JP2020198763A - Power reception device - Google Patents

Power reception device Download PDF

Info

Publication number
JP2020198763A
JP2020198763A JP2019105510A JP2019105510A JP2020198763A JP 2020198763 A JP2020198763 A JP 2020198763A JP 2019105510 A JP2019105510 A JP 2019105510A JP 2019105510 A JP2019105510 A JP 2019105510A JP 2020198763 A JP2020198763 A JP 2020198763A
Authority
JP
Japan
Prior art keywords
power receiving
housing
power
vehicle
receiving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019105510A
Other languages
Japanese (ja)
Other versions
JP7261092B2 (en
Inventor
真登 向山
Masato Mukoyama
真登 向山
勇人 角谷
Yuto Kadoya
勇人 角谷
拓也 木口
Takuya Kiguchi
拓也 木口
英介 高橋
Eisuke Takahashi
英介 高橋
宜久 山口
Yoshihisa Yamaguchi
宜久 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Soken Inc filed Critical Denso Corp
Priority to JP2019105510A priority Critical patent/JP7261092B2/en
Publication of JP2020198763A publication Critical patent/JP2020198763A/en
Application granted granted Critical
Publication of JP7261092B2 publication Critical patent/JP7261092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To provide a power reception device which receives high electric power and achieves improvement of heat radiation efficiency.SOLUTION: A power reception device 30 may attached to an attachment surface 16a at a vehicle bottom part and receives, while a vehicle is running, alternating-current power from a power transmission device having a power transmission coil, into which alternating-current power is input, and supplies electric power to a battery pack. The power reception device 30 includes: a power reception coil 31 which may receive electric power from the power transmission coil in a non-contact manner; a housing 40 which houses the power reception coil; and an attachment part 52 which may attach the housing to the attachment surface in a state where a space S opening at least in a vehicle fore and aft direction is formed between the housing and the attachment surface.SELECTED DRAWING: Figure 2

Description

本発明は、車両の車体下面に取り付け可能であり、送電機器から非接触で交流電力を受電する受電機器に関するものである。 The present invention relates to a power receiving device that can be attached to the lower surface of a vehicle body and receives AC power from a power transmitting device in a non-contact manner.

従来、電気自動車等を充電する際に、電源コードや送電ケーブルを用いずに非接触で相手側に電力伝送する非接触電力伝送装置として、磁界共振や電磁誘導を用いたものが知られている。電気自動車等の充電のためには、大電力を送受電する必要があり、損失、つまり発熱も大きなものとなりやすい。そのため、受電機器に冷却装置を設けることがある。例えば、特許文献1の冷却装置は、非接触受電装置の筐体の外側に設けられ、この筐体から熱が伝えられる。そして、冷却装置には、その内部に水を流すための流路が設けられており、筐体から伝わった熱が水に放出され、非接触受電装置が冷却される。 Conventionally, as a non-contact power transmission device that non-contactly transmits power to the other side without using a power cord or a power transmission cable when charging an electric vehicle or the like, a device using magnetic field resonance or electromagnetic induction is known. .. In order to charge an electric vehicle or the like, it is necessary to transmit and receive a large amount of electric power, and loss, that is, heat generation tends to be large. Therefore, a cooling device may be provided in the power receiving device. For example, the cooling device of Patent Document 1 is provided outside the housing of the non-contact power receiving device, and heat is transferred from this housing. The cooling device is provided with a flow path for flowing water inside the cooling device, and the heat transferred from the housing is released to the water to cool the non-contact power receiving device.

特開2018‐93589号公報JP-A-2018-93589

水冷式の冷却装置により受電機器を冷却する構成では、冷却水の取り回しが煩雑であるとともに、冷却装置が大きなものとなりやすい。また、車両底部に大容量のバッテリパックを敷き詰めた近年の電気自動車において、車両底部に非接触受電装置を設けた場合には、非接触受電装置やその冷却装置からバッテリパックに熱が伝わり、バッテリの高温劣化を引き起こすおそれがある。 In a configuration in which the power receiving device is cooled by a water-cooled cooling device, the handling of the cooling water is complicated and the cooling device tends to be large. Further, in a recent electric vehicle in which a large-capacity battery pack is spread on the bottom of the vehicle, when a non-contact power receiving device is provided on the bottom of the vehicle, heat is transferred to the battery pack from the non-contact power receiving device and its cooling device, and the battery May cause high temperature deterioration.

本発明は、上記課題に鑑みてなされたものであり、その主たる目的は、大電力を受電する受電機器であって、放熱効率を向上させた受電機器を提供することにある。 The present invention has been made in view of the above problems, and a main object thereof is to provide a power receiving device that receives a large amount of electric power and has improved heat dissipation efficiency.

本手段は、車両(15)の車体下面(16a)に取り付け可能であり、前記車両の走行中において、交流電力が入力される送電コイル(21)を有する送電機器(20)から前記交流電力を受電して蓄電装置(17)に電力を供給する受電機器(30)であって、前記送電コイルから非接触で受電可能な受電コイル(31)と、前記受電コイルを収容する筐体(40)と、前記筐体と前記車体下面との間に少なくとも前記車両の前後方向に開口した空間(S)を形成した状態で、前記筐体を前記車体下面に取り付け可能とする取付部(52)と、を備える。 This means can be attached to the lower surface (16a) of the vehicle body of the vehicle (15), and the AC power is transmitted from a power transmission device (20) having a power transmission coil (21) into which AC power is input while the vehicle is running. A power receiving device (30) that receives power and supplies power to the power storage device (17), the power receiving coil (31) that can receive power from the power transmission coil in a non-contact manner, and a housing (40) that houses the power receiving coil. With the mounting portion (52) capable of mounting the housing on the lower surface of the vehicle body in a state where at least a space (S) opened in the front-rear direction of the vehicle is formed between the housing and the lower surface of the vehicle body. , Equipped with.

道路の路面に埋設あるいは敷設された送電機器から車両の走行中に受電する受電機器では、走行時の消費電力と同等以上の電力を車両に供給することが望ましい。しかしながら、このような大電力を非接触で受電する場合、損失(発熱)も大きなものとなりやすい。また、電気自動車では車両の底部(車体下面付近)に大容量のバッテリパック(蓄電装置)を敷き詰めることがあり、車両の車体下面に取り付けられた受電機器の熱がバッテリパックに伝わると、バッテリの高温劣化を引き起こすおそれがある。 It is desirable that the power receiving device that receives power from the power transmitting device buried or laid on the road surface while the vehicle is running supplies the vehicle with power equal to or higher than the power consumption during running. However, when such a large amount of electric power is received in a non-contact manner, the loss (heat generation) tends to be large. Further, in an electric vehicle, a large-capacity battery pack (power storage device) may be spread on the bottom of the vehicle (near the lower surface of the vehicle body), and when the heat of the power receiving device attached to the lower surface of the vehicle body is transferred to the battery pack, the battery May cause high temperature deterioration.

そこで、受電コイルを収容する筐体と車両の車体下面との間に、少なくとも前後方向に開口した所定間隔の空間を形成した状態、すなわち、筐体を車両の車体下面から浮かした状態で受電機器を取り付け可能な構成とした。本手段の受電機器では、車両の走行中に送電機器側からの交流電力を受電する構成となっており、その走行中において、筐体と車体下面との間を通る走行風による冷却が可能となっている。この場合、筐体の下面(道路側の面)だけでなく、車体下面との間の面からも放熱が可能となり、放熱効率(冷却効率)を向上できる。 Therefore, the power receiving device is in a state where a space of at least a predetermined interval opened in the front-rear direction is formed between the housing accommodating the power receiving coil and the lower surface of the vehicle body, that is, the housing is floated from the lower surface of the vehicle body. Was made available for installation. The power receiving device of this means is configured to receive AC power from the power transmission device side while the vehicle is running, and it is possible to cool by the running wind passing between the housing and the underside of the vehicle body while the vehicle is running. It has become. In this case, heat can be dissipated not only from the lower surface of the housing (the surface on the road side) but also from the surface between the housing and the lower surface of the vehicle body, and the heat dissipation efficiency (cooling efficiency) can be improved.

実施形態における非接触電力伝送装置の概略構成図Schematic configuration of the non-contact power transmission device according to the embodiment 受電機器の概略断面図Schematic cross-sectional view of power receiving equipment 受電コイルの概略構成図Schematic configuration of the power receiving coil シールド部の概略斜視図Schematic perspective view of the shield 取付面とシールド本体部との間の高さと受電機器の温度との関係を示す図The figure which shows the relationship between the height between a mounting surface and a shield body, and the temperature of a power receiving device 本実施形態の構成と従来の構成における受電機器の温度を示す図The figure which shows the temperature of the power receiving device in the structure of this embodiment and the conventional structure. 他の実施形態における受電機器の概略構成図Schematic configuration of the power receiving device in another embodiment 他の実施形態における受電機器の概略構成図Schematic configuration of the power receiving device in another embodiment 他の実施形態における受電機器の概略構成図Schematic configuration of the power receiving device in another embodiment

<実施形態>
本実施形態は、車両に搭載された受電機器を対象にしている。以下の説明において、車両の前後方向、つまり図1における左右方向を前後方向とし、車両の上下方向、つまり図1における上下方向を上下方向とし、この前後方向及び上下方向に直交する方向を左右方向として説明する。
<Embodiment>
The present embodiment targets a power receiving device mounted on a vehicle. In the following description, the front-rear direction of the vehicle, that is, the left-right direction in FIG. 1 is the front-rear direction, the up-down direction of the vehicle, that is, the up-down direction in FIG. 1 is the up-down direction, and the directions orthogonal to the front-rear direction and the up-down direction are the left-right directions. It is explained as.

図1は、本実施形態における非接触電力伝送装置10の概略構成図である。車両15は、例えば、EV(電気自動車)やPHV(プラグインハイブリッド自動車)といった電動の車両駆動装置(駆動モータ等)で走行する自動車である。 FIG. 1 is a schematic configuration diagram of the non-contact power transmission device 10 according to the present embodiment. The vehicle 15 is, for example, a vehicle that travels on an electric vehicle drive device (drive motor or the like) such as an EV (electric vehicle) or a PHV (plug-in hybrid vehicle).

送電機器20は、車両15に搭載された受電機器30に対して非接触の状態で、交流電力の送電(給電)を行う。送電機器20は、道路Gに埋設又は道路Gから露出するように道路G上に敷設される。送電機器20は、例えば車両15の走行する道路Gに、車両15の進行方向に沿って複数並んで埋設されている。また、送電機器20は、車両15の走行中に送電する。 The power transmission device 20 transmits (powers) AC power in a non-contact state with the power receiving device 30 mounted on the vehicle 15. The power transmission device 20 is buried in the road G or laid on the road G so as to be exposed from the road G. A plurality of power transmission devices 20 are buried side by side along the traveling direction of the vehicle 15, for example, on the road G on which the vehicle 15 travels. Further, the power transmission device 20 transmits power while the vehicle 15 is traveling.

送電機器20は、送電コイル21を備えている。送電コイル21は、フェライトコア等の心材に導線(例えばリッツ線)が例えば平面状に巻かれることで形成されている。送電コイル21は、平面状に巻かれた導線の並ぶ方向が道路Gの路面と平行になるように配されている。 The power transmission device 20 includes a power transmission coil 21. The power transmission coil 21 is formed by winding a lead wire (for example, a litz wire) around a core material such as a ferrite core in a plane, for example. The power transmission coil 21 is arranged so that the direction in which the wire wound in a plane is arranged is parallel to the road surface of the road G.

受電機器30は、送電コイル21から非接触で交流電力を受電可能な受電コイル31を備えている。受電コイル31を収容した受電機器30の筐体40は、車体下面である車両15の底部16に位置する取付面16aに取り付けられている。受電コイル31は、平面状に巻かれた導線31aの並ぶ方向が道路Gの路面と平行になっている。これにより、受電コイル31は、送電コイル21に平行に対向するように配される。受電機器30は、車両15の前輪と後輪の間であって、車両15の左右の車輪の間の位置に取り付けられている。なお、底部16は、車両15の車室を形成する床部やアンダーカバー等、車体下面(取付面16a)を含む車両15の下方に位置する部分を示している。 The power receiving device 30 includes a power receiving coil 31 capable of receiving AC power from the power transmitting coil 21 in a non-contact manner. The housing 40 of the power receiving device 30 accommodating the power receiving coil 31 is attached to a mounting surface 16a located at the bottom 16 of the vehicle 15 which is the lower surface of the vehicle body. In the power receiving coil 31, the direction in which the wire wires 31a wound in a plane are arranged is parallel to the road surface of the road G. As a result, the power receiving coil 31 is arranged so as to face the power transmitting coil 21 in parallel. The power receiving device 30 is attached between the front wheels and the rear wheels of the vehicle 15 and at a position between the left and right wheels of the vehicle 15. The bottom portion 16 indicates a portion located below the vehicle 15 including the lower surface of the vehicle body (mounting surface 16a), such as a floor portion and an undercover forming the vehicle interior of the vehicle 15.

受電機器30で受電した電力は、蓄電装置であるバッテリパック17に供給される。バッテリパック17は、例えば二次電池(リチウムイオン電池又はニッケル水素電池等)である。バッテリパック17は、受電機器30から供給される電力を蓄えて、車両駆動装置へ電力を供給する。バッテリパック17は、車両15の底部16に敷き詰められている。 The electric power received by the power receiving device 30 is supplied to the battery pack 17 which is a power storage device. The battery pack 17 is, for example, a secondary battery (lithium ion battery, nickel hydrogen battery, or the like). The battery pack 17 stores the electric power supplied from the power receiving device 30 and supplies the electric power to the vehicle driving device. The battery pack 17 is spread on the bottom 16 of the vehicle 15.

図2は、車両15の取付面16aに取り付けられた状態での受電機器30の概略断面図である。受電機器30は、受電コイル31と、受電コイル31の導線31aが巻回されるボビン32と、鉄心としてのフェライトコア33と、これら受電コイル31等を収容する筐体40とを備えている。図1及び図2に示すように、筐体40は、直方体状になっている。筐体40は、ボビン32等の下面を覆う樹脂製のカバー41と、受電コイル31の生成するノイズの車両15側への漏えいを抑制するシールド部50とを備えている。 FIG. 2 is a schematic cross-sectional view of the power receiving device 30 in a state of being mounted on the mounting surface 16a of the vehicle 15. The power receiving device 30 includes a power receiving coil 31, a bobbin 32 around which a lead wire 31a of the power receiving coil 31 is wound, a ferrite core 33 as an iron core, and a housing 40 accommodating these power receiving coils 31 and the like. As shown in FIGS. 1 and 2, the housing 40 has a rectangular parallelepiped shape. The housing 40 includes a resin cover 41 that covers the lower surface of the bobbin 32 and the like, and a shield portion 50 that suppresses leakage of noise generated by the power receiving coil 31 to the vehicle 15 side.

図3は、受電コイル31の概略構成図である。図2及び図3に示すように、受電コイル31は、導線31a(例えばリッツ線)が平面状に巻回されていることで形成されており、筐体40の形状に合わせた矩形状の平面コイルとなっている。受電コイル31は、その導線31aが前後方向に延びる幅方向両側の部分A1と、幅方向両側の部分A1の間の中間部分A2とを有している。受電コイル31の導線31aは、樹脂製のボビン32に形成された溝32aに沿って巻回されることで位置決めされている。 FIG. 3 is a schematic configuration diagram of the power receiving coil 31. As shown in FIGS. 2 and 3, the power receiving coil 31 is formed by winding a lead wire 31a (for example, a litz wire) in a plane, and is a rectangular flat surface that matches the shape of the housing 40. It is a coil. The power receiving coil 31 has a portion A1 on both sides in the width direction in which the lead wire 31a extends in the front-rear direction, and an intermediate portion A2 between the portions A1 on both sides in the width direction. The lead wire 31a of the power receiving coil 31 is positioned by being wound along a groove 32a formed in the resin bobbin 32.

カバー41は、筐体40の下面を形成しており、受電コイル31と送電コイル21との間の電力の伝送(磁束の通過)の妨げとならない樹脂で形成されている。カバー41は、シールド部50に固定可能になっており、ボビン32を覆うことができる大きさとなっている。また、カバー41は、ボビン32及び受電コイル31等を支持可能な板厚を有している。そして、ボビン32とカバー41とで挟み込むことで、受電コイル31の導線31aは固定されている。 The cover 41 forms the lower surface of the housing 40, and is made of a resin that does not interfere with the transmission of electric power (passage of magnetic flux) between the power receiving coil 31 and the power transmitting coil 21. The cover 41 can be fixed to the shield portion 50 and has a size capable of covering the bobbin 32. Further, the cover 41 has a plate thickness capable of supporting the bobbin 32, the power receiving coil 31, and the like. Then, the lead wire 31a of the power receiving coil 31 is fixed by sandwiching the bobbin 32 and the cover 41.

ボビン32は、導線31aを挟んでシールド部50側に配されている。また、ボビン32の溝32aに入った状態で導線31aが巻回されている。これにより、導線31aとの接触面積の大きいボビン32が、伝熱性の高いシールド部50側に配されることになる。そのため、導線31aでの発熱は、ボビン32を介してシールド部50側に伝わる。 The bobbin 32 is arranged on the shield portion 50 side with the lead wire 31a interposed therebetween. Further, the lead wire 31a is wound while being in the groove 32a of the bobbin 32. As a result, the bobbin 32 having a large contact area with the lead wire 31a is arranged on the shield portion 50 side having high heat transferability. Therefore, the heat generated by the lead wire 31a is transmitted to the shield portion 50 side via the bobbin 32.

また、受電コイル31の上側には、フェライトコア33が配されている。フェライトコア33は、高透磁率、低導電率の材料であるフェライトにより形成されている。なお、フェライトコア33は、ボビン32よりも伝熱性が高く、受電コイル31の熱がシールド部50に伝わる妨げにならない。なお、受電コイル31及びボビン32の少なくとも一部が、フェライトコア33を介さず直接シールド部50に接触していてもよい。 A ferrite core 33 is arranged above the power receiving coil 31. The ferrite core 33 is formed of ferrite, which is a material having high magnetic permeability and low conductivity. The ferrite core 33 has a higher heat transfer property than the bobbin 32, and does not hinder the heat of the power receiving coil 31 from being transferred to the shield portion 50. At least a part of the power receiving coil 31 and the bobbin 32 may be in direct contact with the shield portion 50 without passing through the ferrite core 33.

図4は、シールド部50の概略斜視図である。シールド部50は、ノイズを車両15側に漏えいを抑制するために、例えば漏れ磁束等により車両15側で過電流が発生することを抑制するために設けられている。シールド部50は、非磁性の金属製、例えばアルミ製であって、所定の厚さを有する平板状のシールド本体部51を有している。シールド本体部51は、受電コイル31から伝わった熱を放熱し、受電機器30を冷却するための冷却部材としても機能する。 FIG. 4 is a schematic perspective view of the shield portion 50. The shield portion 50 is provided in order to suppress leakage of noise to the vehicle 15 side, for example, to suppress an overcurrent generated on the vehicle 15 side due to leakage flux or the like. The shield portion 50 is made of non-magnetic metal, for example, aluminum, and has a flat plate-shaped shield main body portion 51 having a predetermined thickness. The shield main body 51 also functions as a cooling member for dissipating heat transmitted from the power receiving coil 31 and cooling the power receiving device 30.

シールド本体部51の前後方向に直交する幅方向(左右方向)の両端部には、取付部52が設けられている。取付部52は、前後方向に板状に延びる突状部である。これにより、車両15の取付面16aとシールド本体部51との間に、前後方向に開口した空間S、つまり前後方向に延びる流路が形成される。また、取付部52は、シールド本体部51と車両15の取付面16aとの間に所定の空間寸法hを確保可能な上下寸法を有している。つまり、取付部52は、シールド本体部51から空間寸法hの分上方に突出している。なお、車両15の取付面16aには、受電機器30の取付部52のみが接しており、受電機器30は、車両15の取付面16aから浮いた状態で取り付けられている。 Mounting portions 52 are provided at both ends in the width direction (left-right direction) orthogonal to the front-rear direction of the shield main body portion 51. The mounting portion 52 is a protruding portion extending in a plate shape in the front-rear direction. As a result, a space S opened in the front-rear direction, that is, a flow path extending in the front-rear direction is formed between the mounting surface 16a of the vehicle 15 and the shield main body 51. Further, the mounting portion 52 has a vertical dimension capable of securing a predetermined space dimension h between the shield main body portion 51 and the mounting surface 16a of the vehicle 15. That is, the mounting portion 52 projects upward by the space dimension h from the shield main body portion 51. Only the mounting portion 52 of the power receiving device 30 is in contact with the mounting surface 16a of the vehicle 15, and the power receiving device 30 is mounted in a state of floating from the mounting surface 16a of the vehicle 15.

なお、シールド本体部51と車両15の取付面16aとの間に形成された空間Sの空間寸法hは、5mm以上であることが望ましい。図5は、取付面16aとシールド本体部51との間の空間寸法hと受電機器30の温度との関係を示す図である。発明者の実験の結果、空間寸法hが5mm以上で概ね受電機器30の温度値が収束しており、所望以上の放熱効率の向上が見込まれることが発見された。そのため、空間寸法hが5mm以上であるとよい。 It is desirable that the space dimension h of the space S formed between the shield main body 51 and the mounting surface 16a of the vehicle 15 is 5 mm or more. FIG. 5 is a diagram showing the relationship between the space dimension h between the mounting surface 16a and the shield main body 51 and the temperature of the power receiving device 30. As a result of the inventor's experiment, it was discovered that the temperature value of the power receiving device 30 is generally converged when the space dimension h is 5 mm or more, and the heat dissipation efficiency is expected to be improved more than desired. Therefore, the space dimension h is preferably 5 mm or more.

また、図4に示すように、取付部52には、車両15の底部16に受電機器30を固定するためのボルトを挿通するボルト挿通孔52aが設けられている。取付部52が前後方向に延びていることで、ボルト挿通孔52aも前後方向に並ぶように複数(本実施形態では3つ)設けられている。また、取付部52が前後方向に延びていることで、取付部52と取付面16aとの接触面積が増え、複数個所で固定できるため、固定する1箇所あたりの荷重を分散できる。なお、取付部52にかかる荷重には、一枚板で所定の厚さを有するシールド本体部51や受電コイル31等の重さがある。これらの荷重を支持するため、固定するためのボルトが比較的大きなものとなっており、ボルト挿通孔52aも大きくなる。そして、ボルト挿通孔52aが形成された取付部52も所定の幅を有している。 Further, as shown in FIG. 4, the mounting portion 52 is provided with a bolt insertion hole 52a through which a bolt for fixing the power receiving device 30 is inserted into the bottom portion 16 of the vehicle 15. Since the mounting portion 52 extends in the front-rear direction, a plurality of bolt insertion holes 52a (three in the present embodiment) are provided so as to line up in the front-rear direction. Further, since the mounting portion 52 extends in the front-rear direction, the contact area between the mounting portion 52 and the mounting surface 16a is increased, and the mounting portion 52 can be fixed at a plurality of places, so that the load per fixing place can be dispersed. The load applied to the mounting portion 52 includes the weight of the shield main body portion 51 and the power receiving coil 31 having a predetermined thickness as a single plate. In order to support these loads, the bolts for fixing are relatively large, and the bolt insertion holes 52a are also large. The mounting portion 52 in which the bolt insertion hole 52a is formed also has a predetermined width.

筐体40の上面および下面のうち上面つまり取付面16aに対向する対向面に、取付面16aに向けて突出する放熱部である薄板状の放熱フィン53が設けられている。仮に筐体40の下側に放熱フィンを設けたとすると、車両15の取付面16aからの下方への突出量が増え好ましくない。また、仮に筐体40の下側に放熱フィンを設けたとすると、道路G上の異物等に接触する等して破損のおそれが高い。そこで、シールド本体部51の上面に、前後方向に延びる放熱フィン53が設けられている。放熱フィン53は、幅方向の全域に均等間隔で設けられている。放熱フィン53は、走行風の流路を形成している。放熱フィン53の間を走行風が通過することで、シールド部50と走行風とが接する面積を増やすことができ、冷却効率(放熱効率)を向上されることができる。なお、放熱フィン53の高さ(上下方向の寸法)は、取付部52の高さ(空間寸法h)よりも低くなっており、放熱フィン53の上面からも放熱が行われる。また、放熱部は、薄板状でなく、柱状であってもよい。 Of the upper surface and the lower surface of the housing 40, the upper surface, that is, the facing surface facing the mounting surface 16a, is provided with a thin plate-shaped heat radiating fin 53 which is a heat radiating portion protruding toward the mounting surface 16a. If the heat radiating fins are provided on the lower side of the housing 40, the amount of protrusion downward from the mounting surface 16a of the vehicle 15 increases, which is not preferable. Further, if the heat radiating fins are provided on the lower side of the housing 40, there is a high risk of damage due to contact with foreign matter or the like on the road G. Therefore, a heat radiating fin 53 extending in the front-rear direction is provided on the upper surface of the shield main body 51. The heat radiating fins 53 are provided at equal intervals over the entire width direction. The heat radiating fin 53 forms a flow path for the traveling wind. By passing the traveling wind between the heat radiating fins 53, the area in contact between the shield portion 50 and the traveling wind can be increased, and the cooling efficiency (radiation efficiency) can be improved. The height of the heat radiating fins 53 (vertical dimension) is lower than the height of the mounting portion 52 (spatial dimension h), and heat is also radiated from the upper surface of the heat radiating fins 53. Further, the heat radiating portion may be columnar instead of a thin plate.

次に、本実施形態の受電機器30で、どの程度の冷却効率が見込めるかを、従来の構成と比較して説明する。比較例としての従来の受電機器では、シールド本体部51が直接取付面16aに接触している構成とする。つまり、従来の受電機器と車両15の取付面16aとの間には、空間は設けられていない。なお、シールド部以外のその他の構成は、本願の構成と類似である。 Next, how much cooling efficiency can be expected in the power receiving device 30 of the present embodiment will be described in comparison with the conventional configuration. In the conventional power receiving device as a comparative example, the shield main body 51 is in direct contact with the mounting surface 16a. That is, no space is provided between the conventional power receiving device and the mounting surface 16a of the vehicle 15. The configuration other than the shield portion is similar to the configuration of the present application.

従来の構成においては、受電機器の放熱は、主に受電機器の下面から行われていた。しかしながら、受電機器の下面は、送電機器20との電力の送受電のために、樹脂で形成されており、放熱性があまり良くない。また、仮に下面側に部分的に冷却用の金属面や放熱フィン等を形成すると、金属部分が磁束の経路となり加熱されてしまい、受電コイル31の放熱には寄与しない。更に、受電機器の上方には、バッテリパック17が設けられている。そのため、受電機器の熱がバッテリパック17に伝わると、バッテリパック17が高温劣化するおそれがある。 In the conventional configuration, heat dissipation of the power receiving device is mainly performed from the lower surface of the power receiving device. However, the lower surface of the power receiving device is made of resin for transmitting and receiving electric power to and from the power transmitting device 20, and the heat dissipation is not so good. Further, if a metal surface for cooling, a heat radiation fin, or the like is partially formed on the lower surface side, the metal part becomes a path of magnetic flux and is heated, which does not contribute to heat dissipation of the power receiving coil 31. Further, a battery pack 17 is provided above the power receiving device. Therefore, if the heat of the power receiving device is transferred to the battery pack 17, the battery pack 17 may deteriorate at a high temperature.

そこで、本実施形態では、受電機器30と車両15の取付面16aとの間に、空間Sが設けられている。具体的には、伝熱性の高い、つまり放熱性の高い金属製のシールド本体部51と取付面16aとの間に走行風が通る空間Sが設けられている。これにより、伝熱性の高い金属製のシールド本体部51からの放熱が可能になり、冷却効率を向上させることができる。また、受電機器30と車両15の取付面16aとの接触が、取付部52に限られているため、バッテリパック17に受電機器30の熱が伝わりにくくなっている。 Therefore, in the present embodiment, a space S is provided between the power receiving device 30 and the mounting surface 16a of the vehicle 15. Specifically, a space S through which running wind passes is provided between the metal shield main body 51 having high heat transfer, that is, high heat dissipation, and the mounting surface 16a. As a result, heat can be dissipated from the highly heat-conducting metal shield main body 51, and the cooling efficiency can be improved. Further, since the contact between the power receiving device 30 and the mounting surface 16a of the vehicle 15 is limited to the mounting portion 52, it is difficult for the heat of the power receiving device 30 to be transferred to the battery pack 17.

図6は、このような本実施形態と従来例との間で、環境温度55℃、走行風26.4m/s(95km/h相当)で、非接触給電により35kW送電した場合における受電機器30での温度である。より具体的には、車両15の取付面16aとの接触位置での温度、つまり本実施形態では、取付部52での温度であり、従来例では、受電機器30の中央部分での温度である。なお、受電コイル31における損失(発熱)は、1.2kW程度である。この場合に、本実施形態の構成では、60.9℃を示しているのに対し、従来の構成では、114.2℃を示している。つまり、本実施形態の構成では、十分な冷却効果を有していることが示されている。 FIG. 6 shows the power receiving device 30 when 35 kW is transmitted by non-contact power feeding at an environmental temperature of 55 ° C. and a running wind of 26.4 m / s (equivalent to 95 km / h) between the present embodiment and the conventional example. Is the temperature at. More specifically, it is the temperature at the contact position of the vehicle 15 with the mounting surface 16a, that is, the temperature at the mounting portion 52 in the present embodiment, and in the conventional example, the temperature at the central portion of the power receiving device 30. .. The loss (heat generation) in the power receiving coil 31 is about 1.2 kW. In this case, the configuration of the present embodiment shows 60.9 ° C, whereas the conventional configuration shows 114.2 ° C. That is, it is shown that the configuration of the present embodiment has a sufficient cooling effect.

以上説明した本実施形態では以下の効果を奏する。 The present embodiment described above has the following effects.

本実施形態では、受電コイル31を収容する筐体40と車両15の取付面16aとの間に、少なくとも前後方向に開口した所定間隔の空間Sを形成した状態、すなわち、筐体40を車両15の底部16から浮かした状態で受電機器30を取り付け可能な構成とした。これにより、車両15の走行中に筐体40と取付面16aとの間を走行風が通るようになる。そのため、筐体40の下面(道路G側の面)だけでなく、取付面16aとの間の面からも放熱が可能となり、冷却効率を向上できる。 In the present embodiment, a state in which a space S having at least a predetermined interval opened in the front-rear direction is formed between the housing 40 accommodating the power receiving coil 31 and the mounting surface 16a of the vehicle 15, that is, the housing 40 is mounted on the vehicle 15. The power receiving device 30 can be attached while floating from the bottom portion 16. As a result, the traveling wind passes between the housing 40 and the mounting surface 16a while the vehicle 15 is traveling. Therefore, heat can be dissipated not only from the lower surface of the housing 40 (the surface on the road G side) but also from the surface between the housing 40 and the mounting surface 16a, and the cooling efficiency can be improved.

取付部52が、車両15の前後方向に直交する幅方向において少なくとも2か所に設けられ、前後方向に延びるよう突状部である。これにより、取付面16aと筐体40との間に、前後方向に延びる流路が形成され、走行風により冷却されやすくなる。また、前後方向に延びていることで、取付部52と車両15の取付面16aとの接触面積が大きくなり、取付面16aへの固定が行いやすくなる。 The mounting portions 52 are provided at at least two locations in the width direction orthogonal to the front-rear direction of the vehicle 15, and are projecting portions so as to extend in the front-rear direction. As a result, a flow path extending in the front-rear direction is formed between the mounting surface 16a and the housing 40, and is easily cooled by the running wind. Further, since it extends in the front-rear direction, the contact area between the mounting portion 52 and the mounting surface 16a of the vehicle 15 becomes large, and it becomes easy to fix the mounting portion 52 to the mounting surface 16a.

また、受電機器30と車両15の取付面16aとの接触を受電機器30の一部である取付部52に限定することにより、受電機器30から車両15側への伝熱を抑制することができる。そのため、車両15の底部16にバッテリパック17が敷き詰められていたとしても、バッテリパック17の高温劣化を抑制できる。 Further, by limiting the contact between the power receiving device 30 and the mounting surface 16a of the vehicle 15 to the mounting portion 52 which is a part of the power receiving device 30, heat transfer from the power receiving device 30 to the vehicle 15 side can be suppressed. .. Therefore, even if the battery pack 17 is spread on the bottom 16 of the vehicle 15, high temperature deterioration of the battery pack 17 can be suppressed.

受電機器30の筐体40の下面に、放熱フィンを設けると、車両15の取付面16aからの下方への突出量が増える。また、筐体40の下面に放熱フィンを設けると、破損のおそれがある。そのため、筐体40の下面は、放熱フィンを設けるのに適していない。一方、筐体40の上面(取付面16aに対向する対向面)は、放熱フィン53を設けても破損のおそれが少なく、下方への突出量にも影響しない。そこで、筐体40の上面に、放熱フィン53を設ける構造とした。これにより、放熱フィン53により筐体40が走行風と接する面積を増やすことができ、冷却効率を向上させることができる。 If heat radiation fins are provided on the lower surface of the housing 40 of the power receiving device 30, the amount of protrusion downward from the mounting surface 16a of the vehicle 15 increases. Further, if the heat radiation fins are provided on the lower surface of the housing 40, there is a risk of damage. Therefore, the lower surface of the housing 40 is not suitable for providing heat radiation fins. On the other hand, the upper surface of the housing 40 (the surface facing the mounting surface 16a) is less likely to be damaged even if the heat radiation fins 53 are provided, and does not affect the amount of protrusion downward. Therefore, the structure is such that the heat radiation fins 53 are provided on the upper surface of the housing 40. As a result, the area where the housing 40 comes into contact with the running wind can be increased by the heat radiation fins 53, and the cooling efficiency can be improved.

受電機器30の筐体40の下面は、磁束を通す必要があるため、例えば樹脂などで形成されており、放熱効率が良くない。一方、受電機器30の筐体40の上面側には、ノイズが車両15側に漏えいしないように金属製のシールド部50が設けられている。そして、この金属製のシールド部50と取付面16aとの間に走行風が通る空間Sが設けられている。これにより、伝熱性の高い金属製のシールド部50からの放熱が可能になり、冷却効率を向上することができる。 Since the lower surface of the housing 40 of the power receiving device 30 needs to pass magnetic flux, it is formed of, for example, resin, and the heat dissipation efficiency is not good. On the other hand, a metal shield portion 50 is provided on the upper surface side of the housing 40 of the power receiving device 30 so that noise does not leak to the vehicle 15 side. A space S through which the running wind passes is provided between the metal shield portion 50 and the mounting surface 16a. As a result, heat can be dissipated from the metal shield portion 50 having high heat transfer property, and the cooling efficiency can be improved.

ボビン32がシールド部50側に配されている。また、ボビン32の溝32aに入った状態で導線31aが巻回されている。これにより、導線31aとの接触面積の大きいボビン32が、伝熱性の高いシールド部50側に配されることになる。そのため、導線31aでの発熱は、ボビン32を介してシールド部50側に伝わり、受電機器30の冷却効率を向上することができる。 The bobbin 32 is arranged on the shield portion 50 side. Further, the lead wire 31a is wound while being in the groove 32a of the bobbin 32. As a result, the bobbin 32 having a large contact area with the lead wire 31a is arranged on the shield portion 50 side having high heat transferability. Therefore, the heat generated by the lead wire 31a is transmitted to the shield portion 50 side via the bobbin 32, and the cooling efficiency of the power receiving device 30 can be improved.

発明者の実験の結果、筐体40と取付面16aとの間の寸法が5mm以上になっていると、所望以上の放熱効率の向上が見込まれることが確認された。そこで、取付部52の上下方向の寸法を、筐体40と取付面16aとの間が5mm以上になるようにしている。これにより、所望の放熱効率を確保することができる。 As a result of the inventor's experiment, it was confirmed that when the dimension between the housing 40 and the mounting surface 16a is 5 mm or more, the heat dissipation efficiency is expected to be improved more than desired. Therefore, the vertical dimension of the mounting portion 52 is set so that the distance between the housing 40 and the mounting surface 16a is 5 mm or more. Thereby, a desired heat dissipation efficiency can be ensured.

<他の実施形態>
本発明は、上記実施形態に限定されず、例えば以下のように実施してもよい。
<Other embodiments>
The present invention is not limited to the above-described embodiment, and may be implemented as follows, for example.

・送電コイル21と受電コイル31とを多相化してもよい。例えば、3相に多相化した受電コイル31が互いにずれた状態で、少なくともその一部がシールド本体部51にフェライトコア33等を介して伝熱するようにしてもよい。 -The power transmission coil 21 and the power reception coil 31 may have multiple phases. For example, in a state where the three-phase multiphase power receiving coils 31 are displaced from each other, at least a part thereof may be transferred to the shield main body 51 via a ferrite core 33 or the like.

・図7に示すように、放熱フィン53は、筐体40の全域ではなく、一部に設けられていてもよい。具体的には、図7(a)に示すように、受電コイル31の導線31aが配されている部分と受電コイル31の導線31aが配されていない部分とのうち、受電コイル31の導線31aが配されている部分に設けられているとよい。つまり、受電コイル31の配されていない部分には、放熱フィン53が設けられていなくてもよい。 -As shown in FIG. 7, the heat radiating fins 53 may be provided not in the entire area of the housing 40 but in a part thereof. Specifically, as shown in FIG. 7A, of the portion where the lead wire 31a of the power receiving coil 31 is arranged and the portion where the lead wire 31a of the power receiving coil 31 is not arranged, the lead wire 31a of the power receiving coil 31 It is good that it is provided in the part where is arranged. That is, the heat radiation fins 53 may not be provided in the portion where the power receiving coil 31 is not arranged.

受電コイル31の配されている部分と配されていない部分とでは、単位面積当たりの発熱量が異なっている。また、放熱フィン53を筐体40の全域に設けた場合には、その重量が重くなってしまう。そのため、受電機器30を軽量化する必要がある場合には、放熱フィン53を筐体40の全域に設けることは望ましくない。そこで、部分的に放熱フィン53を設けないことで軽量化を図りつつ、放熱フィン53当たりの冷却効率を向上することができる。 The amount of heat generated per unit area is different between the portion where the power receiving coil 31 is arranged and the portion where the power receiving coil 31 is not arranged. Further, when the heat radiating fins 53 are provided in the entire area of the housing 40, the weight thereof becomes heavy. Therefore, when it is necessary to reduce the weight of the power receiving device 30, it is not desirable to provide the heat radiation fins 53 over the entire area of the housing 40. Therefore, by partially not providing the heat radiation fins 53, it is possible to improve the cooling efficiency per the heat radiation fins 53 while reducing the weight.

また、図7(b)に示すように、筐体40の上面には、前記筐体の幅方向において前後方向に延びる幅方向両側の部分A1とその間の中間部分A2のうち幅方向両側の部分A1に、放熱フィン53が設けられていてもよい。筐体40では、幅方向両側の部分A1とその間の中間部分A2とでは、筐体40の幅方向において発熱量が異なっており、幅方向両側の部分A1での発熱量の方が多い。そこで、幅方向両側の部分A1に放熱フィン53を設けている。これにより、発熱量が多い位置に放熱フィン53を設けることで、重量を軽量化しつつ、放熱フィン53当たりの冷却効率を向上することができる。 Further, as shown in FIG. 7 (b), on the upper surface of the housing 40, both sides in the width direction of the portion A1 on both sides in the width direction extending in the front-rear direction in the width direction of the housing and the intermediate portion A2 between them. The heat radiating fin 53 may be provided on the A1. In the housing 40, the amount of heat generated differs in the width direction of the housing 40 between the portions A1 on both sides in the width direction and the intermediate portion A2 in between, and the amount of heat generated in the portions A1 on both sides in the width direction is larger. Therefore, heat radiation fins 53 are provided in the portions A1 on both sides in the width direction. As a result, by providing the heat radiation fins 53 at a position where the amount of heat generated is large, it is possible to improve the cooling efficiency per the heat radiation fins 53 while reducing the weight.

・図8に示すように、筐体40と取付面16aとの間に形成された空間Sに走行風を誘導する誘導部42を筐体40に設けていてもよい。具体的には、カバー41の前端部に、下方の方が前方に突出する傾斜面を誘導部42として設けている。これにより、筐体40と取付面16aとの間の空間Sに走行風が誘導され、冷却効率を向上することができる。 As shown in FIG. 8, the housing 40 may be provided with a guiding portion 42 that guides the running wind into the space S formed between the housing 40 and the mounting surface 16a. Specifically, at the front end portion of the cover 41, an inclined surface that projects downward toward the front is provided as the guide portion 42. As a result, the running wind is guided to the space S between the housing 40 and the mounting surface 16a, and the cooling efficiency can be improved.

・図9に示すように、筐体40と取付面16aとの間に形成された空間Sの開口を閉鎖可能な閉鎖部54を設けてもよい。具体的には、シールド本体部51の前後方向の端部に、例えば回転可能な板状の閉鎖部54を設けてもよい。これにより、受電機器30が受電しておらず放熱が必要ない期間には、閉鎖部54を閉鎖状態とする。放熱が必要ない期間は閉鎖部54を閉鎖状態にすることで、空間Sにゴミや泥等が入って空間Sを塞ぐことを抑制することができる。 As shown in FIG. 9, a closing portion 54 capable of closing the opening of the space S formed between the housing 40 and the mounting surface 16a may be provided. Specifically, for example, a rotatable plate-shaped closing portion 54 may be provided at the end portion of the shield main body portion 51 in the front-rear direction. As a result, the closed portion 54 is closed during the period when the power receiving device 30 is not receiving power and heat dissipation is not required. By closing the closed portion 54 during the period when heat dissipation is not required, it is possible to prevent dust, mud, etc. from entering the space S and blocking the space S.

・受電機器30は、水冷装置を備えていてもよい。具体的には、シールド本体部51の上に筐体40の一部として水冷装置を設けてもよい。この場合には、水冷装置と車両15の取付面16aとの間に空間Sを設けるとよい。これにより、水冷装置による冷却に加えて、空間Sを通過する走行風によって冷却されるため、水冷装置の構造を簡略化できる。また、水冷装置と取付面16aとの間に空間Sが形成されているため、水冷装置からバッテリパック17に伝熱することを抑制できる。 -The power receiving device 30 may include a water cooling device. Specifically, a water cooling device may be provided on the shield main body 51 as a part of the housing 40. In this case, it is preferable to provide a space S between the water cooling device and the mounting surface 16a of the vehicle 15. As a result, in addition to the cooling by the water cooling device, the cooling is performed by the traveling wind passing through the space S, so that the structure of the water cooling device can be simplified. Further, since the space S is formed between the water cooling device and the mounting surface 16a, it is possible to suppress heat transfer from the water cooling device to the battery pack 17.

・取付部52が前後方向に延びる板状ではなく、ボルト挿通孔52aが設けられた柱状となっていてもよい。また、両端部に限らず、他の位置に設けられていてもよい。また、幅方向(左右)において、2か所以上で取り付けられているとよい。 -The mounting portion 52 may not have a plate shape extending in the front-rear direction, but may have a columnar shape provided with a bolt insertion hole 52a. Further, it is not limited to both ends and may be provided at other positions. Further, it is preferable that they are attached at two or more places in the width direction (left and right).

15…車両、16…底部、16a…取付面、17…バッテリパック、20…送電機器、21…送電コイル、30…受電機器、31…受電コイル、40…筐体。 15 ... Vehicle, 16 ... Bottom, 16a ... Mounting surface, 17 ... Battery pack, 20 ... Power transmission equipment, 21 ... Power transmission coil, 30 ... Power receiving equipment, 31 ... Power receiving coil, 40 ... Housing.

Claims (9)

車両(15)の車体下面(16a)に取り付け可能であり、前記車両の走行中において、交流電力が送電される送電コイル(21)を有する送電機器(20)から前記交流電力を受電して蓄電装置(17)に電力を供給する受電機器(30)であって、
前記送電コイルから非接触で受電可能な受電コイル(31)と、
前記受電コイルを収容する筐体(40)と、
前記筐体と前記車体下面との間に少なくとも前記車両の前後方向に開口した空間(S)を形成した状態で、前記筐体を前記車体下面に取り付け可能とする取付部(52)と、を備える受電機器。
The AC power is received and stored from a power transmission device (20) having a power transmission coil (21) that can be attached to the lower surface (16a) of the vehicle body of the vehicle (15) and transmits AC power while the vehicle is running. A power receiving device (30) that supplies power to the device (17).
A power receiving coil (31) capable of receiving power from the power transmission coil in a non-contact manner,
A housing (40) accommodating the power receiving coil and
A mounting portion (52) that allows the housing to be mounted on the lower surface of the vehicle body in a state where at least a space (S) opened in the front-rear direction of the vehicle is formed between the housing and the lower surface of the vehicle body. Power receiving equipment to be equipped.
前記取付部は、前記車両の前後方向に直交する前記筐体の幅方向において少なくとも2か所に設けられ、前記車両の前後方向に延びる突状部である請求項1に記載の受電機器。 The power receiving device according to claim 1, wherein the mounting portions are provided at at least two locations in the width direction of the housing orthogonal to the front-rear direction of the vehicle, and are projecting portions extending in the front-rear direction of the vehicle. 前記筐体において前記車体下面に対向する対向面には、前記車体下面に向けて突出する放熱部(53)が設けられている請求項1又は請求項2に記載の受電機器。 The power receiving device according to claim 1 or 2, wherein a heat radiating portion (53) projecting toward the lower surface of the vehicle body is provided on the surface of the housing facing the lower surface of the vehicle body. 前記受電コイルは、矩形状に巻回された平面コイルであって、
前記対向面には、前記車両の前後方向に直交する前記筐体の幅方向において前記受電コイルが前後方向に延びる幅方向両側の部分とその間の中間部分とのうち前記幅方向両側の部分に前記放熱部が設けられている請求項3に記載の受電機器。
The power receiving coil is a flat coil wound in a rectangular shape.
On the facing surface, the power receiving coil extends on both sides in the width direction extending in the front-rear direction in the width direction of the housing orthogonal to the front-rear direction of the vehicle, and the intermediate portion between them is formed on both sides in the width direction. The power receiving device according to claim 3, wherein a heat radiating unit is provided.
前記筐体は、上面側に配され、前記受電コイルの生成するノイズの漏えいを抑制可能な金属製のシールド部(50)を有している請求項1から請求項4のいずれか一項に記載の受電機器。 The housing is arranged on the upper surface side and has a metal shield portion (50) capable of suppressing leakage of noise generated by the power receiving coil, according to any one of claims 1 to 4. The power receiving device described. 前記受電コイルの導線を位置決めする溝(32a)が設けられた樹脂製のボビン(32)を備えており、
前記筐体は、前記ボビンとの間に前記導線を挟み込む樹脂製のカバー(41)を有しており、
前記カバーが前記送電コイル側に配されている一方、前記ボビンが前記シールド部側に配されている請求項5に記載の受電機器。
It is provided with a resin bobbin (32) provided with a groove (32a) for positioning the lead wire of the power receiving coil.
The housing has a resin cover (41) that sandwiches the lead wire between the bobbin and the bobbin.
The power receiving device according to claim 5, wherein the cover is arranged on the power transmission coil side, while the bobbin is arranged on the shield portion side.
前記取付部は、前記筐体と前記車体下面との間の寸法が5mm以上になるような上下方向の寸法を有している請求項1から請求項6のいずれか一項に記載の受電機器。 The power receiving device according to any one of claims 1 to 6, wherein the mounting portion has a vertical dimension such that the dimension between the housing and the lower surface of the vehicle body is 5 mm or more. .. 前記筐体には、前記筐体と前記車体下面との間に形成された前記空間に前記車両の走行風を誘導する誘導部(42)が設けられている請求項1から請求項7のいずれか一項に記載の受電機器。 Any of claims 1 to 7, wherein the housing is provided with a guiding portion (42) for guiding the traveling wind of the vehicle in the space formed between the housing and the lower surface of the vehicle body. The power receiving device described in item 1. 前記筐体には、前記車体下面と前記筐体との間に形成された空間の開口を閉鎖可能な閉鎖部(54)が設けられている請求項1から請求項8のいずれか一項に記載の受電機器。 According to any one of claims 1 to 8, the housing is provided with a closing portion (54) capable of closing the opening of the space formed between the lower surface of the vehicle body and the housing. The power receiving device described.
JP2019105510A 2019-06-05 2019-06-05 Receiving device Active JP7261092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019105510A JP7261092B2 (en) 2019-06-05 2019-06-05 Receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019105510A JP7261092B2 (en) 2019-06-05 2019-06-05 Receiving device

Publications (2)

Publication Number Publication Date
JP2020198763A true JP2020198763A (en) 2020-12-10
JP7261092B2 JP7261092B2 (en) 2023-04-19

Family

ID=73649715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019105510A Active JP7261092B2 (en) 2019-06-05 2019-06-05 Receiving device

Country Status (1)

Country Link
JP (1) JP7261092B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005016A1 (en) * 2022-06-30 2024-01-04 Swcc株式会社 Wireless power supply unit for vehicles, and wireless power supply system for vehicles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018029096A (en) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 Coil unit
JP2018093589A (en) * 2016-11-30 2018-06-14 アイシン精機株式会社 Cooling device for non-contact power supply

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018029096A (en) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 Coil unit
JP2018093589A (en) * 2016-11-30 2018-06-14 アイシン精機株式会社 Cooling device for non-contact power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005016A1 (en) * 2022-06-30 2024-01-04 Swcc株式会社 Wireless power supply unit for vehicles, and wireless power supply system for vehicles

Also Published As

Publication number Publication date
JP7261092B2 (en) 2023-04-19

Similar Documents

Publication Publication Date Title
JP6400663B2 (en) Contactless power transformer
EP2620960B1 (en) Contactless power feeding apparatus
JP6475684B2 (en) Coil unit
JP5921839B2 (en) Contactless power transformer
US20170338023A1 (en) Wireless Charging Pad Having Coolant Assembly
US9679692B2 (en) Reactor device
US9991046B2 (en) Energy intake apparatus for a motor vehicle that can be operated electrically and method for operating an energy intake apparatus for a motor vehicle that can be operated electrically
US9595379B2 (en) Cooling device for transformer
WO2012090342A1 (en) Coil unit used in contactless power supply system
JPH11238638A (en) Non-contact type charging device
US11328852B2 (en) Coil device
JP2012204469A (en) Contactless current feeding coil device
CN107539139B (en) Power supply device and conveying equipment
EP3206281B1 (en) Power reception coil device and wireless power supply system
JP7261092B2 (en) Receiving device
US9748773B2 (en) Contactless power supply device
JP6276349B1 (en) Non-contact power feeding device and power transmission coil unit for non-contact power feeding device
WO2012102008A1 (en) Coil unit used in noncontact electric-power-supplying system
WO2014147985A1 (en) Contactless charging device
JP7324084B2 (en) Receiving equipment and transmitting equipment
KR20230041804A (en) Efficiency enhancements through magnetic field management
JP2016115789A (en) Coil unit
JP7352407B2 (en) Power transmission and reception equipment
JP2014043114A (en) Coil unit used in non contact power supply system
WO2019207689A1 (en) In-vehicle battery charging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230407

R150 Certificate of patent or registration of utility model

Ref document number: 7261092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150