁歪特性の鉄ガリウム合金を育成するためには、原料融液からのガリウムの蒸発および偏析の影響を考慮すると、前記混合物のガリウム含有量は、原子量%で18.0%〜23.0%であることが好ましい。なお、混合物からガリウムを除いた残部は、酸化物等の不可避的な不純物を除けば、鉄である。 In order to grow an iron-gallium alloy having such high magnetostrictive characteristics, the gallium content of the mixture is 18.0% to 23 in atomic weight%, considering the effects of evaporation and segregation of gallium from the raw material melt. It is preferably 0.0%. The balance of the mixture excluding gallium is iron, except for unavoidable impurities such as oxides.

[他の工程]
本発明の鉄ガリウム合金の単結晶育成方法は、気泡除去工程や混合物形成工程とは別に、他の工程を含むことができる。例えば、気泡除去工程後に種結晶を基に融解物から単結晶を育成させる育成工程、気泡除去工程前に鉄とガリウムの混合物を融解して融解物を得る融解工程等を含めることができる。
[Other processes]
The method for growing a single crystal of an iron-gallium alloy of the present invention can include other steps in addition to the bubble removing step and the mixture forming step. For example, a growing step of growing a single crystal from a melt based on a seed crystal after the bubble removing step, a melting step of melting a mixture of iron and gallium to obtain a melt before the bubble removing step, and the like can be included.

以下、本発明の一実施形態にかかる鉄ガリウム合金の単結晶育成方法について、図1に示す単結晶育成装置を参照して、より具体的に説明する。なお、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能である。 Hereinafter, the method for growing a single crystal of an iron-gallium alloy according to an embodiment of the present invention will be described more specifically with reference to the single crystal growing apparatus shown in FIG. The present invention is not limited to the following examples, and can be arbitrarily modified without departing from the gist of the present invention.

[単結晶育成装置]
図1は、鉄ガリウム合金の単結晶を育成する単結晶育成装置の概略断面図である。この図1では、単結晶育成装置100における単結晶育成用坩堝10とFeGa合金種結晶16、原料となる鉄とガリウムの混合物17との位置関係を模式的に示している。
[Single crystal growing device]
FIG. 1 is a schematic cross-sectional view of a single crystal growing device for growing a single crystal of an iron-gallium alloy. FIG. 1 schematically shows the positional relationship between the single crystal growing crucible 10 in the single crystal growing apparatus 100, the FeGa alloy seed crystal 16, and the mixture 17 of iron and gallium as a raw material.

単結晶育成装置100は、断熱材11、上段ヒーター12a、中段ヒーター12b、下段ヒーター12c、可動用ロッド13、坩堝受け14、熱電対15、真空ポンプ18および、チャンバー19を備えている。チャンバー19内の上部が高温、下部が低温となる温度分布を実現可能な構成となっており、VB法やVGF法等の一方向凝固結晶成長法により、鉄とガリウムの混合物の融解物17を坩堝10中で固化させることで、FeGa合金の単結晶を育成することができる。 The single crystal growing device 100 includes a heat insulating material 11, an upper heater 12a, a middle heater 12b, a lower heater 12c, a movable rod 13, a crucible receiver 14, a thermocouple 15, a vacuum pump 18, and a chamber 19. The structure is such that the upper part of the chamber 19 has a high temperature and the lower part has a low temperature, and a melt 17 of a mixture of iron and gallium is obtained by a unidirectional solidification crystal growth method such as the VB method or the VGF method. By solidifying in the crucible 10, a single crystal of FeGa alloy can be grown.

図1に示すように単結晶育成装置100では、断熱材11の内側にカーボン製の抵抗加熱ヒーター12が配置される。FeGa合金の単結晶の育成時に、抵抗加熱ヒーター12によりホットゾーンが形成される。抵抗加熱ヒーター12は、上段ヒーター12a、中段ヒーター12bおよび下段ヒーター12cとで構成され、これらのヒーター12a〜12cへの投入電力を調整することにより、ホットゾーン内の温度勾配を制御することが可能となっている。 As shown in FIG. 1, in the single crystal growing apparatus 100, a carbon resistance heating heater 12 is arranged inside the heat insulating material 11. During the growth of a single crystal of FeGa alloy, a hot zone is formed by the resistance heating heater 12. The resistance heating heater 12 is composed of an upper heater 12a, a middle heater 12b, and a lower heater 12c, and the temperature gradient in the hot zone can be controlled by adjusting the input power to these heaters 12a to 12c. It has become.

抵抗加熱ヒーター12の内側には、単結晶育成用坩堝10が配置され、上下方向に移動可能な可動用ロッド13が設けられた坩堝受け14(支持台)に載置されている。単結晶育成用坩堝10内の下部に、FeGa合金種結晶16が充填され、このFeGa合金種結晶16の上に、鉄とガリウムの混合物17が充填される。 Inside the resistance heating heater 12, a single crystal growing crucible 10 is arranged, and is placed on a crucible receiver 14 (support stand) provided with a movable rod 13 that can move in the vertical direction. The lower part of the crucible for growing a single crystal is filled with the FeGa alloy seed crystal 16, and the FeGa alloy seed crystal 16 is filled with the mixture 17 of iron and gallium.

育成炉には、チャンバー19と真空ポンプ18が設置されており、原料を真空雰囲気に調整して単結晶を育成することができる。さらに、アルゴンや窒素等の不活性ガスをチャンバー19へ導入することができ、原料を不活性雰囲気にも調整できる。 A chamber 19 and a vacuum pump 18 are installed in the growing furnace, and the raw material can be adjusted to a vacuum atmosphere to grow a single crystal. Further, an inert gas such as argon or nitrogen can be introduced into the chamber 19, and the raw material can be adjusted to an inert atmosphere.

単結晶育成用坩堝10の材質は、鉄ガリウム合金の単結晶と化学的反応性が低く、高融点材料であるアルミナが好ましい。また、マグネシア、熱分解窒化ホウ素(Pyrolitic Boron Nitride)でもよい。 The material of the crucible 10 for growing a single crystal is preferably alumina, which has a low chemical reactivity with a single crystal of an iron-gall alloy and is a high melting point material. Further, magnesia and pyrolytic boron nitride may be used.

上方側が開放された単結晶育成用坩堝10には、ゴミ落下防止用の蓋材(図示せず)を被せてもよい。単結晶育成用坩堝10は、上述したように単結晶育成装置100内で可動用ロッド13が設けられた坩堝受け14上に載置され、可動用ロッド13を上下させることにより、単結晶育成用坩堝10を育成炉内で上下させることができる。また、単結晶育成用坩堝10には、坩堝の温度をモニタリングできる熱電対15が取り付けられている。 The single crystal growing crucible 10 whose upper side is open may be covered with a lid material (not shown) for preventing dust from falling. The single crystal growing crucible 10 is placed on a crucible receiver 14 provided with a movable rod 13 in the single crystal growing device 100 as described above, and the movable rod 13 is moved up and down to grow a single crystal. The crucible 10 can be moved up and down in the growing furnace. Further, a thermocouple 15 capable of monitoring the temperature of the crucible is attached to the crucible 10 for growing a single crystal.

[FeGa合金単結晶の育成方法]
次に、単結晶育成装置100を用いた鉄ガリウム合金のVB法による単結晶育成方法について、図1を参照しつつ説明する。まず、単結晶育成用坩堝10の下部に主面方位が<100>方位のFeGa合金種結晶16を配置する。そして、FeGa合金種結晶16の上には、原料である鉄とガリウムの混合物17を必要量配置する。
[Method for growing FeGa alloy single crystal]
Next, a single crystal growing method of an iron-gallium alloy by the VB method using the single crystal growing device 100 will be described with reference to FIG. First, a FeGa alloy seed crystal 16 having a main surface orientation of <100> is arranged in the lower part of the single crystal growing crucible 10. Then, a required amount of a mixture 17 of iron and gallium as a raw material is arranged on the FeGa alloy seed crystal 16.

次に、チャンバー19内にアルゴンや窒素等の不活性ガスを流し、チャンバー19内を不活性雰囲気に調整する。窒化ガリウム等が生成するおそれがある場合には、アルゴンガスを導入することが好ましい。チャンバー19内が不活性雰囲気となった後、単結晶育成用坩堝10を囲むように配置された上段ヒーター12a、中段ヒーター12bおよび下段ヒーター12cを作動して、昇温し、鉄とガリウムの混合物17の融解を開始する(融解工程)。 Next, an inert gas such as argon or nitrogen is passed through the chamber 19 to adjust the inside of the chamber 19 to an inert atmosphere. When there is a possibility that gallium nitride or the like is generated, it is preferable to introduce argon gas. After the inside of the chamber 19 becomes an inert atmosphere, the upper heater 12a, the middle heater 12b and the lower heater 12c arranged so as to surround the single crystal growing crucible 10 are operated to raise the temperature, and the mixture of iron and gallium is heated. The melting of 17 is started (melting step).

鉄とガリウムの混合物17がほぼ融解して融解物となったら、真空ポンプ18を作動して、チャンバー19内を減圧し、第一の減圧および第二の減圧により融解物中の気泡を取り除く(気泡除去工程)。 When the iron / gallium mixture 17 is almost melted into a melt, the vacuum pump 18 is operated to depressurize the inside of the chamber 19 and remove air bubbles in the melt by the first depressurization and the second depressurization (1st decompression and 2nd decompression). Bubble removal step).

気泡除去工程後、チャンバー19内にアルゴンや窒素等の不活性ガスを流し、再びチャンバー19内を不活性雰囲気に調整した後、単結晶育成用坩堝10の内部でFeGa合金の単結晶を育成する(育成工程)。具体的には、抵抗加熱ヒーター12を用いて、FeGa合金種結晶16および融解物(鉄とガリウムの混合物17)が収納された単結晶育成用坩堝10を、高さ方向の上方の温度が高く、下方の温度が低い温度分布となるように加熱する。この状態で、チャンバー19内の温度を、FeGa合金種結晶16が高さ方向の上半分位まで融解するまで昇温し、シーディングを行う。その後、そのままのチャンバー19内の温度勾配を維持しながら、抵抗加熱ヒーター12の出力を徐々に低下させ、すべての融解物を固化させた後、所定速度で冷却を行ってFeGa合金の単結晶を得る。 After the bubble removing step, an inert gas such as argon or nitrogen is allowed to flow in the chamber 19, the inside of the chamber 19 is adjusted to an inert atmosphere again, and then a single crystal of FeGa alloy is grown inside the crucible 10 for growing a single crystal. (Growth process). Specifically, using the resistance heating heater 12, the temperature above the single crystal growing crucible 10 in which the FeGa alloy seed crystal 16 and the melt (mixture 17 of iron and gallium) are stored is high in the height direction. , Heat so that the temperature below is low. In this state, the temperature in the chamber 19 is raised until the FeGa alloy seed crystal 16 is melted to about the upper half in the height direction, and seeding is performed. After that, while maintaining the temperature gradient in the chamber 19 as it is, the output of the resistance heating heater 12 is gradually lowered to solidify all the melts, and then cooled at a predetermined speed to obtain a single crystal of FeGa alloy. obtain.

次に、チャンバー19内の温度が室温程度になったことを確認した後、育成された単結晶が入った単結晶育成用坩堝10を坩堝受け14から取り外し、さらに単結晶育成用坩堝10から育成された単結晶を取り出す。 Next, after confirming that the temperature in the chamber 19 has reached about room temperature, the single crystal growing crucible 10 containing the grown single crystal is removed from the crucible receiver 14, and further grown from the single crystal growing crucible 10. Take out the single crystal.

また、FeGa合金の単結晶を育成するためのシーディングは、FeGa合金種結晶16の上部と鉄とガリウムの混合物17とを融解させて、安定した固液界面を形成させることにより行われる。ここで、上記固液界面の温度およびその温度での保持時間が、シーディングにおいて重要な要素となる。その理由としては、FeGa合金種結晶16はその表面近傍に、FeGa合金種結晶16の加工時に形成された破砕層を有しており、単結晶を育成するためにはこの破砕層を融解させておく必要があるためである。また、FeGa合金種結晶16が全て融解してしまう前に、固液界面を形成させておく必要がある点でも、固液界面の温度およびその温度での保持時間は重要である。 Further, the seeding for growing a single crystal of the FeGa alloy is performed by melting the upper part of the FeGa alloy seed crystal 16 and the mixture 17 of iron and gallium to form a stable solid-liquid interface. Here, the temperature of the solid-liquid interface and the holding time at that temperature are important factors in seeding. The reason is that the FeGa alloy seed crystal 16 has a crushed layer formed during the processing of the FeGa alloy seed crystal 16 in the vicinity of the surface thereof, and in order to grow a single crystal, this crushed layer is melted. This is because it needs to be kept. Further, the temperature of the solid-liquid interface and the holding time at that temperature are also important in that the solid-liquid interface must be formed before all the FeGa alloy seed crystals 16 are melted.

上記要件を満足させるため、FeGa合金種結晶16と融解物との境界面の温度が、FeGa合金の単結晶の融点から融点よりも20℃高い温度までの範囲内になるような位置に、単結晶育成用坩堝10をセットする。FeGa合金の単結晶をより安定して育成させる観点から、境界面の温度は、FeGa合金単結晶の融点から融点よりも10℃高い温度までの範囲内であることが更に好ましい。これらの温度で所定時間(例えば1時間以上、好ましくは3時間〜6時間)保持し、FeGa合金種結晶16の上部と鉄とガリウムの混合物17とを融解させてシーディングを行う。FeGa合金種結晶16は、単結晶育成の核となるものであり、FeGa合金種結晶16は、FeGa混合原料17と一体化させるために一部を融解させるが、FeGa合金種結晶16の全部を融解させないようにしなければならない。 In order to satisfy the above requirements, the temperature of the interface between the FeGa alloy seed crystal 16 and the melt is located within the range from the melting point of the FeGa alloy single crystal to a temperature 20 ° C. higher than the melting point. Set the crystal growth crucible 10. From the viewpoint of more stably growing the single crystal of the FeGa alloy, the temperature of the interface is more preferably in the range from the melting point of the single crystal of the FeGa alloy to a temperature 10 ° C. higher than the melting point. The temperature is maintained at these temperatures for a predetermined time (for example, 1 hour or more, preferably 3 to 6 hours), and the upper part of the FeGa alloy seed crystal 16 and the mixture 17 of iron and gallium are melted for seeding. The FeGa alloy seed crystal 16 is the core of single crystal growth, and the FeGa alloy seed crystal 16 is partially melted in order to be integrated with the FeGa mixed raw material 17, but the entire FeGa alloy seed crystal 16 is melted. It must not be melted.

シーディングが終了した後、単結晶育成用坩堝10を徐々に降下させてホットゾーン内の温度勾配がある領域を通過させる。このようにして、FeGa合金種結晶16の結晶方位に従い、融解物を冷却固化させることでFeGa合金の単結晶が育成される。 After the seeding is completed, the single crystal growing crucible 10 is gradually lowered to pass through a region having a temperature gradient in the hot zone. In this way, a single crystal of the FeGa alloy is grown by cooling and solidifying the melt according to the crystal orientation of the FeGa alloy seed crystal 16.

本実施形態に係る単結晶育成方法は、上述したようにFeGa単結晶の融点に対して、FeGa種結晶16と鉄とガリウムの混合物17との界面温度を上記融点から融点よりも20℃高い温度までの範囲内にして溶融を行っているため、FeGa合金種結晶16の上部数ミリ程の部分と鉄とガリウムの混合物17とが融解し、FeGa合金種結晶16と鉄とガリウムの混合物17とを一体にすることができる。尚、FeGa合金種結晶16と鉄とガリウムの混合物17との界面温度が上記融点よりも20℃を超えて高くなると、FeGa合金種結晶16の底面部まで融解してしまう場合があり、単結晶の育成に不具合が生じるおそれがある。 In the single crystal growing method according to the present embodiment, as described above, the interface temperature between the FeGa seed crystal 16 and the mixture 17 of iron and gallium is set to a temperature 20 ° C. higher than the melting point of the FeGa single crystal. Since the melting is performed within the range up to, the upper part of the FeGa alloy seed crystal 16 and the mixture 17 of iron and gallium are melted, and the FeGa alloy seed crystal 16 and the mixture 17 of iron and gallium are combined. Can be integrated. If the interface temperature between the FeGa alloy seed crystal 16 and the mixture 17 of iron and gallium is higher than the above melting point by more than 20 ° C., the bottom surface of the FeGa alloy seed crystal 16 may be melted, and the single crystal. There is a risk that problems will occur in the training of.

また、FeGa合金種結晶16の上部と鉄とガリウムの混合物17を融解させる保持時間は、上述したように1時間以上とすることが好ましい。1時間以上保持することにより、FeGa合金種結晶16と鉄とガリウムの混合物17との固液界面を安定化させることができるため、単結晶内部に欠陥等の生じない品質の高い単結晶を育成することができる。また、かかる保持時間を4〜6時間とすることは更に好ましい。すなわち、4時間以上保持すれば、概ねシーディングに関する反応は進行しており、6時間以下で概ね反応は終了している。従って、保持時間を4〜6時間とすることにより、鉄ガリウム合金単結晶の生産性を低下させずにシーディングを安定して行うことが可能となる。 Further, the holding time for melting the upper part of the FeGa alloy seed crystal 16 and the mixture 17 of iron and gallium is preferably 1 hour or more as described above. By holding for 1 hour or more, the solid-liquid interface between the FeGa alloy seed crystal 16 and the mixture 17 of iron and gallium can be stabilized, so that a high-quality single crystal having no defects inside the single crystal can be grown. can do. Further, it is more preferable that the holding time is 4 to 6 hours. That is, if the reaction is held for 4 hours or more, the reaction related to seeding is generally in progress, and the reaction is almost completed in 6 hours or less. Therefore, by setting the holding time to 4 to 6 hours, it is possible to stably perform seeding without lowering the productivity of the iron-gallium alloy single crystal.

上記では、単結晶育成装置100を用いたVB法による鉄ガリウム合金の単結晶育成方法について説明したが、同じ単結晶育成装置100を用いて、単結晶育成中に単結晶育成用坩堝10を上下に移動させることに替えて、抵抗加熱ヒーター12を調整して温度制御するVGF法によっても、鉄ガリウム合金の単結晶を育成することができる。 In the above, the method for growing a single crystal of an iron gallium alloy by the VB method using the single crystal growing device 100 has been described, but the same single crystal growing device 100 is used to move the crucible 10 for growing a single crystal up and down during the growing of a single crystal. A single crystal of an iron-gallium alloy can also be grown by the VGF method in which the resistance heating heater 12 is adjusted to control the temperature instead of moving the crystal to.

以下、本発明について、実施例および比較例を挙げてさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

[実施例1]
まず、室温20℃の環境下で、化学量論比で鉄とガリウムの比率が80:20になるように、すなわちガリウム含有量が原子量%で20%となるように、メディアン径が約1mmの粒状鉄原料(純度:99.9%)とガリウム原料(純度:99.99%)を秤量した。秤量したガリウム原料をテフロン(登録商標)容器に投入し、湯煎により融解した。さらに、融解したガリウム原料へ鉄原料を投入し、容器内で攪拌を行った後、室温まで冷却し、混合原料である鉄とガリウムの混合物17を作製した。
[Example 1]
First, in an environment of room temperature of 20 ° C., the median diameter is about 1 mm so that the ratio of iron to gallium is 80:20 in stoichiometric ratio, that is, the gallium content is 20% in atomic weight%. The granular iron raw material (purity: 99.9%) and the gallium raw material (purity: 99.99%) were weighed. The weighed gallium raw material was placed in a Teflon (registered trademark) container and melted by boiling in hot water. Further, the iron raw material was put into the melted gallium raw material, stirred in the container, and then cooled to room temperature to prepare a mixture 17 of iron and gallium as a mixed raw material.

そして、厚さ3mm、内径52mm、高さ200mmの緻密質アルミナ製の単結晶育成用坩堝10内の下部に、形状や育成方向等を予め調整したFeGa合金種結晶16(直径5mm、高さ30mmの円柱形状)を充填し、かつ、当該FeGa合金種結晶16の上に鉄とガリウムの混合物17を充填した。このとき、FeGa合金種結晶16には、主面方位が<100>方位である結晶を使用した。 Then, at the lower part of the crucible 10 for growing a single crystal made of dense alumina having a thickness of 3 mm, an inner diameter of 52 mm, and a height of 200 mm, a FeGa alloy seed crystal 16 (diameter 5 mm, height 30 mm) whose shape and growing direction have been adjusted in advance The FeGa alloy seed crystal 16 was filled with a mixture 17 of iron and gallium. At this time, as the FeGa alloy seed crystal 16, a crystal having a main plane orientation of <100> was used.

次に、FeGa合金種結晶16と鉄とガリウムの混合物17が充填された単結晶育成用坩堝10を、図1に示すように、多孔質アルミナ製の坩堝受け14上に載置し、熱電対15の先端部を単結晶育成用坩堝10の側面に接触させた。尚、上記熱電対15の単結晶育成用坩堝10への接触点は、FeGa合金種結晶16の底面から15mmの高さ位置になるよう設定した。 Next, as shown in FIG. 1, the single crystal growing crucible 10 filled with the FeGa alloy seed crystal 16 and the mixture 17 of iron and gallium is placed on the crucible receiver 14 made of porous alumina, and the thermoelectric pair is placed. The tip of 15 was brought into contact with the side surface of the single crystal growing crucible 10. The contact point of the thermocouple 15 with the single crystal growing crucible 10 was set at a height of 15 mm from the bottom surface of the FeGa alloy seed crystal 16.

次に、可動用ロッド13を駆動させて坩堝受け14をチャンバー19内の最下部にセットした。その後、チャンバー19内にアルゴンガスを導入し、チャンバー19内を大気圧のアルゴン雰囲気に調整した。また、カーボン製の抵抗加熱ヒーターからなる上段ヒーター12a、中段ヒーター12bおよび下段ヒーター12cとしては、独立に制御可能で、かつ、高さ方向の長さが200mmのものを使用した。 Next, the movable rod 13 was driven to set the crucible receiver 14 at the bottom of the chamber 19. After that, argon gas was introduced into the chamber 19 to adjust the inside of the chamber 19 to an atmosphere of argon at atmospheric pressure. Further, as the upper heater 12a, the middle heater 12b and the lower heater 12c made of a carbon resistance heating heater, those which can be controlled independently and have a length of 200 mm in the height direction are used.

そして、上段ヒーター12aの温度を1450℃、中段ヒーター12bの温度を1400℃、下段ヒーター12cの温度を1300℃の温度幅で設定し、チャンバー19内の昇温を行った。昇温が終了してチャンバー19内の温度が安定した後、可動用ロッド13を駆動させて坩堝受け14を上昇させることにより、単結晶育成用坩堝10を緩やかな速度で上昇させた。チャンバー19内には上部の温度が高く、下部の温度が低い温度勾配がつくられているので、チャンバー19の上部に移動するに従って単結晶育成用坩堝10内の温度が上昇し、鉄とガリウムの混合物17が融解してその融解物が形成された。 Then, the temperature of the upper heater 12a was set to 1450 ° C., the temperature of the middle heater 12b was set to 1400 ° C., and the temperature of the lower heater 12c was set to a temperature range of 1300 ° C., and the temperature inside the chamber 19 was raised. After the temperature rise was completed and the temperature in the chamber 19 became stable, the moving rod 13 was driven to raise the crucible receiver 14, so that the single crystal growing crucible 10 was raised at a moderate speed. Since a temperature gradient is formed in the chamber 19 in which the temperature of the upper part is high and the temperature of the lower part is low, the temperature in the single crystal growing crucible 10 rises as it moves to the upper part of the chamber 19, and iron and gallium The mixture 17 was melted to form the melt.

混合原料がほぼ融解して融解物となったら、チャンバー19内へのアルゴンガスの導入を抑え、真空ポンプを使用して標準大気圧から350Paまでチャンバー19内を10分で減圧し(第一の減圧)、そのまま、約30分間保持した。次に、350Paから200Pa以下となるまで2.5Pa/分の勾配で60分かけて徐々に減圧し(第二の減圧)、融解物中の気泡を除去した(気泡除去工程)。気泡除去工程後、アルゴンガスの導入を再開し、チャンバー19内を標準大気圧の不活性雰囲気に調整した。 When the mixed raw material is almost melted into a melt, the introduction of argon gas into the chamber 19 is suppressed, and the pressure inside the chamber 19 is reduced from standard atmospheric pressure to 350 Pa in 10 minutes using a vacuum pump (first). (Reduced pressure), and kept as it was for about 30 minutes. Next, the pressure was gradually reduced over 60 minutes at a gradient of 2.5 Pa / min from 350 Pa to 200 Pa or less (second pressure reduction) to remove bubbles in the melt (bubble removal step). After the bubble removing step, the introduction of argon gas was restarted, and the inside of the chamber 19 was adjusted to an inert atmosphere at standard atmospheric pressure.

上記融解物が形成された単結晶育成用坩堝10の位置する付近で、熱電対15の接触点位置の温度をモニターしながら、可動用ロッド13を駆動させて単結晶育成用坩堝10の位置を数mm上昇させて温度を安定させた。この工程を繰り返して、熱電対15の温度が安定した状態で1350〜1400℃の範囲になるよう単結晶育成用坩堝10を上昇させた。単結晶育成用坩堝10を保持する位置が定まったら、3時間保持してシーディングを行った後、可動用ロッド13を駆動させて5mm/hで単結晶育成用坩堝10を降下させ、FeGa合金の単結晶の育成を開始した。単結晶育成用坩堝10の降下距離が150mmとなった後、育成を終了した。 In the vicinity of the position of the single crystal growing crucible 10 on which the melt was formed, the position of the single crystal growing crucible 10 was determined by driving the movable rod 13 while monitoring the temperature at the contact point position of the thermocouple 15. The temperature was stabilized by raising it by several mm. By repeating this step, the single crystal growing crucible 10 was raised so that the temperature of the thermocouple 15 was in the range of 1350 to 1400 ° C. in a stable state. After determining the position to hold the single crystal growing crucible 10, hold it for 3 hours for seeding, and then drive the movable rod 13 to lower the single crystal growing crucible 10 at 5 mm / h to make the FeGa alloy. Started growing single crystals of. After the descent distance of the single crystal growing crucible 10 became 150 mm, the growing was completed.

上記単結晶の育成終了後、単結晶育成用坩堝10から育成したFeGa合金単結晶のインゴットを取り出したところ、直径52mm、直胴長さ100mmのFeGa合金の単結晶が得られた。さらに、育成されたFeGa合金の単結晶を切断し、結晶内部を観察したが、目視で確認できるような空孔等の欠陥は確認されなかった。 After the growth of the single crystal was completed, the ingot of the FeGa alloy single crystal grown from the crucible for growing the single crystal was taken out, and a single crystal of the FeGa alloy having a diameter of 52 mm and a straight body length of 100 mm was obtained. Further, the grown single crystal of the FeGa alloy was cut and the inside of the crystal was observed, but no defects such as vacancies that could be visually confirmed were confirmed.

[実施例2]
鉄とガリウムの混合物の化学量論比について、鉄とガリウムの比率を82:18(ガリウム含有量が原子量%で18%)としたこと以外は、実施例1と同様に鉄とガリウムの混合物17を作製し、単結晶の育成を行った。単結晶の育成終了後、単結晶育成用坩堝10から育成したFeGa合金単結晶のインゴットを取り出したところ、直径52mm、直胴長さ100mmのFeGa合金の単結晶が得られた。さらに、育成されたFeGa合金単結晶を切断し、結晶内部を観察したが、目視で確認できるような空孔等の欠陥は確認されなかった。
[Example 2]
Regarding the chemical ratio of the mixture of iron and gallium, the mixture of iron and gallium 17 is the same as in Example 1 except that the ratio of iron to gallium is 82:18 (the gallium content is 18% in atomic weight%). Was prepared, and a single crystal was grown. After the growth of the single crystal was completed, the ingot of the FeGa alloy single crystal grown from the crucible for growing the single crystal was taken out, and a single crystal of the FeGa alloy having a diameter of 52 mm and a straight body length of 100 mm was obtained. Further, the grown FeGa alloy single crystal was cut and the inside of the crystal was observed, but no defects such as vacancies that could be visually confirmed were confirmed.

[実施例3]
鉄とガリウムの混合物の化学量論比について、鉄とガリウムの比率を77:23(ガリウム含有量が原子量%で23%)としたこと以外は、実施例1と同様に鉄とガリウムの混合物17を作製し、単結晶の育成を行った。単結晶の育成終了後、単結晶育成用坩堝10から育成したFeGa合金単結晶のインゴットを取り出したところ、直径52mm、直胴長さ100mmのFeGa合金の単結晶が得られた。さらに、育成されたFeGa合金単結晶を切断し、結晶内部を観察したが、目視で確認できるような空孔等の欠陥は確認されなかった。
[Example 3]
Regarding the chemical ratio of the mixture of iron and gallium, the mixture of iron and gallium 17 is the same as in Example 1 except that the ratio of iron to gallium is 77:23 (the gallium content is 23% in atomic weight%). Was prepared, and a single crystal was grown. After the growth of the single crystal was completed, the ingot of the FeGa alloy single crystal grown from the crucible for growing the single crystal was taken out, and a single crystal of the FeGa alloy having a diameter of 52 mm and a straight body length of 100 mm was obtained. Further, the grown FeGa alloy single crystal was cut and the inside of the crystal was observed, but no defects such as vacancies that could be visually confirmed were confirmed.

[実施例4]
鉄とガリウムの混合物の化学量論比について、鉄とガリウムの比率を80:20(ガリウム含有量が原子量%で20%)とした。そして、気泡除去工程において、混合原料がほぼ融解して融解物となったら、チャンバー19内へのアルゴンガスの導入を抑え、真空ポンプを使用して標準大気圧から350Paまでチャンバー19内を10分で減圧し(第一の減圧)、そのまま、約30分間保持した。次に350Paから200Pa以下となるまで6Pa/分の勾配で25分かけて減圧したところ(第二の減圧)、途中250Pa付近で坩堝が激しく揺れたが、融解物が坩堝外に飛散することはなく、200Paでは坩堝の揺れは収まった。
[Example 4]
Regarding the stoichiometric ratio of the mixture of iron and gallium, the ratio of iron to gallium was set to 80:20 (gallium content is 20% in terms of atomic weight%). Then, in the bubble removing step, when the mixed raw material is almost melted to become a melt, the introduction of argon gas into the chamber 19 is suppressed, and a vacuum pump is used to move the inside of the chamber 19 from standard atmospheric pressure to 350 Pa for 10 minutes. The pressure was reduced with (first pressure reduction), and the mixture was kept as it was for about 30 minutes. Next, when the crucible was depressurized over 25 minutes with a gradient of 6 Pa / min from 350 Pa to 200 Pa or less (second decompression), the crucible shook violently around 250 Pa on the way, but the melt did not scatter outside the crucible. At 200 Pa, the shaking of the crucible subsided.

上記以外は、実施例1と同様に単結晶の育成を行った。単結晶の育成終了後、単結晶育成用坩堝10から育成したFeGa合金単結晶のインゴットを取り出したところ、直径52mm、直胴長さ100mmのFeGa合金の単結晶が得られた。さらに、育成されたFeGa合金単結晶を切断し、結晶内部を観察したが、目視で確認できるような空孔等の欠陥は確認されなかった。 Except for the above, a single crystal was grown in the same manner as in Example 1. After the growth of the single crystal was completed, the ingot of the FeGa alloy single crystal grown from the crucible for growing the single crystal was taken out, and a single crystal of the FeGa alloy having a diameter of 52 mm and a straight body length of 100 mm was obtained. Further, the grown FeGa alloy single crystal was cut and the inside of the crystal was observed, but no defects such as vacancies that could be visually confirmed were confirmed.

[実施例5]
鉄とガリウムの混合物の化学量論比について、鉄とガリウムの比率を80:20(ガリウム含有量が原子量%で20%)とした。そして、気泡除去工程において、混合原料がほぼ融解して融解物となったら、チャンバー19内へのアルゴンガスの導入を抑え、真空ポンプを使用して標準大気圧から500Paまでチャンバー19内を10分で減圧し(第一の減圧)、そのまま、約30分間保持した。次に500Paから200Pa以下となるまで3Pa/分の勾配で1時間40分かけて減圧した(第二の減圧)。
[Example 5]
Regarding the stoichiometric ratio of the mixture of iron and gallium, the ratio of iron to gallium was set to 80:20 (gallium content is 20% in terms of atomic weight%). Then, in the bubble removing step, when the mixed raw material is almost melted to become a melt, the introduction of argon gas into the chamber 19 is suppressed, and a vacuum pump is used to move the inside of the chamber 19 from standard atmospheric pressure to 500 Pa for 10 minutes. The pressure was reduced with (first pressure reduction), and the mixture was kept as it was for about 30 minutes. Next, the pressure was reduced over 1 hour and 40 minutes with a gradient of 3 Pa / min from 500 Pa to 200 Pa or less (second pressure reduction).

上記以外は、実施例1と同様に単結晶の育成を行った。単結晶の育成終了後、単結晶育成用坩堝10から育成したFeGa合金単結晶のインゴットを取り出したところ、直径52mm、直胴長さ100mmのFeGa合金の単結晶が得られた。さらに、育成されたFeGa合金単結晶を切断し、結晶内部を観察したが、目視で確認できるような空孔等の欠陥は確認されなかった。但し、種結晶の未融解部分は10%程度しか残っていなかったが、単結晶の育成に問題は生じなかった。 Except for the above, a single crystal was grown in the same manner as in Example 1. After the growth of the single crystal was completed, the ingot of the FeGa alloy single crystal grown from the crucible for growing the single crystal was taken out, and a single crystal of the FeGa alloy having a diameter of 52 mm and a straight body length of 100 mm was obtained. Further, the grown FeGa alloy single crystal was cut and the inside of the crystal was observed, but no defects such as vacancies that could be visually confirmed were confirmed. However, although only about 10% of the unmelted portion of the seed crystal remained, there was no problem in growing the single crystal.

[比較例1]
混合原料融解中に気泡除去工程を実施しなかったこと以外は、実施例1と同様に鉄とガリウムの混合物17を作製し、単結晶の育成操作を行った。単結晶の育成操作を終了後、単結晶育成用坩堝10から育成したFeGa合金結晶のインゴットを取り出したところ、直径52mm、直胴長さ100mmのFeGa合金結晶が得られたが、結晶粒界が認められ多結晶となっていた。さらに、育成されたFeGa合金の多結晶を切断し、結晶内部を観察した結果、目視により多数の空孔が確認された。
[Comparative Example 1]
A mixture 17 of iron and gallium was prepared in the same manner as in Example 1 except that the bubble removing step was not carried out during the melting of the mixed raw material, and a single crystal growing operation was carried out. After completing the single crystal growth operation, the ingot of the FeGa alloy crystal grown from the single crystal growth chamber 10 was taken out, and a FeGa alloy crystal having a diameter of 52 mm and a straight body length of 100 mm was obtained, but the crystal grain boundaries were It was recognized and was polycrystal. Further, as a result of cutting the grown polycrystal of FeGa alloy and observing the inside of the crystal, a large number of pores were visually confirmed.

[比較例2]
鉄とガリウムの混合物の化学量論比について、鉄とガリウムの比率を80:20(ガリウム含有量が原子量%で20%)とした。そして、気泡除去工程において、混合原料がほぼ融解して融解物となったら、チャンバー19内へのアルゴンガスの導入を抑え、真空ポンプを使用して標準大気圧から350Paまでチャンバー19内を10分で減圧し、そのまま、約30分間保持した。次に350Paから200Pa以下となるまで10Pa/分の勾配で15分かけて減圧したところ、途中で融解物が突沸し、融解物が坩堝外に飛散したため、育成を中止した。
[Comparative Example 2]
Regarding the stoichiometric ratio of the mixture of iron and gallium, the ratio of iron to gallium was set to 80:20 (gallium content is 20% in terms of atomic weight%). Then, in the bubble removing step, when the mixed raw material is almost melted to become a melt, the introduction of argon gas into the chamber 19 is suppressed, and a vacuum pump is used to move the inside of the chamber 19 from standard atmospheric pressure to 350 Pa for 10 minutes. The pressure was reduced with, and the mixture was kept as it was for about 30 minutes. Next, when the pressure was reduced from 350 Pa to 200 Pa or less over 15 minutes at a gradient of 10 Pa / min, the melt suddenly boiled and the melt was scattered outside the crucible, so that the growth was stopped.

[比較例3]
鉄とガリウムの混合物の化学量論比について、鉄とガリウムの比率を80:20(ガリウム含有量が原子量%で20%)とした。そして、気泡除去工程において、混合原料がほぼ融解して融解物となったら、チャンバー19内へのアルゴンガスの導入を抑え、真空ポンプを使用して標準大気圧から600Paまでチャンバー19内を10分で減圧し、そのまま、約30分間保持した。次に600Paから200Pa以下となるまで2Pa/分の勾配で3時間20分かけて減圧した。
[Comparative Example 3]
Regarding the stoichiometric ratio of the mixture of iron and gallium, the ratio of iron to gallium was set to 80:20 (gallium content is 20% in terms of atomic weight%). Then, in the bubble removing step, when the mixed raw material is almost melted to become a melt, the introduction of argon gas into the chamber 19 is suppressed, and a vacuum pump is used to move the inside of the chamber 19 from standard atmospheric pressure to 600 Pa for 10 minutes. The pressure was reduced with, and the mixture was kept as it was for about 30 minutes. Next, the pressure was reduced over 3 hours and 20 minutes with a gradient of 2 Pa / min from 600 Pa to 200 Pa or less.

上記以外は、実施例1と同様に単結晶の育成を行った。単結晶の育成終了後、単結晶育成用坩堝10から育成したFeGa合金結晶のインゴットを取り出したところ、直径52mm、直胴長さ100mmのFeGa合金結晶が得られたが、結晶粒界が認められ多結晶となっていた。外観観察によると種結晶部分はすべて坩堝由来の凹凸面が形成されていたことから、種結晶が全て融解していたことを確認した。X線回折装置により、種結晶部分より育成方向の<100>方位は確認できなかった。育成されたFeGa合金を切断し、結晶内部を観察したが、目視で確認できるような空孔等の欠陥は確認されなかった。 Except for the above, a single crystal was grown in the same manner as in Example 1. After the growth of the single crystal was completed, the ingot of the FeGa alloy crystal grown from the single crystal growth chamber 10 was taken out, and a FeGa alloy crystal having a diameter of 52 mm and a straight body length of 100 mm was obtained, but grain boundaries were observed. It was polycrystal. As a result of the appearance observation, it was confirmed that all the seed crystals were melted because the uneven surface derived from the crucible was formed in all the seed crystal parts. The <100> orientation of the growing direction could not be confirmed from the seed crystal portion by the X-ray diffractometer. The grown FeGa alloy was cut and the inside of the crystal was observed, but no defects such as vacancies that could be visually confirmed were confirmed.

[まとめ]
鉄とガリウムの化学量論比を変更しても、気泡除去工程を実施することで融解物中の気泡が除去されたことにより、内部の目視欠陥の認められない単結晶を育成することができた(実施例1〜3)。一方で、気泡除去工程を実施せずに融解物中の気泡を除去しなかった場合には、多結晶が育成された(比較例1)。これは、残存する気泡が単結晶の育成を阻害したことが要因と考えられる。
[Summary]
Even if the stoichiometric ratio of iron and gallium is changed, the bubbles in the melt are removed by performing the bubble removal step, so that a single crystal with no internal visual defects can be grown. (Examples 1 to 3). On the other hand, when the bubbles in the melt were not removed without performing the bubble removing step, polycrystals were grown (Comparative Example 1). It is considered that this is because the remaining bubbles inhibited the growth of the single crystal.

また、気泡除去工程において、短時間で第二の減圧を行った場合には融解物が突沸し(比較例2)、長時間かけて減圧した場合には種結晶が融解した(比較例3)。これらの融解物の突沸や種結晶の融解は、2〜6Pa/分の減圧勾配での減圧により回避できるが、坩堝揺れの防止および種結晶の完全融解を安定的に避けるためには、第一の減圧を350Paとし、第二の減圧を2.5〜5Pa/分の勾配で行うのがよいことを確認した。 Further, in the bubble removing step, when the second depressurization was performed in a short time, the melt was suddenly boiled (Comparative Example 2), and when the pressure was reduced over a long time, the seed crystal was melted (Comparative Example 3). .. The sudden boiling of these melts and the melting of the seed crystal can be avoided by depressurizing with a decompression gradient of 2 to 6 Pa / min, but in order to prevent crucible shaking and stably avoid the complete melting of the seed crystal, the first step is to avoid it. It was confirmed that the depressurization of the above was set to 350 Pa and the second depressurization should be performed with a gradient of 2.5 to 5 Pa / min.

以上の実施例の結果より、気泡除去工程を実施することにより、鉄ガリウム合金の単結晶を安定的に育成することが可能である。すなわち、本発明であれば、気泡除去工程を含むことにより、特許文献4等に記載の従来方法と比べて、鉄ガリウム合金の単結晶を廉価かつ大量に製造できることは、明らかである。 From the results of the above examples, it is possible to stably grow a single crystal of an iron-gallium alloy by carrying out the bubble removing step. That is, it is clear that in the present invention, by including the bubble removing step, a single crystal of an iron gallium alloy can be produced in a large amount at a low cost as compared with the conventional method described in Patent Document 4 and the like.

10 単結晶育成用坩堝
11 断熱材
12 抵抗加熱ヒーター
12a 上段ヒーター
12b 中段ヒーター
12c 下段ヒーター
13 可動用ロッド
14 坩堝受け
15 熱電対
16 鉄ガリウム合金種結晶
17 鉄とガリウムの混合物
18 真空ポンプ
19 チャンバー
100 単結晶育成装置
10 Crucible for growing single crystals 11 Insulation material 12 Resistance heating heater 12a Upper heater 12b Middle heater 12c Lower heater 13 Movable rod 14 Crucible receiver 15 Thermocouple 16 Iron-gallium alloy seed crystal 17 Iron and gallium mixture 18 Vacuum pump 19 Chamber 100 Single crystal growing device

Claims (3)

不活性雰囲気下におかれた鉄とガリウムの混合物の融解物を減圧し、当該融解物中の気泡を除去する気泡除去工程を含み、
前記減圧は、前記融解物を300〜500Paに減圧する第一の減圧と、2〜6Pa/分の減圧勾配で前記融解物を前記第一の減圧による圧力から200Pa以下に減圧する第二の減圧を有する、鉄ガリウム合金の単結晶育成方法。
It comprises a bubble removal step of depressurizing a melt of a mixture of iron and gallium placed in an inert atmosphere and removing bubbles in the melt.
The depressurization includes a first depressurization for depressurizing the melt to 300 to 500 Pa and a second depressurization for depressurizing the melt from the pressure of the first decompression to 200 Pa or less with a decompression gradient of 2 to 6 Pa / min. A method for growing a single crystal of an iron-gallium alloy.
前記混合物のガリウム含有量は、原子量%で18.0%〜23.0%である、請求項1に記載の鉄ガリウム合金の単結晶育成方法。 The method for growing a single crystal of an iron gallium alloy according to claim 1, wherein the gallium content of the mixture is 18.0% to 23.0% in terms of atomic weight. 鉄ガリウム合金の単結晶の育成は、垂直ブリッジマン法または垂直温度勾配凝固法によって行う、請求項1または2に記載の鉄ガリウム合金の単結晶育成方法。 The method for growing a single crystal of an iron gallium alloy according to claim 1 or 2, wherein the growth of a single crystal of an iron gallium alloy is carried out by a vertical Bridgeman method or a vertical temperature gradient solidification method.
JP2019109299A 2019-06-12 2019-06-12 Single crystal growth method for iron-gallium alloy Active JP7318884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019109299A JP7318884B2 (en) 2019-06-12 2019-06-12 Single crystal growth method for iron-gallium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019109299A JP7318884B2 (en) 2019-06-12 2019-06-12 Single crystal growth method for iron-gallium alloy

Publications (2)

Publication Number Publication Date
JP2020200226A true JP2020200226A (en) 2020-12-17
JP7318884B2 JP7318884B2 (en) 2023-08-01

Family

ID=73742431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019109299A Active JP7318884B2 (en) 2019-06-12 2019-06-12 Single crystal growth method for iron-gallium alloy

Country Status (1)

Country Link
JP (1) JP7318884B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155762A (en) * 2008-12-29 2010-07-15 Sumco Corp Method of producing silicon single crystal
CN104947194A (en) * 2015-05-04 2015-09-30 北京航空航天大学 Magnetostrictive material and preparation method thereof
JP2016028831A (en) * 2014-07-14 2016-03-03 株式会社福田結晶技術研究所 METHOD AND APPARATUS FOR GROWING Fe-Ga-BASED ALLOY SINGLE CRYSTAL
JP2019163187A (en) * 2018-03-19 2019-09-26 住友金属鉱山株式会社 Single crystal growth method of iron gallium alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155762A (en) * 2008-12-29 2010-07-15 Sumco Corp Method of producing silicon single crystal
JP2016028831A (en) * 2014-07-14 2016-03-03 株式会社福田結晶技術研究所 METHOD AND APPARATUS FOR GROWING Fe-Ga-BASED ALLOY SINGLE CRYSTAL
CN104947194A (en) * 2015-05-04 2015-09-30 北京航空航天大学 Magnetostrictive material and preparation method thereof
JP2019163187A (en) * 2018-03-19 2019-09-26 住友金属鉱山株式会社 Single crystal growth method of iron gallium alloy

Also Published As

Publication number Publication date
JP7318884B2 (en) 2023-08-01

Similar Documents

Publication Publication Date Title
JP5493092B2 (en) Method for producing gallium oxide single crystal and gallium oxide single crystal
KR20140005977A (en) Preparation of doped garnet structure single crystals with diameters of up to 500 mm
JP7072146B2 (en) Single crystal growth method for iron gallium alloy
JP2008031019A (en) Method of manufacturing sapphire single crystal
JP2014214078A (en) Crystal growth method
JP6990383B2 (en) High-performance Fe-Ga-based alloy single crystal manufacturing method
JP4904862B2 (en) Method for producing aluminum oxide single crystal and obtained aluminum oxide single crystal
JP7318884B2 (en) Single crystal growth method for iron-gallium alloy
JPH107491A (en) High-purity single crystal copper and its production and production unit therefor
JP7078933B2 (en) Seed crystal for growing single crystal of iron gallium alloy
JP2005112718A5 (en)
JP6390568B2 (en) Crucible for growing gallium oxide single crystal and method for producing gallium oxide single crystal
JP2019218245A (en) MANUFACTURING METHOD OF Si INGOT CRYSTAL, AND MANUFACTURING APPARATUS THEREFOR
JP2009242150A (en) Method for producing oxide single crystal
JP7457321B2 (en) FeGa alloy single crystal manufacturing method and lid
JP7486743B2 (en) Method for producing FeGa alloy single crystal
JP6958854B2 (en) Manufacturing method of magnetostrictive material
JP2022146328A (en) MANUFACTURING METHOD OF FeGa ALLOY SINGLE CRYSTAL
JP7125711B2 (en) Method for producing seed crystal for growing single crystal of iron-gallium alloy and method for growing single crystal of iron-gallium alloy
JP2022146327A (en) MANUFACTURING METHOD OF FeGa ALLOY SINGLE CRYSTAL
JP7349100B2 (en) Seed crystal for FeGa single crystal growth and method for producing FeGa single crystal
JP4399631B2 (en) Method for manufacturing compound semiconductor single crystal and apparatus for manufacturing the same
JP4141467B2 (en) Method and apparatus for producing spherical silicon single crystal
JP2015020942A (en) Apparatus and method for growing crystal
KR100868726B1 (en) Synthesis vb apparatus and method for gaas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230711

R150 Certificate of patent or registration of utility model

Ref document number: 7318884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150