JP2020198208A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2020198208A
JP2020198208A JP2019103459A JP2019103459A JP2020198208A JP 2020198208 A JP2020198208 A JP 2020198208A JP 2019103459 A JP2019103459 A JP 2019103459A JP 2019103459 A JP2019103459 A JP 2019103459A JP 2020198208 A JP2020198208 A JP 2020198208A
Authority
JP
Japan
Prior art keywords
water content
fuel cell
ratio
pressure loss
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019103459A
Other languages
English (en)
Inventor
周也 川原
Shuya Kawahara
周也 川原
順朗 野々山
Junro Nonoyama
順朗 野々山
孝郎 藤尾
Takao Fujio
孝郎 藤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019103459A priority Critical patent/JP2020198208A/ja
Publication of JP2020198208A publication Critical patent/JP2020198208A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】特に含水量が増加している単セルが存在する場合に、セル電圧の安定性の低下や劣化の進行を抑える。【解決手段】燃料電池システムは、複数の測定対象グループの各々のインピーダンスを測定して、燃料電池スタックにおける単セル当たりの平均含水量と、最大含水量セルにおける含水量である最大含水量と、を導出する含水量導出部と、平均含水量の水分を有する単セルにおける圧力損失と、乾燥状態の単セルにおける圧力損失と、の比である第1圧損比を導出すると共に、最大含水量セルにおける圧力損失と、乾燥状態の単セルにおける圧力損失と、の比である第2圧損比を導出する圧損比導出部と、第1圧損比に対する第2圧損比の比が、予め定めた基準値以上のときに、燃料電池スタック内の水分量を抑制する含水量抑制制御部と、を備える。【選択図】図5

Description

本発明は、燃料電池システムに関する。
燃料電池内部の水分量を推定する方法として、交流インピーダンス法を用いて燃料電池のインピーダンスを測定する方法が知られている。このような方法として、例えば、燃料電池スタックを構成する複数の単セルのうちの、相対的に乾燥しやすい特定セルのインピーダンスを計測し、計測したインピーダンスの値を用いて燃料電池スタックの平均的な含水量を推定する方法が知られている(例えば、特許文献1参照)。
特開2009−004299号公報
しかしながら、燃料電池スタックの平均的な含水量が標準的な値であっても、燃料電池スタックにおいて、特に含水量が増加している単セルが存在する場合には、この含水量が増加している単セルにおいて、液水によってガスの流通が抑制されることで、セル電圧の安定性が低下する場合がある。そして、このようにガス流通が抑制された単セルにおいては、劣化の進行が速まる可能性がある。
本発明は、以下の形態として実現することが可能である。
本発明の一形態によれば、複数の単セルが積層された燃料電池スタックを備える燃料電池システムが提供される。前記複数の単セルは、複数の測定対象グループに分かれており、燃料電池システムは、前記複数の測定対象グループの各々のインピーダンスを測定して、前記燃料電池スタックにおける単セル当たりの含水量の平均値である平均含水量と、前記複数の単セルのうちで含水量が最も多い最大含水量セルにおける含水量である最大含水量と、を導出する含水量導出部と、前記平均含水量の水分を有する前記単セルにおける圧力損失と、乾燥状態の前記単セルにおける圧力損失と、の比である第1圧損比を導出すると共に、前記最大含水量セルにおける圧力損失と、乾燥状態の前記単セルにおける圧力損失と、の比である第2圧損比を導出する圧損比導出部と、前記第1圧損比に対する前記第2圧損比の比が、予め定めた基準値以上のときに、前記燃料電池スタック内の水分量を抑制する含水量抑制制御部と、を備える。
この形態の燃料電池システムによれば、燃料電池スタックにおいて、特に含水量が増加している単セルが存在する場合には、単セル当たりの平均的な含水量が標準的な値であっても、含水量が増加している単セルが存在することを検知して、含水量抑制処理を実行することができる。そのため、含水量が増加している単セルの含水量を低減して、液水に起因するガス流通の抑制を抑え、セル電圧を安定化し、単セルにおける劣化の進行速度を抑えることができる。そして、含水量が増加しているセルの存在を検知するために第1圧損比に対する前記第2圧損比の比を用いるため、特に精度良く上記検出を行なうことができる。
本発明は、種々の形態で実現することが可能であり、例えば、燃料電池における含水量低減方法、燃料電池システムの制御方法、その制御方法を実現するコンピュータプログラム、そのコンピュータプログラムを記録した一時的でない記録媒体等の形態で実現することができる。
燃料電池システムの概略構成を表わす説明図。 第1拡散抵抗の算出に係る部分を説明するための機能ブロック図。 コールコールプロット図。 コールコールプロット図。 含水量抑制制御処理ルーチンを表わすフローチャート。 単セル内の水分量とWet/Dry圧損比との関係を示す説明図。
A.燃料電池システムの全体構成:
図1は、本発明の一実施形態としての燃料電池システム10の概略構成を模式的に表わす説明図である。燃料電池システム10は、例えば、電気自動車に搭載されて駆動用電源として用いることができる。あるいは、燃料電池システム10は、定置型電源として用いてもよい。本実施例の燃料電池システム10は、燃料電池スタック15と、燃料ガス供給系20と、酸化ガス供給系30と、セルモニタ66と、制御部50と、を備える。そして、燃料電池スタック15には、電力回路60が接続されている。燃料ガス供給系20および酸化ガス供給系30は、反応ガス供給部とも呼ぶ。
燃料電池スタック15は、単セル70が複数積層された構成を有している。本実施形態では、燃料電池スタック15が備える個々の単セル70は、いずれも同じ形状および構造を有している。本実施形態の燃料電池スタック15は、固体高分子形燃料電池であるが、固体酸化物形燃料電池等、他種の燃料電池を採用してもよい。燃料電池スタック15を構成する各単セル70では、電解質膜の一方の面側であるアノード側に、燃料ガスが流れる流路(アノード側流路)が形成され、電解質膜の他方の面側であるカソード側に、酸化ガスが流れる流路(カソード側流路)が形成されている。なお、燃料電池スタック15の内部には、燃料電池スタック15を冷却するための冷媒が流れる冷媒流路が形成されているが、図1では、このような冷媒流路、および、冷媒流路内に冷媒を循環させるための冷媒系については、記載を省略している。
燃料ガス供給系20は、燃料ガスタンク21と、燃料ガス供給管22と、燃料ガス排気管23と、燃料ガス還流管24と、主止弁40と、可変調圧弁42と、気液分離器45と、水素ポンプ44と、を備える。燃料ガスタンク21は、燃料ガスとしての水素ガスが貯蔵される貯蔵装置であり、燃料ガス供給管22を介して燃料電池スタック15のアノード側流路に接続されている。燃料ガス供給管22上において、燃料ガスタンク21から近い順に、主止弁40と可変調圧弁42とが設けられている。可変調圧弁42は、燃料ガスタンク21から燃料電池スタック15へ供給される水素圧(水素量)を調整可能な調圧弁である。
燃料ガス排気管23は、燃料電池スタック15から排出されるアノードオフガスが流れる流路である。燃料ガス還流管24は、燃料ガス排気管23と、燃料ガス供給管22における可変調圧弁42よりも下流側の部位と、に接続されている。燃料ガス還流管24を循環する水素の圧力は、水素ポンプ44によって調節される。
燃料ガス排気管23と燃料ガス還流管24との接続部には、気液分離器45が設けられており、気液分離器45において、アノードオフガス中の水とガス(水素および窒素等)とが分離される。本実施形態では、気液分離器45と、気液分離器45に接続される燃料ガス排出管25に設けられたパージ弁46とを介して、燃料ガス還流管24を含む流路内から、窒素や水蒸気を含む不純物が除去される。
酸化ガス供給系30は、エアコンプレッサ31と、酸化ガス供給管32と、酸化ガス排出管33と背圧弁39と、を備える。本実施形態の燃料電池システム10は、酸化ガスとして、空気を用いる。エアコンプレッサ31は、空気を圧縮し、酸化ガス供給管32を介して、燃料電池スタック15のカソード側流路に空気を供給する。燃料電池スタック15から排出されるカソードオフガスは、酸化ガス排出管33を介して、燃料電池システム10の外部に排出される。酸化ガス排出管33には、背圧弁39が設けられており、背圧弁39の開度を調節することによって、燃料電池スタック15内における酸化ガスの圧力を調節している。
セルモニタ66は、燃料電池スタック15の発電状況を検出するためのモニタである。本実施形態のセルモニタ66は、燃料電池スタック15を構成する各々の単セル70の出力電圧と出力電流とを検出する回路である。セルモニタ66による検出結果は、制御部50に出力される。
電力回路60において、燃料電池スタック15は、配線62を介して負荷65に接続されている。配線62には、DC/DCコンバータ61が設けられている。DC/DCコンバータ61は、制御部50の制御信号を受けて、燃料電池スタック15の出力状態を変更する機能を有している。具体的には、DC/DCコンバータ61は、燃料電池スタック15から負荷65に向けて電流および電圧を取り出して、DC/DCコンバータ61におけるスイッチング制御によって、燃料電池スタック15から取り出す電流および電圧を制御する。また、DC/DCコンバータ61は、燃料電池スタック15が発電した電力を負荷65に供給する際に、燃料電池スタック15の出力電圧を、負荷65で利用可能な電圧に昇圧する。燃料電池システム10を、車両の駆動用電源として用いる場合には、負荷65は、少なくとも車両の駆動モータを含むことができる。
制御部50は、マイクロコンピュータを中心とした論理回路として構成され、詳しくは、予め設定された制御プログラムに従って演算などを実行するCPUと、CPUで各種演算処理を実行するのに必要な制御プログラムや制御データ等が予め格納されたROMと、同じくCPUで各種演算処理をするのに必要な各種データが一時的に読み書きされるRAMと、各種信号を入出力する入出力ポート等を備える。制御部50は、電力回路60への出力のための燃料電池システム10の発電制御や、後述する含水量抑制処理に係る制御を行なう。制御部50は、エアコンプレッサ31、主止弁40、可変調圧弁42、水素ポンプ44、パージ弁46、DC/DCコンバータ61等に対して駆動信号を出力する。また、セルモニタ66を含む各種センサ等から、検出信号を取得する。
図1では、制御部50を、制御部50が実行する機能の一部を表わす機能ブロックによって示している。具体的には、制御部50は、機能ブロックとして、含水量導出部53、圧損比導出部54、含水量抑制制御部55、信号重畳部56を備える。
信号重畳部56は、燃料電池スタック15の出力端子に交流信号を入力するための信号を生成して、DC/DCコンバータ61に出力する。本実施形態では、燃料電池スタック15の出力電流に重畳する交流信号の周波数として、高周波数f(例えば、200Hz〜1kHz)と、低周波数f(例えば、1Hz〜50Hz)とを用いている。低周波数f及び高周波数fは、両者の比較において高低と呼ばれているだけであり、一般的な意味での「低周波」や「高周波」とは関係の無い呼び方である。低周波数fと高周波数fとは、インピーダンスの測定にかかる時間や、インピーダンス測定の精度等を考慮して、適宜設定すればよい。
含水量導出部53は、燃料電池スタック15の出力端子に交流信号が入力されたときに、セルモニタ66の検出信号を取得して算出される各単セル70のインピーダンスを用いて、燃料電池スタック15における含水量を導出する。具体的には、燃料電池スタック15における単セル当たりの含水量の平均値である平均含水量と、複数の単セル70のうちで含水量が最も多い最大含水量セルにおける含水量である最大含水量と、を導出する。圧損比導出部54は、平均含水量の水分を有する単セル70における圧力損失と、乾燥状態の単セル70における圧力損失と、の比である第1圧損比を導出すると共に、最大含水量セルにおける圧力損失と、乾燥状態の単セル70における圧力損失と、の比である第2圧損比を導出する。上記した乾燥状態とは、単セル70内に、反応ガスの流れを妨げる液水が存在しない状態を指す。含水量抑制制御部55は、第1圧損比および第2圧損比を用いて、燃料電池スタック15内の水分量を抑制する制御を実行する。以下では、単セル70の含水量の算出について説明する。
B.含水量の算出:
図2は、制御部50の含水量導出部53における第1拡散抵抗Rwetの算出に係る部分を説明するための機能ブロック図である。含水量導出部53は、セルモニタ66が検出する各単セル70の出力電流および出力電圧の計測値を用いて、インピーダンスを単セル70毎に算出する。インピーダンスは、低周波数fおよび高周波数fそれぞれについて算出される。このようにして算出されたインピーダンスを用いて、単セル70毎に、第1拡散抵抗Rwetが算出される。第1拡散抵抗Rwetとは、単セル70内部の水分量に依拠して変化する拡散特性を示すパラメータ(単位:s/m)である。第1拡散抵抗Rwetは、後述するように、含水量の算出に用いられる。
含水量導出部53における第1拡散抵抗Rwetの算出のための機能は、図2に示すように、抵抗算出部533a、限界電流密度算出部533b、ガス拡散抵抗算出部533c、第2拡散抵抗算出部533d、および第1拡散抵抗算出部533eによって実現される。制御部50は、これらの機能を、プログラムの実行によって実現する。
抵抗算出部533aは、プロトン移動抵抗Rmemおよびガス反応抵抗Rctを、単セル70毎に算出する。プロトン移動抵抗Rmemは、抵抗過電圧を抵抗換算した成分である。抵抗過電圧は、電解質膜の乾燥に伴って増大する。抵抗算出部533aは、高周波数fのインピーダンスに基づき、上記プロトン移動抵抗Rmemを算出する。ガス反応抵抗Rctは、活性化過電圧および濃度過電圧を抵抗換算した成分である。抵抗算出部533aは、低周波数fのインピーダンスおよびプロトン移動抵抗Rmemを用いて、ガス反応抵抗Rctを算出する。
図3および図4は、コールコールプロット図である。コールコールプロット図は、周波数とインピーダンスとの関係を複素平面上に示した特性図である。以下では、プロトン移動抵抗Rmemおよびガス反応抵抗Rctの算出方法について、図3および図4を用いて説明する。
図4に示すように、高周波数fにおけるインピーダンスの実軸の値がプロトン移動抵抗Rmemに相当し、円弧状のインピーダンスの軌跡と実軸とが交わる2つの交点間の値がガス反応抵抗Rctに相当する。
プロトン移動抵抗Rmemの算出は、高周波数fにおけるインピーダンスの絶対値Rおよび位相θ(図3参照)を、以下の数式F1に適用することにより行なわれる。
mem=Rcosθ…(F1)
また、低周波数f、高周波数fそれぞれにおけるインピーダンスの絶対値R、R、および位相θ(図3参照)を、以下の数式F2、F3に適用して、低周波数fにおけるインピーダンス中のガス反応抵抗Rctの特性を示す成分を算出する。
φ=tan−1[(Rsinθ)/{(Rcosθ)−Rmem}]…(F2)
A=(Rsinθ)/(Rsinφ)…(F3)
前述の数式F2、F3によって得られたφ、およびAを、以下の数式F4に適用して、ガス反応抵抗Rctを算出する。
ct=A/cosφ…(F4)
限界電流密度算出部533bは、限界電流密度Ilimを算出する。具体的には、限界電流密度Ilimを以下の数式F5〜F9によって算出する。
lim={eβ/(eβ−1)}I…(F5)
β=(ηnF)/(2RT)…(F6)
η=Eo−E−η−η…(F7)
η=(RT/2αF)ln(I/Io)…(F8)
η=IRmem…(F9)
数式F5〜F9における「F」はファラデー定数、「R」は気体定数、「T」は温度、「n」は定数、「I」は電流密度、「Io」は交換電流密度、「E」は制御電圧、「Eo」は理論起電圧、「η」は濃度過電圧、「η」は活性化過電圧、「η」は抵抗過電圧、「α」は電荷移動係数(定数)を示している。
ガス拡散抵抗算出部533cは、ガス拡散抵抗Rtotalを算出する。ガス拡散抵抗Rtotalは、反応ガスの触媒層への拡散の困難性を示すパラメータ(単位:s/m)である。ガス拡散抵抗Rtotalは、第1拡散抵抗Rwetおよび第2拡散抵抗Rdryの和に相当する(Rtotal=Rwet+Rdry)。第2拡散抵抗Rdryは、単セル70が乾燥状態であるときのガス拡散特性を示す。第1拡散抵抗Rwetは、単セル70内において湿度RHが100%を超えて液水が存在することにより、ガスが流れる際の抵抗の上昇分として表われるガス拡散特性を示す。
ガス拡散抵抗算出部533cは、予め記憶されている関数に基づいて、ガス拡散抵抗Rtotalを算出する。この関数は、ガス拡散抵抗Rtotal、並びに限界電流密度Ilimおよびガス反応抵抗Rctの相関性をモデル化することによって定められる。具体的には、本実施形態のガス拡散抵抗算出部533cは、限界電流密度Ilimおよびガス反応抵抗Rctを、以下の数式F10に適用してガス拡散抵抗Rtotalを算出する。
total=ρ(Ilim/Rctξ…(F10)
数式F10中のρおよびξは、単セル70内の反応ガスのガス濃度を変化させた際の限界電流密度によって、予め計測しておいたガス拡散抵抗の実測値と推定値とをフィッティングして設定する定数である。数式F10は、上記した相関性をモデル化した数式の一例である。数式F10は、ガス反応抵抗Rctおよび限界電流密度Ilimそれぞれを、ガス拡散抵抗Rtotalおよび反応ガスのガス濃度を変数とする関数として定義し、各関数から反応ガスのガス濃度に関する項を除去することで導出される。
第2拡散抵抗算出部533dは、第2拡散抵抗Rdryを算出する。第2拡散抵抗Rdryは、プロトン移動抵抗Rmemと同様に、燃料電池スタック15内部の湿度RHの低下に応じて増大する特性を有する。プロトン移動抵抗Rmemは、以下の数式F11に示すように、湿度RHに相関性を有する。第2拡散抵抗Rdryは、以下の数式F12に示すように、拡散係数Ddryに反比例する。拡散係数Ddryは、湿度RHに相関性を有する。
RH∝B(Rmem…(F11)
dry∝D(σ/Ddry)…(F12)
数式F11中の「B」および「C」は定数を示している。また、数式F12中の「D」は定数、「σ」は単セル70に含まれる拡散層の厚みを示している。
第2拡散抵抗算出部533dは、予め記憶されたプロトン移動抵抗Rmemと湿度RHとの相関関係を規定した制御マップを用いて、抵抗算出部533aが算出したプロトン移動抵抗Rmemから、燃料電池スタック15内の湿度RHを算出する。
また、第2拡散抵抗算出部533dは、予め記憶された湿度RHと拡散係数Ddryとの相関関係を規定した制御マップ、および数式F12を用いて、先に算出した湿度RHから第2拡散抵抗Rdryを算出する。
第1拡散抵抗算出部533eは、ガス拡散抵抗Rtotalから第2拡散抵抗Rdryを減算した値を、第1拡散抵抗Rwet(=Rtotal−Rdry)として算出する。
次に、制御部50の含水量導出部53で実行される、第1拡散抵抗Rwetを利用した含水量Wの算出の動作について説明する。第1拡散抵抗Rwetから含水量Wを算出する際には、下記の数式F13が用いられる。
W=10−8wet −10−7wet −10−5wet +7Rwet −4…(F13)
数式F13は、単セル70の第1拡散抵抗Rwetが変化した際の単セル70内部における含水量の実測値に対してフィッティングされた近似曲線を表す式である。このようにして、含水量導出部53では、各単セル70における含水量が求められる。なお、第1拡散抵抗Rwetを用いて含水量Wを求める際には、第1拡散抵抗Rwetと含水量Wとの関係を予めマップとして記憶しておき、このマップを参照することにより、含水量Wを求めてもよい。
C.含水量抑制制御:
図5は、燃料電池スタック15の発電時に制御部50のCPUで繰り返し実行される含水量抑制制御処理ルーチンを表わすフローチャートである。本実施形態の燃料電池システム10では、上記のようにして導出された含水量Wを用いて、燃料電池スタック15内の含水量抑制に係る制御を行なう。
本ルーチンが起動されると、制御部50のCPUは、各測定対象グループのインピーダンスを測定し、含水量を求める(ステップS100)。本実施形態では、各測定対象グループは、単一の単セル70によって構成される。そのため、ステップS100では、燃料電池スタック15を構成する各単セル70について、インピーダンスが測定され、既述したようにして、単セル当たりの含水量Wが求められる。
そして、制御部50のCPUは、単セル当たりの平均含水量Waveと、含水量が最も多い最大含水量セルにおける含水量である最大含水量Wmaxと、を導出する(ステップS110)。平均含水量Waveは、ステップS100で求めた各単セル70の含水量Wの平均値として算出される。最大含水量Wmaxは、ステップS100で求められた各単セル70の含水量Wのうちの最大値として特定される。ステップS100およびステップS110の動作は、既述した含水量導出部53(図1参照)において行なわれる。
その後、制御部50のCPUは、平均含水量Waveと、予め定められた第1基準値Wとを比較する(ステップS120)。第1基準値Wは、燃料電池スタック15の内部が、後述する含水量抑制処理の実行を要する程度に水分量が増加した状態となっているか否かを、平均含水量Waveを用いて判断するための基準値として定められている。
平均含水量Waveが第1基準値W未満であると判断されるときには(ステップS120:NO)、制御部50のCPUは、平均含水量Waveから第1圧損比(以下、第1Wet/Dry圧損比とも呼ぶ)を導出すると共に、最大含水量Wmaxから第2圧損比(以下、第2Wet/Dry圧損比とも呼ぶ)を導出する(ステップS130)。第1Wet/Dry圧損比は、既述したように、平均含水量の水分を有する単セル70における圧力損失と、乾燥状態の単セル70における圧力損失と、の比である。また、第2Wet/Dry圧損比は、既述したように、最大含水量セルにおける圧力損失と、乾燥状態の単セル70における圧力損失と、の比である。Wet/Dry圧損比は、単セル70内の反応ガス流路中の液水量に応じて定まる反応ガスの流れ難さの指標となる。そして、Wet/Dry圧損比は、単セル70内部の含水量Wと相関関係を有しており、本実施形態では、Wet/Dry圧損比と、単セル70内部の水分量との関係が、予めマップとして制御部50のメモリ内に記憶されている。上記マップの基礎となる、単セル70内部の含水量WとWet/Dry圧損比との対応関係は、例えば、実験によって予め特定してもよく、シミュレーションにより予め特定してもよい。
図6は、単セル70内の含水量Wと、含水量毎に定まる単セル70のWet/Dry圧損比と、の関係を表わすマップの一例を示す説明図である。Wet/Dry圧損比は、流路断面積の2乗に反比例することが知られており、単セル70内の含水量Wが多くなって流路断面積が小さくなるほど、Wet/Dry圧損比が大きくなる。ステップS130では、上記マップを参照して、平均含水量Waveに対応する第1Wet/Dry圧損比、および、最大含水量Wmaxに対応する第2Wet/Dry圧損比が導出される。なお、ステップS130は、制御部50の圧損比導出部54(図1参照)が実行する。
その後、制御部50のCPUは、「第1Wet/Dry圧損比」に対する「第2Wet/Dry圧損比」の比であるPratio(第2圧損比/第1圧損比)を算出する(ステップS140)。そして、制御部50のCPUは、Pratioと、予め定められた第2基準値Pとを比較する(ステップS150)。第2基準値Pは、最大含水量セルにおいて内部の液水に起因して反応ガスの分配量が減少して、後述する含水量抑制処理の実行を要する状態となっているか否かを、Pratioを用いて判断するための基準値として定められている。Pratioが第2基準値Pを超えるときには、含水量抑制処理の実行が必要と判断される。
ratioが第2基準値Pを超えるときには(ステップS150:YES)、制御部50のCPUは、現在、含水量抑制処理を実行中であるか否かを判断する(ステップS160)。含水量抑制処理を行なっていないときには(ステップS160:NO)、制御部50のCPUは、含水量抑制処理を開始して(ステップS170)、本ルーチンを終了する。含水量抑制処理中であれば(ステップS160:YES)、制御部50のCPUは、含水量抑制処理を続行して(ステップS170)、本ルーチンを終了する。
ratioが第2基準値P以下のときには(ステップS150:NO)、制御部50のCPUは、現在、含水量抑制処理を実行中であるか否かを判断する(ステップS190)。含水量抑制処理中であれば(ステップS190:YES)、制御部50のCPUは、含水量抑制処理を停止して(ステップS200)、本ルーチンを終了する。含水量抑制処理を行なっていないときには(ステップS190:NO)、制御部50のCPUは、含水量抑制処理を実行しない状態を維持して(ステップS210)、本ルーチンを終了する。ステップS150からステップS210の動作は、既述した含水量抑制制御部55(図1参照)において行なわれる。
含水量抑制処理とは、燃料電池スタック15内の含水量を抑えるための処理である。本実施形態では、エアコンプレッサ31の駆動量を増加させる排水処理として実行される。燃料電池スタック15の発電中には、負荷65の大きさに応じて燃料電池スタック15で発電すべき電力量に応じた流量の酸化ガスが燃料電池スタック15に供給されるように、エアコンプレッサ31の駆動量が設定される。含水量抑制処理の実行時には、上記のように発電量に応じて定まる酸化ガスの流量よりも多くの酸化ガスを燃料電池スタック15に供給して、燃料電池スタック15内の酸化ガスの流路から液水を排水させる。含水量抑制処理の実行時におけるエアコンプレッサ31の駆動量は、例えば、一定の値を予め設定してもよく、発電量に応じた駆動量に対して一定の値を上乗せしてもよい。
ステップS120において、平均含水量Waveが第1基準値W以上であると判断されると(ステップS120:YES)、燃料電池スタック15の内部が、含水量抑制処理の実行を要する程度に水分量が増加した状態となっていると判断されるため、制御部50のCPUは、ステップS160に移行する。そして、ステップS160の判断結果に応じて、既述したようにステップS170またはステップS180の動作を行ない、含水量抑制処理を開始または継続して、本ルーチンを終了する。
以上のように構成された本実施形態の燃料電池システム10によれば、燃料電池スタック15において、含水量が増加している単セル70が存在する場合には、単セル当たりの平均的な含水量が標準的な値であっても、含水量が増加している単セル70が存在することを検知して、含水量抑制処理を実行することができる。そのため、含水量が増加している単セル70の含水量を低減して、液水に起因するガス流通の抑制を抑え、セル電圧を安定化し、含水量が増加している単セル70における劣化の進行速度を抑えることができる。
本実施形態では、含水量が増大している単セル70が存在することを判断するために、平均含水量の水分を有する単セルにおける第1Wet/Dry圧損比と、最大含水量セルにおける第2Wet/Dry圧損比と、を用いている。単セル内部の水分量に応じた単セルにおける圧力損失と、乾燥状態の単セルにおける圧力損失と、の比である「Wet/Dry圧損比」は、「単セル内部の水分量」よりも、単セル内部の水分量に応じた反応ガスの分配量の違いを、精度良く示すといえる。そのため、Wet/Dry圧損比を用いることにより、ガス流通を確保するための含水量抑制処理の要否の判断を、より精度良く行なうことができる。特に、本実施形態では、「第1Wet/Dry圧損比と第2Wet/Dry圧損比との比」を用いることにより、ガスの分配量の局所的な低下を、より精度良く判断することが可能となる。
D.他の実施形態:
(D1)上記実施形態では、図5に示すように、Pratio(第2圧損比/第1圧損比)が第2基準値Pを超えて含水量抑制処理を行なう際には、Pratioが第2基準値P以下になるまで継続して含水量抑制処理を実行しているが、異なる構成としてもよい。例えば、Pratioが第2基準値Pを超えるときには、Pratioが第2基準値P以下になるまで、予め定めた一定の時間、含水量抑制処理(排水処理)を行なう動作を、繰り返し実行することとしてもよい。
(D2)上記実施形態では、含水量抑制処理は、エアコンプレッサ31の駆動量を増加させる排水処理として実行したが、異なる構成としてもよい。例えば、上記した酸化ガス流路の排水処理に代えて、あるいは酸化ガス流路の排水処理に加えて、燃料ガス流路の排水処理を、含水量抑制処理として実行してもよい。具体的には、水素ポンプ44の駆動量の増加や、気液分離器45に接続される燃料ガス排出管25に設けられたパージ弁46の開弁動作を、含水量抑制処理として実行してもよい。
あるいは、燃料電池スタック15における発電量を増加させることによる発熱量の増加、ヒータを用いた燃料電池スタック15の加熱、冷媒を用いた燃料電池スタック15の冷却の抑制、などによる、燃料電池スタック15の温度を上昇させる処理を、含水量抑制処理としてもよい。燃料電池スタック15の温度を上昇させることにより、燃料電池スタック15内のガス流路の湿度を低下させて、含水量を抑えることができる場合がある。また、燃料電池スタック15における発電量を減少させることにより生成水量を削減する処理を、含水量抑制処理としてもよい。あるいは、酸化ガス供給管32に加湿器を設け、燃料電池スタック15への供給に先立って酸化ガスを加湿する場合には、加湿器による加湿量を低減する処理を、含水量抑制処理としてもよい。また、背圧弁39の開度を大きくして酸化ガス流路における背圧を低下させ、酸化ガスによる水分の持ち去り量を増大させる処理を、含水量抑制処理としてもよい。燃料電池システム10のシステム構成や、発電条件、あるいは燃料電池システム10の使用環境等に応じて、含水量抑制処理として実行する処理を、適宜変更してもよく、適宜組み合わせてもよい。
(D3)上記実施形態では、燃料電池スタック15の出力端子に交流信号を入力してインピーダンスを測定する際の測定対象の単位、すなわち測定対象グループを、単一の単セル70によって構成したが、異なる構成としてもよい。例えば5セルや10セルなどの、直列に接続された複数の単セル70によって、測定対象グループを構成してもよい。燃料電池スタック15が、複数の測定対象グループに分かれており、各測定対象グループが、少なくとも一つ以上の単セル70を含んでいればよい。測定対象グループが複数の単セル70を含む場合には、測定対象グループごとに出力電流および出力電圧を検出して、インピーダンスを測定し、各測定対象グループにおける単セル当たりの含水量を導出すればよい。各対象グループに含まれる単セル70の数を少なくするほど、最大含水量セルにおける最大含水量Wmaxの検出精度を向上させることができる。各対象グループに含まれる単セル70の数を多くするほど、インピーダンス測定に係るシステム構成を簡素化することができる。
本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
10…燃料電池システム、15…燃料電池スタック、20…燃料ガス供給系、21…燃料ガスタンク、22…燃料ガス供給管、23…燃料ガス排気管、24…燃料ガス還流管、25…燃料ガス排出管、30…酸化ガス供給系、31…エアコンプレッサ、32…酸化ガス供給管、33…酸化ガス排出管、39…背圧弁、40…主止弁、42…可変調圧弁、44…水素ポンプ、45…気液分離器、46…パージ弁、50…制御部、53…含水量導出部、54…圧損比導出部、55…含水量抑制制御部、56…信号重畳部、60…電力回路、61…DC/DCコンバータ、62…配線、65…負荷、66…セルモニタ、70…単セル、533a…抵抗算出部、533b…限界電流密度算出部、533c…ガス拡散抵抗算出部、533d…第2拡散抵抗算出部、533e…第1拡散抵抗算出部

Claims (1)

  1. 複数の単セルが積層された燃料電池スタックを備える燃料電池システムであって、
    前記複数の単セルは、複数の測定対象グループに分かれており、
    前記複数の測定対象グループの各々のインピーダンスを測定して、前記燃料電池スタックにおける単セル当たりの含水量の平均値である平均含水量と、前記複数の単セルのうちで含水量が最も多い最大含水量セルにおける含水量である最大含水量と、を導出する含水量導出部と、
    前記平均含水量の水分を有する前記単セルにおける圧力損失と、乾燥状態の前記単セルにおける圧力損失と、の比である第1圧損比を導出すると共に、前記最大含水量セルにおける圧力損失と、乾燥状態の前記単セルにおける圧力損失と、の比である第2圧損比を導出する圧損比導出部と、
    前記第1圧損比に対する前記第2圧損比の比が、予め定めた基準値以上のときに、前記燃料電池スタック内の水分量を抑制する含水量抑制制御部と、
    を備える燃料電池システム。
JP2019103459A 2019-06-03 2019-06-03 燃料電池システム Pending JP2020198208A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019103459A JP2020198208A (ja) 2019-06-03 2019-06-03 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019103459A JP2020198208A (ja) 2019-06-03 2019-06-03 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2020198208A true JP2020198208A (ja) 2020-12-10

Family

ID=73648156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019103459A Pending JP2020198208A (ja) 2019-06-03 2019-06-03 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2020198208A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115642283A (zh) * 2021-07-20 2023-01-24 宁德时代新能源科技股份有限公司 电芯出炉时刻的确定方法、装置及计算机存储介质
DE102023116285A1 (de) 2022-06-29 2024-01-04 Subaru Corporation Brennstoffzellensystem

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115642283A (zh) * 2021-07-20 2023-01-24 宁德时代新能源科技股份有限公司 电芯出炉时刻的确定方法、装置及计算机存储介质
CN115642283B (zh) * 2021-07-20 2023-09-01 宁德时代新能源科技股份有限公司 电芯出炉时刻的确定方法、装置及计算机存储介质
DE102023116285A1 (de) 2022-06-29 2024-01-04 Subaru Corporation Brennstoffzellensystem

Similar Documents

Publication Publication Date Title
JP4200576B2 (ja) 燃料電池システム
US8492037B2 (en) Fuel cell system having wet-state determination
JP4821962B2 (ja) 燃料電池システム
CA2598835C (en) Fuel cell system with detection module for detecting electrolyte membrane wet state, and method of detecting or controlling electrolyte membrane wet state
JP4892888B2 (ja) 燃料電池システムおよび燃料電池システムの運転方法
JP7156920B2 (ja) 燃料電池監視装置および燃料電池の状態を判定する方法
KR101829105B1 (ko) 연료 전지 시스템, 건조 정도 취득 방법
WO2017098783A1 (ja) 燃料電池システムの制御方法及び燃料電池システム
CN108695529B (zh) 燃料电池系统
JP2008269920A (ja) 燃料電池システム
JP2002352827A (ja) 燃料電池システム
JP2020198208A (ja) 燃料電池システム
JP2007123095A (ja) 燃料電池における冷却水温度制御方法、および燃料電池システム
JP6777006B2 (ja) 燃料電池システム
JP5880618B2 (ja) 燃料電池システムおよびその制御方法
US10971742B2 (en) Fuel cell state determination method and fuel cell state determination apparatus
JP2008021448A (ja) 燃料電池システムおよび燃料電池の制御方法
JP5773084B2 (ja) 燃料電池システム
JP2011192458A (ja) 燃料電池システム、移動体、および燃料電池システムの制御方法
JP2023132389A (ja) 燃料電池システム及び燃料電池システムの弁制御方法
JP2019164891A (ja) 燃料電池システム及び燃料電池システムの制御方法
JP7272912B2 (ja) 燃料電池システム及びアノードオフガス排出量推定方法
JP2018014287A (ja) 燃料電池システム及び燃料電池システムの制御方法
US20230307674A1 (en) Fuel cell system
JP2021012769A (ja) 燃料電池システム