JP2014214078A - Crystal growth method - Google Patents

Crystal growth method Download PDF

Info

Publication number
JP2014214078A
JP2014214078A JP2013095523A JP2013095523A JP2014214078A JP 2014214078 A JP2014214078 A JP 2014214078A JP 2013095523 A JP2013095523 A JP 2013095523A JP 2013095523 A JP2013095523 A JP 2013095523A JP 2014214078 A JP2014214078 A JP 2014214078A
Authority
JP
Japan
Prior art keywords
crystal
seed crystal
crucible
temperature
growth method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013095523A
Other languages
Japanese (ja)
Other versions
JP6053018B2 (en
Inventor
笹浦 正弘
Masahiro Sasaura
正弘 笹浦
今井 欽之
Kaneyuki Imai
欽之 今井
小林 潤也
Junya Kobayashi
潤也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013095523A priority Critical patent/JP6053018B2/en
Publication of JP2014214078A publication Critical patent/JP2014214078A/en
Application granted granted Critical
Publication of JP6053018B2 publication Critical patent/JP6053018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/14Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method characterised by the seed, e.g. its crystallographic orientation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a crystal growth method for manufacturing a crystal having uniform crystal properties with high yield, by using a vertical bridgman method or vertical temperature gradient solidification method.SOLUTION: A crystal growth method comprises: causing a crystal 23 to grow from a lower part toward an upper part of a crucible 21 by forming an axial temperature distribution 25 in a vertical direction, the axial temperature distribution 25 having a temperature that is high at the upper part and a low at the lower part, and cooling a molten raw material 22; and performing an over-heating process or soaking process of keeping the molten raw material 22 at a higher temperature than a crystallization temperature before starting the crystal growth. In the method, after finishing the step of the over-heating process or soaking process, the molten raw material 22 is cooled, and when a seed crystal set position 29 arranged at a bottom of the crucible 21 becomes a liquid-solid equilibrium temperature, a seed crystal grain 24 is introduced from the upper part of the crucible 21 and is delivered to the seed crystal set position 29. The molten raw material 22 is further cooled in order to grow the crystal 23 while having the seed crystal grain 24 as a core.

Description

本発明は、結晶成長方法に関し、より詳細には、垂直ブリッジマン法、垂直温度勾配凝固法による結晶成長において、結晶成長前に溶融原料の元になる素原料を加熱中に生成した中間化合物を完全に分解し、素原料に含まれる不要成分を脱気する過加熱処理もしくはソーキング処理の工程を付与するも、種子結晶粒により成長結晶の方位を制御し、単結晶を製造するための結晶成長方法に関する。   The present invention relates to a crystal growth method, and more specifically, in a crystal growth by a vertical Bridgman method or a vertical temperature gradient solidification method, an intermediate compound generated during heating of a raw material that is a source of a molten raw material before crystal growth is obtained. Crystal growth to produce a single crystal by controlling the orientation of the growth crystal by seed crystal grains, even though it is completely decomposed and given an overheating or soaking process to degas unnecessary components contained in the raw material Regarding the method.

従来、酸化物結晶材料の作製方法として、成長容器内の溶融した原料をるつぼ壁に設置した種子結晶から水平方向に徐々に固化させる水平ブリッジマン法または水平温度勾配凝固法、成長容器を垂直に設置して温度勾配を与え、 成長容器を低温度側に移動させて結晶を固化する垂直ブリッジマン法(例えば、特許文献1参照)、成長容器を垂直に固定して温度勾配を一定に保持しながら炉全体の温度を冷却させて結晶を固化する垂直温度勾配凝固法などが知られている。   Conventionally, as a method for producing an oxide crystal material, a horizontal Bridgman method or a horizontal temperature gradient solidification method in which a molten raw material in a growth vessel is gradually solidified from a seed crystal placed on a crucible wall in a horizontal direction, and a growth vessel is vertically set. Installed to give a temperature gradient, vertical Bridgman method (for example, refer to Patent Document 1) in which the growth vessel is moved to a low temperature side to solidify the crystal, and the growth vessel is fixed vertically to keep the temperature gradient constant. However, a vertical temperature gradient solidification method is known in which the temperature of the entire furnace is cooled to solidify the crystal.

図1を参照して、従来の垂直ブリッジマン法による結晶の作製方法について説明する。 るつぼ1内に種子結晶棒4と原料を充填し、結晶製造炉に設置する。原料は、素原料である単元素、酸化物、炭化物を所望の組成比となるよう秤量し、るつぼ1に充填する。溶媒として、結晶の構成成分である元素、酸化物、炭化物を過剰に追加したり、結晶の構成成分と異なる元素、酸化物、炭化物を追加して充填することもある。加熱ヒータ6により、 原料を加熱溶融して溶融原料2とする。結晶製造炉は、るつぼ1の下方が結晶化温度より低い低温領域であり、るつぼ1の上方が結晶化温度より高い高温領域である軸方向温度分布5を有する。加熱ヒータ6の出力を一定のままで、るつぼ1を低温領域へ、すなわち下部へ移動させることにより、溶融原料2を下方から徐々に冷却する。るつぼ1の移動により、結晶化温度に達した成長結晶3は、種子結晶棒4を核として結晶成長する。   With reference to FIG. 1, a conventional crystal manufacturing method by the vertical Bridgman method will be described. The crucible 1 is filled with the seed crystal rod 4 and the raw material and installed in the crystal production furnace. As raw materials, single elements, oxides, and carbides, which are raw materials, are weighed so as to have a desired composition ratio, and the crucible 1 is filled. As a solvent, an element, oxide, or carbide that is a constituent component of the crystal may be added excessively, or an element, oxide, or carbide that is different from the constituent component of the crystal may be additionally added. The raw material is heated and melted by the heater 6 to obtain a molten raw material 2. The crystal production furnace has an axial temperature distribution 5 in which the lower part of the crucible 1 is a low temperature region lower than the crystallization temperature and the upper part of the crucible 1 is a high temperature region higher than the crystallization temperature. The molten raw material 2 is gradually cooled from below by moving the crucible 1 to the low temperature region, that is, to the lower part while keeping the output of the heater 6 constant. The grown crystal 3 that has reached the crystallization temperature by the movement of the crucible 1 grows using the seed crystal rod 4 as a nucleus.

このとき、成長結晶3は、種子結晶棒4を核として順次成長するから、種子結晶棒4の結晶方位を継承し、種子結晶棒4の結晶方位と同じ結晶方位を有する成長結晶3として成長させることができる。なお、種子結晶棒4がない場合には、るつぼ1の底部から自然発生した成長核を核として順次結晶が成長する。   At this time, since the growth crystal 3 grows sequentially with the seed crystal rod 4 as a nucleus, it inherits the crystal orientation of the seed crystal rod 4 and grows as a growth crystal 3 having the same crystal orientation as the crystal orientation of the seed crystal rod 4. be able to. In the case where there is no seed crystal rod 4, crystals grow sequentially with a growth nucleus naturally generated from the bottom of the crucible 1 as a nucleus.

加熱ヒータ6の出力を一定のままで、るつぼを下部へ移動させることに代えて、加熱ヒータ6の軸方向温度分布5の形状を変えない様に調整しながら加熱ヒータ6の出力を調整し冷却するのが垂直温度勾配凝固法である。詳しくは、図1において、軸方向温度分布5の形状を変えないで軸方向温度分布7に冷却する。結晶化温度に到達する領域は、るつぼ下方から上方に移動して行くので、垂直ブリッジマン法と同様に、成長結晶3は、種子結晶棒4を核として下方から順次成長するから、種子結晶棒4の結晶方位を継承し、種子結晶棒4の結晶方位と同じ結晶方位を有する成長結晶3として成長させることができる。   Instead of moving the crucible downward while keeping the output of the heater 6 constant, the output of the heater 6 is adjusted and cooled while adjusting so that the shape of the axial temperature distribution 5 of the heater 6 is not changed. The vertical temperature gradient solidification method is used. Specifically, in FIG. 1, the cooling is performed to the axial temperature distribution 7 without changing the shape of the axial temperature distribution 5. Since the region that reaches the crystallization temperature moves upward from the bottom of the crucible, the growth crystal 3 grows sequentially from below using the seed crystal rod 4 as a nucleus, as in the vertical Bridgman method. 4, and can be grown as a growth crystal 3 having the same crystal orientation as the crystal orientation of the seed crystal rod 4.

米国特許第5342475号明細書US Pat. No. 5,342,475

A. Reisman et al.,“Phase Diagram of the System KNbO3-KTaO3 by the Methods of Differential Thermal and Resistance Analysis”, J. American Ceramic Society, Vol.77, (1955)A. Reisman et al., “Phase Diagram of the System KNbO3-KTaO3 by the Methods of Differential Thermal and Resistance Analysis”, J. American Ceramic Society, Vol. 77, (1955) J. R. Carruthers et al., “ Nonstoichiometry and Crystal Growth of Lithium Niobate”, J. Appl. Phys., Vol.42, No.5, pp1846-1851 (1971)J. R. Carruthers et al., “Nonstoichiometry and Crystal Growth of Lithium Niobate”, J. Appl. Phys., Vol.42, No.5, pp1846-1851 (1971)

一方、軸方向温度分布が上方で低く下方で高く、垂直ブリッジマン法や垂直温度勾配凝固法と逆の軸方向温度分布を有するCZ法やTSSG法による結晶製造が、広く普及している。CZ法やTSSG法の場合、引き上げ軸の先端に取り付けられた種子結晶棒を、上方から溶融原料に浸して、成長結晶を育成する。種子結晶棒を核とした結晶成長を開始する前に、結晶化温度より高温の温度で、一定時間保持し、溶融原料の元になる素原料を加熱中に生成した中間化合物を完全に分解し、素原料に含まれる不要成分を脱気する過加熱処理もしくはソーキング処理の工程を行うことがある。これらの工程を行うことによって、製造したい結晶以外の化合物の析出を抑制したり、成長結晶内に含まれる不純物を低減する効果があるからである。   On the other hand, crystal production by the CZ method or the TSSG method, which has an axial temperature distribution that is lower in the upper direction and lower in the upper direction and has an axial temperature distribution opposite to the vertical Bridgman method or the vertical temperature gradient solidification method, is widely used. In the case of the CZ method or the TSSG method, a seed crystal rod attached to the tip of the pulling shaft is immersed in the molten raw material from above to grow a growth crystal. Before starting crystal growth with the seed crystal rod as the nucleus, hold the material at a temperature higher than the crystallization temperature for a certain period of time to completely decompose the intermediate compound generated during heating the raw material that is the source of the molten material. In some cases, an overheating process or a soaking process is performed to degas unnecessary components contained in the raw material. This is because by performing these steps, there is an effect of suppressing precipitation of a compound other than the crystal to be produced or reducing impurities contained in the grown crystal.

垂直ブリッジマン法や垂直温度勾配凝固法でも同様に、種子結晶棒を核とした結晶成長を開始する前に、過加熱処理もしくはソーキング処理の工程を行えば、同様の効果が期待できる。しかしながら、垂直ブリッジマン法や垂直温度勾配凝固法では、加熱前にあらかじめるつぼ内に種子結晶棒が充填してあるので、結晶化温度より高温の温度に加熱することが難しい。なぜなら、結晶化温度より高温の温度に加熱すると、あらかじめ充填した種子結晶棒が溶融してしまうからである。   Similarly, in the vertical Bridgman method and the vertical temperature gradient solidification method, the same effect can be expected if an overheating treatment or a soaking treatment is performed before starting crystal growth using the seed crystal rod as a nucleus. However, in the vertical Bridgman method and the vertical temperature gradient solidification method, since the seed crystal rod is filled in the crucible before heating, it is difficult to heat to a temperature higher than the crystallization temperature. This is because the pre-filled seed crystal rod melts when heated to a temperature higher than the crystallization temperature.

従って、垂直ブリッジマン法や垂直温度勾配凝固法による結晶製造で、過加熱処理もしくはソーキング処理の工程を併用する場合、種子結晶棒をあらかじめ充填せず、るつぼ内で最も温度が低く最初に結晶成長が開始するるつぼの底部で自然発生した成長核を核として結晶成長する方法しか選択することができなかった。種子結晶棒がないので、成長結晶の成長方位はまちまちであり、方位制御の歩留まりに課題があった。   Therefore, in the case of crystal production by the vertical Bridgman method or the vertical temperature gradient solidification method, when the overheating or soaking process is used in combination, the seed crystal rod is not filled in advance, but the temperature is the lowest in the crucible first. The only method that can be used for crystal growth is the growth nuclei that occur naturally at the bottom of the crucible starting from the core. Since there is no seed crystal rod, the growth orientation of the growth crystal varies, and there is a problem in the yield of orientation control.

本発明は、このような課題を克服するためになされたもので、その目的とするところは、垂直ブリッジマン法や垂直温度勾配凝固法で過加熱処理もしくはソーキング処理の工程を併用しながら種子結晶による方位制御を可能にし、結晶特性の均一な結晶を歩留まりよく製造するための結晶製造方法を提供することにある。   The present invention has been made in order to overcome such problems. The object of the present invention is to provide seed crystals while using a superheating process or a soaking process in combination with a vertical Bridgman method or a vertical temperature gradient solidification method. It is an object of the present invention to provide a crystal production method for producing a crystal having uniform crystal characteristics with high yield.

このような目的を達成するために、本発明の一実施態様は、炉内に設置されたるつぼ内の溶融原料に対して、鉛直方向に上高下低の軸方向温度分布を形成し、前記溶融原料を冷却することにより、前記るつぼの下方より上方に向かって結晶を成長させる結晶成長方法であり、かつ、結晶成長を開始する前に前記溶融原料を結晶化温度より高温の温度で、一定時間保持する過加熱処理もしくはソーキング処理の工程を行う結晶成長方法において、前記過加熱処理もしくはソーキング処理の工程を終了した後に、前記溶融原料を冷却し、るつぼの底部に設置された種子結晶設置位置が結晶成長を開始する温度になった時点で、るつぼ上方より種子結晶粒を投入することにより、前記種子結晶粒が前記種子結晶粒設置位置に運搬され、溶融原料をさらに冷却することで前記種子結晶粒を核として結晶を成長させることを特徴とする。   In order to achieve such an object, an embodiment of the present invention forms an axial temperature distribution in the vertical direction of upper, lower, and lower relative to a molten raw material in a crucible installed in a furnace, A crystal growth method for growing a crystal from below the crucible by cooling the molten material, and before starting the crystal growth, the molten material is constant at a temperature higher than the crystallization temperature. In a crystal growth method that performs a process of overheating treatment or soaking treatment that is held for a period of time, after finishing the overheating treatment or soaking treatment step, the molten raw material is cooled, and a seed crystal installation position installed at the bottom of a crucible When the temperature reaches the temperature at which crystal growth starts, the seed crystal grains are introduced from above the crucible so that the seed crystal grains are transported to the seed crystal grain installation position and the molten raw material is reduced. The seed crystal grains by cooling, characterized in that growing crystals as nuclei.

本発明によれば、垂直ブリッジマン法や垂直温度勾配凝固法において、過加熱処理もしくはソーキング処理の工程を行った後に、種子結晶粒を投入設置し成長結晶の成長方位を制御できるので、結晶品質に優れ、かつ成長方位のそろった結晶を歩留まりよく製造することが可能となる。   According to the present invention, in the vertical Bridgman method or the vertical temperature gradient solidification method, the seed crystal grains can be introduced and the growth orientation of the grown crystal can be controlled after performing the overheating treatment or the soaking treatment, so that the crystal quality can be controlled. It is possible to produce a crystal with excellent yield and uniform growth orientation with high yield.

従来の垂直ブリッジマン法または垂直温度勾配凝固法による結晶成長を説明する図である。It is a figure explaining the crystal growth by the conventional vertical Bridgman method or the vertical temperature gradient solidification method. 実施例1にかかる垂直温度勾配凝固法による結晶成長を説明する図である。It is a figure explaining the crystal growth by the vertical temperature gradient solidification method concerning Example 1. FIG. 実施例2にかかる垂直ブリッジマン法による結晶成長を説明する図である。It is a figure explaining the crystal growth by the vertical Bridgman method concerning Example 2. FIG. 実施例1および2にかかる種子結晶粒を説明する図であり、(a)は正方晶<001>方向成長を、(b)および(c)は正方晶<110>方向成長を、(d)は正方晶<111>方向成長を示す図である。It is a figure explaining the seed crystal grain concerning Example 1 and 2, (a) is tetragonal <001> direction growth, (b) and (c) is tetragonal <110> direction growth, (d) Is a diagram showing tetragonal <111> direction growth.

[実施例1]
図2(a)および(b)を用いて、温度勾配凝固法による<001>方向成長のKTaxNb1-x3(0≦x≦1)単結晶の製造方法を説明する。
[Example 1]
A method for producing a <001> direction grown KTa x Nb 1-x O 3 (0 ≦ x ≦ 1) single crystal by a temperature gradient solidification method will be described with reference to FIGS.

結晶製造装置は、ヒータ26によって炉内温度ならびに軸方向温度分布が制御可能な電気炉を有し、電気炉内のるつぼ設置台28に白金製のるつぼ21を設置している。るつぼ21の底部にはテーパーが設けてあり、かつ最下部には水平平坦部が設けてある。テーパー角度を45°とし、水平平坦部は5mmφの円盤状とした。この水平平坦部は種子結晶設置位置29であり、熱電対を下から熱接触させて設置することで、その温度を計測できる様にしてある。   The crystal manufacturing apparatus has an electric furnace whose furnace temperature and axial temperature distribution can be controlled by a heater 26, and a platinum crucible 21 is installed on a crucible installation base 28 in the electric furnace. The crucible 21 has a taper at the bottom and a horizontal flat portion at the bottom. The taper angle was 45 °, and the horizontal flat part was a disk shape of 5 mmφ. This horizontal flat portion is the seed crystal installation position 29, and the temperature can be measured by installing the thermocouple in thermal contact from below.

るつぼ21の中に粉末原料を充填する。KTaxNb1-x3(0≦x≦1)溶質原料は、素原料粉末であるK2CO3とTa25とNb25とを所望の組成比となるように秤量する。溶媒としてKを選択し過剰のK2CO3も併せて秤量する。秤量した粉末原料は、混合後るつぼ21に充填する。粉末原料は、ヒータ26を加熱することで溶融し、溶融原料22となる。結晶成長開始前に、結晶化温度より100℃高い高温の炉内温度で24時間保持し、ソーキング処理の工程を行った。 The crucible 21 is filled with a powder raw material. KTa x Nb 1-x O 3 (0 ≦ x ≦ 1) The solute raw material is weighed so that the raw material powders K 2 CO 3 , Ta 2 O 5 and Nb 2 O 5 have a desired composition ratio. . K is selected as the solvent, and excess K 2 CO 3 is also weighed. The weighed powder raw material is filled in the crucible 21 after mixing. The powder raw material is melted by heating the heater 26 to become a molten raw material 22. Before the start of crystal growth, the temperature was kept at a high furnace temperature 100 ° C. higher than the crystallization temperature for 24 hours to perform a soaking process.

ソーキング処理後、ヒータ26の出力を調整し、予め決められた結晶成長に用いる上高下低の軸方向温度分布を実現する。軸方向温度分布の形状を保持しながらさらにヒータ26の出力を調整することで、るつぼ全体の温度を徐々に冷却して行く。種子結晶設置位置29の下に設置した熱電対により温度を測定し、結晶が溶融せずかつ結晶成長も生じない平衡液相線温度まで冷却する。この平衡液相線温度に達したら、あらかじめ準備しておいたKTaxNb1-x3単結晶で作製した種子結晶粒24をるつぼ上方より投下する。図4(a)に種子結晶粒の形状を示す。種子結晶粒24には、8つの{001}面で構成された一辺2mmの立方体を用いた。ここで、{001}面は、高温の結晶化温度での立方晶構造における結晶面である。投入はるつぼ中心軸の延長線上の電気炉上部より行った。種子結晶粒24の投下により、溶融原料22の表面に波立ちが発生し、種子結晶粒24が溶融原料22内に運搬されたことが確認できた。さらに、種子結晶設置位置29の下に設置した熱電対に2〜5℃の温度低下が観測された。結晶の成長は、平衡液相線温度より低い温度まで冷却し過飽和状態を実現した結晶化温度から開始する為、2〜5℃の温度低下では結晶の成長は開始しない。種子結晶粒24投入後、引き続き、軸方向温度分布の形状を保持しながらヒータ26の出力を調整することで、るつぼ全体の温度を徐々に冷却して行く。この冷却によって、溶融原料22の過飽和状態が実現し、結晶化温度まで結晶23がるつぼ上方へ成長する。 After the soaking process, the output of the heater 26 is adjusted to realize a predetermined axial temperature distribution of upper, lower, lower and upper used for crystal growth. The temperature of the entire crucible is gradually cooled by further adjusting the output of the heater 26 while maintaining the shape of the axial temperature distribution. The temperature is measured by a thermocouple installed under the seed crystal installation position 29, and cooled to an equilibrium liquidus temperature at which the crystal does not melt and crystal growth does not occur. When this equilibrium liquidus temperature is reached, seed crystal grains 24 made of a KTa x Nb 1-x O 3 single crystal prepared in advance are dropped from above the crucible. FIG. 4A shows the shape of seed crystal grains. For the seed crystal grain 24, a cube having a side of 2 mm constituted by eight {001} planes was used. Here, the {001} plane is a crystal plane in a cubic structure at a high crystallization temperature. The charging was performed from the top of the electric furnace on the extension line of the crucible central axis. By dropping the seed crystal grains 24, undulations occurred on the surface of the molten raw material 22, and it was confirmed that the seed crystal grains 24 were conveyed into the molten raw material 22. Further, a temperature drop of 2 to 5 ° C. was observed on the thermocouple installed under the seed crystal installation position 29. Crystal growth starts from the crystallization temperature at which the supersaturated state is realized by cooling to a temperature lower than the equilibrium liquidus temperature. Therefore, the crystal growth does not start at a temperature drop of 2 to 5 ° C. After introducing the seed crystal grains 24, the temperature of the whole crucible is gradually cooled by adjusting the output of the heater 26 while maintaining the shape of the axial temperature distribution. By this cooling, a supersaturated state of the molten raw material 22 is realized, and the crystal 23 grows up to the crucible up to the crystallization temperature.

種子結晶粒24は室温から1000℃以上の温度まで、数秒で急加熱されるが、欠陥の少ない高品質な単結晶材から作製した種子結晶粒を用いると、割れることがなく、種子結晶として機能した。種子結晶粒が小さい為に、急加熱しても粒内外に温度差が生じ難く、熱ショックに耐性があったと考えられる。組成が不均一であったり、結晶欠陥が含まれたりする種子結晶粒は20回に1回の頻度で二分に割れることもあった。るつぼ21の底部に角度45°のテーパーを設けた場合、投入した一辺2mmの立方体の種子結晶粒24は、10回に9回の頻度で5mmφの水平平坦部に運搬でき、種子結晶粒24の{001}面が種子結晶設置位置29の水平平坦面に接して位置した。成長結晶23は種子結晶粒24を継承し成長しており、成長方位が制御されていることが確認できた。   The seed crystal grains 24 are rapidly heated in a few seconds from room temperature to a temperature of 1000 ° C. or more. However, when seed crystal grains prepared from a high-quality single crystal material with few defects are used, the seed crystal grains 24 function as seed crystals without being broken. did. Since the seed crystal grains are small, it is considered that the temperature difference hardly occurs between the inside and outside of the grains even when rapidly heated, and it is considered that the seed crystal grains were resistant to heat shock. Seed crystal grains having a non-uniform composition or containing crystal defects sometimes cracked in half at a frequency of once every 20 times. In the case where a taper having an angle of 45 ° is provided at the bottom of the crucible 21, the introduced seed crystal grains 24 having a side of 2 mm can be transported to a horizontal flat part of 5 mmφ at a frequency of 9 times in 10 times. The {001} plane was positioned in contact with the horizontal flat surface at the seed crystal installation position 29. It was confirmed that the growth crystal 23 was grown by inheriting the seed crystal grains 24 and the growth orientation was controlled.

比較例として、ソーキング処理の工程を行わずに、結晶が溶融せずかつ結晶成長も生じない平衡液相線温度まで加熱し、種子結晶粒24をるつぼ上方より投下し、結晶を成長してみた。成長結晶に目視で確認できる空孔が発見できる結晶があった。また、成長過程で多結晶化する結晶もあった。空孔や多結晶化は、成長開始前にソーキング処理をした後に製造した結晶には認められない。ソーキング処理によって、粉末原料の加熱中に生成する中間化合物の溶融や、残留素原料に含まれる不要成分の脱気が十分にでき、結晶品質を向上できる効果を確認できた。   As a comparative example, heating was performed to an equilibrium liquidus temperature at which crystals were not melted and crystal growth did not occur without performing a soaking process, and seed crystals 24 were dropped from above the crucible to grow crystals. . There was a crystal in which vacancies that can be visually confirmed were found in the grown crystal. There were also crystals that crystallized during the growth process. Vacancy and polycrystallization are not observed in crystals produced after soaking before the start of growth. It was confirmed that the soaking process can sufficiently melt the intermediate compound produced during the heating of the powder raw material and can sufficiently degas unnecessary components contained in the residual raw material, thereby improving the crystal quality.

るつぼ21底部のテーパー角度が種々に異なるるつぼを準備し、種子結晶粒24が種子結晶設置位置29に運搬できる頻度を検討した。テーパー角度が45°以下の角度を有するるつぼを用いた場合、種子結晶設置位置29の水平平坦面に運搬できる頻度が90%であった。種子結晶設置位置29の水平平坦部サイズに対する運搬頻度も検討したところ、種子結晶設置位置39の水平平坦部口径を、種子結晶粒24の最大径に対して1mm以上のマージンを取った場合、ほぼ100%の頻度で、種子結晶粒24の面が水平平坦面に接して位置した。   Crucibles with variously different taper angles at the bottom of the crucible 21 were prepared, and the frequency with which the seed crystal grains 24 can be transported to the seed crystal installation position 29 was examined. When a crucible having a taper angle of 45 ° or less was used, the frequency at which it could be transported to the horizontal flat surface at the seed crystal installation position 29 was 90%. As a result of examining the transportation frequency with respect to the horizontal flat part size of the seed crystal installation position 29, when the horizontal flat part diameter of the seed crystal installation position 39 has a margin of 1 mm or more with respect to the maximum diameter of the seed crystal grain 24, it is almost At a frequency of 100%, the surface of the seed crystal grain 24 was positioned in contact with the horizontal flat surface.

また、結晶成長方向を<110>方向にするため、4つの{110}平面で構成される種子結晶粒を準備し、結晶を製造した。図4(b)に種子結晶粒の形状を示す。{110}平面ではその平面のみで構成される立方体は作製できないので、その他の方位に向かった部分は曲面に成形して、種子結晶設置位置29の水平平坦部に静置しにくくした。本形状により、種子結晶粒24の{110}面が種子結晶設置位置29の水平平坦部に接する頻度を70%から80%に向上できた。図4(c)に種子結晶粒の形状を示す。種子結晶粒24の形状を立方体からその他の方位に向かった平面の面積が小さい直方体に変更することも、種子結晶粒24の{110}面が種子結晶設置位置29の水平平坦部に接する頻度を向上させる効果があった。図4(d)に種子結晶粒の形状を示す。結晶成長方向を<111>方向にするため、8つの{111}平面で構成される正八面体の種子結晶粒を準備し、結晶を製造した。本形状により、種子結晶粒24の{111}面が種子結晶設置位置29の水平平坦部に接して静置でき、<111>方向に成長した結晶を製造することができた。   In addition, in order to set the crystal growth direction to the <110> direction, seed crystal grains composed of four {110} planes were prepared and crystals were manufactured. FIG. 4B shows the shape of seed crystal grains. Since a cube composed only of the plane cannot be produced on the {110} plane, the portion facing the other direction was formed into a curved surface so that it was difficult to stand on the horizontal flat portion at the seed crystal installation position 29. With this shape, the frequency with which the {110} plane of the seed crystal grain 24 is in contact with the horizontal flat portion at the seed crystal installation position 29 can be improved from 70% to 80%. FIG. 4C shows the shape of seed crystal grains. Changing the shape of the seed crystal grain 24 from a cube to a rectangular parallelepiped having a small plane area in the other direction also changes the frequency with which the {110} plane of the seed crystal grain 24 is in contact with the horizontal flat portion at the seed crystal installation position 29. There was an effect to improve. FIG. 4D shows the shape of seed crystal grains. In order to set the crystal growth direction to the <111> direction, regular octahedral seed crystal grains composed of eight {111} planes were prepared and crystals were manufactured. With this shape, the {111} plane of the seed crystal grain 24 was allowed to stand in contact with the horizontal flat portion at the seed crystal placement position 29, and a crystal grown in the <111> direction could be produced.

粉末原料に、元素置換やドーパント添加を行うことも可能である。例えば、溶質原料の炭酸カリウムに代えて、炭酸カリウムと炭酸リチウムまたは炭酸ナトリウムとの混合物とし、Ky1-yTaxNb1-x3の置換型単結晶(M=Li、Na)を製造することができる。また、溶質原料にIIa族のMg、Ca、Sr、Baを添加し、KTaxNb1-x3のIIa族ドープ単結晶を製造することもできる。 It is also possible to perform element substitution or dopant addition to the powder raw material. For example, instead of potassium carbonate as a solute raw material, a mixture of potassium carbonate and lithium carbonate or sodium carbonate is used, and a substituted single crystal of K y M 1-y Ta x Nb 1-x O 3 (M = Li, Na) Can be manufactured. Alternatively, IIa group Mg, Ca, Sr, Ba may be added to the solute raw material to produce a KTa x Nb 1-x O 3 IIa group single crystal.

[実施例2]
図3(a)および(b)を用いて、垂直ブリッジマン法による<001>方向成長のLiTaO3単結晶の製造方法を説明する。
[Example 2]
A method for producing a <001> direction grown LiTaO 3 single crystal by the vertical Bridgman method will be described with reference to FIGS.

結晶製造装置は、ヒータ36によって炉内温度ならびに軸方向温度分布が制御可能な電気炉を有し、電気炉内のるつぼ設置台38に白金製のるつぼ31を設置している。るつぼ31の底部にはテーパーが設けてあり、かつ最下部には水平平坦部が設けてある。テーパー角度を30°とし、6mmφのパイプを設け、パイプ底部を水平平坦にした。この水平平坦部は種子結晶設置位置39であり、熱電対を下から熱接触させて設置することで、その温度を計測できる様にしてある。   The crystal manufacturing apparatus has an electric furnace whose furnace temperature and axial temperature distribution can be controlled by a heater 36, and a platinum crucible 31 is installed on a crucible installation base 38 in the electric furnace. The crucible 31 has a taper at the bottom and a horizontal flat portion at the bottom. The taper angle was 30 °, a 6 mmφ pipe was provided, and the bottom of the pipe was made horizontal and flat. This horizontal flat portion is the seed crystal installation position 39, and the temperature can be measured by installing the thermocouple in thermal contact from below.

るつぼ31の中に粉末原料を充填する。LiTaO3原料は、素原料粉末であるLi2CO3とTa25とを1:1の組成比となるように秤量する。秤量した粉末原料は、混合後るつぼ21に充填する。粉末原料は、ヒータ36を加熱することで溶融し、溶融原料32となる。結晶成長開始前に、結晶化温度より150℃高い高温の炉内温度で10時間保持し、過加熱処理の工程を行った。 The crucible 31 is filled with a powder raw material. The LiTaO 3 raw material is weighed so that the raw material powder Li 2 CO 3 and Ta 2 O 5 have a composition ratio of 1: 1. The weighed powder raw material is filled in the crucible 21 after mixing. The powder raw material is melted by heating the heater 36 to become a molten raw material 32. Prior to the start of crystal growth, the furnace was held at a high furnace temperature 150 ° C. higher than the crystallization temperature for 10 hours to carry out an overheating process.

過加熱処理後、ヒータ36の出力を調整し、予め決められた結晶成長に用いる上高下低の軸方向温度分布を実現する。ヒータ36の出力を一定とし、炉内温度と軸方向温度分布を保持し、るつぼ設置台38を下方に下降して行くことで、るつぼ下部の温度を徐々に冷却して行く。種子結晶設置位置39の下に設置した熱電対により温度を測定し、結晶が溶融せずかつ結晶成長も生じない固液平衡温度まで冷却する。この固液平衡温度に達したら、あらかじめ準備しておいたLiTaO3単結晶で作製した種子結晶粒34をるつぼ上方より投下する。図4(a)に種子結晶粒の形状を示す。種子結晶粒34には、8つの{001}面で構成された一辺3mmの立方体を用いた。ここで、{001}面は、高温の結晶化温度での立方晶構造における結晶面である。投入はるつぼの軸中心を延長した電気炉上部より行った。種子結晶粒34の投下により、溶融原料32の表面に波立ちが発生し、種子結晶粒34が溶融原料32内に運搬されたことが確認できた。さらに、種子結晶設置位置39の下に設置した熱電対に2〜5℃の温度低下が観測された。結晶の成長は、固液平衡温度より低い温度まで冷却し過冷却状態を実現した結晶化温度から開始する為、2〜5℃の温度低下では結晶の成長は開始しない。種子結晶粒34投入後、引き続き、るつぼ設置台38を下方に下降して行くことで、るつぼ下部の温度を徐々に冷却して行く。この冷却によって、溶融原料32の過冷却状態が実現し、結晶化温度まで結晶33がるつぼ上方へ成長する。 After the overheating treatment, the output of the heater 36 is adjusted to realize a predetermined upper, lower, lower and higher axial temperature distribution used for crystal growth. By keeping the output of the heater 36 constant, maintaining the furnace temperature and the axial temperature distribution, and lowering the crucible installation base 38 downward, the temperature at the bottom of the crucible is gradually cooled. The temperature is measured by a thermocouple installed under the seed crystal installation position 39, and cooled to a solid-liquid equilibrium temperature at which the crystal does not melt and crystal growth does not occur. When this solid-liquid equilibrium temperature is reached, seed crystal grains 34 made of a LiTaO 3 single crystal prepared in advance are dropped from above the crucible. FIG. 4A shows the shape of seed crystal grains. As the seed crystal grain 34, a cube having a side of 3 mm constituted by eight {001} planes was used. Here, the {001} plane is a crystal plane in a cubic structure at a high crystallization temperature. The charging was performed from the top of the electric furnace with the axis center of the crucible extended. By dropping the seed crystal grains 34, undulations were generated on the surface of the molten raw material 32, and it was confirmed that the seed crystal grains 34 were conveyed into the molten raw material 32. Furthermore, a temperature drop of 2 to 5 ° C. was observed on the thermocouple installed under the seed crystal installation position 39. Since the crystal growth starts from the crystallization temperature at which the supercooled state is realized by cooling to a temperature lower than the solid-liquid equilibrium temperature, the crystal growth does not start at a temperature drop of 2 to 5 ° C. After the seed crystal grains 34 are charged, the temperature at the lower part of the crucible is gradually cooled by lowering the crucible installation base 38 downward. By this cooling, a supercooled state of the molten raw material 32 is realized, and the crystal 33 grows up to the crucible up to the crystallization temperature.

種子結晶粒34は室温から1000℃以上の温度まで、数秒で急加熱されるが、欠陥の少ない高品質な単結晶材から作製した種子結晶粒を用いると、割れることがなく、種子結晶として機能した。種子結晶粒が小さい為に、急加熱しても粒内外に温度差が生じ難く、熱ショックに耐性があったと考えられる。組成が不均一であったり、結晶欠陥が含まれたりする種子結晶粒は20回に1回の頻度で二分に割れることもあった。るつぼ31の底部に角度30°のテーパーを設けた場合、投入した一辺3mmの立方体の種子結晶粒34は、10回に10回の頻度で6mmφの水平平坦部に運搬でき、種子結晶粒34の{001}面が種子結晶設置位置29の水平平坦面に接して位置した。成長結晶23は種子結晶粒34を継承し成長しており、成長方位が制御されていることが確認できた。   The seed crystal grains 34 are rapidly heated in a few seconds from room temperature to a temperature of 1000 ° C. or higher. However, when seed crystal grains prepared from a high-quality single crystal material with few defects are used, they do not break and function as seed crystals. did. Since the seed crystal grains are small, it is considered that the temperature difference hardly occurs between the inside and outside of the grains even when rapidly heated, and it is considered that the seed crystal grains were resistant to heat shock. Seed crystal grains having a non-uniform composition or containing crystal defects sometimes cracked in half at a frequency of once every 20 times. When a taper with an angle of 30 ° is provided at the bottom of the crucible 31, the introduced seed crystal grains 34 having a side of 3 mm can be conveyed to a horizontal flat part of 6 mmφ at a frequency of 10 times 10 times. The {001} plane was positioned in contact with the horizontal flat surface at the seed crystal installation position 29. It was confirmed that the growth crystal 23 was grown by inheriting the seed crystal grains 34 and the growth orientation was controlled.

比較例として、過加熱処理の工程を行わずに、結晶が溶融せずかつ結晶成長も生じない固液平衡温度まで加熱し、種子結晶粒34をるつぼ上方より投下し、結晶を成長してみた。成長結晶に目視で確認できる空孔が発見できる結晶があった。また、成長過程で多結晶化する結晶もあった。空孔や多結晶化は、成長開始前に過加熱処理をした後に製造した結晶には認められない。過加熱処理によって、粉末原料の加熱中に生成する中間化合物の溶融や、残留素原料に含まれる不要成分の脱気が十分にでき、結晶品質を向上できる効果を確認できた。   As a comparative example, without performing the overheating treatment step, the crystal was heated to a solid-liquid equilibrium temperature where the crystal did not melt and crystal growth did not occur, and the seed crystal grains 34 were dropped from above the crucible to grow the crystal. . There was a crystal in which vacancies that can be visually confirmed were found in the grown crystal. There were also crystals that crystallized during the growth process. Vacancy and polycrystallization are not observed in crystals produced after overheating before the start of growth. By overheating treatment, it was possible to sufficiently melt the intermediate compound generated during the heating of the powder raw material and degas unnecessary components contained in the residual raw material, thereby confirming the effect of improving the crystal quality.

るつぼ31底部のテーパー角度が種々に異なるるつぼを準備し、種子結晶粒34が種子結晶設置位置39に運搬できる頻度を検討した。テーパー角度が45°以下の角度を有するるつぼを用いた場合、種子結晶設置位置39の水平平坦面に運搬できる頻度が90%であった。種子結晶設置位置39の水平平坦部サイズに対する運搬頻度も検討したところ、種子結晶設置位置39の水平平坦部口径を、種子結晶粒34の最大径に対して1mm以上のマージンを取った場合、ほぼ100%の頻度で、種子結晶粒34の面が水平平坦面に接して位置した。   A crucible having variously different taper angles at the bottom of the crucible 31 was prepared, and the frequency with which the seed crystal grains 34 can be transported to the seed crystal installation position 39 was examined. When a crucible having a taper angle of 45 ° or less was used, the frequency at which the crucible was transported to the horizontal flat surface at the seed crystal installation position 39 was 90%. As a result of examining the transportation frequency with respect to the horizontal flat part size of the seed crystal installation position 39, when the horizontal flat part diameter of the seed crystal installation position 39 has a margin of 1 mm or more with respect to the maximum diameter of the seed crystal grain 34, it is almost At a frequency of 100%, the surface of the seed crystal grain 34 was positioned in contact with the horizontal flat surface.

また、結晶成長方向を<110>方向にするため、4つの{110}平面で構成される種子結晶粒を準備し、結晶を製造した。図4(b)に種子結晶粒の形状を示す。{110}平面ではその平面のみで構成される立方体は作製できないので、その他の方位に向かった部分は曲面に成形して、種子結晶設置位置39の水平平坦部に静置しにくくした。本形状により、種子結晶粒24の{110}面が種子結晶設置位置39の水平平坦部に接する頻度を70%から80%に向上できた。図4(c)に種子結晶粒の形状を示す。種子結晶粒34の形状を立方体からその他の方位に向かった平面の面積が小さい直方体に変更することも、種子結晶粒34の{110}面が種子結晶設置位置29の水平平坦部に接する頻度を向上させる効果があった。図4(d)に種子結晶粒の形状を示す。結晶成長方向を<111>方向にするため、8つの{111}平面で構成される正八面体の種子結晶粒を準備し、結晶を製造した。本形状により、種子結晶粒34の{111}面が種子結晶設置位置39の水平平坦部に接して静置でき、<111>方向に成長した結晶を製造することができた。   Moreover, in order to set the crystal growth direction to the <110> direction, seed crystal grains composed of four {110} planes were prepared and crystals were manufactured. FIG. 4B shows the shape of seed crystal grains. Since a cube composed only of the plane cannot be produced on the {110} plane, the portion facing the other direction was formed into a curved surface so that it was difficult to stand on the horizontal flat portion at the seed crystal installation position 39. With this shape, the frequency with which the {110} plane of the seed crystal grain 24 is in contact with the horizontal flat portion at the seed crystal installation position 39 can be improved from 70% to 80%. FIG. 4C shows the shape of seed crystal grains. Changing the shape of the seed crystal grain 34 from a cube to a rectangular parallelepiped with a small plane area in the other direction also changes the frequency with which the {110} plane of the seed crystal grain 34 is in contact with the horizontal flat portion at the seed crystal installation position 29. There was an effect to improve. FIG. 4D shows the shape of seed crystal grains. In order to set the crystal growth direction to the <111> direction, regular octahedral seed crystal grains composed of eight {111} planes were prepared and crystals were manufactured. With this shape, the {111} plane of the seed crystal grain 34 was allowed to stand in contact with the horizontal flat portion at the seed crystal installation position 39, and a crystal grown in the <111> direction could be manufactured.

以上、LiTaO3結晶の製造について記載したが、Taに代えてNbを用いることで、LiNbO3結晶に適用できることは言うまでもない。 Having thus described for the preparation of LiTaO 3 crystal, by using Nb instead of Ta, it can of course be applied to the LiNbO 3 crystal.

また、実施例1および2では、結晶化温度での結晶構造が立方晶である結晶について説明したが、他の結晶構造に対しても、種子結晶粒の所望の成長方向に鉛直な平面に関して、取り得る最大数に構成したり、その他の面より面積を大きくした平面にすることで、種子結晶設置位置の水平平坦部へ静置する確率を上げることで適用できることは言うまでもない。   Further, in Examples 1 and 2, a crystal whose crystal structure at the crystallization temperature is a cubic crystal has been described. However, with respect to other crystal structures, a plane perpendicular to the desired growth direction of the seed crystal grains, It goes without saying that it can be applied by increasing the probability that the seed crystal is placed on the horizontal flat part at the position where the seed crystal is placed by configuring it to the maximum possible number or by making it a plane having a larger area than other surfaces.

1、21、31 るつぼ
2、22、32 溶融原料
3、23、33 結晶
4 種子結晶棒
5、25 軸方向温度分布
6、26、36 加熱ヒータ
7、27 垂直温度勾配凝固法での冷却後の軸方向温度分布
24、34 種子結晶粒
28、38 るつぼ設置台
29、39 種子結晶設置位置ならびに測温子
1, 21, 31 Crucible 2, 22, 32 Molten raw material 3, 23, 33 Crystal 4 Seed crystal rod 5, 25 Axial temperature distribution 6, 26, 36 Heater 7, 27 After cooling in the vertical temperature gradient solidification method Axial temperature distributions 24, 34 Seed crystal grains 28, 38 Crucible installation table 29, 39 Seed crystal installation position and temperature sensor

Claims (10)

炉内に設置されたるつぼ内の溶融原料に対して、鉛直方向に上高下低の軸方向温度分布を形成し、前記溶融原料を冷却することにより、前記るつぼの下方より上方に向かって結晶を成長させる結晶成長方法であり、
かつ、結晶成長を開始する前に前記溶融原料を結晶化温度より高温の温度で、一定時間保持する過加熱処理もしくはソーキング処理の工程を行う結晶成長方法において、
前記過加熱処理もしくはソーキング処理の工程を終了した後に、前記溶融原料を冷却し、前記るつぼの底部に設置された種子結晶設置位置が固液平衡温度になった時点で、前記るつぼ上方より種子結晶粒を投入することにより、前記種子結晶を前記種子結晶設置位置に運搬し、前記溶融原料をさらに冷却することで前記種子結晶粒を核として結晶を成長させることを特徴とする結晶成長方法。
By forming a vertical temperature distribution in the vertical direction with respect to the molten raw material in the crucible installed in the furnace, and cooling the molten raw material, crystals are formed upward from below the crucible. A crystal growth method for growing
And, in the crystal growth method for performing the step of overheating treatment or soaking treatment in which the molten raw material is maintained at a temperature higher than the crystallization temperature at a temperature higher than a crystallization temperature for a predetermined time before starting crystal growth,
After finishing the overheating treatment or soaking treatment, the molten raw material is cooled, and when the seed crystal installation position installed at the bottom of the crucible reaches a solid-liquid equilibrium temperature, the seed crystals from above the crucible. A crystal growth method, wherein the seed crystal is transported to the seed crystal installation position by introducing grains, and the molten raw material is further cooled to grow crystals using the seed crystal grains as nuclei.
前記るつぼは、コーン状の形状と、前記コーン状の形状の最下部に水平平坦面とを具備し、前記種子結晶粒が重力により前記コーン状の形状をなす部位の内部を通って落下し、前記水平平坦面に落下静置し得ることを特徴とする請求項1に記載の結晶成長方法。   The crucible has a cone shape and a horizontal flat surface at the bottom of the cone shape, and the seed crystal grains fall through the inside of the cone-shaped portion by gravity, The crystal growth method according to claim 1, wherein the crystal growth method can be dropped and left on the horizontal flat surface. 前記るつぼは、コーン状の形状をなす部位と、前記コーン状の形状の最下部からさらにパイプが伸びた形状の部位と、前記パイプの底部に水平平坦面とを具備し、前記種子結晶粒が重力により前記コーン状の形状をなす部位の内部と前記パイプの内部とを通って落下し、前記水平平坦面に落下静置し得ることを特徴とする請求項1に記載の結晶成長方法。   The crucible includes a portion having a cone shape, a portion in which a pipe is further extended from a lowermost portion of the cone shape, and a horizontal flat surface at the bottom of the pipe, and the seed crystal grains are 2. The crystal growth method according to claim 1, wherein the crystal growth method can drop through the inside of the cone-shaped portion and the inside of the pipe by gravity, and drop and stand on the horizontal flat surface. 前記種子結晶粒は、前記種子結晶設置位置の口径より1mm以上小さい最大径であることを特徴とする請求項1乃至3のいずれかに記載の結晶成長方法。   The crystal growth method according to claim 1, wherein the seed crystal grains have a maximum diameter that is 1 mm or more smaller than a diameter of the seed crystal installation position. 前記種子結晶粒は、所望の成長方向に対して鉛直な平面を有していることを特徴とする請求項1乃至4のいずれかに記載の結晶成長方法。   The crystal growth method according to claim 1, wherein the seed crystal grains have a plane that is perpendicular to a desired growth direction. 前記種子結晶粒は、結晶化温度での結晶構造が立方晶で、かつ前記所望の成長方向が<001>方向の場合、
8つの{001}平面で構成されていることを特徴とする請求項4に記載の結晶成長方法。
The seed crystal grains have a cubic crystal structure at a crystallization temperature and the desired growth direction is a <001> direction,
The crystal growth method according to claim 4, comprising eight {001} planes.
前記種子結晶粒は、結晶化温度での結晶構造が立方晶で、かつ前記所望の成長方向が<110>方向の場合、
4つの{110}平面で構成され、<110>方向でない方位に向かった面は曲面とすることを特徴とする請求項4に記載の結晶成長方法。
The seed crystal grain has a cubic crystal structure at a crystallization temperature, and the desired growth direction is a <110> direction,
The crystal growth method according to claim 4, wherein a surface formed of four {110} planes and directed in a direction other than the <110> direction is a curved surface.
前記種子結晶粒は、結晶化温度での結晶構造が立方晶で、かつ前記所望の成長方向が<110>方向の場合、
前記種子結晶粒の形状を直方体とし、4つの{110}平面で構成され、<110>方向でない方位に向かった面の面積は前記{110}平面より小さいことを特徴とする請求項4に記載の結晶成長方法。
The seed crystal grain has a cubic crystal structure at a crystallization temperature, and the desired growth direction is a <110> direction,
The shape of the seed crystal grain is a rectangular parallelepiped, is configured by four {110} planes, and an area of a plane facing an orientation other than the <110> direction is smaller than the {110} plane. Crystal growth method.
前記種子結晶粒は、結晶化温度での結晶構造が立方晶で、かつ前記所望の成長方向が<111>方向の場合、
8つの{111}平面で構成されていることを特徴とする請求項4に記載の結晶成長方法。
The seed crystal grains, when the crystal structure at the crystallization temperature is cubic and the desired growth direction is <111> direction,
The crystal growth method according to claim 4, comprising eight {111} planes.
前記種子結晶は、結晶化温度での結晶構造が立方晶でない場合、
前記所望の成長方向に鉛直な平面で構成されていることを特徴とする請求項4に記載の結晶成長方法。
If the seed crystal is not cubic crystal structure at the crystallization temperature,
5. The crystal growth method according to claim 4, wherein the crystal growth method comprises a plane perpendicular to the desired growth direction.
JP2013095523A 2013-04-30 2013-04-30 Crystal growth method Active JP6053018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013095523A JP6053018B2 (en) 2013-04-30 2013-04-30 Crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013095523A JP6053018B2 (en) 2013-04-30 2013-04-30 Crystal growth method

Publications (2)

Publication Number Publication Date
JP2014214078A true JP2014214078A (en) 2014-11-17
JP6053018B2 JP6053018B2 (en) 2016-12-27

Family

ID=51940200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013095523A Active JP6053018B2 (en) 2013-04-30 2013-04-30 Crystal growth method

Country Status (1)

Country Link
JP (1) JP6053018B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048043A (en) * 2016-09-21 2018-03-29 国立大学法人信州大学 Manufacturing apparatus for lithium tantalate crystal, and manufacturing method for lithium tantalate crystal
JP2018080098A (en) * 2016-11-18 2018-05-24 住友金属鉱山株式会社 Single crystal production device and single crystal production method
JP2018080097A (en) * 2016-11-18 2018-05-24 住友金属鉱山株式会社 Single crystal production device and single crystal production method
JP2019052063A (en) * 2017-09-15 2019-04-04 国立大学法人信州大学 Production method of kalium natrium niobate single crystal
CN110090942A (en) * 2019-06-06 2019-08-06 西安建筑科技大学 The method that the multifunctional integrated material of Fe-Al-Ta is prepared using Bridgman directional solidification technique
CN111394782A (en) * 2020-04-24 2020-07-10 西安交通大学 Device and method for improving assembling precision of platinum crucible in down-leading pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247193A (en) * 1994-03-11 1995-09-26 Japan Energy Corp Production of piezoelectric crystal
JP2009221101A (en) * 2004-11-16 2009-10-01 Nippon Telegr & Teleph Corp <Ntt> Crystal producing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247193A (en) * 1994-03-11 1995-09-26 Japan Energy Corp Production of piezoelectric crystal
JP2009221101A (en) * 2004-11-16 2009-10-01 Nippon Telegr & Teleph Corp <Ntt> Crystal producing apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048043A (en) * 2016-09-21 2018-03-29 国立大学法人信州大学 Manufacturing apparatus for lithium tantalate crystal, and manufacturing method for lithium tantalate crystal
CN107858753A (en) * 2016-09-21 2018-03-30 国立大学法人信州大学 The manufacture device of lithium tantalate and the manufacture method of lithium tantalate
JP2018080098A (en) * 2016-11-18 2018-05-24 住友金属鉱山株式会社 Single crystal production device and single crystal production method
JP2018080097A (en) * 2016-11-18 2018-05-24 住友金属鉱山株式会社 Single crystal production device and single crystal production method
JP2019052063A (en) * 2017-09-15 2019-04-04 国立大学法人信州大学 Production method of kalium natrium niobate single crystal
JP7017751B2 (en) 2017-09-15 2022-02-09 国立大学法人信州大学 Method for producing potassium niobate sodium single crystal
CN110090942A (en) * 2019-06-06 2019-08-06 西安建筑科技大学 The method that the multifunctional integrated material of Fe-Al-Ta is prepared using Bridgman directional solidification technique
CN110090942B (en) * 2019-06-06 2020-10-09 西安建筑科技大学 Method for preparing Fe-Al-Ta multifunctional integrated material by Bridgman directional solidification technology
CN111394782A (en) * 2020-04-24 2020-07-10 西安交通大学 Device and method for improving assembling precision of platinum crucible in down-leading pipe
CN111394782B (en) * 2020-04-24 2021-01-19 西安交通大学 Device and method for improving assembling precision of platinum crucible in down-leading pipe

Also Published As

Publication number Publication date
JP6053018B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
JP6053018B2 (en) Crystal growth method
CN103370452B (en) Preparation of doped garnet structure single crystals with diameters of up to 500 mm
JP6606638B2 (en) Method and apparatus for growing Fe-Ga based alloy single crystal
JP5434801B2 (en) Method for producing SiC single crystal
JP6231622B2 (en) Crystal production method
JP4810346B2 (en) Method for producing sapphire single crystal
CN108203844B (en) Magnesium tantalate series crystal and its preparing process
EP1757716B1 (en) Method and apparatus for preparing crystal
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
JP7072146B2 (en) Single crystal growth method for iron gallium alloy
JP2012041200A (en) Crystal growth method
JP2018145081A (en) METHOD FOR MANUFACTURING HIGH PERFORMANCE Fe-Ga BASED ALLOY SINGLE CRYSTAL
JP6190070B2 (en) Crystal production method
JP6039513B2 (en) Crystal growth apparatus and crystal growth method
JP4916425B2 (en) Crystal growth method and apparatus
JP6500807B2 (en) Growth method of CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP7349100B2 (en) Seed crystal for FeGa single crystal growth and method for producing FeGa single crystal
JP2020050544A (en) Seed crystal for iron gallium alloy single crystal growth
JP7318884B2 (en) Single crystal growth method for iron-gallium alloy
JP2012036015A (en) Crystal growth method
JP2006213554A (en) Crystal growth method and its apparatus
JP2022020187A (en) METHOD FOR PRODUCING FeGa ALLOY SINGLE CRYSTAL
JP2022146328A (en) MANUFACTURING METHOD OF FeGa ALLOY SINGLE CRYSTAL
JP2018177568A (en) MANUFACTURING METHOD AND APPARATUS OF HIGH PERFORMANCE HIGH UNIFORM LARGE SCALE SINGLE CRYSTAL OF Fe-Ga BASE ALLOY
JP2018193275A (en) HIGH-PERFORMANCE/HIGH-QUALITY Fe-Ga-BASED ALLOY SINGLE CRYSTAL SUBSTRATE, AND PRODUCTION METHOD THEREOF

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161125

R150 Certificate of patent or registration of utility model

Ref document number: 6053018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150