JP2020188206A - Vertical resonator type surface light-emitting element - Google Patents

Vertical resonator type surface light-emitting element Download PDF

Info

Publication number
JP2020188206A
JP2020188206A JP2019093058A JP2019093058A JP2020188206A JP 2020188206 A JP2020188206 A JP 2020188206A JP 2019093058 A JP2019093058 A JP 2019093058A JP 2019093058 A JP2019093058 A JP 2019093058A JP 2020188206 A JP2020188206 A JP 2020188206A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
mesa
tunnel junction
dbr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019093058A
Other languages
Japanese (ja)
Other versions
JP7283694B2 (en
Inventor
一樹 清原
Kazuki Kiyohara
一樹 清原
裕介 横林
Yusuke Yokobayashi
裕介 横林
将策 久保
Shosaku Kubo
将策 久保
竹内 哲也
Tetsuya Takeuchi
哲也 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Meijo University
Original Assignee
Stanley Electric Co Ltd
Meijo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd, Meijo University filed Critical Stanley Electric Co Ltd
Priority to JP2019093058A priority Critical patent/JP7283694B2/en
Publication of JP2020188206A publication Critical patent/JP2020188206A/en
Application granted granted Critical
Publication of JP7283694B2 publication Critical patent/JP7283694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a vertical resonator type surface light-emitting element for enabling high current injection and high output operation at a low threshold and with high slope efficiency.SOLUTION: A vertical resonator type surface light-emitting element includes a c plane GAN substrate 11 having an off angle, a semiconductor DBR 12 formed on the substrate, a group III nitride semiconductor device layer 22, and a dielectric DBR 27. The device layer comprises: a first semiconductor layer 13, an active layer 15 and a second semiconductor layer 17; a tunnel junction mesa 18 composed of a second conductive type high impurity concentration semiconductor layer 18A and a first conductive type high impurity concentration semiconductor layer 18B sequentially formed on the second semiconductor layer 17; and a semiconductor embedded layer 19. Here, the height H of the tunnel junction mesa, the layer thickness TH of the semiconductor embedded layer, and the thickness layer TB of the first conductive type high impurity concentration semiconductor layer satisfy TB≤H<TH/20, and when the resonance wavelength of a DBR resonator is regarded as λc, an effective refractive index in the resonator as neff, 1.75λc/neff≤TH≤18.75λc/neff is satisfied.SELECTED DRAWING: Figure 1

Description

本発明は、垂直共振器型面発光素子、特に垂直共振器型面発光レーザに関する。 The present invention relates to a vertical resonator type surface emitting element, particularly a vertical resonator type surface emitting laser.

従来、活性層(発光層)の上下に一対の反射鏡(共振器)が含まれるよう構成された垂直共振器型面発光レーザ(VCSEL : Vertical Cavity Surface Emitting Laser)が知られている。 Conventionally, there is known a Vertical Cavity Surface Emitting Laser (VCSEL) configured to include a pair of reflectors (resonators) above and below the active layer (light emitting layer).

例えば、特許文献1には、半導体DBR(Distributed Bragg Reflector)と誘電体DBRとから成る共振器を有し、誘電体DBR下に設けられ、開口部を有する絶縁性透明電極による電流狭窄構造を用いた窒化物系半導体材料のVCSELが開示されている。 For example, Patent Document 1 uses a current constriction structure having an insulating transparent electrode having a resonator composed of a semiconductor DBR (Distributed Bragg Reflector) and a dielectric DBR, provided under the dielectric DBR, and having an opening. The VCSEL of the nitride-based semiconductor material that has been used is disclosed.

また、特許文献2には、メサ構造のトンネル接合部を半導体層で埋め込み、逆バイアスを印加した際にトンネル接合部のみに電流が流れるように構成された、トンネル接合を有するVCSELが開示されている。 Further, Patent Document 2 discloses a VCSEL having a tunnel junction, in which a tunnel junction having a mesa structure is embedded with a semiconductor layer and a current flows only through the tunnel junction when a reverse bias is applied. There is.

また、非特許文献1には、GaNホモエピタキシャル成長における基板オフ角と表面モフォロジーの関係が開示されている。 Further, Non-Patent Document 1 discloses the relationship between the substrate off angle and the surface morphology in GaN homoepitaxial growth.

特開2018−098347号公報JP-A-2018-098347 特開2017−092158号公報JP-A-2017-0921558

第65回応用物理学会春季学術講演会予稿(19a-C302-11)、2018年Proceedings of the 65th JSAP Spring Meeting (19a-C302-11), 2018

しかしながら、絶縁性透明電極を利用した電流狭窄構造は、透明電極に用いる材料(ITOなど)の吸収係数が高いため、薄膜を用いる必要があり、透明電極部のシート抵抗が高い。さらに、開口部の段差付近では局所的に膜厚が薄くなりやすく、高電流注入(高出力)時に断線による不点灯など故障が起きやすいなど、信頼性にも問題があった。 However, in the current constriction structure using the insulating transparent electrode, since the absorption coefficient of the material (ITO or the like) used for the transparent electrode is high, it is necessary to use a thin film, and the sheet resistance of the transparent electrode portion is high. Further, there is a problem in reliability, such as the film thickness tends to be thinned locally near the step of the opening, and a failure such as non-lighting due to disconnection is likely to occur at the time of high current injection (high output).

また、共振器を構成する反射鏡(DBR)が平行に形成されていないと散乱損失が増大し、閾値電流の上昇やスロープ効率の低下などの問題が生じる。上記電流狭窄構造においては、絶縁膜の開口部端部の段差で誘電体DBRが屈曲し反射率が低下する問題があった。 Further, if the reflectors (DBRs) constituting the resonator are not formed in parallel, the scattering loss increases, and problems such as an increase in the threshold current and a decrease in the slope efficiency occur. In the current constriction structure, there is a problem that the dielectric DBR is bent at a step at the end of the opening of the insulating film and the reflectance is lowered.

また、埋め込みトンネル接合を用いた電流狭窄構造は、半導体積層構造上面に凸部(段差)が形成され、この段差上に高い反射性能を有する誘電体DBRを形成することは難しい。 Further, in the current constriction structure using the embedded tunnel junction, a convex portion (step) is formed on the upper surface of the semiconductor laminated structure, and it is difficult to form a dielectric DBR having high reflection performance on the convex portion (step).

発光領域に対して十分に広い範囲に平坦な反射鏡(DBR)が形成されていることが理想だが、従来技術においては、誘電体DBRが平坦で高反射率である領域が電流狭窄領域と同等以下となってしまい、散乱損失が生じやすいという問題があった。 Ideally, a flat reflector (DBR) is formed in a sufficiently wide range with respect to the light emitting region, but in the prior art, the region where the dielectric DBR is flat and has high reflectance is equivalent to the current constriction region. There is a problem that scattering loss is likely to occur because of the following.

本発明は上記した点に鑑みてなされたものであり、極めて平坦な表面を有するトンネル接合半導体発光構造層と、当該半導体発光構造層上のDBRを有し、低閾値、高スロープ効率で高電流注入(高出力)動作が可能な、高い発光性能を有する垂直共振器型面発光素子を提供することを目的としている。 The present invention has been made in view of the above points, and has a tunnel junction semiconductor light emitting structure layer having an extremely flat surface and a DBR on the semiconductor light emitting structure layer, and has a low threshold value, high slope efficiency, and high current. It is an object of the present invention to provide a vertical resonator type surface emitting device having high light emitting performance capable of injection (high output) operation.

本発明の1実施態様による垂直共振器型面発光素子は、
表面がオフ角を有するc面であるGaN基板と、
前記GaN基板上に形成された半導体DBR(Distributed Bragg Reflector)と、
前記半導体DBR上に形成された、III族窒化物半導体からなるデバイス層と、
前記デバイス層上に形成された誘電体DBRと、
を有し、
前記デバイス層は、
第1の導電型の第1の半導体層、活性層、前記第1の導電型とは反対導電型である第2の導電型の第2の半導体層、がこの順で前記半導体DBR上に形成された発光構造層と、
前記第2の半導体層上に順に形成された第2導電型の高不純物濃度半導体層及び第1導電型の高不純物濃度半導体層からなるトンネル接合層のトンネル接合領域を含むメサ形状のトンネル接合メサと、
前記トンネル接合メサを埋め込むように前記第2の半導体層上に形成された半導体埋込み層と、からなり、
前記トンネル接合メサの高さをH、前記第1導電型の前記高不純物濃度半導体層の層厚をTB、前記半導体埋込み層の層厚をTHとしたとき、
TB < H < TH/20 を満たし、
前記半導体DBR及び前記誘電体DBRによって形成される共振器の共振波長をλc、共振器内の実効屈折率をneffとしたとき、
1.75λc/neff ≦ TH ≦ 18.75λc/neff
を満たす。
The vertical resonator type surface emitting device according to one embodiment of the present invention is
A GaN substrate whose surface is a c-plane having an off-angle and
A semiconductor DBR (Distributed Bragg Reflector) formed on the GaN substrate and
A device layer made of a group III nitride semiconductor formed on the semiconductor DBR and
The dielectric DBR formed on the device layer and
Have,
The device layer is
A first conductive type first semiconductor layer, an active layer, and a second conductive type second semiconductor layer which is a conductive type opposite to the first conductive type are formed on the semiconductor DBR in this order. With the light emitting structure layer
A mesa-shaped tunnel junction mesa including a tunnel junction region of a tunnel junction layer composed of a second conductive type high impurity concentration semiconductor layer and a first conductive type high impurity concentration semiconductor layer formed in this order on the second semiconductor layer. When,
It is composed of a semiconductor embedded layer formed on the second semiconductor layer so as to embed the tunnel junction mesa.
When the height of the tunnel junction mesa is H, the layer thickness of the high impurity concentration semiconductor layer of the first conductive type is TB, and the layer thickness of the semiconductor embedded layer is TH.
Satisfy TB <H <TH / 20 and
When the resonance wavelength of the resonator formed by the semiconductor DBR and the dielectric DBR is λc and the effective refractive index in the resonator is n eff
1.75λc / n eff ≤ TH ≤ 18.75λc / n eff
Meet.

本発明の1実施態様による垂直共振器型面発光素子10の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the vertical resonator type surface light emitting element 10 by one Embodiment of this invention. メサ直上領域の表面を示すAFM像である。It is an AFM image which shows the surface of the region just above a mesa. 垂直共振器型面発光素子10の製造方法における埋込工程を模式的に示す断面図である。It is sectional drawing which shows typically the embedding process in the manufacturing method of the vertical resonator type surface light emitting element 10. 垂直共振器型面発光素子10の製造方法における埋込工程を模式的に示す断面図である。It is sectional drawing which shows typically the embedding process in the manufacturing method of the vertical resonator type surface light emitting element 10. 垂直共振器型面発光素子10の製造方法における埋込工程を模式的に示す断面図である。It is sectional drawing which shows typically the embedding process in the manufacturing method of the vertical resonator type surface light emitting element 10. 垂直共振器型面発光素子10の製造方法における埋込工程を模式的に示す断面図である。It is sectional drawing which shows typically the embedding process in the manufacturing method of the vertical resonator type surface light emitting element 10. 埋込層19の表面状態のメサ高さ依存性を示す図である。It is a figure which shows the mesa height dependence of the surface state of the embedding layer 19. 埋込層19の表面における傾斜面の有無を示す実測結果を示している。The actual measurement result which shows the presence or absence of the inclined surface on the surface of the embedding layer 19 is shown. トンネル接合メサMSの高さHと、p−GaInN層18A、n−GaN層18Bの層厚の関係の他の例を示す断面図である。FIG. 5 is a cross-sectional view showing another example of the relationship between the height H of the tunnel junction mesa MS and the layer thickness of the p + −GaInN layer 18A and the n + −GaN layer 18B. トンネル接合メサMSの高さHと、p−GaInN層18A、n−GaN層18Bの層厚の関係の他の例を示す断面図である。FIG. 5 is a cross-sectional view showing another example of the relationship between the height H of the tunnel junction mesa MS and the layer thickness of the p + −GaInN layer 18A and the n + −GaN layer 18B. 垂直共振器型面発光素子10の室温CW動作におけるELスペクトルを示す図である。It is a figure which shows the EL spectrum in the room temperature CW operation of a vertical resonator type surface light emitting element 10. 垂直共振器型面発光素子10の室温CW動作における光出力−電流特性を示す図である。It is a figure which shows the optical output-current characteristic in room temperature CW operation of a vertical resonator type surface light emitting element 10.

以下においては、本発明の好適な実施例について説明するが、これらを適宜改変し、組合せてもよい。また、以下の説明及び添付図面において、実質的に同一又は等価な部分には同一の参照符を付して説明する。
[半導体発光装置の構造]
図1は、本発明の1実施態様による垂直共振器型面発光素子10の構造を模式的に示す断面図である。図1を参照して、垂直共振器型面発光素子10の構造の一例について説明する。
Hereinafter, preferred examples of the present invention will be described, but these may be appropriately modified and combined. Further, in the following description and the accompanying drawings, substantially the same or equivalent parts will be described with the same reference numerals.
[Structure of semiconductor light emitting device]
FIG. 1 is a cross-sectional view schematically showing the structure of a vertical resonator type surface emitting device 10 according to one embodiment of the present invention. An example of the structure of the vertical resonator type surface emitting device 10 will be described with reference to FIG.

詳細には、垂直共振器型面発光素子10は、オフ角を有するc面を表面とするGaN基板11と、当該オフ角を有するc面GaN基板11上に形成されたバッファ層(図示せず)と半導体DBR(Distributed Bragg Reflector)12と、を有している。半導体DBR12はアンドープであるか、もしくは第1の導電型を有していてもよい。 Specifically, the vertical resonator type surface emitting device 10 has a GaN substrate 11 having a c-plane having an off-angle surface and a buffer layer formed on the c-plane GaN substrate 11 having the off-angle (not shown). ) And a semiconductor DBR (Distributed Bragg Reflector) 12. The semiconductor DBR12 may be undoped or may have a first conductive type.

半導体DBR12上には、n−GaN層13(第1の半導体層)及びn−GaN層13上に活性層(発光層)15が形成され、活性層15上には、p−AlGaN電子ブロック層17A及びp−GaN層17Bからなる半導体層17(第2の半導体層)が形成されている。第1の半導体層はAlGaNまたはGaInN、AlInN、またはそれらの超格子構造を含んでいてもよい。また、活性層15とp−AlGaN電子ブロック層17Aの間にGaN、GaInN、AlGaN、およびそれらの超格子構造を含んでいてもよい。なお、ここでは、第1の半導体層13、活性層15及び第2の半導体層17からなる層を発光構造層21と称する。なお、第1の半導体層13及び第2の半導体層17は、それぞれアンドープ層又は真性半導体層(i層)を含んでいても良い。 An active layer (light emitting layer) 15 is formed on the n-GaN layer 13 (first semiconductor layer) and the n-GaN layer 13 on the semiconductor DBR 12, and a p-AlGaN electron block layer is formed on the active layer 15. A semiconductor layer 17 (second semiconductor layer) composed of 17A and a p-GaN layer 17B is formed. The first semiconductor layer may contain AlGaN or GaInN, AlInN, or a superlattice structure thereof. Further, GaN, GaInN, AlGaN, and their superlattice structures may be contained between the active layer 15 and the p-AlGaN electron block layer 17A. Here, the layer composed of the first semiconductor layer 13, the active layer 15, and the second semiconductor layer 17 is referred to as a light emitting structure layer 21. The first semiconductor layer 13 and the second semiconductor layer 17 may include an undoped layer or an intrinsic semiconductor layer (i layer), respectively.

p−GaN層17B上には円柱形状のメサ構造のトンネル接合層18(以下、トンネル接合メサMSとも称する)が形成されている。トンネル接合層18は、p−GaN層17B上に形成されたp−GaInN層(第2導電型の高不純物濃度半導体層:層厚TA、第1の高不純物濃度半導体層)18Aと、p−GaInN層18A上に形成されたn−GaN層18B(第1導電型の高不純物濃度半導体層:層厚TB、第2の高不純物濃度半導体層)とを含む。第1導電型の高不純物濃度半導体層についてはn−GaInNまたはn− AlGaNでもよく、In組成およびAl組成の傾斜(組成傾斜)を有していてもよい。また、第2導電型の高不純物濃度半導体層についてはp−GaNまたはp−AlGaNであってもよく、In組成およびAl組成の傾斜(組成傾斜)を有していてもよい。 A tunnel junction layer 18 (hereinafter, also referred to as a tunnel junction mesa MS) having a cylindrical mesa structure is formed on the p-GaN layer 17B. The tunnel junction layer 18 includes a p + −GaInN layer (second conductive type high impurity concentration semiconductor layer: layer thickness TA, first high impurity concentration semiconductor layer) 18A formed on the p-GaN layer 17B, and p. It includes an n + -GaN layer 18B (first conductive type high impurity concentration semiconductor layer: layer thickness TB, second high impurity concentration semiconductor layer) formed on the + −GaInN layer 18A. The first conductive type high impurity concentration semiconductor layer may be n + −GaInN or n + − AlGaN, and may have an In composition and an Al composition inclination (composition inclination). Further, the second conductive type high impurity concentration semiconductor layer may be p + −GaN or p + −AlGaN, and may have an In composition and an Al composition inclination (composition inclination).

p−GaN層17B上には、メサ構造のトンネル接合層18を埋め込むようにn−GaN埋込み層19が形成されている。n−GaN埋込み層19は横方向光閉じ込めの観点からn−AlInNおよびn− AlGaN、またはそれらの超格子構造であってもよい。なお、ここでは、発光構造層21、メサ構造のトンネル接合層18及び埋込み層19からなるデバイス構造層をデバイス層22と称する。 An n-GaN embedded layer 19 is formed on the p-GaN layer 17B so as to embed the tunnel junction layer 18 having a mesa structure. The n-GaN embedded layer 19 may be n-AlInN and n-AlGaN, or a superlattice structure thereof from the viewpoint of lateral light confinement. Here, the device structure layer composed of the light emitting structure layer 21, the tunnel junction layer 18 having a mesa structure, and the embedded layer 19 is referred to as a device layer 22.

デバイス層22は、埋込み層19の表面からn−GaN層13内に達し、GaN基板11に垂直に起立する(突出する)メサ形状のデバイス構造半導体層として形成されている。デバイス層22は、GaN基板11に垂直な軸を中心軸CXとする円柱形状のメサ(以下、デバイスメサDMと称する)である。 The device layer 22 is formed as a mesa-shaped device structure semiconductor layer that reaches into the n-GaN layer 13 from the surface of the embedded layer 19 and stands up (protrudes) perpendicularly to the GaN substrate 11. The device layer 22 is a cylindrical mesa (hereinafter referred to as a device mesa DM) having an axis perpendicular to the GaN substrate 11 as a central axis CX.

メサ形状のデバイス層22の側面及び上面は、SiO等の絶縁体25で被覆されている。絶縁体25は、デバイス層22の上面において円形の開口部25Aを有し、開口部25Aの中央領域であって、n−GaN埋込み層19上に円柱形状の誘電体DBR27が形成されている。 The side surface and the upper surface of the mesa-shaped device layer 22 are covered with an insulator 25 such as SiO 2 . The insulator 25 has a circular opening 25A on the upper surface of the device layer 22, which is a central region of the opening 25A, and a cylindrical dielectric DBR27 is formed on the n-GaN embedded layer 19.

絶縁体25の開口部25Aと誘電体DBR27との間隙部(開口部25Aの外周領域)には、n−GaN埋込み層19に円環状に接触されたp側電極(第2の電極)26が形成されている。垂直共振器型面発光素子10の上面から見たp側電極26とトンネル接合メサMSとの距離はn−GaN埋込み層19内の横方向抵抗の観点から短いほどよく、5μm以下であることが好ましい。 In the gap between the opening 25A of the insulator 25 and the dielectric DBR27 (outer peripheral region of the opening 25A), a p-side electrode (second electrode) 26 which is annularly contacted with the n-GaN embedded layer 19 is provided. It is formed. The distance between the p-side electrode 26 and the tunnel junction mesa MS as seen from the upper surface of the vertical resonator type surface emitting device 10 is better from the viewpoint of lateral resistance in the n-GaN embedded layer 19, and is 5 μm or less. preferable.

n−GaN層13の平坦部には、n−GaN層13に円環状に接触されたn側電極(第1の電極)14が形成されている。なお、第1導電型の半導体DBR12を用いた場合は、GaN基板11の裏面側(半導体DBRが形成されているのとは反対側)に円環状に接触されたn側電極を形成してもよい。 On the flat portion of the n-GaN layer 13, an n-side electrode (first electrode) 14 in which the n-GaN layer 13 is annularly contacted is formed. When the first conductive type semiconductor DBR 12 is used, even if the n-side electrode in circular contact is formed on the back surface side of the GaN substrate 11 (the side opposite to the side on which the semiconductor DBR is formed). Good.

トンネル接合層18及び誘電体DBR27は、GaN基板11に垂直な軸を中心軸として同軸であるように形成されている。好ましくは、トンネル接合層18及び誘電体DBR27は、デバイス層22の中心軸CXと同軸であるように形成されている。 The tunnel junction layer 18 and the dielectric DBR 27 are formed so as to be coaxial with the axis perpendicular to the GaN substrate 11 as the central axis. Preferably, the tunnel junction layer 18 and the dielectric DBR 27 are formed so as to be coaxial with the central axis CX of the device layer 22.

また、n側電極14(第1の電極)及びp側電極(第2の電極)26は、デバイス層22(デバイスメサDM)の中心軸CXと同軸であるように形成されていることが好ましい。 Further, it is preferable that the n-side electrode 14 (first electrode) and the p-side electrode (second electrode) 26 are formed so as to be coaxial with the central axis CX of the device layer 22 (device mesa DM). ..

なお、ここで、円柱形状又は円環形状等は、楕円柱形状又は楕円環形状等である場合も含む。
[垂直共振器型面発光素子の製法]
図1及び図2を参照して、本発明の1実施態様による垂直共振器型面発光素子10の製造方法の一例について説明する。
Here, the cylindrical shape or the annular shape includes the case where the elliptical pillar shape or the elliptical ring shape or the like is used.
[Manufacturing method of vertical resonator type surface emitting element]
An example of a method for manufacturing the vertical resonator type surface emitting device 10 according to one embodiment of the present invention will be described with reference to FIGS. 1 and 2.

なお、実施態様の垂直共振器型面発光素子10が、発振波長(λc)が410nm、共振器長が5.5λの埋込みトンネル接合(Burried Tunnel Junction)構造のVCSEL(BTJ-VCSEL)素子である場合について説明するが、発振波長、共振器長、層厚や直径等の各種サイズ、導電型、不純物や不純物濃度等の素子パラメータは例示に過ぎず、適宜改変して適用可能であることは言うまでもない。 The vertical resonator type surface emitting element 10 of the embodiment is a VCSEL (BTJ-VCSEL) element having a Burried Tunnel Junction structure having an oscillation wavelength (λc) of 410 nm and a resonator length of 5.5λ. The case will be described, but it goes without saying that various sizes such as oscillation wavelength, resonator length, layer thickness and diameter, conductive type, and element parameters such as impurities and impurity concentration are merely examples and can be appropriately modified and applied. Yes.

また、各半導体層の成長に有機金属気相成長法(MOCVD法)を用いた場合について説明する。基板及び成長層の結晶面、結晶方位等は、等価面、等価方位等を含む。
(第1工程)
(−1100)方向、すなわちm軸方向に0.4°のオフ角を有するc面GaN基板11上にアンドープのGaNバッファ層、その上部に40ペアのAlInN/GaNからなる半導体DBR12を成長する。
Further, a case where the organic metal vapor phase growth method (MOCVD method) is used for the growth of each semiconductor layer will be described. The crystal plane, crystal orientation, etc. of the substrate and the growth layer include the equivalent plane, the equivalent orientation, and the like.
(First step)
An undoped GaN buffer layer is grown on a c-plane GaN substrate 11 having an off angle of 0.4 ° in the (-1100) direction, that is, the m-axis direction, and a semiconductor DBR12 composed of 40 pairs of AlInN / GaN is grown on the layer.

次に、半導体DBR12上に、順次、n−GaN層13(層厚425nm)、量子井戸(QW)構造の活性層15、p−Al0.2Ga0.8N電子ブロック層(EBL:Electron Blocking Layer)17A(層厚20nm)及びp−GaN層17B(層厚70nm)を成長する。活性層15は、例えば5層のGaInN量子井戸層及び量子井戸層と交互に形成されたGaN障壁層を含む。 Next, on the semiconductor DBR12, an n-GaN layer 13 (layer thickness 425 nm), an active layer 15 having a quantum well (QW) structure, and a p-Al 0.2 Ga 0.8 N electron block layer (EBL: Electron) are sequentially applied. Blocking Layer) 17A (layer thickness 20 nm) and p-GaN layer 17B (layer thickness 70 nm) are grown. The active layer 15 includes, for example, five GaInN quantum well layers and a GaN barrier layer alternately formed with the quantum well layers.

p−GaN層17Bには、p−Ga0.65In0.35N層18A(層厚TA:2nm、Mgドーピング濃度:2×1020cm−3)及びn−GaN層18B(層厚TB:5nm、Siドーピング濃度:6×1020cm−3)を含むトンネル接合層18を成長する。
(第2工程)
上記の層を成長した基板(成長層付き基板)に、電流狭窄を行うためのトンネル接合メサMSを形成する。すなわち、まず、成長層付き基板上にフォトリソグラフィおよびイオンビーム蒸着法(EB)を用いて、直径が6〜10μmの円形SiOマスクをパターニングにより形成する。
The p-GaN layer 17B includes p + -Ga 0.65 In 0.35 N layer 18A (layer thickness TA: 2 nm, Mg doping concentration: 2 × 10 20 cm -3 ) and n + -GaN layer 18B (layer). A tunnel junction layer 18 containing a thickness TB: 5 nm and a Si doping concentration: 6 × 10 20 cm -3 ) is grown.
(Second step)
A tunnel junction mesa MS for performing current constriction is formed on a substrate (a substrate with a growth layer) in which the above layers are grown. That is, first, a circular SiO 2 mask having a diameter of 6 to 10 μm is formed by patterning on a substrate with a growth layer by using photolithography and an ion beam deposition method (EB).

次に、例えば塩素(Cl)ガスを用いてSiOマスク外の部分をエッチングして、円柱形状のメサ(トンネル接合メサMS)を形成する。エッチングの深さは、n−GaN層18Bを除去しきることができるn−GaN層18Bの層厚(TB:5nm)を超える深さである。例えば、n−GaN層18Bの表面から7nmの深さまでエッチングして、高さHが7nmのトンネル接合メサMSを形成する。 Next, for example, a portion outside the SiO 2 mask is etched with chlorine (Cl 2 ) gas to form a cylindrical mesa (tunnel junction mesa MS). The etching depth, n + -GaN layer 18B thickness of n + -GaN layer 18B which can partition the removal (TB: 5 nm) is greater than the depth. For example, the surface of the n + −GaN layer 18B is etched to a depth of 7 nm to form a tunnel junction mesa MS having a height H of 7 nm.

このエッチングにより、トンネル接合メサMS外部においてp−GaN層17Bが露出する。最後に、SiOマスクをフッ酸(HF)溶液で剥離して直径が6〜10μmの円柱形状のトンネル接合メサMSが形成される。
(第3工程)
トンネル接合メサMSが形成された基板に対して埋め込み成長を行う。n−GaN埋込み層19の形成は2段階からなる。
By this etching, the p-GaN layer 17B is exposed outside the tunnel junction mesa MS. Finally, the SiO 2 mask is peeled off with a hydrofluoric acid (HF) solution to form a cylindrical tunnel junction mesa MS having a diameter of 6 to 10 μm.
(Third step)
Embedded growth is performed on the substrate on which the tunnel junction mesa MS is formed. The formation of the n-GaN embedded layer 19 consists of two steps.

より詳細には、トンネル接合メサMSが形成された基板をMOCVD反応炉内にセットし、NH及び窒素(N)雰囲気中で725℃に昇温し、その温度でn−GaNを10nm成長させる(低温成長n−GaN)。この際のSiドーピング濃度は2×1018cm−3である。 More specifically, the substrate on which the tunnel junction mesa MS was formed was set in a MOCVD reaction furnace, heated to 725 ° C. in an NH 3 and nitrogen (N 2 ) atmosphere, and n-GaN was grown by 10 nm at that temperature. (Low temperature growth n-GaN). The Si doping concentration at this time is 2 × 10 18 cm -3 .

この低Si濃度の低温成長n−GaN(LT−nGaN)を成長することでトンネル接合部をプロテクトしつつ表面が荒れることなく、次の高温の埋め込み成長を行うことができる。 By growing the low-temperature growth n-GaN (LT-nGaN) having a low Si concentration, the next high-temperature embedded growth can be performed while protecting the tunnel junction and without roughening the surface.

次に、NH及び水素(H)雰囲気中で1080℃まで昇温し、その温度でn−GaNを270nm成長させる(高温成長n−GaN、HT−nGaN)。この際のSiドーピング濃度は1×1019cm−3である。この時点で、メサ直上領域はその領域外(外周部)に対して5nm以下の段差しか有しない表面になっており、図2のAFM(原子間力顕微鏡)像に示すようにステップが明瞭に見える原子的に平坦な表面となっている。
(第4工程)
成長が終了した基板に対して、面発光レーザとして動作する素子構造を形成する。先ず、トンネル接合メサMSよりも直径が30μm大きいメサ(デバイスメサDM)をフォトリソグラフィ、Clガスを用いたドライエッチングにより形成する。ドライエッチングはn−GaN層13が露出するまで行う。
Next, the temperature is raised to 1080 ° C. in an atmosphere of NH 3 and hydrogen (H 2 ), and n-GaN is grown by 270 nm at that temperature (high temperature growth n-GaN, HT-nGaN). The Si doping concentration at this time is 1 × 10 19 cm -3 . At this point, the region directly above the mesa is a surface having only a step of 5 nm or less with respect to the outside of the region (outer peripheral portion), and the steps are clearly shown as shown in the AFM (atomic force microscope) image of FIG. It has an atomically flat surface that can be seen.
(4th step)
An element structure that operates as a surface emitting laser is formed on a substrate that has finished growing. First, a mesa (device mesa DM) having a diameter 30 μm larger than that of the tunnel junction mesa MS is formed by photolithography and dry etching using Cl 2 gas. Dry etching is performed until the n-GaN layer 13 is exposed.

次に、デバイスメサDMを形成した基板をN雰囲気中にて725℃、30分間のアニール処理を行う。これにより、メサの側壁からHを脱離させることによって、p−AlGaN層17A、p−GaN層17B、p−GaInN層18AのMgを活性化させる。 Next, 725 ° C. The substrate with the device mesa DM in an N 2 atmosphere, annealing is performed for 30 minutes. As a result, H is desorbed from the side wall of the mesa to activate Mg in the p-AlGaN layer 17A, the p-GaN layer 17B, and the p + -GaInN layer 18A.

次に、スパッタリング法により層厚250nmのSiO絶縁膜を成膜し、リフトオフによりデバイスメサDM端から5μm内側までの円形の開口部25Aを形成する。 Next, a SiO 2 insulating film having a layer thickness of 250 nm is formed by a sputtering method, and a circular opening 25A extending from the end of the device mesa DM to the inside by 5 μm is formed by lift-off.

次に、リング形状をなしたp側電極26及びn側電極14をイオンビーム蒸着法により形成する。当該p側電極26及びn側電極14は、例えばCr/Ni/Auをこの順で蒸着して形成する。 Next, the ring-shaped p-side electrode 26 and n-side electrode 14 are formed by an ion beam vapor deposition method. The p-side electrode 26 and the n-side electrode 14 are formed by, for example, depositing Cr / Ni / Au in this order.

最後に、トンネル接合メサMS直上部の開口部25Aにスパッタリング法により8ペアのSiO/Nbからなる誘電体DBR27を形成する。
[表面が平坦な埋込層の形成]
本発明は、前述のように、特に埋め込みトンネル接合VCSELの発振を阻害する要因であった埋め込み成長後の表面凸部による散乱損失の低減を図るために考案されたものである。
Finally, a dielectric DBR27 composed of 8 pairs of SiO 2 / Nb 2 O 5 is formed in the opening 25A directly above the tunnel junction mesa MS by a sputtering method.
[Formation of an embedded layer with a flat surface]
As described above, the present invention has been devised in order to reduce the scattering loss due to the surface convex portion after the embedded growth, which has been a factor that hinders the oscillation of the embedded tunnel junction VCSEL.

本発明の実施態様によれば、オフ角を有するc面GaN基板上に形成された高さHのトンネル接合を含むトンネル接合メサMSを用いて、ステップフロー成長が優先的に起こるように埋め込み成長を行い、当該埋込成長表面が原子的に平坦で、かつトンネル接合メサMSに起因する凸部が残存しない平坦な表面を得ることができる。そして、これにより、その埋込成長表面上に成膜される誘電体DBRに湾曲が起こらず、散乱損失を低減することができる。以下に、その詳細について説明する。
(1)メサ高さHと埋め込み膜厚THとの関係
図3A−3Dは、垂直共振器型面発光素子10の製造方法における埋込工程を模式的に示す断面図である。
According to an embodiment of the present invention, using a tunnel junction mesa MS including a tunnel junction of height H formed on a c-plane GaN substrate having an off angle, embedded growth is performed so that step flow growth occurs preferentially. It is possible to obtain a flat surface in which the embedded growth surface is atomically flat and no protrusions due to the tunnel junction mesa MS remain. As a result, the dielectric DBR formed on the embedded growth surface is not curved, and the scattering loss can be reduced. The details will be described below.
(1) Relationship between Mesa Height H and Embedded Thickness TH FIG. 3A-3D is a cross-sectional view schematically showing an embedding process in a method for manufacturing a vertical resonator type surface light emitting element 10.

図3Aに示すように、トンネル接合メサMSは直径D及び高さHを有する。トンネル接合メサMSの表面はオフ角θを有する([STEP1])。 As shown in FIG. 3A, the tunnel junction mesa MS has a diameter D and a height H. The surface of the tunnel junction mesa MS has an off-angle θ ([STEP1]).

図3Bに示すように、再成長により埋込成長を行うと、基板にオフ角があるため、メサMS内外でRの成長レートでステップフロー成長(横方向成長モード)が起こり、成長膜厚方向(基板垂直方向)にはRverの成長速度で成長する([STEP2])。 As shown in FIG. 3B, when embedded growth is performed by regrowth, step flow growth (lateral growth mode) occurs at the growth rate of R s inside and outside the Mesa MS due to the off-angle in the substrate, and the growth film thickness is increased. In the direction (vertical direction of the substrate), it grows at the growth rate of R ver ([STEP2]).

図3Cに示すように、メサMSの表面の内部にはメサMS外からステップが伸びてくることはない「閉鎖された領域」となり、メサ表面内のステップがなくなるまで成長が進む、いわゆる「ステップフリー面」SFが形成される。 As shown in FIG. 3C, the inside of the surface of the mesa MS is a “closed area” in which steps do not extend from outside the mesa MS, and growth proceeds until there are no steps inside the mesa surface, so-called “steps”. A "free surface" SF is formed.

ステップフリー面が一度形成されるとc軸方向、つまりステップフリー面SFに垂直な方向にのみ成長が起こる状態となる。すなわち、成長膜厚方向の成長速度Rsf verはRverに比べ非常に小さい。この状況下でメサMSの外部では引き続きステップフロー成長が進み、次第にステップフリー面を覆っていく([STEP3])。 Once the step-free surface is formed, growth occurs only in the c-axis direction, that is, in the direction perpendicular to the step-free surface SF. That is, the growth rate R sf ver in the growth film thickness direction is much smaller than that of R ver . Under this circumstance, step flow growth continues to progress outside of Mesa MS, gradually covering the step-free side ([STEP3]).

そして、図3Dに示すように、最終的にはステップフリー面が完全にメサ外部層により覆われ平坦化する([STEP4])。 Finally, as shown in FIG. 3D, the step-free surface is completely covered with the outer layer of the mesa and flattened ([STEP4]).

メサMSの内外の成長レート差が大きい場合(Rver>>Rsf ver)、メサ外部の成長層がメサ上の成長層に追いついてくるが、Rverが大きい場合、すなわち二次元核形成頻度が高くなり、理想的なステップフロー成長が困難となる。その結果、ラフな表面となってしまい、高反射率の誘電体DBRを形成するのには適さない表面となる。 When the growth rate difference between the inside and outside of the mesa MS is large (R ver >> R sf ver ), the growth layer outside the mesa catches up with the growth layer on the mesa, but when the R ver is large, that is, the frequency of two-dimensional nucleation. Will be high, and ideal step flow growth will be difficult. As a result, the surface becomes rough, which is not suitable for forming a dielectric DBR having a high reflectance.

verを変えずとも所望の共振器長内でメサ外部の成長層がメサ上の成長層に早期に追いつくようにするには、メサ高さHを低減すればよい。メサ高さHを小さくすることで、メサ高さH分だけ成長した時点でステップフリー面を覆う成長が開始され早期にステップフリー面を埋め込むことが可能となる。 In order to allow the growth layer outside the mesa to catch up with the growth layer on the mesa at an early stage within the desired resonator length without changing the R ver , the mesa height H may be reduced. By reducing the mesa height H, the growth covering the step-free surface is started when the mesa height H grows, and the step-free surface can be embedded at an early stage.

実際に、オフ角θ=0.4°、D=10μm、TH=280nm(発振波長410nmの1.75λに相当)とした際の埋込層19の表面状態のメサ高さ依存性を図4に示す。 Actually, the mesa height dependence of the surface state of the embedded layer 19 when the off-angle θ = 0.4 °, D = 10 μm, and TH = 280 nm (corresponding to 1.75λ with an oscillation wavelength of 410 nm) is shown in FIG. Shown in.

図4において、上段には埋込層19の表面の断面プロファイル、下段には埋込層19の表面のレーザ顕微鏡像を示している。また、下段の右側には、メサMS及びメサMSの断面の端部位置を破線で模式的に描いた挿絵が示されている。 In FIG. 4, the cross-sectional profile of the surface of the embedded layer 19 is shown in the upper row, and the laser microscope image of the surface of the embedded layer 19 is shown in the lower row. Further, on the right side of the lower row, an illustration in which the end positions of the Mesa MS and the cross section of the Mesa MS are schematically drawn by broken lines is shown.

より詳細には、メサ高さHが、(a)6.7nm、(b)10.1nm、(c)25.9nm、(d)81.2nmの場合を示し、上段の断面プロファイル中に示したように、それぞれの場合で、メサMSの端部の直上部に対応する表面位置での段差が(a)測定限界以下、(b)5nm、(c)13nm、(d)15nmであった。 More specifically, the cases where the mesa height H is (a) 6.7 nm, (b) 10.1 nm, (c) 25.9 nm, and (d) 81.2 nm are shown, and are shown in the upper cross-sectional profile. As described above, in each case, the step at the surface position corresponding to the upper part of the end of the mesa MS was (a) below the measurement limit, (b) 5 nm, (c) 13 nm, and (d) 15 nm. ..

図4から、メサ高さHの低減により、ステップフリー面由来の傾斜面が残存しない埋め込み表面が得られやすくなることがわかる。より具体的には、下記条件を満たすメサ高さにする必要がある。 From FIG. 4, it can be seen that by reducing the mesa height H, it becomes easier to obtain an embedded surface in which the inclined surface derived from the step-free surface does not remain. More specifically, it is necessary to set the mesa height to satisfy the following conditions.

また、図5は、埋込層19の表面における傾斜面の有無を、メサ径D、メサ高さH、埋込層厚TH,THとHとの比(TH/H)に関して調べた実測結果である。このように、鋭意検討の結果、ステップフリー面由来の傾斜面が残存しない埋め込み表面が得られるためには、メサ高さH(nm)は、下記条件を満たす必要がある。なお、n−GaN層18Bの層厚をTBとする。 Further, FIG. 5 shows the actual measurement results of examining the presence or absence of an inclined surface on the surface of the embedded layer 19 with respect to the mesa diameter D, the mesa height H, the embedded layer thickness TH, and the ratio of TH to H (TH / H). Is. As described above, as a result of diligent studies, the mesa height H (nm) must satisfy the following conditions in order to obtain an embedded surface in which the inclined surface derived from the step-free surface does not remain. The layer thickness of the n + −GaN layer 18B is TB.

TB < H < TH/20 ・・・(式1)
(2)メサ高さH
図1に示した場合においては、トンネル接合メサMSの外側において、p−GaInN層18A(第2導電型の高不純物濃度半導体層:層厚TA)及びn−GaN層18B(第1導電型の高不純物濃度半導体層:層厚TB)がp−GaN層17Bの最表面まで除去されている。すなわち、トンネル接合メサMSの高さHが、H=TA+TBである場合について図示している。
TB <H <TH / 20 ... (Equation 1)
(2) Mesa height H
In the case shown in FIG. 1, p + −GaInN layer 18A (second conductive type high impurity concentration semiconductor layer: layer thickness TA) and n + −GaN layer 18B (first conductive type) outside the tunnel junction mesa MS. The high impurity concentration semiconductor layer of the mold: layer thickness TB) is removed to the outermost surface of the p-GaN layer 17B. That is, the case where the height H of the tunnel junction mesa MS is H = TA + TB is shown.

しかし、上記(式1)を満たす範囲で、トンネル接合メサMSの高さHを設定すれば良い。例えば、図5の断面図に示すように、トンネル接合メサMSの外側において、p−GaN層17Bの内部に至るまでp−GaInN層18A、n−GaN層18B及びp−GaN層17Bを除去した高さとなるようにトンネル接合メサMSを形成してもよい。この場合、トンネル接合メサMSは第2の半導体層17(p−GaN層17B)の一部を含んで、第2の半導体層17から突出している。また、トンネル接合メサMSの高さHは、H>TA+TBである。 However, the height H of the tunnel junction mesa MS may be set within the range satisfying the above (Equation 1). For example, as shown in the cross-sectional view of FIG. 5, on the outside of the tunnel junction mesa MS, the p + −GaInN layer 18A, the n + −GaN layer 18B, and the p-GaN layer 17B are formed up to the inside of the p-GaN layer 17B. The tunnel junction mesa MS may be formed so as to have the removed height. In this case, the tunnel junction mesa MS includes a part of the second semiconductor layer 17 (p-GaN layer 17B) and protrudes from the second semiconductor layer 17. The height H of the tunnel junction mesa MS is H> TA + TB.

また、図7の断面図に示すように、p−GaInN層18Aの途中まで除去され、すなわちメサMSの外側にもp−GaInN層18Aが残るようにトンネル接合メサMSを形成してもよい。すなわち、少なくともトンネル接合層18のトンネル接合領域(p−GaInN層18A及びn−GaN層18Bの界面領域又は空乏層)がトンネル接合メサMSに含まれていれば良い。この場合、トンネル接合メサMSの高さHは、TB<H<TA+TBである。
(3)埋め込み膜厚TH
埋込み層厚は所望する共振器長で決まる。共振器長が長くなると回折損失は増加するが、熱抵抗の低減が望める。熱抵抗の低減効果は共振器長が15λ程度で飽和することが分かった。また、埋込み層厚(共振器長)が大きすぎるとモードホッピング(縦モード)が生じやすくなる。モード間隔から、全体の共振器長は20λまでと見積もられた(モード間隔が10nm(DBR帯域幅の1/2を切っていること)。半導体DBR12〜p−GaInN層18Aの中心までの共振器長は最低1.25λ(共振器全体の最小の共振器長は3λ)であるため、埋め込み膜厚TH(nm)は以下の条件を満たす必要がある。
Further, as shown in the sectional view of FIG. 7, p + -GaInN layer 18A is a removed halfway, i.e. be formed tunnel junction mesa MS as well p + -GaInN layer 18A on the outer side of the mesa MS remains Good. That is, at least the tunnel junction region of the tunnel junction layer 18 (the interface region or the depletion layer of the p + −GaInN layer 18A and the n + −GaN layer 18B) may be included in the tunnel junction mesa MS. In this case, the height H of the tunnel junction mesa MS is TB <H <TA + TB.
(3) Embedded film thickness TH
The embedded layer thickness is determined by the desired cavity length. Although the diffraction loss increases as the cavity length increases, the thermal resistance can be expected to decrease. It was found that the effect of reducing the thermal resistance is saturated when the cavity length is about 15λ. Further, if the embedded layer thickness (resonator length) is too large, mode hopping (longitudinal mode) is likely to occur. From the mode spacing, the overall resonator length was estimated to be up to 20λ (mode spacing is 10 nm (less than 1/2 of the DBR bandwidth). Semiconductor DBR12 to p + − to the center of the GaInN layer 18A. Since the resonator length is at least 1.25λ (the minimum resonator length of the entire resonator is 3λ), the embedded film thickness TH (nm) must satisfy the following conditions.

共振波長(または発振波長)をλc、共振器内の実効屈折率をneffとしたとき、
1.75λc/neff≦TH ≦ 18.75λc/neff ・・・(式2)
を満たすことが好ましい。
(4)オフ角θ
窒化物VCSELでは、エピ層表面に高反射率を必要とする誘電体DBR形成するため、エピ層表面は原子的に平坦であることが重要である。c面GaN基板上で良好なモフォロジーが得られるオフ角の範囲は上記した非特許文献1において報告されている。平坦なエピ層表面は、オフ角を有する基板上への成長において、ステップフロー成長を促すことで達成できる。本発明では、オフ角θは以下の範囲である。
When the resonance wavelength (or oscillation wavelength) [lambda] c, the effective refractive index in the resonator was set to n eff,
1.75λc / n eff ≤ TH ≤ 18.75λc / n eff ... (Equation 2)
It is preferable to satisfy.
(4) Off angle θ
In the nitride VCSEL, it is important that the surface of the epi layer is atomically flat in order to form a dielectric DBR that requires high reflectance on the surface of the epi layer. The range of off-angles at which good morphology can be obtained on a c-plane GaN substrate is reported in Non-Patent Document 1 described above. A flat epilayer surface can be achieved by encouraging step-flow growth in growth on substrates with off-angles. In the present invention, the off angle θ is in the following range.

0.3°≦θ≦0.7° ・・・(式3)
また、オフ角θは、m軸方向又はa軸方向に対する角度であることが好ましい。
(5)メサ径D
応用時に光学部品等との結合効率を考慮すると、横モードシングルモード発振が望ましい。一般に横方向光閉じ込めや電流注入径を大きくすると多モード発振が促進される。導波構造(0≦d(neff)≦0.01、ここでdは屈折率差)を有する窒化物系VCSELに関してシングルモードで発振させるためには、トンネル接合メサMSの直径Dが10μm以下、好ましくは、6μm以下である。
0.3 ° ≤ θ ≤ 0.7 ° ・ ・ ・ (Equation 3)
Further, the off angle θ is preferably an angle with respect to the m-axis direction or the a-axis direction.
(5) Mesa diameter D
Transverse mode single mode oscillation is desirable in consideration of coupling efficiency with optical components during application. In general, increasing the lateral light confinement and the current injection diameter promotes multimode oscillation. In order to oscillate in a single mode for a nitride-based VCSEL having a waveguide structure (0 ≦ d (n eff ) ≦ 0.01, where d is a refractive index difference), the diameter D of the tunnel junction mesa MS is 10 μm or less. , Preferably 6 μm or less.

また、メサMSの直径Dが小さ過ぎると回折損失が大きくなることを考慮すると、下限は3μm程度である。従って、3μm≦D≦10μmを満たすことが好ましく、さらに好ましくは、3μm≦D≦6μmである。 Further, considering that the diffraction loss becomes large when the diameter D of the mesa MS is too small, the lower limit is about 3 μm. Therefore, it is preferable to satisfy 3 μm ≦ D ≦ 10 μm, and more preferably 3 μm ≦ D ≦ 6 μm.

なお、トンネル接合メサMSが楕円柱形状を有する場合には、その長径をDとすればよい。
[埋込層19の表面の平坦性]
再び、図2を参照すると、メサMSの直上領域の埋込層19の表面はステップが明瞭に見える原子的に平坦な表面となっている。換言すれば、メサMSの直上領域の表面がステップ・アンド・テラス状の周期性を有したモフォロジーを呈する平坦性を有していた。なお、図2に示すように、縞状ステップの進行方向はm軸方向であることが確認された。
When the tunnel junction mesa MS has an elliptical column shape, its major axis may be D.
[Flatness of the surface of the embedded layer 19]
Again, referring to FIG. 2, the surface of the embedded layer 19 in the region directly above the mesa MS is an atomically flat surface where the steps are clearly visible. In other words, the surface of the region directly above the mesa MS had a flatness exhibiting a morphology with step-and-terrace periodicity. As shown in FIG. 2, it was confirmed that the traveling direction of the striped step was the m-axis direction.

GaNのステップの1原子高さ(0.25nm)からステップ・アンド・テラスのRa(算術平均粗さ)の理想値を算出したところ、Ra=0.06nmであった。従って、Raの下限値は0.06nmである。 When the ideal value of Ra (arithmetic mean roughness) of step and terrace was calculated from the height of one atom of the step of GaN (0.25 nm), it was Ra = 0.06 nm. Therefore, the lower limit of Ra is 0.06 nm.

また、Raが1.2nm以上になると誘電体DBRの散乱損失が25cm−1以上となり、発振不能となる。誘電体DBRの散乱損失を共振器内の損失の5%以下となる2cm−1以下とした場合、Raは0.3nm以下であることが好ましい。 Further, when Ra becomes 1.2 nm or more, the scattering loss of the dielectric DBR becomes 25 cm -1 or more, and oscillation becomes impossible. When the scattering loss of the dielectric DBR is 2 cm -1 or less, which is 5% or less of the loss in the resonator, Ra is preferably 0.3 nm or less.

すなわち、少なくともメサMSの直上領域における埋込層19の表面のRaの値は、0.06≦Ra≦0.3nmであることが好ましい。 That is, the value of Ra on the surface of the embedded layer 19 at least in the region directly above the mesa MS is preferably 0.06 ≦ Ra ≦ 0.3 nm.

図2に示すように、上記した製造方法で作製した埋込層19の表面のRaは、0.07nmであり、極めて平坦な成長表面が得られていることが確認された。
[デバイス特性]
上記した構成及び製造方法で作製した垂直共振器型面発光素子10の室温CW動作におけるELスペクトルを図8に、光出力−電流特性を図9に示す。
As shown in FIG. 2, Ra on the surface of the embedded layer 19 produced by the above-mentioned production method was 0.07 nm, and it was confirmed that an extremely flat growth surface was obtained.
[Device characteristics]
FIG. 8 shows an EL spectrum of the vertical resonator type surface emitting device 10 manufactured by the above configuration and manufacturing method in room temperature CW operation, and FIG. 9 shows an optical output-current characteristic.

図8のELスペクトルから線幅の狭いスペクトルが得られていることがわかる。なお、主ピークの短波長側に小さなピークが見られるが、これは作製したサンプルの電極に基づく電流注入の偏りによるものであり、完全なシングルモードに改善可能である。 It can be seen from the EL spectrum of FIG. 8 that a spectrum having a narrow line width is obtained. A small peak is seen on the short wavelength side of the main peak, which is due to the bias of the current injection based on the electrode of the prepared sample, and can be improved to a complete single mode.

また、図9の光出力−電流特性から、メサ径が6μm〜10μmの場合において明瞭な光出力の立ち上がり及び高い光出力が得られていることがわかる。 Further, from the optical output-current characteristics of FIG. 9, it can be seen that a clear rise in optical output and high optical output are obtained when the mesa diameter is 6 μm to 10 μm.

以上、説明した通り、本発明によれば、極めて平坦な表面を有するトンネル接合半導体発光構造層と、当該半導体発光構造層の平坦な表面上に形成されたDBRを有した垂直共振器型面発光素子が提供される。従って、低閾値、高スロープ効率で高電流注入、高出力動作が可能な、高い発光性能を有する垂直共振器型面発光素子が提供される。 As described above, according to the present invention, a vertical resonator type surface emission having a tunnel-junction semiconductor light emitting structure layer having an extremely flat surface and a DBR formed on the flat surface of the semiconductor light emitting structure layer. The element is provided. Therefore, a vertical resonator type surface emitting device having high light emitting performance capable of low threshold value, high slope efficiency, high current injection, and high output operation is provided.

10 垂直共振器型面発光素子
11 基板
12 半導体DBR
13 n−GaN層(第1の半導体層)
15 活性層
17 第2の半導体層
17A 電子ブロック層
17B p−GaN層
18 トンネル接合層
18A p−GaInN層
18B n−GaN層
19 n−GaN埋込み層
22 デバイス層
25 絶縁体
27 誘電体DBR
MS トンネル接合メサ
10 Vertical resonator type surface light emitting element 11 Substrate 12 Semiconductor DBR
13 n-GaN layer (first semiconductor layer)
15 Active layer 17 Second semiconductor layer 17A Electronic block layer 17B p-GaN layer 18 Tunnel junction layer 18A p + -GaInN layer 18B n + -GaN layer 19 n-GaN embedded layer 22 Device layer 25 Insulator 27 Dielectric DBR
MS tunnel junction mesa

Claims (7)

表面がオフ角を有するc面であるGaN基板と、
前記GaN基板上に形成された半導体DBR(Distributed Bragg Reflector)と、
前記半導体DBR上に形成された、III族窒化物半導体からなるデバイス層と、
前記デバイス層上に形成された誘電体DBRと、
を有し、
前記デバイス層は、
第1の導電型の第1の半導体層、活性層、前記第1の導電型とは反対導電型である第2の導電型の第2の半導体層、がこの順で前記半導体DBR上に形成された発光構造層と、
前記第2の半導体層上に順に形成された第2導電型の高不純物濃度半導体層及び第1導電型の高不純物濃度半導体層からなるトンネル接合層のトンネル接合領域を含むメサ形状のトンネル接合メサと、
前記トンネル接合メサを埋め込むように前記第2の半導体層上に形成された半導体埋込み層と、からなり、
前記トンネル接合メサの高さをH、前記第1導電型の前記高不純物濃度半導体層の層厚をTB、前記半導体埋込み層の層厚をTHとしたとき、
TB < H < TH/20 を満たし、
前記半導体DBR及び前記誘電体DBRによって形成される共振器の共振波長をλc、共振器内の実効屈折率をneffとしたとき、
1.75λc/neff≦TH ≦ 18.75λc/neff
を満たす垂直共振器型面発光素子。
A GaN substrate whose surface is a c-plane having an off-angle and
A semiconductor DBR (Distributed Bragg Reflector) formed on the GaN substrate and
A device layer made of a group III nitride semiconductor formed on the semiconductor DBR and
The dielectric DBR formed on the device layer and
Have,
The device layer is
A first conductive type first semiconductor layer, an active layer, and a second conductive type second semiconductor layer which is a conductive type opposite to the first conductive type are formed on the semiconductor DBR in this order. With the light emitting structure layer
A mesa-shaped tunnel junction mesa including a tunnel junction region of a tunnel junction layer composed of a second conductive type high impurity concentration semiconductor layer and a first conductive type high impurity concentration semiconductor layer formed in this order on the second semiconductor layer. When,
It is composed of a semiconductor embedded layer formed on the second semiconductor layer so as to embed the tunnel junction mesa.
When the height of the tunnel junction mesa is H, the layer thickness of the high impurity concentration semiconductor layer of the first conductive type is TB, and the layer thickness of the semiconductor embedded layer is TH.
Satisfy TB <H <TH / 20 and
When the resonance wavelength of the resonator formed by the semiconductor DBR and the dielectric DBR is λc and the effective refractive index in the resonator is n eff
1.75λc / n eff ≤ TH ≤ 18.75λc / n eff
Vertical resonator type surface emitting device that satisfies the above conditions.
前記半導体埋込み層の少なくとも前記トンネル接合メサの直上領域の表面はステップ・アンド・テラス状の周期性を有したモフォロジーを呈する、請求項1に記載の垂直共振器型面発光素子。 The vertical resonator type surface emitting device according to claim 1, wherein at least the surface of the semiconductor embedded layer immediately above the tunnel junction mesa exhibits a morphology having a step-and-terrace-like periodicity. 前記半導体埋込み層の少なくとも前記トンネル接合メサの直上領域の表面粗さRaは、0.06≦Ra≦0.3nmである、請求項1に記載の垂直共振器型面発光素子。 The vertical resonator type surface light emitting device according to claim 1, wherein the surface roughness Ra of at least the region directly above the tunnel junction mesa of the semiconductor embedded layer is 0.06 ≦ Ra ≦ 0.3 nm. 前記トンネル接合メサは円柱形状又は楕円柱形状を有し、その直径又は長径Dは3μm≦D≦10μmを満たす、請求項1ないし3のいずれか1項に記載の垂直共振器型面発光素子。 The vertical resonator type surface emitting device according to any one of claims 1 to 3, wherein the tunnel junction mesa has a cylindrical shape or an elliptical column shape, and its diameter or major axis D satisfies 3 μm ≦ D ≦ 10 μm. 前記GaN基板の前記オフ角(θ)は、0.3°≦θ≦0.7°である、請求項1ないし4のいずれか1項に記載の垂直共振器型面発光素子。 The vertical resonator type surface light emitting device according to any one of claims 1 to 4, wherein the off angle (θ) of the GaN substrate is 0.3 ° ≤ θ ≤ 0.7 °. 前記GaN基板の前記オフ角(θ)は、m軸方向又はa軸方向に関する角度である、請求項1ないし5のいずれか1項に記載の垂直共振器型面発光素子。 The vertical resonator type surface light emitting device according to any one of claims 1 to 5, wherein the off angle (θ) of the GaN substrate is an angle related to the m-axis direction or the a-axis direction. 前記半導体埋込み層の表面であって前記トンネル接合メサの直上部に対応する領域とその外周部との段差が5nm以下である、請求項1ないし6のいずれか1項に記載の垂直共振器型面発光素子。 The vertical resonator type according to any one of claims 1 to 6, wherein the step between the surface of the semiconductor embedded layer and the region immediately above the tunnel junction mesa and the outer peripheral portion thereof is 5 nm or less. Surface emitting element.
JP2019093058A 2019-05-16 2019-05-16 Vertical cavity surface emitting device Active JP7283694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019093058A JP7283694B2 (en) 2019-05-16 2019-05-16 Vertical cavity surface emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019093058A JP7283694B2 (en) 2019-05-16 2019-05-16 Vertical cavity surface emitting device

Publications (2)

Publication Number Publication Date
JP2020188206A true JP2020188206A (en) 2020-11-19
JP7283694B2 JP7283694B2 (en) 2023-05-30

Family

ID=73222081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019093058A Active JP7283694B2 (en) 2019-05-16 2019-05-16 Vertical cavity surface emitting device

Country Status (1)

Country Link
JP (1) JP7283694B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185766A1 (en) * 2021-03-03 2022-09-09 ソニーグループ株式会社 Surface emitting laser and method for manufacturing surface emitting laser
WO2023167076A1 (en) * 2022-03-01 2023-09-07 スタンレー電気株式会社 Vertical cavity light emitting element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045223A1 (en) * 2000-11-29 2002-06-06 Optowell Co., Ltd. Nitride compound semiconductor vertical-cavity surface-emitting laser
JP2004327655A (en) * 2003-04-24 2004-11-18 Sharp Corp Nitride semiconductor laser device, its manufacturing method, and semiconductor optical device
JP2005056979A (en) * 2003-08-01 2005-03-03 Toyoda Gosei Co Ltd Method for manufacturing group iii nitride compound semiconductor
JP2008010641A (en) * 2006-06-29 2008-01-17 Sumitomo Electric Ind Ltd Surface-emission semiconductor element
JP2008060459A (en) * 2006-09-01 2008-03-13 Canon Inc Semiconductor laser equipment
JP2011096856A (en) * 2009-10-29 2011-05-12 Sony Corp Semiconductor laser
WO2015129610A1 (en) * 2014-02-26 2015-09-03 学校法人名城大学 METHOD FOR MANUFACTURING n-p-n NITRIDE-SEMICONDUCTOR LIGHT-EMITTING ELEMENT, AND n-p-n NITRIDE-SEMICONDUCTOR LIGHT-EMITTING ELEMENT

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045223A1 (en) * 2000-11-29 2002-06-06 Optowell Co., Ltd. Nitride compound semiconductor vertical-cavity surface-emitting laser
JP2004327655A (en) * 2003-04-24 2004-11-18 Sharp Corp Nitride semiconductor laser device, its manufacturing method, and semiconductor optical device
JP2005056979A (en) * 2003-08-01 2005-03-03 Toyoda Gosei Co Ltd Method for manufacturing group iii nitride compound semiconductor
JP2008010641A (en) * 2006-06-29 2008-01-17 Sumitomo Electric Ind Ltd Surface-emission semiconductor element
JP2008060459A (en) * 2006-09-01 2008-03-13 Canon Inc Semiconductor laser equipment
JP2011096856A (en) * 2009-10-29 2011-05-12 Sony Corp Semiconductor laser
WO2015129610A1 (en) * 2014-02-26 2015-09-03 学校法人名城大学 METHOD FOR MANUFACTURING n-p-n NITRIDE-SEMICONDUCTOR LIGHT-EMITTING ELEMENT, AND n-p-n NITRIDE-SEMICONDUCTOR LIGHT-EMITTING ELEMENT

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASARU KURAMOTO, ET AL.: "High-Power GaN-Based Vertical-Cavity Surface Emitting Lasers with AlInN/GaN Distributed Bragg Reflec", APPLIED SCIENCES, vol. Vol.9, Article 416, JPN6023000864, 26 January 2019 (2019-01-26), pages 1 - 13, ISSN: 0004964809 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185766A1 (en) * 2021-03-03 2022-09-09 ソニーグループ株式会社 Surface emitting laser and method for manufacturing surface emitting laser
WO2023167076A1 (en) * 2022-03-01 2023-09-07 スタンレー電気株式会社 Vertical cavity light emitting element

Also Published As

Publication number Publication date
JP7283694B2 (en) 2023-05-30

Similar Documents

Publication Publication Date Title
AU771942B2 (en) Nitride semiconductor device and manufacturing method thereof
JP5286723B2 (en) Nitride semiconductor laser device
JP2000021772A (en) Semiconductor device and its manufacture
JP2002009004A (en) Method of manufacturing nitride semiconductor, nitride semiconductor device, method of manufacturing the same semiconductor light emitting device and its manufacturing method
JPH11135770A (en) Iii-v compd. semiconductor, manufacture thereof and semiconductor element
US7830940B2 (en) Nitride semiconductor laser element having nitride semiconductor substrate and nitride semiconductor layer laminated thereon with nitride semiconductor substrate and nitride semiconductor layer having recesses formed in high dislocation density region of nitride semiconductor substrate and nitride semiconductor layer having portions with different film thicknesses
US20070200177A1 (en) Semiconductor laser device and semiconductor laser device manufacturing method
KR101011934B1 (en) Nitride semiconductor and semiconductor device
JP7283694B2 (en) Vertical cavity surface emitting device
JP2000349398A (en) Nitride semiconductor light emitting device and its manufacture
JP2010272593A (en) Nitride semiconductor light emitting element and manufacturing method of the same
JP4639571B2 (en) Nitride semiconductor laser device and manufacturing method thereof
JP3789781B2 (en) Semiconductor device and method for forming semiconductor layer
JP2000004063A (en) Nitride semiconductor laser element and formation of electrode thereof
JP2009123772A (en) Semiconductor laser device
JP2004158500A (en) Nitride semiconductor, nitride semiconductor substrate, nitride semiconductor device, and method of manufacturing them
JP2003283057A (en) Nitride semiconductor light emitting element and its fabricating method
JP3438675B2 (en) Method for growing nitride semiconductor
JP3455500B2 (en) Semiconductor laser and method for manufacturing semiconductor laser
JP3913758B2 (en) Semiconductor device and method for forming semiconductor layer
JP2006013476A (en) Iii-v compound semiconductor and its manufacturing method, and semiconductor device
JP2009049221A (en) Semiconductor light-emitting device
JP3969989B2 (en) Nitride-based semiconductor device and manufacturing method thereof
JP2000012956A (en) Nitride semiconductor laser element
JP2009302429A (en) Nitride semiconductor laser

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230509

R150 Certificate of patent or registration of utility model

Ref document number: 7283694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150