WO2019207689A1 - In-vehicle battery charging device - Google Patents

In-vehicle battery charging device Download PDF

Info

Publication number
WO2019207689A1
WO2019207689A1 PCT/JP2018/016819 JP2018016819W WO2019207689A1 WO 2019207689 A1 WO2019207689 A1 WO 2019207689A1 JP 2018016819 W JP2018016819 W JP 2018016819W WO 2019207689 A1 WO2019207689 A1 WO 2019207689A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
inductor
heat radiating
vehicle battery
battery
Prior art date
Application number
PCT/JP2018/016819
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 青木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/016819 priority Critical patent/WO2019207689A1/en
Priority to JP2020515375A priority patent/JP6727475B2/en
Publication of WO2019207689A1 publication Critical patent/WO2019207689A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • This invention relates to an in-vehicle battery charger.
  • a vehicle such as an electric vehicle or a plug-in hybrid vehicle has a traveling battery that outputs DC high-voltage power that is mainly used as a power source for driving power, and a DC low voltage that is mainly used as a power source for operating on-vehicle electrical equipment. And an auxiliary battery that outputs voltage power.
  • the voltage output from the traveling battery is stepped down by a DC-DC converter, and the auxiliary battery is charged using the power of the traveling battery.
  • a current flows from the traveling battery to the DC-DC converter, and this current generates magnetic noise.
  • a filter is generally provided. However, the generated magnetic noise increases with the increase in the voltage and current of the power output from the battery for traveling. Further technical studies on the filter section are being conducted.
  • Patent Literature 1 discloses an input terminal, an output terminal, a power conversion unit that converts a DC input voltage applied to the input terminal into a DC output voltage of a predetermined level and outputs the DC output voltage to the output terminal, and the input terminal and power
  • a power conversion unit and a noise filter comprising a noise filter unit connected between the conversion unit, a shield plate having an insulator on both sides, a power conversion unit, a noise filter unit, and a metal case for housing the shield plate
  • the DC-DC converter is disclosed in which the unit is stacked via a shield plate, and the negative output side of the power conversion unit, the shield plate, and the metal case are electrically connected.
  • the filter unit generally uses an inductor wound around a magnetic core in order to suppress magnetic noise.
  • the Joule heat generated by the coil also increases.
  • the magnetic material loses its characteristics as a magnetic material when the magnetic material itself exceeds a certain temperature. Therefore, if the temperature of the magnetic core increases due to the Joule heat generated by the coil, the inductance of the inductor decreases, and magnetic noise cannot be sufficiently suppressed.
  • the DC-DC converter disclosed in Patent Document 1 cannot sufficiently dissipate the Joule heat generated by the coil, so the temperature of the magnetic core rises and the performance of suppressing magnetic noise due to the inductor cannot be maintained. There was a problem.
  • An object of the present invention is to solve the above-mentioned problem, and to provide an in-vehicle battery charging device capable of suppressing the temperature rise of a magnetic core and maintaining the performance of suppressing magnetic noise caused by an inductor. It is said.
  • An in-vehicle battery charging device includes a board having a hole, a heat radiating part facing the board, a heat radiating member facing the hole and arranged on the board side of the heat radiating part, and an auxiliary battery.
  • a filter unit provided between a voltage drop unit for stepping down a voltage output from the traveling battery and a traveling battery when charging, having an inductor, fixed to the substrate, and heat generated in the inductor Includes a filter part that radiates heat to the heat radiating part through the hole part and the heat radiating member.
  • the present invention it is possible to suppress the temperature rise of the magnetic core and maintain the performance of suppressing magnetic noise caused by the inductor.
  • FIG. 3 is a block diagram showing an example of a functional block configuration of the in-vehicle battery charging device according to Embodiment 1.
  • FIG. It is an outline figure showing an example of composition which looked at a substrate in an in-vehicle battery charging device concerning Embodiment 1 from a direction which intersects perpendicularly with a substrate surface.
  • FIG. 3 is an external view showing an example of a configuration in which the filter unit in the in-vehicle battery charging device according to Embodiment 1 is fixed to the substrate shown in FIG. 2 as viewed from a direction perpendicular to the substrate surface.
  • FIG. 4 is an external view showing an example of the configuration of the in-vehicle battery charging device according to the first embodiment when a cross section taken along line XY shown in FIG.
  • FIG. 5A is a block diagram illustrating an example of functional blocks of an in-vehicle battery charging apparatus in which a conversion unit is added to the in-vehicle battery charging apparatus according to Embodiment 1.
  • FIG. 5B is an outline view illustrating an example of an arrangement relationship among the conversion unit, the step-down unit, and the filter unit in the in-vehicle battery charging device illustrated in FIG. 5A.
  • FIG. 1 is a block diagram showing an example of the functional block configuration of the in-vehicle battery charging device 1 according to the first embodiment. With reference to FIG. 1, the functional block configuration of the in-vehicle battery charger 1 according to the first embodiment will be described.
  • the in-vehicle battery charging device 1 includes a step-down unit 22 and a filter unit 3.
  • the step-down unit 22 is a circuit that steps down the voltage output from the traveling battery 98 when the auxiliary battery 99 is charged.
  • the step-down unit 22 steps down the voltage output from the traveling battery 98 and charges the auxiliary battery 99 by, for example, a switching method represented by a chopper method.
  • the traveling battery 98 is, for example, a high-voltage secondary battery having an output voltage of about 400 volts, which is composed of a lithium ion battery.
  • the traveling battery 98 is a battery that supplies electric power for driving a motor mainly when the vehicle travels.
  • the auxiliary battery 99 is, for example, a low-voltage secondary battery having an output voltage of about 12 volts, which is composed of a lead storage battery.
  • the auxiliary battery 99 is a battery that mainly supplies electric power for operating on-vehicle electrical equipment such as a hybrid system and a navigation system.
  • the filter unit 3 is a magnetic noise filter that is provided between the step-down unit 22 and the traveling battery 98 and that reduces magnetic noise generated when the voltage output from the traveling battery 98 is stepped down. .
  • the filter unit 3 has two coils 33, and the two coils 33 form a common mode choke coil 34 described later.
  • the step-down unit 22 and the filter unit 3 are mounted on a substrate 2 shown in FIG.
  • the filter unit 3 includes a Y capacitor 35 and an X capacitor 37 mounted on the substrate 2 in order to remove noise.
  • FIG. 2 is an outline view showing an example of the configuration of the substrate 2 in the in-vehicle battery charging device 1 according to Embodiment 1 as viewed from the direction perpendicular to the substrate surface.
  • FIG. 3 shows an example of a configuration in which the filter unit 3 in the in-vehicle battery charging device 1 according to the first embodiment is fixed to the substrate 2 shown in FIG. 2 as viewed from the direction orthogonal to the substrate surface.
  • FIG. 4 is an outline view showing an example of the configuration of the in-vehicle battery charging device 1 according to the first embodiment when the cross section along the line segment XY shown in FIG. The configuration of the in-vehicle battery charging device 1 according to the first embodiment will be described with reference to FIGS.
  • the in-vehicle battery charging device 1 includes a substrate 2, a heat radiating part 11, a heat radiating member 12, a filter part 3, a container 13, a second heat radiating member 14, and a step-down part 22.
  • the step-down unit 22 is mounted on the substrate 2 on the right side of the drawings in FIGS. 3 and 4, for example.
  • the substrate 2 is a wiring substrate that performs electrical wiring.
  • the substrate 2 has a hole 21.
  • the heat radiating part 11 faces the substrate 2.
  • the heat radiating part 11 is, for example, a part of an aluminum die-cast case that accommodates the substrate 2.
  • the heat radiating part 11 releases a part of the heat generated inside the in-vehicle battery charger 1 to the outside.
  • the heat radiating unit 11 may be water-cooled by cooling water flowing in the cooling water channel 19.
  • the heat radiating member 12 is, for example, a heat radiating sheet that faces the hole portion 21 and is disposed on the substrate 2 side of the heat radiating portion 11.
  • the heat dissipation member 12 is in close contact with the heat dissipation portion 11.
  • the heat generated by the filter unit 3 is conducted to the heat radiating unit 11 through the heat radiating member 12 and is radiated by the heat radiating unit 11.
  • the filter unit 3 includes an inductor 31 including a coil 33 and a magnetic core 32.
  • the coil 33 forms a common mode choke coil 34.
  • the common mode choke coil 34 has a doughnut-shaped magnetic core 32 as a core, a conductive wire 36 wound around one portion of the magnetic core 32, and other portions facing the part of the magnetic core 32. It has the coil
  • Each coil 33 is wound in such a direction that the directions of magnetic flux generated by the electromagnetic induction phenomenon when currents flow through the respective coils 33 simultaneously are opposite to each other.
  • the filter unit 3 is fixed to the substrate 2 with screws, bolts, or the like, and heat generated in the inductor 31 is radiated to the heat radiating unit 11 through the hole 21 and the heat radiating member 12 of the substrate 2.
  • the vehicle-mounted battery charging device 1 can be reduced in size in the direction orthogonal to the substrate surface. Since the in-vehicle battery charger 1 is often disposed under a vehicle seat or a rear cargo room, downsizing in a direction orthogonal to the board surface is particularly effective.
  • the container 13 is a non-conductive member that houses a part of the inductor 31 therein.
  • the container 13 is made of ceramics having high thermal conductivity such as aluminum nitride and silicon carbide. Further, the container 13 is filled with a second heat radiating member 14.
  • the 2nd heat radiating member 14 is formed, for example with silicone with high heat conductivity.
  • the second heat radiating member 14 is in contact with the inductor 31 and the container 13 accommodated in the container 13. Since a large-capacity current flows through the coil 33, it is common to use a thick conductive wire 36 having a wire diameter of, for example, 1.6 mm, as the conductive wire 36 used for the coil 33. It is difficult to obtain a sufficient contact surface between them.
  • the heat generated in the inductor 31 is reliably transmitted to the container 13 via the second heat radiating member 14.
  • the second heat radiating member 14 is made of silicone, the vibration resistance is improved, and the heat generated in the inductor 31 is stably passed through the second heat radiating member 14 even when the vehicle is traveling. Will be transmitted reliably.
  • the container 13 includes a flange portion 15.
  • the flange portion 15 is fixed to the substrate 2 in a state where the outside of the container 13 and the heat dissipation member 12 are in contact with each other.
  • the vibration resistance is improved and the filter unit 3 can be prevented from being peeled off from the substrate 2.
  • the heat generated in the inductor 31 can be reliably transmitted to the heat radiating portion 11 via the second heat radiating member 14, the container 13, and the heat radiating member 12 even when the vehicle is traveling. The heat is released.
  • the Y capacitor 35 is originally mounted on the substrate 2 between the inductor 31 and the heat radiating part 11. By configuring in this way, the inductor 31, the heat radiating part 11, And the noise filter effect of the inductor 31 is improved.
  • the flange portion 15 of the container 13 is not an essential configuration.
  • the container 13 may be fixed to the heat radiating part 11 with the heat radiating member 12 disposed in the heat radiating part 11 interposed therebetween without providing a flange for fixing to the substrate 2.
  • the container 13 and the second fixing member are not essential components.
  • the heat radiating member 12 disposed in the heat radiating portion 11 may directly contact the inductor 31.
  • a part of the inductor 31 does not need to protrude toward the heat radiating part 11 through the hole 21 of the substrate 2. If the structure is such that heat generated in the inductor 31 is radiated to the heat radiating part 11 through the hole 21 of the substrate 2 and the heat radiating member 12, a part of the inductor 31 does not necessarily protrude from the hole 21 of the substrate 2. It doesn't matter.
  • the on-vehicle battery charging device 1 is disposed on the substrate 2 side of the heat dissipation portion 11, the substrate 2 having the hole portion 21, the heat dissipation portion 11 facing the substrate 2, and the hole portion 21.
  • a filter unit 3 provided between wires of the heat dissipating member 12, a step-down unit 22 that steps down the voltage output from the traveling battery 98 when charging the auxiliary battery 99, and the traveling battery 98;
  • the filter unit 3 includes an inductor 31, is fixed to the substrate 2, and heat generated in the inductor 31 is radiated to the heat radiating unit 11 through the hole 21 and the heat radiating member 12.
  • the in-vehicle battery charging device 1 may include a conversion unit 23 that converts a voltage output from the AC power source 97 into a DC voltage when the traveling battery 98 is charged.
  • FIG. 5A is a block diagram illustrating an example of functional blocks of the in-vehicle battery charging apparatus 1 in which a conversion unit 23 is added to the in-vehicle battery charging apparatus 1 according to Embodiment 1 described so far.
  • an AC power source 97 is a household power source having an AC voltage of 100 to 220 volts, for example.
  • the AC power source 97 is not limited to a household power source, but is driven by the rotation of a motor driven by chemical energy such as gasoline or light oil when the vehicle travels. Or an alternator.
  • the converter 23 converts the AC voltage output from the AC power source 97 into a DC voltage, and charges the traveling battery 98.
  • FIG. 5B is an outline view showing an example of an arrangement relationship among the conversion unit 23, the step-down unit 22 and the filter unit 3 in the in-vehicle battery charging device 1 shown in FIG. 5A.
  • the in-vehicle battery charging device 1 includes a conversion unit 23, a step-down unit 22, and a filter unit 3 that are stacked.
  • the inside of the in-vehicle battery charging device 1 includes a converter unit 25 and a step-down unit storage unit between the converter 23, the step-down unit 22 and the filter unit 3 by the heat radiating unit 11. 24 may be partitioned.
  • the in-vehicle battery charging device 1 is often disposed under a vehicle seat or a rear cargo room, particularly when the conversion unit 23, the step-down unit 22, and the filter unit 3 are stacked and disposed, It is necessary to reduce the size in the direction in which the portion 22 and the filter portion 3 are laminated, and a structure in which a part of the inductor 31 protrudes toward the heat radiating portion 11 through the hole portion 21 of the substrate 2 is effective.
  • the present invention can be applied to an in-vehicle battery charger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This in-vehicle battery charging device (1) is provided with: a substrate (2) having a hole (21); a heat dissipating portion (11) facing the substrate (2); a heat dissipating member (12) facing the hole (21) and disposed on the substrate (2) side of the heat dissipating portion (11); and a filter unit (3) provided in the wiring between a step-down unit (22), which steps down a voltage output by a travel battery (98) when charging an accessory battery (99), and the travel battery (98). The filter unit (3) has an inductor (31) and is fixed to the substrate (2), wherein heat generated in the inductor (31) is dissipated to the heat dissipating portion (11) via the hole (21) and the heat dissipating member (12).

Description

車載用バッテリ充電装置In-vehicle battery charger
 この発明は、車載用バッテリ充電装置に関するものである。 This invention relates to an in-vehicle battery charger.
 電気自動車、プラグインハイブリッド車等の車両は、主に動力駆動用の電源として用いられる直流高電圧の電力を出力する走行用バッテリと、主に車載用電装機器作動用の電源として用いられる直流低電圧の電力を出力する補機用バッテリと、を搭載している。このような車両では、走行用バッテリが出力する電圧をDC-DCコンバータにより降圧し、走行用バッテリの電力を用いて補機用バッテリを充電することが行われている。補機用バッテリを充電する際、走行用バッテリからDC-DCコンバータに電流が流れるが、この電流により磁気ノイズが発生する。この磁気ノイズを抑制するためにフィルタを設けることが一般的に行われているが、走行用バッテリが出力する電力の高電圧化、大電流化等に伴い、発生する磁気ノイズが増大しており、フィルタ部の更なる技術検討が行われている。 A vehicle such as an electric vehicle or a plug-in hybrid vehicle has a traveling battery that outputs DC high-voltage power that is mainly used as a power source for driving power, and a DC low voltage that is mainly used as a power source for operating on-vehicle electrical equipment. And an auxiliary battery that outputs voltage power. In such a vehicle, the voltage output from the traveling battery is stepped down by a DC-DC converter, and the auxiliary battery is charged using the power of the traveling battery. When charging the auxiliary battery, a current flows from the traveling battery to the DC-DC converter, and this current generates magnetic noise. In order to suppress this magnetic noise, a filter is generally provided. However, the generated magnetic noise increases with the increase in the voltage and current of the power output from the battery for traveling. Further technical studies on the filter section are being conducted.
 例えば、特許文献1には、入力端子と、出力端子と、入力端子に印加された直流入力電圧を所定レベルの直流出力電圧に変換して出力端子に出力する電力変換部と、入力端子と電力変換部との間に接続されたノイズフィルタ部と、両面に絶縁体を有したシールド板と、電力変換部とノイズフィルタ部とシールド板を収納する金属ケースとを備え、電力変換部とノイズフィルタ部とはシールド板を介して積層され、電力変換部の負極側出力端とシールド板と金属ケースとが電気的に接続されたDC-DCコンバータが開示されている。 For example, Patent Literature 1 discloses an input terminal, an output terminal, a power conversion unit that converts a DC input voltage applied to the input terminal into a DC output voltage of a predetermined level and outputs the DC output voltage to the output terminal, and the input terminal and power A power conversion unit and a noise filter comprising a noise filter unit connected between the conversion unit, a shield plate having an insulator on both sides, a power conversion unit, a noise filter unit, and a metal case for housing the shield plate The DC-DC converter is disclosed in which the unit is stacked via a shield plate, and the negative output side of the power conversion unit, the shield plate, and the metal case are electrically connected.
特開2016-36219号公報JP 2016-36219 A
 フィルタ部は、磁気ノイズを抑制するために磁性体コアにコイル巻き付けたインダクタを用いることが一般的である。ところが、コイルに流れる電流の大電流化に伴い、コイルが発するジュール熱も増大する。磁性体素材は、磁性体素材自体が一定の温度を超えると磁性体としての特性を失う。したがって、コイルが発するジュール熱により磁性体コアの温度が上昇してしまうと、インダクタのインダクタンスが下がり、十分に磁気ノイズを抑制することができなくなる。
 特許文献1に開示されたDC-DCコンバータは、コイルが発するジュール熱を十分に放熱することができないため、磁性体コアの温度が上昇してしまい、インダクタによる磁気ノイズを抑制する性能を維持できないという課題があった。
The filter unit generally uses an inductor wound around a magnetic core in order to suppress magnetic noise. However, as the current flowing through the coil increases, the Joule heat generated by the coil also increases. The magnetic material loses its characteristics as a magnetic material when the magnetic material itself exceeds a certain temperature. Therefore, if the temperature of the magnetic core increases due to the Joule heat generated by the coil, the inductance of the inductor decreases, and magnetic noise cannot be sufficiently suppressed.
The DC-DC converter disclosed in Patent Document 1 cannot sufficiently dissipate the Joule heat generated by the coil, so the temperature of the magnetic core rises and the performance of suppressing magnetic noise due to the inductor cannot be maintained. There was a problem.
 この発明は、上述の課題を解決するためのもので、磁性体コアの温度上昇を抑え、インダクタによる磁気ノイズを抑制する性能を維持することが可能な車載用バッテリ充電装置を提供することを目的としている。 An object of the present invention is to solve the above-mentioned problem, and to provide an in-vehicle battery charging device capable of suppressing the temperature rise of a magnetic core and maintaining the performance of suppressing magnetic noise caused by an inductor. It is said.
 この発明に係る車載用バッテリ充電装置は、孔部を有する基板と、基板に対向する放熱部と、孔部に対向し、放熱部の基板側に配置された放熱部材と、補機用バッテリを充電する際に走行用バッテリが出力する電圧を降圧する降圧部と、走行用バッテリとの配線間に備えられたフィルタ部であって、インダクタを有し、基板に固定され、インダクタにおいて発した熱が孔部と放熱部材とを介して放熱部に放熱されるフィルタ部と、を備えたものである。 An in-vehicle battery charging device according to the present invention includes a board having a hole, a heat radiating part facing the board, a heat radiating member facing the hole and arranged on the board side of the heat radiating part, and an auxiliary battery. A filter unit provided between a voltage drop unit for stepping down a voltage output from the traveling battery and a traveling battery when charging, having an inductor, fixed to the substrate, and heat generated in the inductor Includes a filter part that radiates heat to the heat radiating part through the hole part and the heat radiating member.
 この発明によれば、磁性体コアの温度上昇を抑え、インダクタによる磁気ノイズを抑制する性能を維持できる。 According to the present invention, it is possible to suppress the temperature rise of the magnetic core and maintain the performance of suppressing magnetic noise caused by the inductor.
実施の形態1に係る車載用バッテリ充電装置の機能ブロックの構成の一例を示したブロック図である。3 is a block diagram showing an example of a functional block configuration of the in-vehicle battery charging device according to Embodiment 1. FIG. 実施の形態1に係る車載用バッテリ充電装置における基板を、基板面と直行する方向から見た構成の一例を示す外形図である。It is an outline figure showing an example of composition which looked at a substrate in an in-vehicle battery charging device concerning Embodiment 1 from a direction which intersects perpendicularly with a substrate surface. 実施の形態1に係る車載用バッテリ充電装置におけるフィルタ部が図2に示した基板に固定された様を、基板面と直行する方向から見た構成の一例を示す外形図である。FIG. 3 is an external view showing an example of a configuration in which the filter unit in the in-vehicle battery charging device according to Embodiment 1 is fixed to the substrate shown in FIG. 2 as viewed from a direction perpendicular to the substrate surface. 実施の形態1に係る車載用バッテリ充電装置を、図3に示した線分X-Yにおける断面を矢印Zの方から見た構成の一例を示す外形図である。FIG. 4 is an external view showing an example of the configuration of the in-vehicle battery charging device according to the first embodiment when a cross section taken along line XY shown in FIG. 図5Aは、実施の形態1に係る車載用バッテリ充電装置に、変換部を追加した車載用バッテリ充電装置の機能ブロックの一例を示すブロック図である。図5Bは、図5Aに示した車載用バッテリ充電装置において、変換部と、降圧部及びフィルタ部と、の配置関係の一例を示す外形図である。FIG. 5A is a block diagram illustrating an example of functional blocks of an in-vehicle battery charging apparatus in which a conversion unit is added to the in-vehicle battery charging apparatus according to Embodiment 1. FIG. 5B is an outline view illustrating an example of an arrangement relationship among the conversion unit, the step-down unit, and the filter unit in the in-vehicle battery charging device illustrated in FIG. 5A.
 以下、この発明の実施の形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
実施の形態1.
 図1は、実施の形態1に係る車載用バッテリ充電装置1の機能ブロックの構成の一例を示したブロック図である。
 図1を用いて、実施の形態1に係る車載用バッテリ充電装置1の機能ブロックの構成について説明する。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing an example of the functional block configuration of the in-vehicle battery charging device 1 according to the first embodiment.
With reference to FIG. 1, the functional block configuration of the in-vehicle battery charger 1 according to the first embodiment will be described.
 車載用バッテリ充電装置1は、降圧部22とフィルタ部3とを備える。 The in-vehicle battery charging device 1 includes a step-down unit 22 and a filter unit 3.
 降圧部22は、補機用バッテリ99を充電する際に走行用バッテリ98が出力する電圧を降圧する回路である。降圧部22は、例えば、チョッパ方式に代表されるスイッチング方式により、走行用バッテリ98が出力する電圧を降圧して補機用バッテリ99を充電する。
 走行用バッテリ98は、例えば、リチウムイオンバッテリで構成された出力電圧が約400ボルトの高圧二次電池である。走行用バッテリ98は、主に車両が走行する際にモータを駆動させるための電力を供給するバッテリである。
 補機用バッテリ99は、例えば、鉛蓄電池で構成された出力電圧が約12ボルトの低圧二次電池である。補機用バッテリ99は、主にハイブリッドシステム、ナビゲーションシステム等の車載用電装機器を動作させるための電力を供給するバッテリである。
The step-down unit 22 is a circuit that steps down the voltage output from the traveling battery 98 when the auxiliary battery 99 is charged. The step-down unit 22 steps down the voltage output from the traveling battery 98 and charges the auxiliary battery 99 by, for example, a switching method represented by a chopper method.
The traveling battery 98 is, for example, a high-voltage secondary battery having an output voltage of about 400 volts, which is composed of a lithium ion battery. The traveling battery 98 is a battery that supplies electric power for driving a motor mainly when the vehicle travels.
The auxiliary battery 99 is, for example, a low-voltage secondary battery having an output voltage of about 12 volts, which is composed of a lead storage battery. The auxiliary battery 99 is a battery that mainly supplies electric power for operating on-vehicle electrical equipment such as a hybrid system and a navigation system.
 フィルタ部3は、降圧部22と、走行用バッテリ98との配線間に備えられた、走行用バッテリ98が出力する電圧を降圧する際に発生する磁気ノイズを低減するための磁気ノイズフィルタである。フィルタ部3は2個のコイル33を有し、2個のコイル33は、後述するコモンモードチョークコイル34を形成している。 The filter unit 3 is a magnetic noise filter that is provided between the step-down unit 22 and the traveling battery 98 and that reduces magnetic noise generated when the voltage output from the traveling battery 98 is stepped down. . The filter unit 3 has two coils 33, and the two coils 33 form a common mode choke coil 34 described later.
 降圧部22及びフィルタ部3は、後述する図2に示す基板2に実装される。
 フィルタ部3は、ノイズを除去するために基板2上に実装されたYキャパシタ35及びXキャパシタ37を有する。
The step-down unit 22 and the filter unit 3 are mounted on a substrate 2 shown in FIG.
The filter unit 3 includes a Y capacitor 35 and an X capacitor 37 mounted on the substrate 2 in order to remove noise.
 図2は、実施の形態1に係る車載用バッテリ充電装置1における基板2を、基板面と直行する方向から見た構成の一例を示す外形図である。
 図3は、実施の形態1に係る車載用バッテリ充電装置1におけるフィルタ部3が図2に示した基板2に固定された様を、基板面と直行する方向から見た構成の一例を示す外形図である。
 図4は、実施の形態1に係る車載用バッテリ充電装置1を、図3に示した線分X-Yにおける断面を矢印Zの方から見た構成の一例を示す外形図である。
 図2,3,4を用いて、実施の形態1に係る車載用バッテリ充電装置1の構成について説明する。
FIG. 2 is an outline view showing an example of the configuration of the substrate 2 in the in-vehicle battery charging device 1 according to Embodiment 1 as viewed from the direction perpendicular to the substrate surface.
FIG. 3 shows an example of a configuration in which the filter unit 3 in the in-vehicle battery charging device 1 according to the first embodiment is fixed to the substrate 2 shown in FIG. 2 as viewed from the direction orthogonal to the substrate surface. FIG.
4 is an outline view showing an example of the configuration of the in-vehicle battery charging device 1 according to the first embodiment when the cross section along the line segment XY shown in FIG.
The configuration of the in-vehicle battery charging device 1 according to the first embodiment will be described with reference to FIGS.
 車載用バッテリ充電装置1は、基板2、放熱部11、放熱部材12、フィルタ部3、容器13、第2放熱部材14、及び、降圧部22を備える。なお、降圧部22は、図2,3,4には示されていないが、例えば、図3,4における図の右方における基板2上に実装されている。 The in-vehicle battery charging device 1 includes a substrate 2, a heat radiating part 11, a heat radiating member 12, a filter part 3, a container 13, a second heat radiating member 14, and a step-down part 22. Although not shown in FIGS. 2, 3, and 4, the step-down unit 22 is mounted on the substrate 2 on the right side of the drawings in FIGS. 3 and 4, for example.
 基板2は、電気的な配線を行う配線基板である。基板2は、孔部21を有する。
 放熱部11は、基板2に対向する。放熱部11は、例えば、基板2を収容するアルミ製のダイカストケースの一部である。放熱部11は、車載用バッテリ充電装置1の内部で発生した熱の一部を外部に放出する。放熱部11は、例えば図4のように、冷却水路19に流れる冷却水により水冷されてもよい。
 放熱部材12は、孔部21に対向し、放熱部11の基板2側に配置された、例えば、放熱シートである。放熱部材12は、放熱部11に密着している。フィルタ部3で発した熱は、放熱部材12を介して放熱部11に伝導され、放熱部11により放熱される。
The substrate 2 is a wiring substrate that performs electrical wiring. The substrate 2 has a hole 21.
The heat radiating part 11 faces the substrate 2. The heat radiating part 11 is, for example, a part of an aluminum die-cast case that accommodates the substrate 2. The heat radiating part 11 releases a part of the heat generated inside the in-vehicle battery charger 1 to the outside. For example, as shown in FIG. 4, the heat radiating unit 11 may be water-cooled by cooling water flowing in the cooling water channel 19.
The heat radiating member 12 is, for example, a heat radiating sheet that faces the hole portion 21 and is disposed on the substrate 2 side of the heat radiating portion 11. The heat dissipation member 12 is in close contact with the heat dissipation portion 11. The heat generated by the filter unit 3 is conducted to the heat radiating unit 11 through the heat radiating member 12 and is radiated by the heat radiating unit 11.
 フィルタ部3は、コイル33と磁性体コア32とからなるインダクタ31を有する。コイル33は、コモンモードチョークコイル34を形成する。コモンモードチョークコイル34は、ドーナツ状の形状をした磁性体コア32を芯として、磁性体コア32の一部位に巻きつけた導線36と、磁性体コア32の当該一部位に対向する他部位に巻きつけた導線36と、により形成された2個のコイル33を有する。図3において、リブ状に見える部位がコイル33である。それぞれのコイル33の巻き方向は、それぞれのコイル33に同時に電流が流れた際に電磁誘導現象によって発生する磁束の向きが、それぞれ反対方向になる向きに巻かれている。フィルタ部3は、基板2にネジ、ボルト等により固定され、インダクタ31において発した熱が基板2の孔部21と放熱部材12とを介して放熱部11に放熱される。 The filter unit 3 includes an inductor 31 including a coil 33 and a magnetic core 32. The coil 33 forms a common mode choke coil 34. The common mode choke coil 34 has a doughnut-shaped magnetic core 32 as a core, a conductive wire 36 wound around one portion of the magnetic core 32, and other portions facing the part of the magnetic core 32. It has the coil | winding conducting wire 36 and the two coils 33 formed by. In FIG. 3, a portion that looks like a rib is a coil 33. Each coil 33 is wound in such a direction that the directions of magnetic flux generated by the electromagnetic induction phenomenon when currents flow through the respective coils 33 simultaneously are opposite to each other. The filter unit 3 is fixed to the substrate 2 with screws, bolts, or the like, and heat generated in the inductor 31 is radiated to the heat radiating unit 11 through the hole 21 and the heat radiating member 12 of the substrate 2.
 インダクタ31の一部は、基板2の孔部21を通って放熱部11に向かって突出している。このように構成することで、基板面に直交する方向において、車載用バッテリ充電装置1を小型化することが可能となる。車載用バッテリ充電装置1は、車両の座席又はリアカーゴルームの下に配置されることが多いため、基板面に直交する方向における小型化は、特に有効である。 A part of the inductor 31 protrudes toward the heat dissipation part 11 through the hole 21 of the substrate 2. By comprising in this way, the vehicle-mounted battery charging device 1 can be reduced in size in the direction orthogonal to the substrate surface. Since the in-vehicle battery charger 1 is often disposed under a vehicle seat or a rear cargo room, downsizing in a direction orthogonal to the board surface is particularly effective.
 容器13は、インダクタ31の一部を内部に収容する非導電性の部材である。容器13は、例えば、窒化アルミニウム、炭化ケイ素等の熱伝導率の高いセラミックスにより形成されている。また、容器13は、第2放熱部材14が内部に充填されている。第2放熱部材14は、例えば熱伝導率の高いシリコーンにより形成されている。第2放熱部材14は、容器13に収容されたインダクタ31と容器13とに接する。コイル33には大容量の電流が流れるため、コイル33に使用する導線36は、線径が例えば1.6ミリメールという太い導線36を用いることが一般的であり、容器13とコイル33との間で十分な当接面を得ることが難しい。しかしながら、上述のように容器13が第2放熱部材14により充填されることで、インダクタ31において発した熱は、第2放熱部材14を介して、容器13に確実に伝達される。また、第2放熱部材14がシリコーンで形成されることで、耐振動性が向上し、インダクタ31において発した熱は、車両走行時においても安定して第2放熱部材14を介して、容器13に確実に伝達されるようになる。 The container 13 is a non-conductive member that houses a part of the inductor 31 therein. The container 13 is made of ceramics having high thermal conductivity such as aluminum nitride and silicon carbide. Further, the container 13 is filled with a second heat radiating member 14. The 2nd heat radiating member 14 is formed, for example with silicone with high heat conductivity. The second heat radiating member 14 is in contact with the inductor 31 and the container 13 accommodated in the container 13. Since a large-capacity current flows through the coil 33, it is common to use a thick conductive wire 36 having a wire diameter of, for example, 1.6 mm, as the conductive wire 36 used for the coil 33. It is difficult to obtain a sufficient contact surface between them. However, as the container 13 is filled with the second heat radiating member 14 as described above, the heat generated in the inductor 31 is reliably transmitted to the container 13 via the second heat radiating member 14. Further, since the second heat radiating member 14 is made of silicone, the vibration resistance is improved, and the heat generated in the inductor 31 is stably passed through the second heat radiating member 14 even when the vehicle is traveling. Will be transmitted reliably.
 容器13は、フランジ部15を備える。フランジ部15は、容器13の外部と放熱部材12とが接する状態で基板2に固定される。このように構成することで、フィルタ部3だけでなく容器13も基板2に固定されるため、耐振動性が向上し、フィルタ部3が基板2から剥がれることを抑止できる。また、このように構成することで、インダクタ31において発した熱は、車両走行時においても安定して第2放熱部材14、容器13、放熱部材12を介して、放熱部11に確実に伝達され、放熱されるようになる。図1に示したようにインダクタ31と放熱部11との間にはもともとYキャパシタ35が基板2上に実装されているが、このように構成することで、さらに、インダクタ31と放熱部11との間の浮遊静電容量が増大し、インダクタ31のノイズフィルタ効果が向上する。 The container 13 includes a flange portion 15. The flange portion 15 is fixed to the substrate 2 in a state where the outside of the container 13 and the heat dissipation member 12 are in contact with each other. By configuring in this way, not only the filter unit 3 but also the container 13 is fixed to the substrate 2, so that the vibration resistance is improved and the filter unit 3 can be prevented from being peeled off from the substrate 2. Further, with this configuration, the heat generated in the inductor 31 can be reliably transmitted to the heat radiating portion 11 via the second heat radiating member 14, the container 13, and the heat radiating member 12 even when the vehicle is traveling. The heat is released. As shown in FIG. 1, the Y capacitor 35 is originally mounted on the substrate 2 between the inductor 31 and the heat radiating part 11. By configuring in this way, the inductor 31, the heat radiating part 11, And the noise filter effect of the inductor 31 is improved.
 以上、実施の形態1に係る車載用バッテリ充電装置1の構成について、図2,3,4を用いて説明したが、この限りではない。 As mentioned above, although the structure of the vehicle-mounted battery charging device 1 which concerns on Embodiment 1 was demonstrated using FIG.2, 3,4, it is not this limitation.
 例えば、容器13のフランジ部15は、必須な構成ではない。例えば、容器13は、基板2と固定するためのフランジを設けずに、放熱部11に配置された放熱部材12を挟み込んで放熱部11に固定されてもよい。 For example, the flange portion 15 of the container 13 is not an essential configuration. For example, the container 13 may be fixed to the heat radiating part 11 with the heat radiating member 12 disposed in the heat radiating part 11 interposed therebetween without providing a flange for fixing to the substrate 2.
 また、例えば、容器13及び第2固定部材は、必須な構成ではない。例えば、放熱部11に配置された放熱部材12が、インダクタ31と直接当接してもよい。 For example, the container 13 and the second fixing member are not essential components. For example, the heat radiating member 12 disposed in the heat radiating portion 11 may directly contact the inductor 31.
 また、例えば、インダクタ31の一部が基板2の孔部21を通って放熱部11に向かって突出している必要はない。インダクタ31において発した熱が基板2の孔部21と放熱部材12とを介して放熱部11に放熱される構造であれば、必ずしもインダクタ31の一部が基板2の孔部21から突出していなくても構わない。 Also, for example, a part of the inductor 31 does not need to protrude toward the heat radiating part 11 through the hole 21 of the substrate 2. If the structure is such that heat generated in the inductor 31 is radiated to the heat radiating part 11 through the hole 21 of the substrate 2 and the heat radiating member 12, a part of the inductor 31 does not necessarily protrude from the hole 21 of the substrate 2. It doesn't matter.
 以上のように、車載用バッテリ充電装置1は、孔部21を有する基板2と、基板2に対向する放熱部11と、孔部21に対向し、放熱部11の基板2側に配置された放熱部材12と、補機用バッテリ99を充電する際に走行用バッテリ98が出力する電圧を降圧する降圧部22と、走行用バッテリ98との配線間に備えられたフィルタ部3であって、インダクタ31を有し、基板2に固定され、インダクタ31において発した熱が孔部21と放熱部材12とを介して放熱部11に放熱されるフィルタ部3と、備えた。
 このように構成することで、磁性体コア32の温度上昇を抑えることでインダクタ31のインダクタンスの低下を抑えることが可能となるため、フィルタ部3における磁気ノイズを抑制する性能を維持できる。
As described above, the on-vehicle battery charging device 1 is disposed on the substrate 2 side of the heat dissipation portion 11, the substrate 2 having the hole portion 21, the heat dissipation portion 11 facing the substrate 2, and the hole portion 21. A filter unit 3 provided between wires of the heat dissipating member 12, a step-down unit 22 that steps down the voltage output from the traveling battery 98 when charging the auxiliary battery 99, and the traveling battery 98; The filter unit 3 includes an inductor 31, is fixed to the substrate 2, and heat generated in the inductor 31 is radiated to the heat radiating unit 11 through the hole 21 and the heat radiating member 12.
By configuring in this way, it is possible to suppress a decrease in inductance of the inductor 31 by suppressing a temperature increase of the magnetic core 32, so that the performance of suppressing the magnetic noise in the filter unit 3 can be maintained.
 実施の形態1に係る車載用バッテリ充電装置1は、走行用バッテリ98を充電する際に交流電源97が出力する電圧を直流電圧に変換する変換部23を備えてもよい。 The in-vehicle battery charging device 1 according to Embodiment 1 may include a conversion unit 23 that converts a voltage output from the AC power source 97 into a DC voltage when the traveling battery 98 is charged.
 図5Aは、これまで説明した実施の形態1に係る車載用バッテリ充電装置1に、変換部23を追加した車載用バッテリ充電装置1の機能ブロックの一例を示すブロック図である。
 図5Aにおいて、交流電源97は、例えば、交流電圧100ボルトから220ボルトの家庭用電源である。車両がプラグインハイブリッド車等のハイブリッド車である場合、交流電源97は、家庭用電源に限らず、車両が走行する際にガソリン、軽油等の化学エネルギーにより駆動するモータの回転を動力源とした、オルタネータであっても構わない。
 変換部23は、交流電源97が出力する交流電圧を直流電圧に変換して、走行用バッテリ98を充電する。
FIG. 5A is a block diagram illustrating an example of functional blocks of the in-vehicle battery charging apparatus 1 in which a conversion unit 23 is added to the in-vehicle battery charging apparatus 1 according to Embodiment 1 described so far.
In FIG. 5A, an AC power source 97 is a household power source having an AC voltage of 100 to 220 volts, for example. When the vehicle is a hybrid vehicle such as a plug-in hybrid vehicle, the AC power source 97 is not limited to a household power source, but is driven by the rotation of a motor driven by chemical energy such as gasoline or light oil when the vehicle travels. Or an alternator.
The converter 23 converts the AC voltage output from the AC power source 97 into a DC voltage, and charges the traveling battery 98.
 図5Bは、図5Aに示した車載用バッテリ充電装置1において、変換部23と、降圧部22及びフィルタ部3と、の配置関係の一例を示す外形図である。
 図5Bにおいて、車載用バッテリ充電装置1は、変換部23と、降圧部22及びフィルタ部3とが積層されて配置されている。図5Bに示したように、車載用バッテリ充電装置1の内部は、変換部23と、降圧部22及びフィルタ部3との間において、放熱部11等により変換部収容部25と降圧部収容部24とに仕切られていても構わない。
 車載用バッテリ充電装置1は、車両の座席又はリアカーゴルームの下に配置されることが多いため、特に、変換部23と、降圧部22及びフィルタ部3とを積層して配置する場合、降圧部22及びフィルタ部3と、が積層される方向において小型化する必要があり、インダクタ31の一部が基板2の孔部21を通って放熱部11に向かって突出する構造は有効である。
FIG. 5B is an outline view showing an example of an arrangement relationship among the conversion unit 23, the step-down unit 22 and the filter unit 3 in the in-vehicle battery charging device 1 shown in FIG. 5A.
In FIG. 5B, the in-vehicle battery charging device 1 includes a conversion unit 23, a step-down unit 22, and a filter unit 3 that are stacked. As shown in FIG. 5B, the inside of the in-vehicle battery charging device 1 includes a converter unit 25 and a step-down unit storage unit between the converter 23, the step-down unit 22 and the filter unit 3 by the heat radiating unit 11. 24 may be partitioned.
Since the in-vehicle battery charging device 1 is often disposed under a vehicle seat or a rear cargo room, particularly when the conversion unit 23, the step-down unit 22, and the filter unit 3 are stacked and disposed, It is necessary to reduce the size in the direction in which the portion 22 and the filter portion 3 are laminated, and a structure in which a part of the inductor 31 protrudes toward the heat radiating portion 11 through the hole portion 21 of the substrate 2 is effective.
 なお、この発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態において任意の構成要素の省略が可能である。 It should be noted that within the scope of the invention, the present invention can be modified with any component in the embodiment or omitted in the embodiment.
 この発明に係る車載用バッテリ充電装置に適用することができる。 The present invention can be applied to an in-vehicle battery charger.
 1 車載用バッテリ充電装置、2 基板、3 フィルタ部、11 放熱部、12 放熱部材、13 容器、14 第2放熱部材、15 フランジ部、19 冷却水路、21 孔部、22 降圧部、23 変換部、24 降圧部収容部、25 変換部収容部、31 インダクタ、32 磁性体コア、33 コイル、34 コモンモードチョークコイル、35 Yキャパシタ、36 導線、37 Xキャパシタ、97 交流電源、98 走行用バッテリ、99 補機用バッテリ。 DESCRIPTION OF SYMBOLS 1 Vehicle-mounted battery charging device, 2 board | substrate, 3 filter part, 11 heat radiation part, 12 heat radiation member, 13 container, 14 2nd heat radiation member, 15 flange part, 19 cooling water channel, 21 hole part, 22 pressure | voltage fall part, 23 conversion part , 24 step-down part accommodating part, 25 converting part accommodating part, 31 inductor, 32 magnetic core, 33 coil, 34 common mode choke coil, 35 Y capacitor, 36 conductor, 37 X capacitor, 97 AC power supply, 98 traveling battery, 99 Auxiliary battery.

Claims (5)

  1.  孔部を有する基板と、
     前記基板に対向する放熱部と、
     前記孔部に対向し、前記放熱部の前記基板側に配置された放熱部材と、
     補機用バッテリを充電する際に走行用バッテリが出力する電圧を降圧する降圧部と、前記走行用バッテリとの配線間に備えられたフィルタ部であって、インダクタを有し、前記基板に固定され、前記インダクタにおいて発した熱が前記孔部と前記放熱部材とを介して前記放熱部に放熱される前記フィルタ部と、
     を備えたこと
     を特徴とする車載用バッテリ充電装置。
    A substrate having a hole;
    A heat dissipating part facing the substrate;
    A heat dissipating member facing the hole and disposed on the substrate side of the heat dissipating part,
    A step-down unit that steps down the voltage output from the traveling battery when charging the auxiliary battery, and a filter unit provided between the wirings of the traveling battery, including an inductor, and fixed to the substrate And the filter part in which heat generated in the inductor is radiated to the heat radiating part through the hole and the heat radiating member,
    An in-vehicle battery charger characterized by comprising:
  2.  前記インダクタの一部は、前記孔部を通って前記放熱部に向かって突出すること
     を特徴とする請求項1記載の車載用バッテリ充電装置。
    The in-vehicle battery charging device according to claim 1, wherein a part of the inductor protrudes toward the heat radiating part through the hole.
  3.  前記走行用バッテリを充電する際に交流電源が出力する電圧を直流電圧に変換する変換部と、前記降圧部及び前記フィルタ部と、が積層されて配置されること
     を特徴とする請求項2記載の車載用バッテリ充電装置。
    The conversion unit that converts a voltage output from an AC power source into a DC voltage when charging the battery for traveling, the step-down unit, and the filter unit are arranged in a stacked manner. In-vehicle battery charger.
  4.  前記インダクタの一部を内部に収容するとともに、第2放熱部材が内部に充填された容器を備え、
     前記第2放熱部材は、前記インダクタと前記容器とに接すること、
     を特徴とする請求項2記載の車載用バッテリ充電装置。
    A container in which a part of the inductor is housed and a second heat dissipating member is filled;
    The second heat dissipating member is in contact with the inductor and the container;
    The in-vehicle battery charger according to claim 2.
  5.  前記容器は、フランジ部を備え、
     前記フランジ部は、前記容器の外部と前記放熱部材とが接する状態で前記基板に固定されること
     を特徴とする請求項4記載の車載用バッテリ充電装置。
    The container includes a flange portion,
    The in-vehicle battery charging device according to claim 4, wherein the flange portion is fixed to the substrate in a state where the outside of the container is in contact with the heat radiating member.
PCT/JP2018/016819 2018-04-25 2018-04-25 In-vehicle battery charging device WO2019207689A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/016819 WO2019207689A1 (en) 2018-04-25 2018-04-25 In-vehicle battery charging device
JP2020515375A JP6727475B2 (en) 2018-04-25 2018-04-25 Vehicle battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/016819 WO2019207689A1 (en) 2018-04-25 2018-04-25 In-vehicle battery charging device

Publications (1)

Publication Number Publication Date
WO2019207689A1 true WO2019207689A1 (en) 2019-10-31

Family

ID=68294985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016819 WO2019207689A1 (en) 2018-04-25 2018-04-25 In-vehicle battery charging device

Country Status (2)

Country Link
JP (1) JP6727475B2 (en)
WO (1) WO2019207689A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301592A (en) * 2007-05-30 2008-12-11 Panasonic Corp Power supply unit
JP2009296756A (en) * 2008-06-04 2009-12-17 Denso Corp Power conversion device
JP2010225713A (en) * 2009-03-23 2010-10-07 Daikin Ind Ltd Circuit board
WO2014033852A1 (en) * 2012-08-29 2014-03-06 三菱電機株式会社 In-vehicle power conversion apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301592A (en) * 2007-05-30 2008-12-11 Panasonic Corp Power supply unit
JP2009296756A (en) * 2008-06-04 2009-12-17 Denso Corp Power conversion device
JP2010225713A (en) * 2009-03-23 2010-10-07 Daikin Ind Ltd Circuit board
WO2014033852A1 (en) * 2012-08-29 2014-03-06 三菱電機株式会社 In-vehicle power conversion apparatus

Also Published As

Publication number Publication date
JP6727475B2 (en) 2020-07-22
JPWO2019207689A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
US9578790B2 (en) Power conversion apparatus
JP5743851B2 (en) Electronic equipment
US9866127B2 (en) Electrical power converting device
EP3713053B1 (en) Driving-device-integral-type rotary electric machine
JP2010272584A (en) Reactor
EP3057216B1 (en) Dc-dc converter device
CN106134062B (en) Motor compressor
CN111095769B (en) Power conversion device
KR101541181B1 (en) Inverter and Converter for Electric Vehicle
US8624427B2 (en) Vehicular electrical systems, automotive electrical systems, and automotive propulsion systems
WO2018116667A1 (en) Power conversion device
US20200051765A1 (en) Electric apparatus
JP2012231616A (en) On-vehicle power conversion device
JP5733234B2 (en) Power converter
JP6457895B2 (en) Capacitor module
US20180191263A1 (en) Power Conversion Device
CN113329587B (en) Power conversion device
US20130312930A1 (en) Coldplate for use with a Transformer in an Electric Vehicle (EV) or a Hybrid-Electric Vehicle (HEV)
US20210136948A1 (en) Power conversion apparatus
CN110419085B (en) Transformer device
WO2019207689A1 (en) In-vehicle battery charging device
JP5400687B2 (en) High-voltage equipment integrated motor
US20220407431A1 (en) Power conversion device
JP6713246B2 (en) Power converter
JP5721772B2 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515375

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916749

Country of ref document: EP

Kind code of ref document: A1