WO2014147985A1 - Contactless charging device - Google Patents

Contactless charging device Download PDF

Info

Publication number
WO2014147985A1
WO2014147985A1 PCT/JP2014/001264 JP2014001264W WO2014147985A1 WO 2014147985 A1 WO2014147985 A1 WO 2014147985A1 JP 2014001264 W JP2014001264 W JP 2014001264W WO 2014147985 A1 WO2014147985 A1 WO 2014147985A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
solenoid coil
coil
charging apparatus
charging device
Prior art date
Application number
PCT/JP2014/001264
Other languages
French (fr)
Japanese (ja)
Inventor
剛 西尾
修 大橋
則明 朝岡
正剛 小泉
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014147985A1 publication Critical patent/WO2014147985A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • This invention relates to the non-contact charging device provided with the shield which shields the unnecessary radiation from a coil.
  • non-contact charging is realized by a non-contact power transmission device including a power transmission coil and a non-contact power reception device including a power reception coil.
  • the non-contact power transmission device and the non-contact power reception device are collectively referred to as a non-contact charging device.
  • Patent Documents 1 and 2 disclose a technique of shielding unwanted radiation by surrounding a coil with a rectangular parallelepiped shield made of a material having an electromagnetic shielding effect. One of the bottom surfaces constituting the shield is open so that the coil can perform power transmission or reception with another coil facing the coil.
  • a reinforcing member for example, a part of the shield
  • a reinforcing member is provided in a part of the opening part to cope with the falling of the coil from the opening part.
  • the magnetic flux from the coil generates heat due to the linkage with the reinforcing member.
  • An object of the present invention is to provide a non-contact charging apparatus that can prevent a coil from falling off from an opening portion of a shield while suppressing heat generation.
  • a contactless charging apparatus includes a solenoid coil having a winding and a shield member that shields electromagnetic force generated from the solenoid coil, and the solenoid coil uses the electromagnetic force to Power is supplied in a direction perpendicular to the central axis of the winding, or power is received from the vertical direction using electromagnetic force, and the shield member is in a space in which a region with the winding is projected in the vertical direction. Take the configuration provided.
  • the present invention can prevent the coil from falling from the opening of the shield while suppressing heat generation.
  • the perspective view which shows an example of the non-contact charging device which concerns on Embodiment 1 of this invention The side view which shows the example at the time of charge execution of the non-contact charging device which concerns on Embodiment 1 of this invention Sectional drawing which shows the structural example of the longitudinal direction of the non-contact charging device which concerns on Embodiment 1 of this invention
  • the side view which shows an example of vehicle mounting of the non-contact charging device which concerns on Embodiment 1 of this invention The perspective view which shows an example of the non-contact charging device which concerns on Embodiment 2 of this invention Sectional drawing which shows the structural example of the longitudinal direction of the non-contact charging device which concerns on Embodiment 2 of this invention
  • the perspective view which shows an example of the non-contact charging device which concerns on Embodiment 3 of this invention Sectional drawing which shows the structural example of the longitudinal direction of the non-contact charging device which concerns on Embodiment 3 of this invention
  • Embodiment 1 A non-contact charging apparatus according to Embodiment 1 of the present invention will be described.
  • FIG. 1 is a perspective view of contactless charging apparatus 100 according to the present embodiment.
  • the non-contact charging device 100 is, for example, a power transmission device or a power receiving device used for non-contact charging of an EV or a plug-in HEV.
  • the non-contact charging device 100 has a solenoid coil and a shield.
  • the solenoid coil functions as a power transmission coil that generates a magnetic flux F (not shown; see, for example, FIG. 2, FIG. 5A, etc.) that fluctuates due to electromagnetic induction.
  • the solenoid coil functions as a power receiving coil that receives the magnetic flux F.
  • the solenoid coil has a core 11 (an example of a core member) and a winding 12.
  • the core 11 is, for example, a rectangular parallelepiped ferrite.
  • the winding 12 is provided at a central portion in the longitudinal direction of the core 11.
  • the solenoid coil is a power transmission coil
  • the winding 12 is driven by an alternating current and generates a magnetic flux F.
  • the solenoid coil is a power receiving coil
  • the winding 12 receives the magnetic flux F and generates an alternating current.
  • Magnetic flux F is generated at both ends of the core 11 around which the winding 12 is wound, and is transmitted and received by magnetic coupling with other solenoid coils, and also generated at the other end of the solenoid coil itself. That is, the solenoid coil supplies power in a direction perpendicular to the central axis of the winding 12 (hereinafter referred to as “vertical direction”) using electromagnetic force, or receives power from the vertical direction using electromagnetic force. .
  • the arrow Y indicates the central axis of the winding 12.
  • An arrow Z indicates a direction perpendicular to the arrow Y. That is, the arrow Z indicates the “vertical direction”.
  • An arrow X indicates a direction perpendicular to the arrow Y and perpendicular to the arrow Z. Note that the directions indicated by the arrows X, Y, and Z are similarly applied to FIGS.
  • FIG. 2 shows an example when the power transmission device 100a with the contactless charging device 100 as the power transmission side and the power reception device 100b with the contactless charging device 100 as the power reception side are performing contactless charging.
  • a magnetic flux F is generated between the power transmission device 100a and the power reception device 100b as shown in FIG.
  • the power transmission device 100a supplies power in a direction (arrow Z) perpendicular to the central axis (arrow Y) of the winding 12.
  • the power receiving device 100b receives power from a direction (arrow Z) perpendicular to the central axis (arrow Y) of the winding 12.
  • a solenoid coil has a bobbin for hold
  • FIG. The bobbin is shown in FIG.
  • the shield (an example of a shield member) is a member that shields the electromagnetic force generated from the solenoid coil, and includes bottom surface portions 20 and 23 and side surface portions 21 and 22 as a plurality of members.
  • Each of these parts is a rectangular plate-like member and is made of a material (for example, metal) having an electromagnetic shielding effect. These may be formed by connecting a plurality of members, or may be formed integrally.
  • the bottom surface portion 20 is opposed to the surface having the maximum area in the solenoid coil (core 11).
  • the bottom surface portion 20 is opposed to the bottom surface portion 23 with the solenoid coil interposed therebetween, and is in a positional relationship parallel to the bottom surface portion 23.
  • the side surface portions 21 and 22 are provided between the bottom surface portion 20 and the bottom surface portion 23.
  • the bottom surface portion 23 is a reinforcing member for preventing the solenoid coil from falling off from the opening.
  • the bottom surface portion 23 is provided immediately above a region where the winding 12 is present in the core 11 (hereinafter, referred to as a “winding region”), and is opposed to a surface of the winding region.
  • the bottom surface portion 23 is provided in a space in which the region around which the winding 12 is wound is projected in the vertical direction indicated by the arrow Z. Therefore, the bottom portion 23 is not provided in the core 11 immediately above a region where the winding 12 is not present (hereinafter referred to as “no winding region”) and is open.
  • the bottom surface portion 23 does not include a non-winding region in a space projected in the vertical direction indicated by the arrow Z. Since the magnetic flux is substantially parallel to the bottom surface portion 23 just above the winding region, the bottom surface portion 23 hardly links with the magnetic flux.
  • the two short sides of the bottom surface portion 20 are open.
  • FIG. 3 is a diagram illustrating a configuration example of a cross section of the contactless charging device 100 in the longitudinal direction (A-A ′ in FIG. 1).
  • the side surface portion 21 or 23 is not shown.
  • the solenoid coil is positioned with respect to the bottom surfaces 20 and 23 using the bobbin 13.
  • the bobbin 13 surrounds the winding area.
  • the space surrounded by the bobbin 13, the bottom surfaces 20 and 23, and the side surfaces 21 and 22 (not shown) is filled with the material 14.
  • the material 14 is solid or non-solid, and is non-conductive and non-magnetic. By filling this material 14, thermal coupling and mechanical coupling in the winding region, the bottom surface 20, and the bottom surface 23 (that is, between the shield and the winding) can be realized.
  • FIG. 4 is a side view showing an example in which contactless charging apparatus 100 is attached to a vehicle. In FIG. 4, the side portions 21 and 23 are not shown.
  • the non-contact charging device 100 of FIG. 3 is attached to the bottom of the vehicle body of a vehicle 200 (for example, a plug-in HEV or EV) as shown in FIG.
  • a vehicle 200 for example, a plug-in HEV or EV
  • the solenoid coil can be prevented from falling off.
  • contactless charging apparatus 100 has bottom surface portion 23 as a reinforcing member in a portion that has been conventionally opened in the shield, so that the coil is prevented from falling off from the opening portion of the shield. And unnecessary radiation can be shielded. Further, since the bottom surface portion 23 is arranged at a position where the magnetic flux is substantially parallel (for example, directly above the region with the winding), the area where the bottom surface portion 23 and the magnetic flux interlink can be reduced. As a result, it is possible to suppress (reduce) the heat generation of the shield and the decrease in transmission efficiency.
  • the non-contact charging device 100 includes a winding on the shield that is directly above the two short sides of the bottom surface portion 20 (a surface perpendicular to the longitudinal extension of the solenoid coil) and on the extension of the bottom surface portion 23. Locations opposite to the non-existing regions (spaces in which the non-winding region is projected in the vertical direction indicated by the arrow Z) are opened. Thereby, since there is no shield in the vicinity where the magnetic flux entering and exiting the solenoid coil is interlinked, it is possible to suppress the heat generation of the shield and the decrease in transmission efficiency. By shortening the longitudinal direction of the bottom surface portion 20 and the side surface portions 21 and 22, the housing itself can be made small.
  • Embodiment 2 A non-contact charging apparatus according to Embodiment 2 of the present invention will be described.
  • FIG. 5A is a perspective view of contactless charging apparatus 101 according to the present embodiment.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the non-contact charging apparatus 101 is different from the first embodiment in that it has bottom surface portions 24a, 24b, and 24c (hereinafter referred to as “24a to c”).
  • the bottom surface portions 24a to 24c are reinforcing members for preventing the solenoid coil from falling off.
  • the bottom surface portions 24a to 24c are rectangular members having the same shape, and are made of a material (for example, metal) having an electromagnetic shielding effect.
  • the bottom surface portions 24a to 24c are opposed to the bottom surface portion 20 with the solenoid coil interposed therebetween, and are provided perpendicular to the side surface portions 21 and 22, respectively. Therefore, the bottom surface portions 24a to 24c are in a positional relationship parallel to the bottom surface portion 20. Further, the bottom surface portions 24a to 24c are provided immediately above the winding area. In other words, the bottom surface portions 24a to 24c are not provided right above the no-winding region, and are open. As described above, since the magnetic flux is almost parallel to the bottom surface portions 24a to 24c just above the region with windings, the bottom surface portions 24a to 24c hardly interlink with the magnetic flux.
  • the bottom surface portions 24a to 24c are provided with predetermined intervals, respectively. That is, there is an opening between the bottom surface portion 24a and the bottom surface portion 24b and between the bottom surface portion 24b and the bottom surface portion 24c, respectively.
  • the distance between the openings is determined based on, for example, the fixed position of the solenoid coil and / or the heat dissipation structure.
  • the fixed position of the solenoid is, for example, a position where the bobbin and the bottom surface portions 24a to 24c are fixed.
  • the heat dissipation structure is, for example, a position where the bottom surface portions 24a to 24c are in contact with the material 14 and perform heat dissipation.
  • FIG. 5B is a diagram illustrating a configuration example of a cross section of the contactless charging apparatus 101 in the longitudinal direction (A-A ′ in FIG. 5A).
  • the side surface portion 21 or 22 is not shown.
  • the bottom surface portions 24a to 24c are provided directly above the region with winding where the magnetic flux F is substantially parallel to the bottom surface portions 24a to 24c. Further, the bottom surface portions 24a to 24c are provided with a predetermined interval, respectively. Although not shown in FIG. 5B, the bobbin 13 and the material 14 are provided as in FIG.
  • the non-contact charging apparatus 101 of the present embodiment described above can obtain the following functions and effects in addition to the functions and effects of the first embodiment described above. That is, contactless charging apparatus 101 includes bottom surface portions 24a to 24c with a predetermined interval right above the region with windings, and thus interlinks with magnetic flux as compared with bottom surface portion 23 of the first embodiment. The area can be reduced. As a result, the heat generation of the shield and the decrease in power transmission efficiency can be further suppressed.
  • Embodiment 3 A non-contact charging apparatus according to Embodiment 3 of the present invention will be described.
  • FIG. 6A is a perspective view of contactless charging apparatus 102 according to the present embodiment.
  • the same portions as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the non-contact charging apparatus 102 is different from the first embodiment in that the bottom surface portion 23 has heat radiation fins 25.
  • a plurality of heat radiation fins 25 are provided on the upper surface of the bottom surface portion 23.
  • the top surface of the bottom surface portion 23 is the back surface of the bottom surface portion 23 facing the region with the winding (the surface opposite to the surface facing the winding 12).
  • the heat radiating fins 25 are rectangular plate-like members, and are made of a material (for example, metal) having heat conduction and heat radiating effects.
  • the longitudinal direction of the radiation fin 25 is arranged along the longitudinal direction of the solenoid coil.
  • the radiation fins 25 are arranged at predetermined intervals in the longitudinal direction of the bottom surface portion 23. Since the magnetic flux is almost parallel to the heat radiating fins 25 just above the region with the windings, the heat radiating fins 25 hardly interlink with the magnetic flux.
  • FIG. 6B is a diagram illustrating a configuration example of a cross section of the non-contact charging device 102 in the longitudinal direction (A-A ′ in FIG. 6A).
  • illustration of the side surface portion 21 or 22 is omitted.
  • the bottom surface portion 23 and the radiating fin 25 are provided directly above the region with winding where the magnetic flux F is substantially parallel to the bottom surface portion 23 and the radiating fin 25.
  • the bobbin and the material 14 are provided as in FIG. In this case, the material 14 has thermal conductivity and conducts heat from the winding 12 to the bottom surface portion 23. Then, the heat conducted to the bottom surface portion 23 is radiated from the radiation fins 25.
  • the radiating fin 25 is described as having a rectangular shape in the longitudinal direction.
  • the shape is not limited to this, and for example, a trapezoidal shape or an arc shape may be used. It is preferably parallel to the central axis (arrow Y) of the line 12.
  • the non-contact charging apparatus 102 of the present embodiment described above can obtain the following functions and effects in addition to the functions and effects of the first embodiment described above. That is, since the non-contact charging device 102 includes the plurality of heat radiation fins 25 on the upper surface of the bottom surface portion 23, it is possible to efficiently realize heat radiation from the shield, that is, heat radiation of the coil. At this time, if the radiating fin 25 is parallel to the central axis of the winding 12, the radiating fin hardly interlinks with the magnetic flux, so that the radiating fin itself generates little heat, and further, the power transmission efficiency is not lowered by the radiating fin. .
  • Embodiment 4 A non-contact charging apparatus according to Embodiment 4 of the present invention will be described.
  • FIG. 7 is a perspective view of contactless charging apparatus 103 according to the present embodiment.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the non-contact charging apparatus 103 is different from the first embodiment in the length of the side surfaces 26 and 27. That is, the long sides of the side surface portions 26 and 27 are the same length as the short side of the bottom surface portion 23. Since the short side of the bottom surface portion 23 corresponds to a region with a winding, the side surfaces 26 and 27 are arranged only beside the region with a winding. In other words, the side surfaces 26 and 27 are provided in a space projected in a direction (arrow X) perpendicular to both the central axis (arrow Y) and the vertical direction (arrow Z) of the winding 12.
  • the non-contact charging apparatus 103 of the present embodiment described above can obtain the following functions and effects in addition to the functions and effects of the first embodiment described above. That is, in the non-contact charging device 103, since the length of the long sides of the side surface portions 26 and 27 is the same as the length of the short side of the bottom surface portion 23, the longitudinal direction of the bottom surface portion 20 (long side, that is, the arrow Y direction). The housing itself can be made smaller by shortening.
  • the present invention can be applied to, for example, a non-contact charging device including a shield that shields unnecessary radiation from a coil.

Abstract

A contactless charging device that, while minimizing heat generation, can prevent a coil from falling out of a shield via an open section thereof. Said contactless charging device (100) is provided with the following: a solenoid coil that has a winding (12); and a shield member that blocks electromagnetic power generated by the solenoid coil. The solenoid coil uses said electromagnetic power to either provide electrical power in a direction perpendicular to the central axis of the winding (12) or receive electrical power from said direction. The shield member is provided within a space defined by the projection of the region containing the winding (12) onto the aforementioned perpendicular direction.

Description

非接触充電装置Non-contact charger
 本発明は、コイルからの不要輻射を遮蔽するシールドを備えた非接触充電装置に関する。 This invention relates to the non-contact charging device provided with the shield which shields the unnecessary radiation from a coil.
 プラグインHEV(Hybrid Electric Vehicle:ハイブリッド自動車)またはEV(Electric Vehicle:電気自動車)に搭載された蓄電池に対して外部電源から充電を行う技術は、例えば、電磁誘導を利用する非接触充電が知られている。この非接触充電は、送電コイルを備えた非接触送電装置と、受電コイルを備えた非接触受電装置とで実現される。なお、本明細書では、非接触送電装置と非接触受電装置をまとめて、非接触充電装置という。 As a technology for charging a storage battery mounted on a plug-in HEV (Hybrid Electric Vehicle) or EV (Electric Vehicle) from an external power source, for example, contactless charging using electromagnetic induction is known. ing. This non-contact charging is realized by a non-contact power transmission device including a power transmission coil and a non-contact power reception device including a power reception coil. In this specification, the non-contact power transmission device and the non-contact power reception device are collectively referred to as a non-contact charging device.
 非接触充電装置は、送電コイルまたは受電コイルから発生する不要輻射が問題となる。そこで、例えば特許文献1、2には、電磁気遮蔽効果のある素材で構成された直方体状のシールドによりコイルを囲むことで、不要輻射を遮蔽する技術が開示されている。このシールドを構成する底面の1つは、コイルが対向する別のコイルと送電または受電を行えるように、開口している。 In the non-contact charging apparatus, unnecessary radiation generated from the power transmission coil or the power reception coil becomes a problem. Thus, for example, Patent Documents 1 and 2 disclose a technique of shielding unwanted radiation by surrounding a coil with a rectangular parallelepiped shield made of a material having an electromagnetic shielding effect. One of the bottom surfaces constituting the shield is open so that the coil can perform power transmission or reception with another coil facing the coil.
特開2011-91999号公報JP 2011-91999 A 特開2005-101392号公報JP 2005-101392 A
 しかしながら、特許文献1、2の技術は、シールドを構成する底面の1つが開口しているため、このシールドを備えた非接触受電装置を車両に搭載した場合、下向きとなった開口部分から受電コイルが抜け落ちるおそれがある。 However, in the techniques of Patent Documents 1 and 2, since one of the bottom surfaces constituting the shield is open, when the non-contact power receiving device including the shield is mounted on the vehicle, the power receiving coil starts from the opening facing downward. May fall off.
 そこで、開口部分の一部に補強部材(例えば、シールドの一部分)を設けるようにして、開口部分からのコイルの抜け落ちに対応することが考えられる。しかし、補強部材を配置する位置によっては、コイルからの磁束が補強部材と鎖交することで発熱してしまう、という問題がある。 Therefore, it can be considered that a reinforcing member (for example, a part of the shield) is provided in a part of the opening part to cope with the falling of the coil from the opening part. However, depending on the position where the reinforcing member is disposed, there is a problem that the magnetic flux from the coil generates heat due to the linkage with the reinforcing member.
 本発明の目的は、発熱を抑えつつ、シールドの開口部分からコイルが抜け落ちることを防止できる非接触充電装置を提供することである。 An object of the present invention is to provide a non-contact charging apparatus that can prevent a coil from falling off from an opening portion of a shield while suppressing heat generation.
 本発明の一態様に係る非接触充電装置は、巻線を有するソレノイドコイルと、前記ソレノイドコイルから発生する電磁力を遮蔽するシールド部材と、を備え、前記ソレノイドコイルは、電磁力を用いて前記巻線の中心軸と垂直方向へ給電し、または、電磁力を用いて前記垂直方向から受電するものであり、前記シールド部材は、前記巻線のある領域を前記垂直方向へ投影した空間内に備えられる構成を採る。 A contactless charging apparatus according to an aspect of the present invention includes a solenoid coil having a winding and a shield member that shields electromagnetic force generated from the solenoid coil, and the solenoid coil uses the electromagnetic force to Power is supplied in a direction perpendicular to the central axis of the winding, or power is received from the vertical direction using electromagnetic force, and the shield member is in a space in which a region with the winding is projected in the vertical direction. Take the configuration provided.
 本発明は、発熱を抑えつつ、シールドの開口部分からコイルが抜け落ちることを防止できる。 The present invention can prevent the coil from falling from the opening of the shield while suppressing heat generation.
本発明の実施の形態1に係る非接触充電装置の一例を示す斜視図The perspective view which shows an example of the non-contact charging device which concerns on Embodiment 1 of this invention 本発明の実施の形態1に係る非接触充電装置の充電実行時の例を示す側面図The side view which shows the example at the time of charge execution of the non-contact charging device which concerns on Embodiment 1 of this invention 本発明の実施の形態1に係る非接触充電装置の長手方向の構成例を示す断面図Sectional drawing which shows the structural example of the longitudinal direction of the non-contact charging device which concerns on Embodiment 1 of this invention 本発明の実施の形態1に係る非接触充電装置の車両搭載の一例を示す側面図The side view which shows an example of vehicle mounting of the non-contact charging device which concerns on Embodiment 1 of this invention 本発明の実施の形態2に係る非接触充電装置の一例を示す斜視図The perspective view which shows an example of the non-contact charging device which concerns on Embodiment 2 of this invention 本発明の実施の形態2に係る非接触充電装置の長手方向の構成例を示す断面図Sectional drawing which shows the structural example of the longitudinal direction of the non-contact charging device which concerns on Embodiment 2 of this invention 本発明の実施の形態3に係る非接触充電装置の一例を示す斜視図The perspective view which shows an example of the non-contact charging device which concerns on Embodiment 3 of this invention 本発明の実施の形態3に係る非接触充電装置の長手方向の構成例を示す断面図Sectional drawing which shows the structural example of the longitudinal direction of the non-contact charging device which concerns on Embodiment 3 of this invention 本発明の実施の形態4に係る非接触充電装置の一例を示す斜視図The perspective view which shows an example of the non-contact charging device which concerns on Embodiment 4 of this invention
 (実施の形態1)
 本発明の実施の形態1に係る非接触充電装置について説明する。
(Embodiment 1)
A non-contact charging apparatus according to Embodiment 1 of the present invention will be described.
 まず、本実施の形態に係る非接触充電装置100の全体構成について、図1を参照して説明する。図1は、本実施の形態に係る非接触充電装置100の斜視図である。 First, the overall configuration of contactless charging apparatus 100 according to the present embodiment will be described with reference to FIG. FIG. 1 is a perspective view of contactless charging apparatus 100 according to the present embodiment.
 非接触充電装置100は、例えば、EVまたはプラグインHEVの非接触充電に用いられる送電装置または受電装置である。図1において、非接触充電装置100は、ソレノイドコイルおよびシールドを有する。 The non-contact charging device 100 is, for example, a power transmission device or a power receiving device used for non-contact charging of an EV or a plug-in HEV. In FIG. 1, the non-contact charging device 100 has a solenoid coil and a shield.
 ソレノイドコイルは、電磁誘導により変動する磁束F(図示せず。例えば、図2、図5A等参照)を発生する送電コイルとして機能する。または、ソレノイドコイルは、磁束Fを受ける受電コイルとして機能する。図1に示すように、ソレノイドコイルは、コア11(コア部材の一例)と巻線12を有する。コア11は、例えば、直方体状のフェライトである。巻線12は、コア11の長手方向における中央部分に備えられる。ソレノイドコイルが送電コイルの場合、巻線12は、交番電流で駆動され、磁束Fを発生させる。一方、ソレノイドコイルが受電コイルの場合、巻線12は、磁束Fを受けて交番電流を発生させる。 The solenoid coil functions as a power transmission coil that generates a magnetic flux F (not shown; see, for example, FIG. 2, FIG. 5A, etc.) that fluctuates due to electromagnetic induction. Alternatively, the solenoid coil functions as a power receiving coil that receives the magnetic flux F. As shown in FIG. 1, the solenoid coil has a core 11 (an example of a core member) and a winding 12. The core 11 is, for example, a rectangular parallelepiped ferrite. The winding 12 is provided at a central portion in the longitudinal direction of the core 11. When the solenoid coil is a power transmission coil, the winding 12 is driven by an alternating current and generates a magnetic flux F. On the other hand, when the solenoid coil is a power receiving coil, the winding 12 receives the magnetic flux F and generates an alternating current.
 磁束Fは、巻線12が巻かれたコア11の両端に発生し、他のソレノイドコイルとの磁気結合により送電、受電が実施されるほか、ソレノイドコイル自身の他端にも発生する。すなわち、ソレノイドコイルは、電磁力を用いて、巻線12の中心軸に対して垂直となる方向(以下、「垂直方向」という)へ給電し、または、電磁力を用いて垂直方向から受電する。 Magnetic flux F is generated at both ends of the core 11 around which the winding 12 is wound, and is transmitted and received by magnetic coupling with other solenoid coils, and also generated at the other end of the solenoid coil itself. That is, the solenoid coil supplies power in a direction perpendicular to the central axis of the winding 12 (hereinafter referred to as “vertical direction”) using electromagnetic force, or receives power from the vertical direction using electromagnetic force. .
 なお、図1において、矢印Yは、巻線12の中心軸を示す。また、矢印Zは、矢印Yと垂直である方向を示す。すなわち、矢印Zは、上記「垂直方向」を示す。また、矢印Xは、矢印Yと直角を成し、かつ、矢印Zと直角を成す方向を示す。なお、矢印X、Y、Zが示す各方向は、図2~7においても同様に適用されるとする。 In FIG. 1, the arrow Y indicates the central axis of the winding 12. An arrow Z indicates a direction perpendicular to the arrow Y. That is, the arrow Z indicates the “vertical direction”. An arrow X indicates a direction perpendicular to the arrow Y and perpendicular to the arrow Z. Note that the directions indicated by the arrows X, Y, and Z are similarly applied to FIGS.
 図2は、非接触充電装置100を送電側とした送電装置100aと、非接触充電装置100を受電側とした受電装置100bとが、非接触充電を実行しているときの例を示す。このとき、送電装置100aと受電装置100bとの間には、図2に示すように磁束Fが発生する。これにより、送電装置100aは、巻線12の中心軸(矢印Y)に対する垂直方向(矢印Z)へ給電する。一方、受電装置100bは、巻線12の中心軸(矢印Y)に対する垂直方向(矢印Z)から受電する。 FIG. 2 shows an example when the power transmission device 100a with the contactless charging device 100 as the power transmission side and the power reception device 100b with the contactless charging device 100 as the power reception side are performing contactless charging. At this time, a magnetic flux F is generated between the power transmission device 100a and the power reception device 100b as shown in FIG. Thereby, the power transmission device 100a supplies power in a direction (arrow Z) perpendicular to the central axis (arrow Y) of the winding 12. On the other hand, the power receiving device 100b receives power from a direction (arrow Z) perpendicular to the central axis (arrow Y) of the winding 12.
 なお、図1では図示を省略しているが、ソレノイドコイルは、フェライトに対して巻線を保持し、底面部20、23に対する位置決めを行うためのボビンを有する。なお、ボビンは、図3に図示している。 In addition, although illustration is abbreviate | omitted in FIG. 1, a solenoid coil has a bobbin for hold | maintaining a coil | winding with respect to a ferrite and positioning with respect to the bottom face parts 20 and 23. FIG. The bobbin is shown in FIG.
 シールド(シールド部材の一例)は、ソレノイドコイルから発生する電磁力を遮蔽する部材であり、複数の部材として、底面部20、23および側面部21、22を有する。これら各部は、長方形の板状部材であり、電磁気遮蔽効果のある素材(例えば、金属)で構成される。これらは複数部材を接続して形成してもよいし、一体的に形成してもよい。 The shield (an example of a shield member) is a member that shields the electromagnetic force generated from the solenoid coil, and includes bottom surface portions 20 and 23 and side surface portions 21 and 22 as a plurality of members. Each of these parts is a rectangular plate-like member and is made of a material (for example, metal) having an electromagnetic shielding effect. These may be formed by connecting a plurality of members, or may be formed integrally.
 底面部20は、ソレノイドコイル(コア11)において最大面積を有する面と相対する。また、底面部20は、ソレノイドコイルを挟んで底面部23と相対し、底面部23と平行な位置関係にある。 The bottom surface portion 20 is opposed to the surface having the maximum area in the solenoid coil (core 11). The bottom surface portion 20 is opposed to the bottom surface portion 23 with the solenoid coil interposed therebetween, and is in a positional relationship parallel to the bottom surface portion 23.
 側面部21、22は、底面部20と底面部23の間に設けられる。 The side surface portions 21 and 22 are provided between the bottom surface portion 20 and the bottom surface portion 23.
 底面部23は、開口部分からソレノイドコイルが抜け落ちることを防止するための補強部材である。 The bottom surface portion 23 is a reinforcing member for preventing the solenoid coil from falling off from the opening.
 また、底面部23は、コア11において巻線12が存在する領域(以下、「巻線有り領域」という)の真上に設けられ、巻線有り領域の面と相対する。換言すれば、底面部23は、巻線12が巻かれている領域を、矢印Zで示す垂直方向へ投影した空間内に備えられる。よって、コア11において巻線12が存在しない領域(以下、「巻線無し領域」)の真上は、底面部23は設けられておらず、開口している。換言すれば、底面部23は、巻線無し領域を、矢印Zで示す垂直方向へ投影した空間内には備えない。巻線有り領域の真上は磁束がほぼ底面部23と平行になるため、底面部23は磁束とほとんど鎖交しない。 Also, the bottom surface portion 23 is provided immediately above a region where the winding 12 is present in the core 11 (hereinafter, referred to as a “winding region”), and is opposed to a surface of the winding region. In other words, the bottom surface portion 23 is provided in a space in which the region around which the winding 12 is wound is projected in the vertical direction indicated by the arrow Z. Therefore, the bottom portion 23 is not provided in the core 11 immediately above a region where the winding 12 is not present (hereinafter referred to as “no winding region”) and is open. In other words, the bottom surface portion 23 does not include a non-winding region in a space projected in the vertical direction indicated by the arrow Z. Since the magnetic flux is substantially parallel to the bottom surface portion 23 just above the winding region, the bottom surface portion 23 hardly links with the magnetic flux.
 また、シールドにおいて、底面部20の2つの短辺の真上(ソレノイドコイルの長手方向、すなわち矢印Yの延長線に対して垂直な面)は、それぞれ、開口している。 Further, in the shield, the two short sides of the bottom surface portion 20 (the longitudinal direction of the solenoid coil, that is, the surface perpendicular to the extension line of the arrow Y) are open.
 次に、非接触充電装置100の長手方向の断面について、図3を用いて説明する。図3は、非接触充電装置100の長手方向(図1のA-A’)の断面の構成例を示す図である。なお、図3は、側面部21または23の図示を省略している。 Next, a longitudinal section of the non-contact charging device 100 will be described with reference to FIG. 3 is a diagram illustrating a configuration example of a cross section of the contactless charging device 100 in the longitudinal direction (A-A ′ in FIG. 1). In FIG. 3, the side surface portion 21 or 23 is not shown.
 ソレノイドコイルは、ボビン13を用いて、底面20、23に対する位置決めが行われる。ボビン13は、巻線有り領域を囲っている。また、ボビン13、底面20、23、および側面部21、22(図示略)によって囲まれた空間には、材料14が充填される。材料14は、固形または非固形であり、非導電体かつ非磁性体である。この材料14の充填により、巻線有り領域と、底面20と、底面23と(すなわち、シールドと巻線との間)における熱結合および機械的結合を実現できる。 The solenoid coil is positioned with respect to the bottom surfaces 20 and 23 using the bobbin 13. The bobbin 13 surrounds the winding area. The space surrounded by the bobbin 13, the bottom surfaces 20 and 23, and the side surfaces 21 and 22 (not shown) is filled with the material 14. The material 14 is solid or non-solid, and is non-conductive and non-magnetic. By filling this material 14, thermal coupling and mechanical coupling in the winding region, the bottom surface 20, and the bottom surface 23 (that is, between the shield and the winding) can be realized.
 このような非接触充電装置100は、非接触受電装置として用いられる場合、車両に取り付けられる。図4は、非接触充電装置100が車両に取り付けられた例を示す側面図である。なお、図4は、側面部21および23の図示を省略している。 Such a non-contact charging apparatus 100 is attached to a vehicle when used as a non-contact power receiving apparatus. FIG. 4 is a side view showing an example in which contactless charging apparatus 100 is attached to a vehicle. In FIG. 4, the side portions 21 and 23 are not shown.
 例えば、図3の非接触充電装置100は、図4に示すように、車両200(例えばプラグインHEVまたはEV)の車体の底に取り付けられる。図4に示すように、巻線有り領域の下方には底面部23が存在するので、ソレノイドコイルの抜け落ちを防止できる。 For example, the non-contact charging device 100 of FIG. 3 is attached to the bottom of the vehicle body of a vehicle 200 (for example, a plug-in HEV or EV) as shown in FIG. As shown in FIG. 4, since the bottom surface portion 23 exists below the winding area, the solenoid coil can be prevented from falling off.
 以上説明したように、本実施の形態の非接触充電装置100は、シールドにおいて従来は開口していた部分に、補強部材として底面部23を有するので、シールドの開口部分からコイルが抜け落ちることを防止でき、かつ、不要輻射を遮蔽できる。また、その底面部23は、磁束がほぼ平行になる位置(例えば、巻線有り領域の真上)に配置されるので、底面部23と磁束が鎖交する面積を低減できる。その結果、シールドの発熱および伝送効率の低下を抑える(低減する)ことができる。 As described above, contactless charging apparatus 100 according to the present embodiment has bottom surface portion 23 as a reinforcing member in a portion that has been conventionally opened in the shield, so that the coil is prevented from falling off from the opening portion of the shield. And unnecessary radiation can be shielded. Further, since the bottom surface portion 23 is arranged at a position where the magnetic flux is substantially parallel (for example, directly above the region with the winding), the area where the bottom surface portion 23 and the magnetic flux interlink can be reduced. As a result, it is possible to suppress (reduce) the heat generation of the shield and the decrease in transmission efficiency.
 また、非接触充電装置100は、シールドにおいて、底面部20の2つの短辺の真上(ソレノイドコイルの長手方向の延長線に対して垂直な面)、および底面部23の延長上の巻線無し領域に相対する箇所(巻線無し領域を、矢印Zで示す垂直方向へ投影した空間)がそれぞれ開口している。これにより、ソレノイドコイルに出入りする磁束が鎖交するシールドが近傍にないことで、シールドの発熱および伝送効率の低下を抑えることができる。底面部20および側面部21、22の長手方向を短くすることで、筐体自体を小さくできる。 Further, the non-contact charging device 100 includes a winding on the shield that is directly above the two short sides of the bottom surface portion 20 (a surface perpendicular to the longitudinal extension of the solenoid coil) and on the extension of the bottom surface portion 23. Locations opposite to the non-existing regions (spaces in which the non-winding region is projected in the vertical direction indicated by the arrow Z) are opened. Thereby, since there is no shield in the vicinity where the magnetic flux entering and exiting the solenoid coil is interlinked, it is possible to suppress the heat generation of the shield and the decrease in transmission efficiency. By shortening the longitudinal direction of the bottom surface portion 20 and the side surface portions 21 and 22, the housing itself can be made small.
 (実施の形態2)
 本発明の実施の形態2に係る非接触充電装置について説明する。
(Embodiment 2)
A non-contact charging apparatus according to Embodiment 2 of the present invention will be described.
 まず、本実施の形態に係る非接触充電装置101の全体構成について、図5Aを参照して説明する。図5Aは、本実施の形態に係る非接触充電装置101の斜視図である。なお、図5Aにおいて、図1と同じ部分には同一符号を付し、その部分の説明は省略する。 First, the overall configuration of contactless charging apparatus 101 according to the present embodiment will be described with reference to FIG. 5A. FIG. 5A is a perspective view of contactless charging apparatus 101 according to the present embodiment. In FIG. 5A, the same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
 図5Aにおいて、非接触充電装置101は、底面部24a、24b、24c(以下、「24a~c」という)を有する点が実施の形態1と異なる。底面部24a~cは、ソレノイドコイルの抜け落ちを防止するための補強部材である。底面部24a~cは、それぞれ、同一形状の長方形状の部材であり、電磁気遮蔽効果のある素材(例えば、金属)で構成される。 5A, the non-contact charging apparatus 101 is different from the first embodiment in that it has bottom surface portions 24a, 24b, and 24c (hereinafter referred to as “24a to c”). The bottom surface portions 24a to 24c are reinforcing members for preventing the solenoid coil from falling off. The bottom surface portions 24a to 24c are rectangular members having the same shape, and are made of a material (for example, metal) having an electromagnetic shielding effect.
 また、底面部24a~cは、ソレノイドコイルを挟んで底面部20と相対し、側面部21、22のそれぞれに対して垂直に設けられる。よって、底面部24a~cは、底面部20と平行な位置関係にある。また、底面部24a~cは、巻線有り領域の真上に設けられる。換言すれば、巻線無し領域の真上は、底面部24a~cは設けられておらず、開口している。上述したように、巻線有り領域の真上は磁束がほぼ底面部24a~cと平行になるため、底面部24a~cは磁束とほとんど鎖交しない。 The bottom surface portions 24a to 24c are opposed to the bottom surface portion 20 with the solenoid coil interposed therebetween, and are provided perpendicular to the side surface portions 21 and 22, respectively. Therefore, the bottom surface portions 24a to 24c are in a positional relationship parallel to the bottom surface portion 20. Further, the bottom surface portions 24a to 24c are provided immediately above the winding area. In other words, the bottom surface portions 24a to 24c are not provided right above the no-winding region, and are open. As described above, since the magnetic flux is almost parallel to the bottom surface portions 24a to 24c just above the region with windings, the bottom surface portions 24a to 24c hardly interlink with the magnetic flux.
 また、底面部24a~cは、それぞれ、所定の間隔を空けて設けられる。すなわち、底面部24aと底面部24bの間および底面部24bと底面部24cの間は、それぞれ、開口している。開口の間隔は、例えば、ソレノイドコイルの固定位置および/または放熱構造に基づいて決定される。ソレノイドの固定位置とは、例えば、ボビンと底面部24a~cとが固定される位置である。また、放熱構造とは、例えば、底面部24a~cが材料14と接して放熱を行う位置である。 Further, the bottom surface portions 24a to 24c are provided with predetermined intervals, respectively. That is, there is an opening between the bottom surface portion 24a and the bottom surface portion 24b and between the bottom surface portion 24b and the bottom surface portion 24c, respectively. The distance between the openings is determined based on, for example, the fixed position of the solenoid coil and / or the heat dissipation structure. The fixed position of the solenoid is, for example, a position where the bobbin and the bottom surface portions 24a to 24c are fixed. The heat dissipation structure is, for example, a position where the bottom surface portions 24a to 24c are in contact with the material 14 and perform heat dissipation.
 次に、非接触充電装置101の長手方向の断面について、図5Bを用いて説明する。図5Bは、非接触充電装置101の長手方向(図5AのA-A’)の断面の構成例を示す図である。なお、図5Bは、側面部21または22の図示を省略している。 Next, a longitudinal section of the non-contact charging apparatus 101 will be described with reference to FIG. 5B. FIG. 5B is a diagram illustrating a configuration example of a cross section of the contactless charging apparatus 101 in the longitudinal direction (A-A ′ in FIG. 5A). In FIG. 5B, the side surface portion 21 or 22 is not shown.
 図5Bにおいて、底面部24a~cは、磁束Fが底面部24a~cとほぼ並行となる巻線有り領域の真上に設けられている。また、底面部24a~cは、それぞれ、所定の間隔を空けて設けられる。なお、図5Bでは、図示を省略しているが、図3と同様に、ボビン13および材料14を有する。 In FIG. 5B, the bottom surface portions 24a to 24c are provided directly above the region with winding where the magnetic flux F is substantially parallel to the bottom surface portions 24a to 24c. Further, the bottom surface portions 24a to 24c are provided with a predetermined interval, respectively. Although not shown in FIG. 5B, the bobbin 13 and the material 14 are provided as in FIG.
 以上説明した本実施の形態の非接触充電装置101は、上述した実施の形態1の作用効果に加えて、以下の作用効果を得ることができる。すなわち、非接触充電装置101は、巻線有り領域の真上において、底面部24a~cを所定の間隔を空けて備えるので、実施の形態1の底面部23と比べて、磁束と鎖交する面積を低減できる。その結果、シールドの発熱および電力伝送効率の低下をより抑えることができる。 The non-contact charging apparatus 101 of the present embodiment described above can obtain the following functions and effects in addition to the functions and effects of the first embodiment described above. That is, contactless charging apparatus 101 includes bottom surface portions 24a to 24c with a predetermined interval right above the region with windings, and thus interlinks with magnetic flux as compared with bottom surface portion 23 of the first embodiment. The area can be reduced. As a result, the heat generation of the shield and the decrease in power transmission efficiency can be further suppressed.
 (実施の形態3)
 本発明の実施の形態3に係る非接触充電装置について説明する。
(Embodiment 3)
A non-contact charging apparatus according to Embodiment 3 of the present invention will be described.
 まず、本実施の形態に係る非接触充電装置102の全体構成について、図6Aを参照して説明する。図6Aは、本実施の形態に係る非接触充電装置102の斜視図である。なお、図6Aにおいて、図1と同じ部分には同一符号を付し、その部分の説明は省略する。 First, the overall configuration of contactless charging apparatus 102 according to the present embodiment will be described with reference to FIG. 6A. FIG. 6A is a perspective view of contactless charging apparatus 102 according to the present embodiment. In FIG. 6A, the same portions as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
 図6Aにおいて、非接触充電装置102は、底面部23に放熱フィン25を有する点が実施の形態1と異なる。放熱フィン25は、底面部23の上面に複数備えられる。底面部23の上面とは、底面部23において、巻線有り領域と相対する面の裏面(巻線12と向き合う面の反対面)である。 6A, the non-contact charging apparatus 102 is different from the first embodiment in that the bottom surface portion 23 has heat radiation fins 25. A plurality of heat radiation fins 25 are provided on the upper surface of the bottom surface portion 23. The top surface of the bottom surface portion 23 is the back surface of the bottom surface portion 23 facing the region with the winding (the surface opposite to the surface facing the winding 12).
 放熱フィン25は、長方形の板状部材であり、熱伝導および放熱効果のある素材(例えば、金属)で構成される。放熱フィン25は、その長手方向がソレノイドコイルの長手方向に沿って配置される。また、放熱フィン25は、それぞれ、底面部23の長手方向において、所定の間隔を空けて配置される。巻線有り領域の真上は磁束がほぼ放熱フィン25と平行になるため、放熱フィン25は磁束とほとんど鎖交しない。 The heat radiating fins 25 are rectangular plate-like members, and are made of a material (for example, metal) having heat conduction and heat radiating effects. The longitudinal direction of the radiation fin 25 is arranged along the longitudinal direction of the solenoid coil. In addition, the radiation fins 25 are arranged at predetermined intervals in the longitudinal direction of the bottom surface portion 23. Since the magnetic flux is almost parallel to the heat radiating fins 25 just above the region with the windings, the heat radiating fins 25 hardly interlink with the magnetic flux.
 次に、非接触充電装置102の長手方向の断面について、図6Bを用いて説明する。図6Bは、非接触充電装置102の長手方向(図6AのA-A’)の断面の構成例を示す図である。なお、図6Bは、側面部21または22の図示を省略している。 Next, a longitudinal section of the non-contact charging apparatus 102 will be described with reference to FIG. 6B. 6B is a diagram illustrating a configuration example of a cross section of the non-contact charging device 102 in the longitudinal direction (A-A ′ in FIG. 6A). In FIG. 6B, illustration of the side surface portion 21 or 22 is omitted.
 図6Bにおいて、底面部23および放熱フィン25は、磁束Fがほぼ底面部23および放熱フィン25と平行となる巻線有り領域の真上に設けられている。なお、図6Bでは、図示を省略しているが、図3と同様に、ボビンおよび材料14を有する。この場合、材料14は、熱伝導性を有し、巻線12から底面部23へ熱を伝導する。そして、底面部23へ伝導された熱は、放熱フィン25から放熱される。 6B, the bottom surface portion 23 and the radiating fin 25 are provided directly above the region with winding where the magnetic flux F is substantially parallel to the bottom surface portion 23 and the radiating fin 25. Although not shown in FIG. 6B, the bobbin and the material 14 are provided as in FIG. In this case, the material 14 has thermal conductivity and conducts heat from the winding 12 to the bottom surface portion 23. Then, the heat conducted to the bottom surface portion 23 is radiated from the radiation fins 25.
 なお、本実施の形態において、放熱フィン25は、その長手方向の形状を長方形として説明したが、これに限定されず、例えば台形状または円弧状であってもよいが、放熱フィン25は、巻線12の中心軸(矢印Y)と平行であることが好ましい。 In the present embodiment, the radiating fin 25 is described as having a rectangular shape in the longitudinal direction. However, the shape is not limited to this, and for example, a trapezoidal shape or an arc shape may be used. It is preferably parallel to the central axis (arrow Y) of the line 12.
 以上説明した本実施の形態の非接触充電装置102は、上述した実施の形態1の作用効果に加えて、以下の作用効果を得ることができる。すなわち、非接触充電装置102は、底面部23の上面に複数の放熱フィン25を備えるので、シールドからの放熱、すなわちコイルの放熱を効率的に実現できる。このとき、放熱フィン25が巻線12の中心軸と平行であると、放熱フィンは磁束とほとんど鎖交しないため、放熱フィン自体の発熱は少なく、さらに、放熱フィンによる電力伝送効率の低下は少ない。 The non-contact charging apparatus 102 of the present embodiment described above can obtain the following functions and effects in addition to the functions and effects of the first embodiment described above. That is, since the non-contact charging device 102 includes the plurality of heat radiation fins 25 on the upper surface of the bottom surface portion 23, it is possible to efficiently realize heat radiation from the shield, that is, heat radiation of the coil. At this time, if the radiating fin 25 is parallel to the central axis of the winding 12, the radiating fin hardly interlinks with the magnetic flux, so that the radiating fin itself generates little heat, and further, the power transmission efficiency is not lowered by the radiating fin. .
 (実施の形態4)
 本発明の実施の形態4に係る非接触充電装置について説明する。
(Embodiment 4)
A non-contact charging apparatus according to Embodiment 4 of the present invention will be described.
 まず、本実施の形態に係る非接触充電装置103の全体構成について、図7を参照して説明する。図7は、本実施の形態に係る非接触充電装置103の斜視図である。なお、図7において、図1と同じ部分には同一符号を付し、その部分の説明は省略する。 First, the overall configuration of contactless charging apparatus 103 according to the present embodiment will be described with reference to FIG. FIG. 7 is a perspective view of contactless charging apparatus 103 according to the present embodiment. In FIG. 7, the same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
 図7において、非接触充電装置103は、側面部26、27の長さが実施の形態1と異なる。すなわち、側面部26、27の長辺は、底面部23の短辺と同じ長さである。底面部23の短辺は、巻線有り領域に対応するので、側面部26、27は、巻線有り領域の真横だけに配置される。換言すれば、側面部26、27は、巻線12の中心軸(矢印Y)および垂直方向(矢印Z)の両方に対して直角となる方向(矢印X)へ投影した空間内に備えられる。 7, the non-contact charging apparatus 103 is different from the first embodiment in the length of the side surfaces 26 and 27. That is, the long sides of the side surface portions 26 and 27 are the same length as the short side of the bottom surface portion 23. Since the short side of the bottom surface portion 23 corresponds to a region with a winding, the side surfaces 26 and 27 are arranged only beside the region with a winding. In other words, the side surfaces 26 and 27 are provided in a space projected in a direction (arrow X) perpendicular to both the central axis (arrow Y) and the vertical direction (arrow Z) of the winding 12.
 以上説明した本実施の形態の非接触充電装置103は、上述した実施の形態1の作用効果に加えて、以下の作用効果を得ることができる。すなわち、非接触充電装置103は、側面部26、27の長辺の長さが底面部23の短辺の長さと同じであるので、底面部20の長手方向(長辺、すなわち矢印Y方向)を短くすることで筐体自体を小さくできる。 The non-contact charging apparatus 103 of the present embodiment described above can obtain the following functions and effects in addition to the functions and effects of the first embodiment described above. That is, in the non-contact charging device 103, since the length of the long sides of the side surface portions 26 and 27 is the same as the length of the short side of the bottom surface portion 23, the longitudinal direction of the bottom surface portion 20 (long side, that is, the arrow Y direction). The housing itself can be made smaller by shortening.
 以上、本発明の各実施の形態について説明したが、上記説明は一例であり、種々の変形が可能である。また、各実施の形態の構成は、可能な範囲で適宜組み合わせてもよい。 As mentioned above, although each embodiment of this invention was described, the said description is an example and various deformation | transformation are possible. Further, the configurations of the respective embodiments may be appropriately combined within a possible range.
 2013年3月21日出願の特願2013-058004の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2013-058004 filed on March 21, 2013 is incorporated herein by reference.
 本発明は、例えば、コイルからの不要輻射を遮蔽するシールドを備えた非接触充電装置に適用することができる。 The present invention can be applied to, for example, a non-contact charging device including a shield that shields unnecessary radiation from a coil.
 11 コア
 12 巻線
 13 ボビン
 14 材料
 20、23、24a、24b、24c 底面部
 21、22、26、27 側面部
 25 放熱フィン
 100 非接触充電装置
 200 車両
                                                                                              
DESCRIPTION OF SYMBOLS 11 Core 12 Winding 13 Bobbin 14 Material 20, 23, 24a, 24b, 24c Bottom part 21, 22, 26, 27 Side part 25 Radiation fin 100 Non-contact charging device 200 Vehicle

Claims (8)

  1.  巻線を有するソレノイドコイルと、
     前記ソレノイドコイルから発生する電磁力を遮蔽するシールド部材と、を備え、
     前記ソレノイドコイルは、電磁力を用いて前記巻線の中心軸に対して垂直方向へ給電し、または、電磁力を用いて前記垂直方向から受電するものであり、
     前記シールド部材は、前記巻線のある領域を前記垂直方向へ投影した空間内に備えられる、
     非接触充電装置。
    A solenoid coil having windings;
    A shielding member that shields electromagnetic force generated from the solenoid coil,
    The solenoid coil feeds power in a direction perpendicular to the central axis of the winding using electromagnetic force, or receives power from the vertical direction using electromagnetic force,
    The shield member is provided in a space in which a region with the winding is projected in the vertical direction.
    Non-contact charging device.
  2.  前記ソレノイドコイルは、前記巻線が巻かれたコア部材をさらに有し、
     前記シールド部材は、前記コア部材の前記巻線が巻かれていない領域を、前記垂直方向へ投影した空間内には備えない、
     請求項1記載の非接触充電装置。
    The solenoid coil further includes a core member around which the winding is wound,
    The shield member does not include a region in which the winding of the core member is not wound in a space projected in the vertical direction.
    The contactless charging apparatus according to claim 1.
  3.  前記シールド部材と前記巻線との間を非導電体かつ非磁性体の材料により結合した、
     請求項1記載の非接触充電装置。
    The shield member and the winding are coupled by a non-conductive and non-magnetic material,
    The contactless charging apparatus according to claim 1.
  4.  前記シールド部材は、複数部材にて形成される、
     請求項1記載の非接触充電装置。
    The shield member is formed of a plurality of members.
    The contactless charging apparatus according to claim 1.
  5.  前記シールド部材は、
     前記巻線と相対する面の反対面に放熱フィンを有する、
     請求項1記載の非接触充電装置。
    The shield member is
    A heat dissipating fin on the opposite surface of the surface facing the winding;
    The contactless charging apparatus according to claim 1.
  6.  前記放熱フィンは、前記巻線の中心軸と平行に配置される、
     請求項5記載の非接触充電装置。
    The radiating fin is disposed in parallel with the central axis of the winding,
    The non-contact charging device according to claim 5.
  7.  前記シールド部材は、前記コア部材の前記巻線が巻かれている部分を、前記巻線の中心軸および前記垂直方向の両方に対して直角となる方向へ投影した空間内に備えられる、
     請求項2記載の非接触充電装置。
    The shield member is provided in a space in which a portion of the core member around which the winding is wound is projected in a direction perpendicular to both the central axis and the vertical direction of the winding.
    The non-contact charging device according to claim 2.
  8.  前記ソレノイドコイルが送電コイルとして機能する非接触送電装置、または、前記ソレノイドコイルが受電コイルとして機能する非接触受電装置、のいずれかである、
     請求項1記載の非接触充電装置。
                                                                                                  
    The non-contact power transmission device in which the solenoid coil functions as a power transmission coil, or the non-contact power reception device in which the solenoid coil functions as a power reception coil.
    The contactless charging apparatus according to claim 1.
PCT/JP2014/001264 2013-03-21 2014-03-07 Contactless charging device WO2014147985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-058004 2013-03-21
JP2013058004A JP2014183689A (en) 2013-03-21 2013-03-21 Non-contact charging system

Publications (1)

Publication Number Publication Date
WO2014147985A1 true WO2014147985A1 (en) 2014-09-25

Family

ID=51579686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001264 WO2014147985A1 (en) 2013-03-21 2014-03-07 Contactless charging device

Country Status (2)

Country Link
JP (1) JP2014183689A (en)
WO (1) WO2014147985A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019096737A1 (en) * 2017-11-14 2019-05-23 Bayerische Motoren Werke Aktiengesellschaft Coil unit for an inductive charging system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136568A1 (en) * 2015-02-25 2016-09-01 株式会社村田製作所 Circuit device and power transmission system
JP6421746B2 (en) * 2015-12-22 2018-11-14 トヨタ自動車株式会社 Power transmission equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099644A (en) * 2010-11-02 2012-05-24 Showa Aircraft Ind Co Ltd Variable inductance type non-contact power supply device
WO2012099170A1 (en) * 2011-01-19 2012-07-26 株式会社 テクノバ Contactless power transfer system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099644A (en) * 2010-11-02 2012-05-24 Showa Aircraft Ind Co Ltd Variable inductance type non-contact power supply device
WO2012099170A1 (en) * 2011-01-19 2012-07-26 株式会社 テクノバ Contactless power transfer system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019096737A1 (en) * 2017-11-14 2019-05-23 Bayerische Motoren Werke Aktiengesellschaft Coil unit for an inductive charging system

Also Published As

Publication number Publication date
JP2014183689A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
JP5467569B2 (en) Non-contact power feeding device
CN107408453B (en) Coil unit for non-contact power transmission
JP6380058B2 (en) Coil unit
CN110226209B (en) Coil device
JP5208187B2 (en) Reactor device
US11328852B2 (en) Coil device
JP2011181856A (en) Assembly of induction apparatus
WO2014142233A1 (en) Coil unit and non-contact power supply apparatus
US11398338B2 (en) Reactor
US10840014B2 (en) Coil unit, and power transmitting device, power receiving device and wireless power transmission system using the coil unit
US10804709B2 (en) Coil unit, and power transmitting device, power receiving device and wireless power transmission system using the coil unit
US10315527B2 (en) Power reception coil device and wireless power transfer system
CN109309410B (en) Coil unit, and power supply device, power receiving device, and wireless power transmission system using same
WO2014147985A1 (en) Contactless charging device
WO2012102008A1 (en) Coil unit used in noncontact electric-power-supplying system
JP2018037480A (en) Non-contact power supply device and power transmission coil unit for non-contact power supply device
US8907759B2 (en) Magnetic core and induction device
JP2014192359A (en) Reactor
JP6856148B2 (en) Coil unit and power transmission device, power receiving device and wireless power transmission system using it
WO2014147994A1 (en) Shield, non-contact power transmission apparatus, and non-contact power reception apparatus
JP6285810B2 (en) Coil unit in non-contact power feeder
JP2015015417A (en) Power transmitting or power receiving device
JP6035155B2 (en) Coil device for contactless power transformer
JP2014199835A (en) Inductor
JP7079571B2 (en) Reactor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14768404

Country of ref document: EP

Kind code of ref document: A1