JP2020188076A - Placing table and method of manufacturing placing table - Google Patents

Placing table and method of manufacturing placing table Download PDF

Info

Publication number
JP2020188076A
JP2020188076A JP2019090104A JP2019090104A JP2020188076A JP 2020188076 A JP2020188076 A JP 2020188076A JP 2019090104 A JP2019090104 A JP 2019090104A JP 2019090104 A JP2019090104 A JP 2019090104A JP 2020188076 A JP2020188076 A JP 2020188076A
Authority
JP
Japan
Prior art keywords
top plate
flow path
refrigerant
forming member
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019090104A
Other languages
Japanese (ja)
Other versions
JP7336256B2 (en
Inventor
河西 繁
Shigeru Kasai
河西  繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2019090104A priority Critical patent/JP7336256B2/en
Priority to PCT/JP2020/018444 priority patent/WO2020230674A1/en
Priority to KR1020217039218A priority patent/KR20220003599A/en
Priority to CN202080033045.2A priority patent/CN113767461B/en
Publication of JP2020188076A publication Critical patent/JP2020188076A/en
Application granted granted Critical
Publication of JP7336256B2 publication Critical patent/JP7336256B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2865Holding devices, e.g. chucks; Handlers or transport devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • G01R31/2875Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature related to heating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • G01R31/2877Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature related to cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support

Abstract

To provide a placing table applicable to a wide range of temperature that cools a test object using a refrigerant flowing along a refrigerant passage provided in the placing table and heats the test object using light that has passed through a member constituting the refrigerant passage and the refrigerant.SOLUTION: A placing table on which a test object is placed comprises: a top plate part in which the test object is placed on its top surface; a flow passage formation member attached to a reverse surface of the top plate part and forming a refrigerant passage along which a light-transmissive refrigerant flows in a clearance with the top plate part; and a light irradiation mechanism arranged so as to face the test object placed on the top plate part through the flow passage formation member and having a plurality of LEDs oriented to the test object. The flow passage formation member is made of light-transmissive glass and the top plate part is made of silicon.SELECTED DRAWING: Figure 4

Description

本開示は、載置台及び載置台の作製方法に関する。 The present disclosure relates to a mounting table and a method for manufacturing the mounting table.

特許文献1には、電子デバイスが形成された基板が載置されるステージが開示されている。特許文献1に開示のステージは、円板状のステージ蓋と、内部に冷媒溝が形成された冷却ユニットと、を有し、ステージ蓋が、Oリングを介して冷却ユニットに当接し、上記冷媒溝はステージ蓋に覆われて冷媒流路を形成し、Oリングが冷媒を冷媒流路に密封している。そして、これらステージ蓋と冷却ユニットを介してウェハに対向するように、多数のLEDを有する光照射機構が設けられ、また、冷却ユニットと冷媒が光を透過可能であるため、LEDからの光が冷却機構等を透過してステージ蓋に到達する。さらに、光照射機構が、LEDからの光をステージ蓋へ局所的に照射可能である。これらの構成により、特許文献1に開示のステージは、冷却機構でステージ蓋を全体的に冷却しつつ、ステージ蓋へ局所的に光を照射し加熱し、もって、所望の電子デバイスのみの温度を制御しつつ他の電子デバイスを冷却する。 Patent Document 1 discloses a stage on which a substrate on which an electronic device is formed is placed. The stage disclosed in Patent Document 1 has a disk-shaped stage lid and a cooling unit having a refrigerant groove formed inside, and the stage lid comes into contact with the cooling unit via an O-ring, and the refrigerant The groove is covered with a stage lid to form a refrigerant flow path, and an O-ring seals the refrigerant to the refrigerant flow path. A light irradiation mechanism having a large number of LEDs is provided so as to face the wafer via the stage lid and the cooling unit, and since the cooling unit and the refrigerant can transmit light, the light from the LEDs can be transmitted. It passes through the cooling mechanism and reaches the stage lid. Further, the light irradiation mechanism can locally irradiate the stage lid with the light from the LED. With these configurations, the stage disclosed in Patent Document 1 heats the stage lid by locally irradiating the stage lid with light while cooling the stage lid as a whole by a cooling mechanism, thereby raising the temperature of only the desired electronic device. Cool other electronic devices while controlling.

特開2018−151369号公報Japanese Unexamined Patent Publication No. 2018-151369

本開示にかかる技術は、載置台内に設けられた冷媒流路を流れる冷媒により検査対象体を冷却すると共に冷媒流路を構成する部材及び冷媒を透過した光で検査対象体を加熱する載置台であって、広い温度範囲で適用可能なものを提供する。 The technique according to the present disclosure is a mounting table that cools the inspection target body with the refrigerant flowing through the refrigerant flow path provided in the mounting table and heats the inspection target body with the light transmitted through the members constituting the refrigerant flow path and the refrigerant. Provided that is applicable over a wide temperature range.

本開示の一態様は、検査対象体が載置される載置台であって、表面に前記検査対象体が載置される天板部と、前記天板部の裏面に取り付けられ、前記天板部との間に光を透過可能な冷媒が流れる冷媒流路を形成する流路形成部材と、前記天板部に載置された前記検査対象体と前記流路形成部材を介して対向するように配置され、当該検査対象体を指向する複数のLEDを有する光照射機構とを有し、前記流路形成部材は、光を透過可能なガラスからなり、前記天板部はシリコンからなる。 One aspect of the present disclosure is a mounting table on which an inspection target body is placed, which is attached to a top plate portion on which the inspection target body is placed on the front surface and a back surface of the top plate portion, and the top plate is attached. A flow path forming member that forms a flow path forming member through which a light-transmissible refrigerant flows between the portions, and the inspection target body placed on the top plate portion and the flow path forming member so as to face each other. It has a light irradiation mechanism having a plurality of LEDs pointing to the inspection object, the flow path forming member is made of glass capable of transmitting light, and the top plate portion is made of silicon.

本開示によれば、載置台内に設けられた冷媒流路を流れる冷媒により検査対象体を冷却すると共に冷媒流路を構成する部材及び冷媒を透過した光で検査対象体を加熱する載置台であって、広い温度範囲で適用可能なものを提供することができる。 According to the present disclosure, the inspection target is cooled by the refrigerant flowing through the refrigerant flow path provided in the mounting table, and the inspection target is heated by the light transmitted through the members constituting the refrigerant flow path and the refrigerant. It is possible to provide a product that can be applied in a wide temperature range.

本実施形態にかかる載置台としてのステージを有するプローバの構成の概略を示す斜視図である。It is a perspective view which shows the outline of the structure of the prober which has a stage as a mounting stand which concerns on this embodiment. 本実施形態にかかる載置台としてのステージを有するプローバの構成の概略を示す正面図である。It is a front view which shows the outline of the structure of the prober which has a stage as a mounting stand which concerns on this embodiment. 検査対象体であるウェハの構成を概略的に示す平面図である。It is a top view which shows schematic structure of the wafer which is an inspection object. ステージの構成を概略的に示す断面図である。It is sectional drawing which shows the structure of a stage roughly. 光照射機構の構成を概略的に示す平面図である。It is a top view which shows the structure of the light irradiation mechanism schematicly. 図1の検査装置におけるウェハの温度測定用の回路の構成を概略的に示す図である。It is a figure which shows schematic structure of the circuit for temperature measurement of a wafer in the inspection apparatus of FIG. トッププレートの他の例の構成を概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing the configuration of another example of the top plate. 図7のトッププレートを構成する各層を示すためにトッププレートを層毎に分割して示す断面図である。FIG. 5 is a cross-sectional view showing the top plate divided into layers in order to show each layer constituting the top plate of FIG. 7.

半導体製造プロセスでは、半導体ウェハ(以下、「ウェハ」という。)上に所定の回路パターンを持つ多数の電子デバイスが形成される。形成された電子デバイスは、電気的特性等の検査が行われ、良品と不良品とに選別される。電子デバイスの検査は、例えば、各電子デバイスが分割される前のウェハの状態で、検査装置を用いて行われる。 In the semiconductor manufacturing process, a large number of electronic devices having a predetermined circuit pattern are formed on a semiconductor wafer (hereinafter, referred to as “wafer”). The formed electronic device is inspected for electrical characteristics and the like, and is classified into a non-defective product and a defective product. The inspection of the electronic device is performed using an inspection device, for example, in the state of the wafer before each electronic device is divided.

プローバ等と称される検査装置(以下、「プローバ」という。)は、多数のプローブを有するプローブカードと、ウェハが載置されるステージと、を備える。検査の際、プローバでは、プローブカードの各プローブが電子デバイスの各電極に接触され、その状態で、プローブカードの上部に設けられたテスタから各プローブを介して当該電子デバイスに電気信号が供給される。そして、各プローブを介して電子デバイスからテスタが受信した電気信号に基づいて、当該電子デバイスが不良品か否か選別される。
この種のプローバには、電子デバイスの電気的特性を検査する際、当該電子デバイスの実装環境を再現するために、ステージ内に設けられた、抵抗発熱体を有するヒータや、冷媒が流れる流路によって、当該ステージの温度が制御され、ウェハの温度が制御される。
An inspection device called a prober or the like (hereinafter, referred to as a “prober”) includes a probe card having a large number of probes and a stage on which a wafer is placed. At the time of inspection, in the prober, each probe of the probe card is in contact with each electrode of the electronic device, and in that state, an electric signal is supplied to the electronic device from the tester provided on the upper part of the probe card via each probe. To. Then, based on the electric signal received by the tester from the electronic device via each probe, it is selected whether or not the electronic device is defective.
In this type of prober, when inspecting the electrical characteristics of an electronic device, a heater having a resistance heating element and a flow path through which a refrigerant flows are provided in the stage in order to reproduce the mounting environment of the electronic device. Controls the temperature of the stage and controls the temperature of the wafer.

ところで、近年、電子デバイスは高速化や微細化が進み、集積度が高くなり、動作時の発熱量が非常に増大している。そのため、ウェハにおいて、一の電子デバイスの検査中に、隣接する他の電子デバイスに熱負荷が与えられてしまい、当該他の電子デバイスに不具合を生じさせる恐れがある。
この問題に関連し、特許文献1は以下のステージを開示している。前述のように、特許文献1に開示のステージは、円板状のステージ蓋と、内部に冷媒溝が形成された冷却ユニットと、を有し、ステージ蓋が、Oリングを介して冷却ユニットに当接し、上記冷媒溝はステージ蓋に覆われて冷媒流路を形成し、Oリングが冷媒を冷媒流路に密封している。そして、これらステージ蓋と冷却ユニットを介してウェハに対向するように、多数のLEDを有する光照射機構が設けられ、また、冷却ユニットと冷媒が光を透過可能であるため、LEDからの光が冷却機構等を透過してステージ蓋に到達する。さらに、光照射機構が、LEDからの光をステージ蓋へ局所的に照射可能である。これらの構成により、特許文献1に開示のステージは、冷却機構でステージ蓋を全体的に冷却しつつ、ステージ蓋へ局所的に光を照射し加熱し、もって、所望の電子デバイスのみの温度を制御しつつ他の電子デバイスを冷却する。
By the way, in recent years, electronic devices have been speeded up and miniaturized, the degree of integration has increased, and the amount of heat generated during operation has increased significantly. Therefore, in the wafer, during the inspection of one electronic device, a heat load is applied to another adjacent electronic device, which may cause a defect in the other electronic device.
In relation to this problem, Patent Document 1 discloses the following stages. As described above, the stage disclosed in Patent Document 1 has a disk-shaped stage lid and a cooling unit in which a refrigerant groove is formed, and the stage lid becomes a cooling unit via an O-ring. The refrigerant groove is covered with a stage lid to form a refrigerant flow path, and an O-ring seals the refrigerant to the refrigerant flow path. A light irradiation mechanism having a large number of LEDs is provided so as to face the wafer via the stage lid and the cooling unit, and since the cooling unit and the refrigerant can transmit light, the light from the LEDs can be transmitted. It passes through the cooling mechanism and reaches the stage lid. Further, the light irradiation mechanism can locally irradiate the stage lid with the light from the LED. With these configurations, the stage disclosed in Patent Document 1 heats the stage lid by locally irradiating the stage lid with light while cooling the stage lid as a whole by a cooling mechanism, thereby raising the temperature of only the desired electronic device. Cool other electronic devices while controlling.

従来、ステージ蓋の材料には、LEDからの光による加熱の容易性等を考慮し熱伝導率の高いSiCが用いられ、冷却ユニットの材料には、安価な透明部材であるガラスが用いられている。
ステージ蓋の材料であるSiCの熱膨張率と、冷却ユニットの材料であるガラスの熱膨張率とは、広い検査温度範囲でステージとして適用可能とするためには、同程度であることが好ましい。しかし、ガラスの熱膨張率をSiCと同程度にするために、ガラスへの添加物の量や種類を調整すると、当該ガラスが、LEDからの光に対して不透明になってしまう。また、SiCの熱膨張率を変えることは難しい。
したがって、LEDからの光に対する透明性を維持するため、冷却ユニットの材料として、ステージ蓋の材料であるSiCと熱膨張率が異なるガラスが従来用いられている。
この熱膨張率の差を吸収しながら、ステージと冷却ユニットとの間に形成される冷媒流路に冷媒を密閉するためには、特許文献1と同様に、ステージと冷却ユニットとをOリングを介して当接させる方法が考えられる。しかし、Oリングで密閉するためには、Oリングを変形させステージ及び冷却ユニットに密着させるのに1t程度の圧縮力をOリングに加える必要がある。このような大きな圧縮力を加えるには、当該圧縮力に耐えられるように、ガラスからなる冷却ユニットの厚さを例えば30mm以上にする必要がある。しかし、ガラスからなる冷却ユニットの厚みが大きいと、ステージが大型化、高重量化し、ステージの駆動系に支障を来すおそれがあり、また、LEDからの光による加熱効率が低下してしまうおそれがある。さらに、Oリングを用いる場合、強い力で当該Oリングを圧縮するために、ステージと冷却ユニットとを多数の保持ねじでとめる必要があり、ねじによる接合部分が破損し易いこと等、信頼性の面で改善の余地がある。
Conventionally, SiC having high thermal conductivity has been used as the material of the stage lid in consideration of the ease of heating by the light from the LED, and glass, which is an inexpensive transparent member, has been used as the material of the cooling unit. There is.
The coefficient of thermal expansion of SiC, which is the material of the stage lid, and the coefficient of thermal expansion of glass, which is the material of the cooling unit, are preferably about the same in order to be applicable as a stage in a wide inspection temperature range. However, if the amount and type of additives to the glass are adjusted in order to make the coefficient of thermal expansion of the glass comparable to that of SiC, the glass becomes opaque to the light from the LED. Moreover, it is difficult to change the coefficient of thermal expansion of SiC.
Therefore, in order to maintain transparency with respect to light from the LED, glass having a coefficient of thermal expansion different from that of SiC, which is a material for the stage lid, has been conventionally used as a material for the cooling unit.
In order to seal the refrigerant in the refrigerant flow path formed between the stage and the cooling unit while absorbing the difference in the coefficient of thermal expansion, an O-ring is provided between the stage and the cooling unit as in Patent Document 1. A method of bringing them into contact with each other can be considered. However, in order to seal with the O-ring, it is necessary to apply a compressive force of about 1 ton to the O-ring in order to deform the O-ring and bring it into close contact with the stage and the cooling unit. In order to apply such a large compressive force, it is necessary to make the thickness of the cooling unit made of glass, for example, 30 mm or more so that the compressive force can be withstood. However, if the thickness of the cooling unit made of glass is large, the stage becomes large and heavy, which may interfere with the drive system of the stage, and the heating efficiency by the light from the LED may decrease. There is. Furthermore, when using an O-ring, in order to compress the O-ring with a strong force, it is necessary to fasten the stage and the cooling unit with a large number of holding screws, and the joints due to the screws are easily damaged. There is room for improvement in terms of aspects.

また、上述の熱膨張率の差を吸収しながら上述の冷媒流路に冷媒を密閉するための他の方法としては、ステージと冷却ユニットとをエポキシ樹脂により接合する方法が考えられる。しかし、ステージ蓋と冷却ユニットの材料であるSiCとガラスの熱膨張率の差が異なる場合、ある基準の温度から例えば35℃以内でなければ、エポキシ樹脂による接合が破断されてしまう。ある基準の温度とは、エポキシ樹脂による接合のために当該エポキシ樹脂を加熱した際の当該エポキシの温度である。そのため、膨張率の差がある場合、このエポキシ樹脂を用いる方法は、広い温度範囲で電気的特性検査を行うプローバに適用することができない。 Further, as another method for sealing the refrigerant in the above-mentioned refrigerant flow path while absorbing the above-mentioned difference in the coefficient of thermal expansion, a method of joining the stage and the cooling unit with an epoxy resin can be considered. However, if the difference in the coefficient of thermal expansion between SiC, which is the material of the stage lid and the cooling unit, and glass is different, the bonding with the epoxy resin will be broken unless the temperature is within, for example, 35 ° C. A certain reference temperature is the temperature of the epoxy when the epoxy resin is heated for bonding with the epoxy resin. Therefore, when there is a difference in expansion coefficient, this method using an epoxy resin cannot be applied to a prober that performs an electrical property inspection in a wide temperature range.

そこで、本開示にかかる技術は、ステージ内に設けられた冷媒流路を流れる冷媒により検査対象体を冷却すると共に冷媒流路を構成する部材及び冷媒を透過した光で検査対象体を加熱するステージであって、広い温度範囲で適用可能なステージを提供する。 Therefore, the technique according to the present disclosure is a stage in which the inspection target body is cooled by the refrigerant flowing through the refrigerant flow path provided in the stage, and the inspection target body is heated by the members constituting the refrigerant flow path and the light transmitted through the refrigerant. It provides a stage that can be applied over a wide temperature range.

以下、本実施形態にかかる載置台及び載置台の作製方法について、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, a mounting table and a method for manufacturing the mounting table according to the present embodiment will be described with reference to the drawings. In the present specification and the drawings, elements having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.

図1及び図2はそれぞれ、本実施形態にかかる載置台としてのステージを有するプローバ1の構成の概略を示す斜視図及び正面図である。図2では、図1のプローバ1の後述の収容室とローダが内蔵する構成要素を示すため、その一部が断面で示されている。 1 and 2 are perspective views and front views showing an outline of the configuration of a prober 1 having a stage as a mounting table according to the present embodiment, respectively. In FIG. 2, a part thereof is shown in a cross section in order to show the components contained in the storage chamber and the loader described later in the prober 1 of FIG.

図1及び図2のプローバ1は、検査対象体としてのウェハWに形成された複数の電子デバイス(後述の図3の符号D参照)それぞれの電気的特性の検査を行うものである。このプローバ1は、検査時にウェハWを収容する収容室2と、収容室2に隣接して配置されるローダ3と、収容室を覆うように配置されるテスタ4とを備える。 The prober 1 of FIGS. 1 and 2 inspects the electrical characteristics of each of a plurality of electronic devices (see reference numeral D in FIG. 3 described later) formed on the wafer W as an inspection target. The prober 1 includes a storage chamber 2 for accommodating a wafer W at the time of inspection, a loader 3 arranged adjacent to the accommodation chamber 2, and a tester 4 arranged so as to cover the accommodation chamber.

収容室2は、内部が空洞の筐体であり、ウェハWが載置される載置台としてのステージ10を有する。ステージ10は、当該ステージ10に対するウェハWの位置がずれないようにウェハWを吸着保持する。また、ステージ10には、当該ステージ10を水平方向及び鉛直方向に移動させる移動機構11が設けられている。移動機構11は、その上部にステージ10が配設されるステンレス等の金属材料からなる基台11aを有し、図示は省略するが、基台11aを移動させるためのガイドレールや、ボールねじ、モータ等を有する。この移動機構11により、後述のプローブカード12とウェハWの相対位置を調整してウェハWの表面の電極をプローブカード12のプローブ12aと接触させることができる。 The accommodation chamber 2 has a hollow housing and has a stage 10 as a mounting table on which the wafer W is mounted. The stage 10 attracts and holds the wafer W so that the position of the wafer W with respect to the stage 10 does not shift. Further, the stage 10 is provided with a moving mechanism 11 for moving the stage 10 in the horizontal direction and the vertical direction. The moving mechanism 11 has a base 11a made of a metal material such as stainless steel on which the stage 10 is arranged, and although not shown, a guide rail for moving the base 11a, a ball screw, etc. It has a motor and the like. With this moving mechanism 11, the relative positions of the probe card 12 and the wafer W, which will be described later, can be adjusted so that the electrodes on the surface of the wafer W come into contact with the probe 12a of the probe card 12.

収容室2における該ステージ10の上方には、該ステージ10に対向するようにプローブカード12が配置される。プローブカード12は、インターフェース13を介してテスタ4へ接続されている。各プローブ12aは、電気特性検査時にウェハWの各電子デバイスの電極に接触し、テスタ4からの電力をインターフェース13を介して電子デバイスへ供給し、且つ、電子デバイスからの信号をインターフェース13を介してテスタ4へ伝達する。 A probe card 12 is arranged above the stage 10 in the storage chamber 2 so as to face the stage 10. The probe card 12 is connected to the tester 4 via the interface 13. Each probe 12a contacts the electrodes of each electronic device of the wafer W during the electrical characteristic inspection, supplies power from the tester 4 to the electronic device via the interface 13, and sends a signal from the electronic device through the interface 13. And transmit it to the tester 4.

ローダ3は、搬送容器であるFOUP(図示せず)に収容されているウェハWを取り出して収容室2のステージ10へ搬送する。また、ローダ3は、電子デバイスの電気的特性の検査が終了したウェハWをステージ10から受け取り、FOUPへ収容する。 The loader 3 takes out the wafer W housed in the FOUP (not shown), which is a transport container, and transports the wafer W to the stage 10 of the storage chamber 2. Further, the loader 3 receives the wafer W for which the inspection of the electrical characteristics of the electronic device has been completed from the stage 10 and accommodates the wafer W in the FOUP.

さらに、ローダ3は、検査対象の電子デバイスの温度制御等の各種制御を行う制御部14を有する。ベースユニット等とも称される制御部14は、例えばCPUやメモリ等を備えたコンピュータにより構成され、プログラム格納部(図示せず)を有している。プログラム格納部には、プローバ1における各種処理を制御するプログラムが格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体に記録されていたものであって、当該記憶媒体から制御部14にインストールされたものであってもよい。プログラムの一部または全ては専用ハードウェア(回路基板)で実現してもよい。 Further, the loader 3 has a control unit 14 that performs various controls such as temperature control of the electronic device to be inspected. The control unit 14, which is also called a base unit or the like, is composed of, for example, a computer equipped with a CPU, a memory, or the like, and has a program storage unit (not shown). The program storage unit stores programs that control various processes in the prober 1. The program may be recorded on a computer-readable storage medium and may be installed on the control unit 14 from the storage medium. Part or all of the program may be realized by dedicated hardware (circuit board).

また、ローダ3は、各電子デバイスにおける電位差生成回路(図示せず)における電位差を測定する電位差測定ユニット15を有する。上記電位差生成回路は、例えば、ダイオード、トランジスタまたは抵抗である。電位差測定ユニット15は、配線16を介してインターフェース13に接続され、上記電位差生成回路に対応する2つの電極へ接触する2つのプローブ12a間の電位差を取得し、取得した電位差を制御部14へ伝達する。インターフェース13における各プローブ12a及び配線16の接続構造については後述する。制御部14は配線17を介してステージ10へ接続され、後述の光照射機構140や後述の冷媒流路131への冷媒の流量を調整する流量制御バルブを制御する。なお、制御部14や電位差測定ユニット15は収容室2に設けられてもよく、また、電位差測定ユニット15は、プローブカード12に設けられてもよい。 Further, the loader 3 has a potential difference measuring unit 15 for measuring a potential difference in a potential difference generation circuit (not shown) in each electronic device. The potential difference generation circuit is, for example, a diode, a transistor or a resistor. The potential difference measuring unit 15 is connected to the interface 13 via the wiring 16 to acquire the potential difference between the two probes 12a in contact with the two electrodes corresponding to the potential difference generation circuit, and transmits the acquired potential difference to the control unit 14. To do. The connection structure of each probe 12a and the wiring 16 in the interface 13 will be described later. The control unit 14 is connected to the stage 10 via the wiring 17 and controls a flow rate control valve that adjusts the flow rate of the refrigerant to the light irradiation mechanism 140 described later and the refrigerant flow path 131 described later. The control unit 14 and the potentiometric titration unit 15 may be provided in the accommodation chamber 2, and the potentiometric titration measurement unit 15 may be provided in the probe card 12.

テスタ4は、電子デバイスが搭載されるマザーボードの回路構成の一部を再現するテストボード(図示省略)を有する。テストボードは、電子デバイスからの信号に基づいて、該電子デバイスの良否を判断するテスタコンピュータ18に接続される。テスタ4では、上記テストボードを取り替えることにより、複数種のマザーボードの回路構成を再現することができる。 The tester 4 has a test board (not shown) that reproduces a part of the circuit configuration of the motherboard on which the electronic device is mounted. The test board is connected to the tester computer 18 that determines the quality of the electronic device based on the signal from the electronic device. In the tester 4, the circuit configurations of a plurality of types of motherboards can be reproduced by replacing the test board.

さらに、プローバ1は、ユーザ向けに情報を表示したりユーザが指示を入力したりするためのユーザインターフェース部19を備える。ユーザインターフェース部19は、例えば、タッチパネルやキーボード等の入力部と液晶ディスプレイ等の表示部とからなる。 Further, the prober 1 includes a user interface unit 19 for displaying information for the user and inputting an instruction by the user. The user interface unit 19 includes, for example, an input unit such as a touch panel or a keyboard and a display unit such as a liquid crystal display.

上述の各構成要素を有するプローバ1では、電子デバイスの電気的特性の検査の際、テスタコンピュータ18が、電子デバイスと各プローブ12aを介して接続されたテストボードへデータを送信する。そして、テスタコンピュータ18が、送信されたデータが当該テストボードによって正しく処理されたか否かを当該テストボードからの電気信号に基づいて判定する。 In the prober 1 having each of the above-mentioned components, the tester computer 18 transmits data to the test board connected to the electronic device via each probe 12a when inspecting the electrical characteristics of the electronic device. Then, the tester computer 18 determines whether or not the transmitted data has been correctly processed by the test board based on the electric signal from the test board.

次に、上述のプローバ1の検査対象であるウェハWについて図3を用いて説明する。図3は、ウェハWの構成を概略的に示す平面図である。
ウェハWには、略円板状のシリコン基板にエッチング処理や配線処理を施すことにより、図3に示すように、複数の電子デバイスDが互いに所定の間隔をおいて、表面に形成されている。電子デバイスDすなわちウェハWの表面には、電極Eが形成されており、該電極Eは当該電子デバイスDの内部の回路素子に電気的に接続されている。電極Eへ電圧を印加することにより、各電子デバイスDの内部の回路素子へ電流を流すことができる。
Next, the wafer W to be inspected by the prober 1 described above will be described with reference to FIG. FIG. 3 is a plan view schematically showing the configuration of the wafer W.
As shown in FIG. 3, a plurality of electronic devices D are formed on the surface of the wafer W by subjecting a substantially disk-shaped silicon substrate to an etching process or a wiring process at predetermined intervals from each other. .. An electrode E is formed on the surface of the electronic device D, that is, the wafer W, and the electrode E is electrically connected to a circuit element inside the electronic device D. By applying a voltage to the electrode E, a current can be passed through the circuit elements inside each electronic device D.

次に、ステージ10の構成について図4及び図5を用いて説明する。図4はステージ10の構成を概略的に示す断面図であり、図5は後述の光照射機構140の構成を概略的に示す平面図である。
ステージ10は、図4に示すように、天板部としてのトッププレート120を含む複数の機能部が積層されてなる。ステージ10は、当該ステージ10を水平方向及び鉛直方向に移動させる移動機構11(図2参照)上に、熱絶縁部材110を介して載置される。熱絶縁部材110は、ステージ10と移動機構11とを熱的に絶縁するためのものであり、例えば熱伝導率及び熱膨張率の低いコーディエライトの焼結体等からなる。移動機構11の基台11aも熱絶縁部材110も中実体である。
Next, the configuration of the stage 10 will be described with reference to FIGS. 4 and 5. FIG. 4 is a cross-sectional view schematically showing the configuration of the stage 10, and FIG. 5 is a plan view schematically showing the configuration of the light irradiation mechanism 140 described later.
As shown in FIG. 4, the stage 10 is formed by stacking a plurality of functional portions including a top plate 120 as a top plate portion. The stage 10 is placed on a moving mechanism 11 (see FIG. 2) that moves the stage 10 in the horizontal direction and the vertical direction via the heat insulating member 110. The thermal insulation member 110 is for thermally insulating the stage 10 and the moving mechanism 11, and is made of, for example, a sintered body of cordierite having a low thermal conductivity and a coefficient of thermal expansion. Both the base 11a of the moving mechanism 11 and the heat insulating member 110 are medium entities.

ステージ10は、上方から順に、トッププレート120と、流路形成部材130と、光照射機構140とを有する。そして、ステージ10は、光照射機構140の下方から、言い換えると、光照射機構140の裏面側から、熱絶縁部材110を介して移動機構11に支持される。 The stage 10 has a top plate 120, a flow path forming member 130, and a light irradiation mechanism 140 in this order from above. Then, the stage 10 is supported by the moving mechanism 11 from below the light irradiation mechanism 140, in other words, from the back surface side of the light irradiation mechanism 140, via the heat insulating member 110.

トッププレート120は、その表面120aにウェハが載置される部材である。トッププレート120は、言い換えると、その表面120aが、ウェハWが載置される基板載置面としてのウェハ載置面となる部材である。なお、以下では、ステージ10の上面でもあるトッププレート120の表面120aをウェハ載置面120aと記載することがある。 The top plate 120 is a member on which a wafer is placed on its surface 120a. In other words, the top plate 120 is a member whose surface 120a serves as a wafer mounting surface as a substrate mounting surface on which the wafer W is mounted. In the following, the surface 120a of the top plate 120, which is also the upper surface of the stage 10, may be referred to as the wafer mounting surface 120a.

トッププレート120は、例えば円板状に形成されている。そして、トッププレート120は、Si(シリコン)から形成される。Siは、比熱が小さく熱伝導率が高い。したがって、トッププレート120をSiで形成することにより、当該トッププレート120の加熱や冷却を行う際に当該トッププレート120に載置されたウェハWを効率良く加熱したり冷却したりすることができ、且つ、光照射機構140からの光により効率的にトッププレート120すなわちウェハWを加熱することができる。また、Siはヤング率が300GPaと高い。したがって、トッププレート120をSiで形成することにより、トッププレート120に割れ等が生じるのを防止することができる。さらに、Siは、後述のように流路形成部材130に用いられるガラスと熱膨張率が略同一である。この効果については後述する。トッププレート120は、具体的には、Si単結晶基板を加工して作製される。 The top plate 120 is formed in a disk shape, for example. The top plate 120 is formed of Si (silicon). Si has a small specific heat and a high thermal conductivity. Therefore, by forming the top plate 120 with Si, the wafer W placed on the top plate 120 can be efficiently heated or cooled when the top plate 120 is heated or cooled. Moreover, the top plate 120, that is, the wafer W can be efficiently heated by the light from the light irradiation mechanism 140. Further, Si has a high Young's modulus of 300 GPa. Therefore, by forming the top plate 120 with Si, it is possible to prevent the top plate 120 from cracking or the like. Further, Si has substantially the same coefficient of thermal expansion as the glass used for the flow path forming member 130 as described later. This effect will be described later. Specifically, the top plate 120 is manufactured by processing a Si single crystal substrate.

なお、トッププレート120の表面120aには、ウェハWを吸着するための吸着穴(図示せず)が形成されている。また、トッププレート120には、複数の温度センサ121が平面視において互いに離間した位置に埋設されている。 A suction hole (not shown) for sucking the wafer W is formed on the surface 120a of the top plate 120. Further, a plurality of temperature sensors 121 are embedded in the top plate 120 at positions separated from each other in a plan view.

流路形成部材130は、トッププレート120の裏面120bに取り付けられ、トッププレート120との間に冷媒が流れる冷媒流路131を形成する部材であり、トッププレート120と略同径の円板状に形成されている。
流路形成部材130の表面には、溝が形成されており、該溝が、トッププレート120に覆われて冷媒流路131を形成する。プローバ1では、冷媒流路131を流れる冷媒でステージ10上に載置されたウェハWを冷却することによって、当該ウェハWに形成された電子デバイスを冷却する。
The flow path forming member 130 is a member attached to the back surface 120b of the top plate 120 to form a refrigerant flow path 131 in which the refrigerant flows between the flow path forming member 130 and the top plate 120, and has a disk shape having substantially the same diameter as the top plate 120. It is formed.
A groove is formed on the surface of the flow path forming member 130, and the groove is covered with the top plate 120 to form the refrigerant flow path 131. In the prober 1, the electronic device formed on the wafer W is cooled by cooling the wafer W placed on the stage 10 with the refrigerant flowing through the refrigerant flow path 131.

また、流路形成部材130の側部には、冷媒流路131と連通する供給口132と排出口133とが形成されている。供給口132には、冷媒流路131に冷媒を供給する供給管160が接続されており、排出口133には、冷媒流路131から冷媒を排出する排出管161が接続されている。供給管160には、冷媒流路131に供給する冷媒の流量を制御する流量制御バルブ162が設けられている。 Further, on the side portion of the flow path forming member 130, a supply port 132 and a discharge port 133 communicating with the refrigerant flow path 131 are formed. A supply pipe 160 for supplying the refrigerant to the refrigerant flow path 131 is connected to the supply port 132, and a discharge pipe 161 for discharging the refrigerant from the refrigerant flow path 131 is connected to the discharge port 133. The supply pipe 160 is provided with a flow rate control valve 162 that controls the flow rate of the refrigerant supplied to the refrigerant flow path 131.

冷媒流路131を流れる冷媒としては、例えば、光が透過可能なフッ素系不活性液体(フロリナート(登録商標)、ノベック(登録商標)等)が用いられ、プローバ1の外部に設けられたポンプ(図示省略)によって供給管160を介して冷媒流路131へ供給される。なお、冷媒の流量を調整する流量制御バルブ162等の動作は制御部14により制御される。 As the refrigerant flowing through the refrigerant flow path 131, for example, a fluorine-based inert liquid (Fluorinert (registered trademark), Novec (registered trademark), etc.) capable of transmitting light is used, and a pump provided outside the prober 1 It is supplied to the refrigerant flow path 131 via the supply pipe 160 (not shown). The operation of the flow rate control valve 162 and the like for adjusting the flow rate of the refrigerant is controlled by the control unit 14.

上述のような構成を有する流路形成部材130の材料には、光を透過するガラスが用いられ、より具体的には、光を透過しSiと略同一の熱膨張率を有するガラス、例えばシリコンとの接着性が優れているホウケイ酸ガラスが用いられる。なお、「Siと同等の熱膨張率を有する」とは、電気的特性検査が行われる温度範囲において、Siの熱膨張率との差が±20%の範囲内であることを意味する。また、「電気的特性検査が行われる温度範囲」とは、例えば−40℃〜125℃である。 As the material of the flow path forming member 130 having the above-described configuration, glass that transmits light is used, and more specifically, glass that transmits light and has substantially the same coefficient of thermal expansion as Si, for example, silicon. Borosilicate glass, which has excellent adhesion to light, is used. In addition, "having a coefficient of thermal expansion equivalent to Si" means that the difference from the coefficient of thermal expansion of Si is within a range of ± 20% in the temperature range in which the electrical characteristic inspection is performed. The "temperature range in which the electrical characteristic inspection is performed" is, for example, −40 ° C. to 125 ° C.

流路形成部材130とトッププレート120との接合を、冷媒流路131に冷媒を密封可能に行う方法としては、例えば、陽極接合が用いられる。ただし、流路形成部材130とトッププレート120とをエポキシ樹脂により接合するようにしてもよい。 As a method for joining the flow path forming member 130 and the top plate 120 so that the refrigerant can be sealed in the refrigerant flow path 131, for example, anode joining is used. However, the flow path forming member 130 and the top plate 120 may be joined with an epoxy resin.

光照射機構140は、トッププレート120の表面120aに載置されたウェハWと流路形成部材130を介して対向するように配置されている。
この光照射機構140は、ウェハWを指向する複数のLED141を有する。具体的には、光照射機構140は、複数のLED141がユニット化されたLEDユニットUを複数有すると共に、これらLEDユニットUが表面に搭載されるベース142を有する。光照射機構140におけるLEDユニットUは、例えば、図5に示すように、ウェハW上に形成された電子デバイスD(図3参照)と同数で同様に配列された平面視正方形状のユニットU1と、その外周を覆う平面視非正方形状のユニットU2とでベース142の略全面を覆っている。これにより、LEDユニットUのLED141からの光で、少なくともトッププレート120におけるウェハWが搭載される部分全体を照射することができる。
The light irradiation mechanism 140 is arranged so as to face the wafer W placed on the surface 120a of the top plate 120 via the flow path forming member 130.
The light irradiation mechanism 140 has a plurality of LEDs 141 that direct the wafer W. Specifically, the light irradiation mechanism 140 has a plurality of LED units U in which a plurality of LEDs 141 are unitized, and also has a base 142 on which these LED units U are mounted on the surface. As shown in FIG. 5, the LED unit U in the light irradiation mechanism 140 is, for example, a plan-view square unit U1 similarly arranged in the same number as the electronic devices D (see FIG. 3) formed on the wafer W. A non-square unit U2 in a plan view that covers the outer periphery thereof covers substantially the entire surface of the base 142. As a result, the light from the LED 141 of the LED unit U can irradiate at least the entire portion of the top plate 120 on which the wafer W is mounted.

各LED141は、ウェハWに向けて光を照射する。本例では、各LED141は近赤外光を出射する。LED141から出射された光(以下、「LED光」と省略することがある。)は、光透過部材からなるステージ10の流路形成部材130を通過する。流路形成部材130を通過した光は、ステージ10の冷媒流路131を流れる、光を透過可能な冷媒を通過し、トッププレート120に入射する。 Each LED 141 irradiates the wafer W with light. In this example, each LED 141 emits near-infrared light. The light emitted from the LED 141 (hereinafter, may be abbreviated as "LED light") passes through the flow path forming member 130 of the stage 10 made of a light transmitting member. The light that has passed through the flow path forming member 130 passes through the light-transmitting refrigerant that flows through the refrigerant flow path 131 of the stage 10 and is incident on the top plate 120.

ベース142は、トッププレート120と略同径の円板状に形成され、その内部には、LED141を冷却するための冷媒が流れる冷媒流路(図示せず)が形成されている。ベース142は例えばAl等の金属製材料により形成される。 The base 142 is formed in a disk shape having substantially the same diameter as the top plate 120, and a refrigerant flow path (not shown) through which a refrigerant for cooling the LED 141 flows is formed inside the base 142. The base 142 is formed of a metal material such as Al.

また、光照射機構140は、図4に示すように、スペーサ143を介して、流路形成部材130の裏面に接合されている。具体的には、例えば、ベース142の表面の周縁部と流路形成部材130の裏面の周縁部とが、平面視円環状のスペーサ143を介して接合されている。上述のスペーサ143により、ベース142と流路形成部材130との間に空間が形成され、この空間が、LED141が搭載されるLED搭載空間Sを形成する。LED搭載空間Sは、光透過性樹脂144等のLED光を透過可能な材料で充填されている。つまり、ステージ10は中空部分がないように形成されている。 Further, as shown in FIG. 4, the light irradiation mechanism 140 is joined to the back surface of the flow path forming member 130 via the spacer 143. Specifically, for example, the peripheral edge of the front surface of the base 142 and the peripheral edge of the back surface of the flow path forming member 130 are joined via an annular spacer 143 in a plan view. A space is formed between the base 142 and the flow path forming member 130 by the spacer 143 described above, and this space forms the LED mounting space S on which the LED 141 is mounted. The LED mounting space S is filled with a material capable of transmitting LED light, such as a light transmitting resin 144. That is, the stage 10 is formed so that there is no hollow portion.

光照射機構140では、ウェハWが載置されるトッププレート120に入射されるLED光が、LEDユニットU単位で制御される。そのため、光照射機構140は、トッププレート120における任意の箇所へのみLED光を照射したり、また、照射する光の強度を任意の箇所と他の箇所とで異ならせたりすることができる。したがって、光照射機構140によって、トッププレート120に載置されたウェハWを局所的に加熱したり、ウェハWにおける加熱度合を局所的に変えたりすることができる。 In the light irradiation mechanism 140, the LED light incident on the top plate 120 on which the wafer W is placed is controlled in units of the LED units U. Therefore, the light irradiation mechanism 140 can irradiate the LED light only to an arbitrary portion on the top plate 120, and can make the intensity of the irradiated light different between the arbitrary portion and the other portion. Therefore, the light irradiation mechanism 140 can locally heat the wafer W placed on the top plate 120, or locally change the degree of heating in the wafer W.

プローバ1では、光照射機構140からの光による加熱と冷媒流路131を流れる冷媒による吸熱とにより、ステージ10上のウェハWに形成された検査対象の電子デバイスDの温度を目標温度で一定になるように制御する。この温度制御のために、プローバ1では、電子デバイスDの温度を測定している。 In the prober 1, the temperature of the electronic device D to be inspected formed on the wafer W on the stage 10 is made constant at the target temperature by the heating by the light from the light irradiation mechanism 140 and the endothermic heat by the refrigerant flowing through the refrigerant flow path 131. Control to be. For this temperature control, the prober 1 measures the temperature of the electronic device D.

図6は、プローバ1における電子デバイスDの温度測定用の回路の構成を概略的に示す図である。
プローバ1では、図6に示すように、各プローブ12aがインターフェース13に配置された複数の配線20によってテスタ4に接続される。また、各配線20のうち、電子デバイスDにおける電位差生成回路(例えば、ダイオード)の2つの電極Eに接触する2つのプローブ12aとテスタ4を接続する2つの配線20のそれぞれに、リレー21が設けられる。
FIG. 6 is a diagram schematically showing a configuration of a circuit for measuring the temperature of the electronic device D in the prober 1.
In the prober 1, as shown in FIG. 6, each probe 12a is connected to the tester 4 by a plurality of wires 20 arranged on the interface 13. Further, in each wiring 20, a relay 21 is provided in each of the two wirings 20 connecting the two probes 12a in contact with the two electrodes E of the potential difference generation circuit (for example, the diode) in the electronic device D and the tester 4. Be done.

各リレー21は、各電極Eの電位をテスタ4及び電位差測定ユニット15のいずれかへ切り替えて伝達可能に構成されている。各リレー21は、例えば、電子デバイスDの電気的特性の検査を行う際、各電極Eへ実装時電圧が印加されてから、予め定められたタイミングで各電極Eの電位を電位差測定ユニット15へ伝達する。上記電位差生成回路では、電流を流した際に生じる電位差が温度によって異なる。したがって、電子デバイスDの電位差生成回路の電位差、すなわち、電位差生成回路の2つの電極E(プローブ12a)間の電位差に基づいて、電子デバイスDの温度を検査中においてリアルタイムに測定することができる。プローバ1では、電位差測定ユニット15が各リレー21から伝達された各電極Eの電位に基づいて電子デバイスDの電位差生成回路の電位差を取得し、さらに、取得した電位差を制御部14へ伝達する。制御部14は、伝達された電位差と、電位差生成回路の電位差の温度特性とに基づいて、電子デバイスDの温度を測定する。 Each relay 21 is configured to be able to transmit by switching the potential of each electrode E to either the tester 4 or the potentiometric titration unit 15. For example, when inspecting the electrical characteristics of the electronic device D, each relay 21 transfers the potential of each electrode E to the potential difference measuring unit 15 at a predetermined timing after the mounting voltage is applied to each electrode E. introduce. In the above-mentioned potential difference generation circuit, the potential difference generated when a current is passed differs depending on the temperature. Therefore, the temperature of the electronic device D can be measured in real time during the inspection based on the potential difference of the potential difference generation circuit of the electronic device D, that is, the potential difference between the two electrodes E (probe 12a) of the potential difference generation circuit. In the prober 1, the potential difference measuring unit 15 acquires the potential difference of the potential difference generation circuit of the electronic device D based on the potential of each electrode E transmitted from each relay 21, and further transmits the acquired potential difference to the control unit 14. The control unit 14 measures the temperature of the electronic device D based on the transmitted potential difference and the temperature characteristic of the potential difference of the potential difference generation circuit.

なお、電子デバイスDの温度の測定方法は、上述に限られず、電子デバイスDの温度が測定可能であれば他の方法であってもよい。 The method for measuring the temperature of the electronic device D is not limited to the above, and other methods may be used as long as the temperature of the electronic device D can be measured.

次に、プローバ1を用いたウェハWに対する検査処理の一例について説明する。
まず、ウェハWが、ローダ3のFOUPから取り出されて、ステージ10に向けて搬送され、トッププレート120のウェハ載置面120a上に載置される。次いで、ステージ10が、予め定められた位置に移動される。
Next, an example of the inspection process for the wafer W using the prober 1 will be described.
First, the wafer W is taken out from the FOUP of the loader 3, transported toward the stage 10, and placed on the wafer mounting surface 120a of the top plate 120. The stage 10 is then moved to a predetermined position.

そして、光照射機構140の全てのLED141が点灯され、トッププレート120の温度センサ121から取得される情報に基づいて、トッププレート120の温度が面内で均一になるように、LED141からの光出力と、冷媒流路131内を流れる冷媒の流量とが調整される。 Then, all the LEDs 141 of the light irradiation mechanism 140 are turned on, and the light output from the LEDs 141 is made so that the temperature of the top plate 120 becomes uniform in the plane based on the information acquired from the temperature sensor 121 of the top plate 120. And the flow rate of the refrigerant flowing in the refrigerant flow path 131 are adjusted.

その後、ステージ10が移動され、ステージ10の上方に設けられているプローブ12aと、ウェハWの検査対象の電子デバイスDの電極Eとが接触させられる。
この状態で、電位差測定ユニット15により、検査対象の電子デバイスDにおける前述の電位差生成回路の電位差が取得される。そして、面内で均一とされたトッププレート120の温度が検査対象の電子デバイスDの温度と略一致するものとして、上記電位差の校正が行われ、すなわち、上記電位差の温度特性の情報が補正される。
After that, the stage 10 is moved, and the probe 12a provided above the stage 10 is brought into contact with the electrode E of the electronic device D to be inspected on the wafer W.
In this state, the potential difference measuring unit 15 acquires the potential difference of the above-mentioned potential difference generation circuit in the electronic device D to be inspected. Then, assuming that the temperature of the top plate 120 made uniform in the plane substantially matches the temperature of the electronic device D to be inspected, the potential difference is calibrated, that is, the information on the temperature characteristics of the potential difference is corrected. To.

その後、プローブ12aに検査用の信号が入力される。これにより、電子デバイスDの検査が開始される。なお、上記検査中、検査対象の電子デバイスDの電位差生成回路に生じる電位差の情報に基づいて、例えば、当該電子デバイスDの温度が試験温度または目標温度になるように、当該デバイスに対応するLEDユニットUのLED141からの光出力すなわちLED141の印加電圧が制御される。また、冷媒流路131内の冷媒の温度及び流量は、例えば、検査対象の電子デバイスDの試験温度または目標温度に応じた値で、一定とされる。 After that, a signal for inspection is input to the probe 12a. As a result, the inspection of the electronic device D is started. In addition, based on the information of the potential difference generated in the potential difference generation circuit of the electronic device D to be inspected during the inspection, for example, the LED corresponding to the device so that the temperature of the electronic device D becomes the test temperature or the target temperature. The light output from the LED 141 of the unit U, that is, the applied voltage of the LED 141 is controlled. Further, the temperature and flow rate of the refrigerant in the refrigerant flow path 131 are, for example, constant at a value corresponding to the test temperature or the target temperature of the electronic device D to be inspected.

以後、電子デバイスDにおける電位差生成回路の電位差の校正とその後の工程は、全ての電子デバイスDの検査が完了するまで繰り返される。 After that, the calibration of the potential difference of the potential difference generation circuit in the electronic device D and the subsequent steps are repeated until the inspection of all the electronic devices D is completed.

続いて、ステージ10の作製方法について説明する。
ステージ10の作製方法は、トッププレート120、流路形成部材130及び光照射機構140を作製する部材作成工程と、隣接する各部材を接合する接合工程とを含む。以下、上記部材作成工程と、接合工程とを具体的に説明する。
Subsequently, a method for producing the stage 10 will be described.
The manufacturing method of the stage 10 includes a member manufacturing step of manufacturing the top plate 120, the flow path forming member 130, and the light irradiation mechanism 140, and a joining step of joining the adjacent members. Hereinafter, the member manufacturing process and the joining process will be specifically described.

上記部材作成工程は、(A1)トッププレート作製工程、(A2)流路形成部材作製工程、(A3)光照射機構作製工程、を含む。 The member manufacturing step includes (A1) a top plate manufacturing step, (A2) a flow path forming member manufacturing step, and (A3) a light irradiation mechanism manufacturing step.

(A1)トッププレート作製工程
この工程では、Siインゴットを切り出して形成されるSi単結晶基板に、ウェハ吸着のための吸着穴の形成等が行われ、トッププレート120が作製される。
(A1) Top plate manufacturing step In this step, a suction hole for adsorbing a wafer is formed on a Si single crystal substrate formed by cutting out a Si ingot, and a top plate 120 is manufactured.

(A2)流路形成部材作製工程
この工程では、例えば、耐熱性が高く熱膨張率の低いホウケイ酸ガラスの平板に、冷媒流路131となる冷媒溝が機械加工等により形成され、供給口132と排出口133が機械加工等により形成され、流路形成部材130が作製される。
(A2) Flow path forming member manufacturing step In this step, for example, a refrigerant groove serving as a refrigerant flow path 131 is formed on a flat plate of borosilicate glass having high heat resistance and a low coefficient of thermal expansion by machining or the like, and a supply port 132. And the discharge port 133 are formed by machining or the like, and the flow path forming member 130 is manufactured.

(A3)光照射機構作製工程
この工程では、LEDユニットUの作製や、予め流路が形成されたベース142への上記LEDユニットUの実装が行われ、光照射機構140が作製される。
(A3) Light Irradiation Mechanism Manufacturing Step In this step, the LED unit U is manufactured and the LED unit U is mounted on the base 142 on which the flow path is formed in advance, and the light irradiation mechanism 140 is manufactured.

また、上述の接合工程は、(B1)トッププレート120と流路形成部材130とを接合する工程、(B2)流路形成部材130と光照射機構140とを接合する工程、(B3)光照射機構140と熱絶縁部材110とを接合する工程、を含む。 Further, the above-mentioned joining steps include (B1) a step of joining the top plate 120 and the flow path forming member 130, (B2) a step of joining the flow path forming member 130 and the light irradiation mechanism 140, and (B3) light irradiation. The step of joining the mechanism 140 and the heat insulating member 110 is included.

(B1)トッププレート120と流路形成部材130とを接合する工程
この工程では、例えば、トッププレート120の裏面120bと流路形成部材130の表面の端部とが陽極接合により接合される。陽極接合では、トッププレート120と流路形成部材130とが重ねられた状態で加熱されると共に、Si製のトッププレート120を陽極、ガラス製の流路形成部材130を陰極として電圧が印加される。これにより、流路形成部材130中の陽イオンを陽極側に強制的に拡散させることによって、ガラスとSiとを化学反応させて結合させる。
(B1) Step of joining the top plate 120 and the flow path forming member 130 In this step, for example, the back surface 120b of the top plate 120 and the end portion of the front surface of the flow path forming member 130 are joined by anode joining. In the anode bonding, the top plate 120 and the flow path forming member 130 are heated in an overlapping state, and a voltage is applied by using the Si top plate 120 as an anode and the glass flow path forming member 130 as a cathode. .. As a result, the cations in the flow path forming member 130 are forcibly diffused toward the anode side, so that the glass and Si are chemically reacted and bonded.

(B2)流路形成部材130と光照射機構140とを接合する工程
この工程では、例えば、流路形成部材130の裏面の周縁部と平面視円環状のスペーサ143の表面との接合、光照射機構140のベース142の表面の周縁部とスペーサ143の裏面との接合が行われる。これらの接合は、例えば紫外線硬化型樹脂等を用いて行われる。また、上記接合後、例えば、スペーサ143の側部に設けられている貫通孔から、LED搭載空間Sに光透過性樹脂144が充填される。充填後、必要に応じて、スペーサ143の上記貫通孔が塞がれる。
(B2) Step of joining the flow path forming member 130 and the light irradiation mechanism 140 In this step, for example, joining the peripheral edge of the back surface of the flow path forming member 130 and the front surface of the annular spacer 143 in a plan view, and light irradiation. The peripheral edge of the front surface of the base 142 of the mechanism 140 and the back surface of the spacer 143 are joined. These joinings are performed using, for example, an ultraviolet curable resin or the like. Further, after the joining, for example, the LED mounting space S is filled with the light transmissive resin 144 through the through hole provided on the side portion of the spacer 143. After filling, the through holes of the spacer 143 are closed, if necessary.

(B3)光照射機構140と熱絶縁部材110との接合
この工程では、例えば、光照射機構140のベース142の裏面と、コーディエライトの焼結体製の熱絶縁部材110の表面との接合が行われる。この接合は、例えば、Al合金をロウ材に用いたロウ付けにより行われる。
(B3) Joining the light irradiation mechanism 140 and the heat insulating member 110 In this step, for example, the back surface of the base 142 of the light irradiation mechanism 140 and the front surface of the heat insulating member 110 made of a sintered body of cordierite are joined. Is done. This joining is performed, for example, by brazing using an Al alloy as the brazing material.

以上のように、本実施形態では、ステージ10が、表面にウェハWが載置されるトッププレート120と、トッププレート120の裏面120bに取り付けられ、トッププレート120との間に光を透過可能な冷媒が流れる冷媒流路131を形成する流路形成部材130と、トッププレート120に載置されたウェハWと流路形成部材130を挟んで対向するように配置され、ウェハWを指向する複数のLED141を有する光照射機構140とを有する。したがって、ステージ10は、冷媒流路131を流れる冷媒によりトッププレート120全体を冷却しつつ、トッププレート120へ局所的にLED光を照射し加熱し、もって、所望の電子デバイスDのみの温度を制御しつつ他の電子デバイスを冷却することができる。そして、ステージ10では、流路形成部材130がガラスから形成され、トッププレート120がガラスと熱膨張率の差が小さいシリコンから形成されている。そのため、トッププレート120と流路形成部材130との接合部分に生じる、熱膨張または熱収縮による応力が小さい。したがって、ステージ10は、広い検査温度範囲で使用することができる。また、流路形成部材130をガラス、トッププレート120をSiでそれぞれ形成しているため、流路形成部材130とトッププレート120との接合に、陽極接合による接合を用いることができる。陽極接合による接合部分は、当該接合部分に生じる応力に対する耐性が、エポキシ樹脂による接合等に比べて高い。したがって、ステージ10は、より広い検査温度範囲まで適用し得る。また、接合部分にOリングを用いる必要が無いため、信頼性も高い。 As described above, in the present embodiment, the stage 10 is attached to the top plate 120 on which the wafer W is placed on the front surface and the back surface 120b of the top plate 120, and light can be transmitted between the top plate 120. A plurality of flow path forming members 130 forming the refrigerant flow path 131 through which the refrigerant flows are arranged so as to face each other with the wafer W placed on the top plate 120 and the flow path forming member 130 interposed therebetween, and directing the wafer W. It has a light irradiation mechanism 140 having an LED 141. Therefore, the stage 10 locally irradiates the top plate 120 with LED light to heat the top plate 120 while cooling the entire top plate 120 with the refrigerant flowing through the refrigerant flow path 131, thereby controlling the temperature of only the desired electronic device D. While cooling other electronic devices. In the stage 10, the flow path forming member 130 is formed of glass, and the top plate 120 is formed of silicon having a small difference in thermal expansion coefficient from glass. Therefore, the stress due to thermal expansion or contraction generated at the joint portion between the top plate 120 and the flow path forming member 130 is small. Therefore, the stage 10 can be used in a wide inspection temperature range. Further, since the flow path forming member 130 is made of glass and the top plate 120 is made of Si, joining by anode joining can be used for joining the flow path forming member 130 and the top plate 120. The joint portion formed by anode bonding has higher resistance to stress generated in the joint portion than the bonding portion made of epoxy resin or the like. Therefore, stage 10 can be applied up to a wider inspection temperature range. Moreover, since it is not necessary to use an O-ring for the joint portion, the reliability is high.

さらに、Siはヤング率が高いため薄くても剛性が得られるので、Siを用いたトッププレート120を薄くすることができる。したがって、トッププレート120を薄くしてトッププレート120の熱容量を抑えることができる。そのため、LED光によるトッププレート120の加熱や冷媒流路131を流れる冷媒によるトッププレート120の冷却で、トッププレート120の温度を高速に変化させることができる。
さらにまた、Siは体積比熱が低いため、この点においても、トッププレート120にSiを用いることで、トッププレート120の熱容量を抑えることができる。
Further, since Si has a high Young's modulus, rigidity can be obtained even if it is thin, so that the top plate 120 using Si can be made thin. Therefore, the top plate 120 can be made thin to suppress the heat capacity of the top plate 120. Therefore, the temperature of the top plate 120 can be changed at high speed by heating the top plate 120 with LED light or cooling the top plate 120 with the refrigerant flowing through the refrigerant flow path 131.
Furthermore, since Si has a low volume specific heat, the heat capacity of the top plate 120 can be suppressed by using Si for the top plate 120 in this respect as well.

また、Siは熱伝導率が高いため、トッププレート120にSiを用いることで、ステージ10を用いたウェハWの加熱及び冷却を面内で均一且つ高速に行うことができる。 Further, since Si has a high thermal conductivity, by using Si for the top plate 120, the wafer W using the stage 10 can be heated and cooled uniformly and at high speed in the plane.

さらに、本実施形態では、トッププレート120がSi単結晶基板により構成されているため、そのウェハ載置面120aを平坦にすることができる。したがって、ウェハWとトッププレート120との間の熱抵抗を低減させることができるため、ステージ10を用いたウェハWの冷却、加熱を高速で行うことができる。 Further, in the present embodiment, since the top plate 120 is made of a Si single crystal substrate, the wafer mounting surface 120a can be flattened. Therefore, since the thermal resistance between the wafer W and the top plate 120 can be reduced, the wafer W can be cooled and heated at high speed using the stage 10.

また、本実施形態では、トッププレート120がSiから形成されるため、ウェハWがSi基板から構成される場合には、トッププレート120とウェハWとで熱膨張率に差がない。そのため、電気的特性検査時等に、ウェハWが熱膨張や熱収縮したときに、ウェハWとトッププレート120が擦れて傷等が生じることがない。 Further, in the present embodiment, since the top plate 120 is formed of Si, when the wafer W is composed of a Si substrate, there is no difference in the coefficient of thermal expansion between the top plate 120 and the wafer W. Therefore, when the wafer W is thermally expanded or contracted during an electrical characteristic inspection or the like, the wafer W and the top plate 120 are not rubbed and scratched.

なお、特許文献1に開示のステージでは、本実施形態と異なり、LED搭載空間は光透過性樹脂で充填されておらず、冷媒溝が形成された冷却ユニットが支持される。したがって、特許文献1に開示のステージでは、検査時にプローブを押し付ける力は、SiC製のステージ蓋とガラス製の冷却ユニットで受けている。
それに対し、本実施形態では、LED搭載空間Sが光透過性樹脂144で充填され、ステージ10は光照射機構140の下方から支持される。したがって、ステージ10では、検査時にプローブ12aを押し付ける力は、トッププレート120と流路形成部材130だけで受けるわけでなく、ステージ全体で受ける。したがって、SiCよりもヤング率が低いSiをトッププレート120の材料に用いトッププレート120を薄くしても、プローブ12aを押し付ける力によりトッププレート120が変形することがない。
In the stage disclosed in Patent Document 1, unlike the present embodiment, the LED mounting space is not filled with the light transmissive resin, and a cooling unit having a refrigerant groove is supported. Therefore, in the stage disclosed in Patent Document 1, the force for pressing the probe during inspection is received by the stage lid made of SiC and the cooling unit made of glass.
On the other hand, in the present embodiment, the LED mounting space S is filled with the light transmissive resin 144, and the stage 10 is supported from below the light irradiation mechanism 140. Therefore, in the stage 10, the force for pressing the probe 12a at the time of inspection is not received only by the top plate 120 and the flow path forming member 130, but is received by the entire stage. Therefore, even if Si having a Young's modulus lower than that of SiC is used as the material of the top plate 120 to make the top plate 120 thinner, the top plate 120 will not be deformed by the force of pressing the probe 12a.

次に、図7及び図8を用いて、トッププレートの他の例を説明する。図7はトッププレートの他の例の構成を概略的に示す断面図である。図8は、図7のトッププレートを構成する各層を示すためにトッププレートを層毎に分割して示す断面図である。 Next, another example of the top plate will be described with reference to FIGS. 7 and 8. FIG. 7 is a cross-sectional view schematically showing the configuration of another example of the top plate. FIG. 8 is a cross-sectional view showing the top plate divided into layers in order to show each layer constituting the top plate of FIG. 7.

図7のトッププレート200は、上方から順に、天井層210と電磁シールド層220とが積層されてなる。天井層210と電磁シールド層は共にSi単結晶基板により構成されている。 The top plate 200 of FIG. 7 has a ceiling layer 210 and an electromagnetic shield layer 220 laminated in this order from above. Both the ceiling layer 210 and the electromagnetic shield layer are made of a Si single crystal substrate.

天井層210は、表面にウェハWが載置される層である。この天井層210は、Si単結晶基板により構成され、図8に示すように、Si酸化膜211が裏面に形成されている。 The ceiling layer 210 is a layer on which the wafer W is placed on the surface. The ceiling layer 210 is made of a Si single crystal substrate, and as shown in FIG. 8, a Si oxide film 211 is formed on the back surface.

電磁シールド層220は、天井層210の裏面側に設けられ、光照射機構140で生じる電磁波を、天井層210に載置されたウェハから遮断する。電磁シールド層220は、具体的には、光照射機構140のLED141の近くに実装される当該LED141を駆動する駆動回路で生じる電磁波を、天井層210に載置されたウェハWから遮断する。
この電磁シールド層220は、高濃度に不純物が添加され導電率が高いSi単結晶基板により構成され、その表面にSi酸化膜221が形成され側面に電極222が形成されている。電磁シールド層220は、電極222を介して接地電位あるいはインピーダンスの低い電位に接続される。
The electromagnetic shield layer 220 is provided on the back surface side of the ceiling layer 210, and blocks electromagnetic waves generated by the light irradiation mechanism 140 from the wafer placed on the ceiling layer 210. Specifically, the electromagnetic shield layer 220 blocks electromagnetic waves generated in the drive circuit for driving the LED 141 mounted near the LED 141 of the light irradiation mechanism 140 from the wafer W placed on the ceiling layer 210.
The electromagnetic shield layer 220 is made of a Si single crystal substrate to which impurities are added at a high concentration and has high conductivity, a Si oxide film 221 is formed on the surface thereof, and an electrode 222 is formed on a side surface thereof. The electromagnetic shield layer 220 is connected to a ground potential or a potential having a low impedance via an electrode 222.

このトッププレート200の作製は例えば以下のように行われる。
まず、天井層210と電磁シールド層220が作製される。具体的には、Siインゴットを切り出して形成されるSi単結晶基板の、天井層210の裏面に相当する面に、熱酸化処理によってSi酸化膜211が形成され、天井層210が作製される。また、高濃度に不純物が添加されたSiインゴットを切り出して形成されるSi単結晶基板の表面に、熱酸化処理によってSi酸化膜221が形成される。それと共に、上記Si単結晶基板の側面に、メタライズ処理によって電極222が形成される。これにより、電磁シールド層220が作製される。
次いで、天井層210と電磁シールド層220とが接合され、トッププレート200が作製される。具体的には、Si酸化膜211及びSi酸化膜221を介した天井層210と電磁シールド層220との接合が行われ、トッププレート200が作製される。Si酸化膜211、221を介した接合には、例えばプラズマ活性化低温接合が用いられる。このプラズマ活性化低温接合では、常温下でのプラズマ処理によりSi酸化膜211、221の接合面を活性化させた後、Si酸化膜211、221同士を密着させる。その後、1000℃未満の低温(例えば200℃)で熱処理することにより、Si酸化膜211、221を介して天井層210と電磁シールド層220とが接合される。
なお、プラズマ化低温接合の代わりに、イオンビーム等を用いて接合面を活性化させる常温接合を行うようにしてもよい。
また、上述のプラズマ化低温接合や常温接合を行うために十分な平坦度をSi酸化膜211、221の接合面が有していない場合は、Si酸化膜211、221の接合面の平坦化処理を事前に行うようにしてもよい。なお、Si酸化膜211、221は、前述のように、半導体製造プロセスに用いられる熱酸化処理により形成されているため、基本的には、高い平坦性を有する。
The production of the top plate 200 is performed as follows, for example.
First, the ceiling layer 210 and the electromagnetic shield layer 220 are produced. Specifically, the Si oxide film 211 is formed by thermal oxidation treatment on the surface of the Si single crystal substrate formed by cutting out the Si ingot, which corresponds to the back surface of the ceiling layer 210, to produce the ceiling layer 210. Further, a Si oxide film 221 is formed by thermal oxidation treatment on the surface of a Si single crystal substrate formed by cutting out a Si ingot to which impurities are added at a high concentration. At the same time, the electrode 222 is formed on the side surface of the Si single crystal substrate by the metallizing treatment. As a result, the electromagnetic shield layer 220 is produced.
Next, the ceiling layer 210 and the electromagnetic shield layer 220 are joined to form a top plate 200. Specifically, the ceiling layer 210 and the electromagnetic shield layer 220 are joined via the Si oxide film 211 and the Si oxide film 221 to produce the top plate 200. For bonding via the Si oxide films 211 and 221, for example, plasma activated low temperature bonding is used. In this plasma-activated low-temperature bonding, the bonding surfaces of the Si oxide films 211 and 221 are activated by plasma treatment at room temperature, and then the Si oxide films 211 and 221 are brought into close contact with each other. Then, by heat-treating at a low temperature of less than 1000 ° C. (for example, 200 ° C.), the ceiling layer 210 and the electromagnetic shield layer 220 are joined via the Si oxide films 211 and 221.
Instead of plasma-based low-temperature bonding, room-temperature bonding may be performed by using an ion beam or the like to activate the bonding surface.
Further, when the joint surface of the Si oxide films 211 and 221 does not have sufficient flatness for performing the above-mentioned plasma conversion low temperature bonding and room temperature bonding, the joint surface of the Si oxide films 211 and 221 is flattened. May be done in advance. Since the Si oxide films 211 and 221 are formed by the thermal oxidation treatment used in the semiconductor manufacturing process as described above, they basically have high flatness.

上述のトッププレート200は、電磁シールド層220を有しているため、光照射機構140で生じた電磁波が天井層210を透過し、天井層210上のウェハWに形成された電子デバイスの電気的特性検査に影響を及ぼすのを防ぐことができる。
なお、この例では、電磁シールド層220と天井層210とは別々に設けられていたが、天井層210を、高濃度に不純物が添加され導電率が高いSi単結晶基板により構成し、天井層210が電磁シールド層220を兼ねるようにしてもよい。これにより、光照射機構140で生じた電磁波がステージ10のウェハ載置面120a側から出射されるのを防ぎつつ、トッププレート全体の熱容量を抑えることができる。
Since the above-mentioned top plate 200 has an electromagnetic shield layer 220, electromagnetic waves generated by the light irradiation mechanism 140 pass through the ceiling layer 210, and the electrical device of the electronic device formed on the wafer W on the ceiling layer 210 is electrically operated. It can be prevented from affecting the characteristic inspection.
In this example, the electromagnetic shield layer 220 and the ceiling layer 210 are provided separately, but the ceiling layer 210 is composed of a Si single crystal substrate having a high concentration of impurities added and a high conductivity, and is a ceiling layer. The 210 may also serve as the electromagnetic shield layer 220. As a result, the heat capacity of the entire top plate can be suppressed while preventing the electromagnetic waves generated by the light irradiation mechanism 140 from being emitted from the wafer mounting surface 120a side of the stage 10.

今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The above-described embodiment may be omitted, replaced, or changed in various forms without departing from the scope of the appended claims and the gist thereof.

例えば、以上の例では、流路形成部材の表面に冷媒溝が形成され当該冷媒溝をトッププレートで覆うことで冷媒流路が形成されていた。これに代えて、トッププレートの裏面に冷媒溝が形成され当該冷媒溝を平板状の流路形成部材で覆うことで冷媒流路が形成されるようにしてもよい。
また、以上の例では、トッププレートは、Si単結晶基板から作製されていたが、Si多結晶基板から作製されていてもよい。Si単結晶基板およびSi多結晶基板は、半導体産業の応用分野の大きさから安価で入手することができる。
For example, in the above example, a refrigerant groove is formed on the surface of the flow path forming member, and the refrigerant flow path is formed by covering the refrigerant groove with a top plate. Instead of this, a refrigerant groove may be formed on the back surface of the top plate, and the refrigerant groove may be formed by covering the refrigerant groove with a flat plate-shaped flow path forming member.
Further, in the above example, the top plate is made of a Si single crystal substrate, but may be made of a Si polycrystalline substrate. Si single crystal substrates and Si polycrystalline substrates can be obtained at low cost due to the size of application fields in the semiconductor industry.

なお、以下のような構成も本開示の技術的範囲に属する。 The following configurations also belong to the technical scope of the present disclosure.

(1)検査対象体が載置される載置台であって、
表面に前記検査対象体が載置される天板部と、
前記天板部の裏面に取り付けられ、前記天板部との間に光を透過可能な冷媒が流れる冷媒流路を形成する流路形成部材と、
前記天板部に載置された前記検査対象体と前記流路形成部材を介して対向するように配置され、当該検査対象体を指向する複数のLEDを有する光照射機構とを有し、
前記流路形成部材は、光を透過可能なガラスからなり、
前記天板部はシリコンからなる、載置台。
前記(1)によれば、冷媒流路を流れる冷媒により天板部全体を冷却しつつ、天板部へ局所的にLED光を照射し加熱し、もって、検査対象体における所望の部分のみの温度を制御しつつ他の部分を冷却することができる。また、前記(1)では、流路形成部材がガラスから形成され、天板部がガラスと熱膨張率の差が小さいシリコンから形成されている。そのため、天板部と流路形成部材との接合部分に生じる、熱膨張または熱収縮による応力が小さい。したがって、前記(1)にかかる載置台は、広い検査温度範囲で使用することができる。また、流路形成部材をガラス、天板部をシリコンでそれぞれ形成しているため、流路形成部材と天板部との接合に、陽極接合による接合を用いることができる。陽極接合による接合部分は、当該接合部分に生じる応力に対する耐性が、エポキシ樹脂による接合等に比べて高い。したがって、前記(1)にかかる載置台は、より広い検査温度範囲まで適用し得る。
(1) A mounting table on which the object to be inspected is placed.
The top plate on which the inspection object is placed on the surface,
A flow path forming member attached to the back surface of the top plate portion and forming a refrigerant flow path through which a refrigerant capable of transmitting light flows flows between the top plate portion and the top plate portion.
It has a light irradiation mechanism which is arranged so as to face the inspection target body placed on the top plate portion via the flow path forming member and has a plurality of LEDs pointing to the inspection target body.
The flow path forming member is made of glass that can transmit light.
The top plate is a mounting table made of silicon.
According to the above (1), while cooling the entire top plate portion by the refrigerant flowing through the refrigerant flow path, the top plate portion is locally irradiated with LED light to heat it, so that only the desired portion of the inspection object is heated. Other parts can be cooled while controlling the temperature. Further, in the above (1), the flow path forming member is formed of glass, and the top plate portion is formed of silicon having a small difference in thermal expansion coefficient from glass. Therefore, the stress due to thermal expansion or contraction generated at the joint portion between the top plate portion and the flow path forming member is small. Therefore, the mounting table according to (1) can be used in a wide inspection temperature range. Further, since the flow path forming member is made of glass and the top plate portion is made of silicon, joining by anode joining can be used for joining the flow path forming member and the top plate portion. The joint portion formed by anode bonding has higher resistance to stress generated in the joint portion than the bonding portion made of epoxy resin or the like. Therefore, the mounting table according to (1) can be applied to a wider inspection temperature range.

(2)前記ガラスはホウケイ酸ガラスである、前記(1)に記載の載置台。 (2) The mounting table according to (1) above, wherein the glass is borosilicate glass.

(3)前記流路形成部材は、前記天板部の裏面に、陽極接合により接合されている、前記(1)または(2)に記載の載置台。 (3) The mounting table according to (1) or (2) above, wherein the flow path forming member is joined to the back surface of the top plate portion by anode bonding.

(4)前記光照射機構の前記LEDの搭載空間は光を透過可能な材料で充填されている、前記(1)〜(3)のいずれか1に記載の載置台。 (4) The mounting table according to any one of (1) to (3) above, wherein the mounting space of the LED of the light irradiation mechanism is filled with a material capable of transmitting light.

(5)当該載置台は、前記光照射機構の裏面側から支持される、前記(4)に記載の載置台。 (5) The mounting table according to (4) above, wherein the mounting table is supported from the back surface side of the light irradiation mechanism.

(6)前記天板部は、
表面に前記検査対象体が載置される天井層と、
前記天井層の裏面側に設けられ、前記光照射機構で生じる電磁波を、前記天井層に載置された検査対象体から遮断する電磁シールド層と、を有する、前記(1)〜(5)のいずれか1に記載の載置台。
(6) The top plate is
The ceiling layer on which the inspection object is placed on the surface,
The above (1) to (5), further comprising an electromagnetic shield layer provided on the back surface side of the ceiling layer and blocking electromagnetic waves generated by the light irradiation mechanism from an inspection object placed on the ceiling layer. The mounting table according to any one.

(7)検査対象体が載置される載置台であって、
前記載置台は、表面に前記検査対象体が載置される天板部と、
前記天板部の裏面に取り付けられ、前記天板部との間に光を透過可能な冷媒が流れる冷媒流路を形成する流路形成部材と、
前記天板部に載置された前記検査対象体と前記流路形成部材を介して対向するように配置され、当該検査対象体を指向する複数のLEDを有する光照射機構とを有し、
当該作製方法は、
光を透過可能なガラスを用いて前記流路形成部材を形成する工程と、
シリコンを用いて前記天板部を形成する工程と、
前記流路形成部材と前記天板部とを陽極接合により接合する工程と、を含む、載置台の作製方法。
(7) A mounting table on which the object to be inspected is placed.
The above-mentioned stand has a top plate on which the inspection object is placed on the surface and a table.
A flow path forming member attached to the back surface of the top plate portion and forming a refrigerant flow path through which a refrigerant capable of transmitting light flows flows between the top plate portion and the top plate portion.
It has a light irradiation mechanism which is arranged so as to face the inspection target body placed on the top plate portion via the flow path forming member and has a plurality of LEDs pointing to the inspection target body.
The manufacturing method is
The step of forming the flow path forming member using glass capable of transmitting light, and
The process of forming the top plate using silicon and
A method for manufacturing a mounting table, which comprises a step of joining the flow path forming member and the top plate portion by anode joining.

10 ステージ
120、200 トッププレート
130 流路形成部材
131 冷媒流路
140 光照射機構
141 LED
W ウェハ
10 Stage 120, 200 Top plate 130 Flow path forming member 131 Refrigerant flow path 140 Light irradiation mechanism 141 LED
W wafer

Claims (7)

検査対象体が載置される載置台であって、
表面に前記検査対象体が載置される天板部と、
前記天板部の裏面に取り付けられ、前記天板部との間に光を透過可能な冷媒が流れる冷媒流路を形成する流路形成部材と、
前記天板部に載置された前記検査対象体と前記流路形成部材を介して対向するように配置され、当該検査対象体を指向する複数のLEDを有する光照射機構とを有し、
前記流路形成部材は、光を透過可能なガラスからなり、
前記天板部はシリコンからなる、載置台。
It is a mounting table on which the object to be inspected is placed.
The top plate on which the inspection object is placed on the surface,
A flow path forming member attached to the back surface of the top plate portion and forming a refrigerant flow path through which a refrigerant capable of transmitting light flows flows between the top plate portion and the top plate portion.
It has a light irradiation mechanism which is arranged so as to face the inspection target body placed on the top plate portion via the flow path forming member and has a plurality of LEDs pointing to the inspection target body.
The flow path forming member is made of glass that can transmit light.
The top plate is a mounting table made of silicon.
前記ガラスはホウケイ酸ガラスである、請求項1に記載の載置台。 The mounting table according to claim 1, wherein the glass is borosilicate glass. 前記流路形成部材は、前記天板部の裏面に、陽極接合により接合されている、請求項1または2に記載の載置台。 The mounting table according to claim 1 or 2, wherein the flow path forming member is joined to the back surface of the top plate portion by anode bonding. 前記光照射機構の前記LEDの搭載空間は光を透過可能な材料で充填されている、請求項1〜3のいずれか1項に記載の載置台。 The mounting table according to any one of claims 1 to 3, wherein the mounting space of the LED of the light irradiation mechanism is filled with a material capable of transmitting light. 当該載置台は、前記光照射機構の裏面側から支持される、請求項4に記載の載置台。 The mounting table according to claim 4, wherein the mounting table is supported from the back surface side of the light irradiation mechanism. 前記天板部は、
表面に前記検査対象体が載置される天井層と、
前記天井層の裏面側に設けられ、前記光照射機構で生じる電磁波を、前記天井層に載置された検査対象体から遮断する電磁シールド層と、を有する、請求項1〜5のいずれか1項に記載の載置台。
The top plate is
The ceiling layer on which the inspection object is placed on the surface,
Any one of claims 1 to 5, comprising an electromagnetic shield layer provided on the back surface side of the ceiling layer and blocking electromagnetic waves generated by the light irradiation mechanism from an inspection object placed on the ceiling layer. The mounting table described in the section.
検査対象体が載置される載置台の作製方法であって、
前記載置台は、表面に前記検査対象体が載置される天板部と、
前記天板部の裏面に取り付けられ、前記天板部との間に光を透過可能な冷媒が流れる冷媒流路を形成する流路形成部材と、
前記天板部に載置された前記検査対象体と前記流路形成部材を介して対向するように配置され、当該検査対象体を指向する複数のLEDを有する光照射機構とを有し、
当該作製方法は、
光を透過可能なガラスを用いて前記流路形成部材を形成する工程と、
シリコンを用いて前記天板部を形成する工程と、
前記流路形成部材と前記天板部とを陽極接合により接合する工程と、を含む、載置台の作製方法。
It is a method of manufacturing a mounting table on which an object to be inspected is placed.
The above-mentioned stand has a top plate on which the inspection object is placed on the surface and a table.
A flow path forming member attached to the back surface of the top plate portion and forming a refrigerant flow path through which a refrigerant capable of transmitting light flows flows between the top plate portion and the top plate portion.
It has a light irradiation mechanism which is arranged so as to face the inspection target body placed on the top plate portion via the flow path forming member and has a plurality of LEDs pointing to the inspection target body.
The manufacturing method is
The step of forming the flow path forming member using glass capable of transmitting light, and
The process of forming the top plate using silicon and
A method for manufacturing a mounting table, which comprises a step of joining the flow path forming member and the top plate portion by anode joining.
JP2019090104A 2019-05-10 2019-05-10 Mounting table and manufacturing method of mounting table Active JP7336256B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019090104A JP7336256B2 (en) 2019-05-10 2019-05-10 Mounting table and manufacturing method of mounting table
PCT/JP2020/018444 WO2020230674A1 (en) 2019-05-10 2020-05-01 Mounting table and method for fabricating mounting table
KR1020217039218A KR20220003599A (en) 2019-05-10 2020-05-01 Mounts and Methods of Making Mounts
CN202080033045.2A CN113767461B (en) 2019-05-10 2020-05-01 Mounting table and method for manufacturing mounting table

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019090104A JP7336256B2 (en) 2019-05-10 2019-05-10 Mounting table and manufacturing method of mounting table

Publications (2)

Publication Number Publication Date
JP2020188076A true JP2020188076A (en) 2020-11-19
JP7336256B2 JP7336256B2 (en) 2023-08-31

Family

ID=73220997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019090104A Active JP7336256B2 (en) 2019-05-10 2019-05-10 Mounting table and manufacturing method of mounting table

Country Status (4)

Country Link
JP (1) JP7336256B2 (en)
KR (1) KR20220003599A (en)
CN (1) CN113767461B (en)
WO (1) WO2020230674A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201285A1 (en) 2021-03-23 2022-09-29 キオクシア株式会社 Cassette housing, prober, server rack, and storage system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021188947A (en) * 2020-05-27 2021-12-13 株式会社日本マイクロニクス Optical connector protection structure and connecting device
JP2022154237A (en) * 2021-03-30 2022-10-13 東京エレクトロン株式会社 LED chuck

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104667A (en) * 2011-11-10 2013-05-30 Fujitsu Semiconductor Ltd Device and method for inspecting semiconductor device
JP2018525813A (en) * 2015-06-29 2018-09-06 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Electrostatic chuck with LED heating device
JP2018151369A (en) * 2016-11-29 2018-09-27 東京エレクトロン株式会社 Placing stand and electronic device inspection apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101098798B1 (en) * 2004-05-26 2011-12-26 쿄세라 코포레이션 Heater, wafer heating device and method for fabricating the heater
CN101176001A (en) * 2005-05-19 2008-05-07 柯尼卡美能达医疗印刷器材株式会社 Testing chip and micro integrated analysis system
JP2007035747A (en) * 2005-07-25 2007-02-08 Sumitomo Electric Ind Ltd Wafer holder, and wafer prober equipped with the same
JP4877748B2 (en) * 2006-03-31 2012-02-15 東京エレクトロン株式会社 Substrate processing apparatus and processing gas discharge mechanism
JP2008215976A (en) * 2007-03-02 2008-09-18 Nikon Corp Substrate inspection device
JP5688203B2 (en) * 2007-11-01 2015-03-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor substrate
JP2010080673A (en) * 2008-09-26 2010-04-08 Tokyo Electron Ltd Mounting table
JP2014183151A (en) * 2013-03-19 2014-09-29 Seiko Epson Corp Module, manufacturing method of module, electronic apparatus, and movable body
JP6152010B2 (en) * 2013-08-08 2017-06-21 株式会社Screenホールディングス Light irradiation apparatus and light irradiation method
JP6386923B2 (en) * 2015-01-26 2018-09-05 三菱電機株式会社 Semiconductor evaluation apparatus and chuck stage inspection method
JP2018026498A (en) * 2016-08-12 2018-02-15 日東電工株式会社 Method of masking semiconductor package
WO2018100881A1 (en) * 2016-11-29 2018-06-07 東京エレクトロン株式会社 Placement stand and electronic device inspecting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104667A (en) * 2011-11-10 2013-05-30 Fujitsu Semiconductor Ltd Device and method for inspecting semiconductor device
JP2018525813A (en) * 2015-06-29 2018-09-06 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Electrostatic chuck with LED heating device
JP2018151369A (en) * 2016-11-29 2018-09-27 東京エレクトロン株式会社 Placing stand and electronic device inspection apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201285A1 (en) 2021-03-23 2022-09-29 キオクシア株式会社 Cassette housing, prober, server rack, and storage system
DE112021007357T5 (en) 2021-03-23 2024-03-21 Kioxia Corporation CASSETTE HOUSING, PROBE DEVICE, SERVER RACK AND STORAGE SYSTEM TECHNICAL FIELD

Also Published As

Publication number Publication date
KR20220003599A (en) 2022-01-10
CN113767461B (en) 2024-01-23
WO2020230674A1 (en) 2020-11-19
CN113767461A (en) 2021-12-07
JP7336256B2 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
WO2020230674A1 (en) Mounting table and method for fabricating mounting table
EP3550313B1 (en) Electronic device inspecting apparatus
US11340283B2 (en) Testing device
WO2018100881A1 (en) Placement stand and electronic device inspecting apparatus
JP7304722B2 (en) Temperature control device, temperature control method, and inspection device
US11169204B2 (en) Temperature control device, temperature control method, and inspection apparatus
WO2019225332A1 (en) Inspection device and temperature control method
US20210102991A1 (en) Placement stand and electronic device inspecting apparatus
CN113325900B (en) Temperature control device, temperature control method, and inspection device
JP2021128006A (en) Life estimation system and life estimation method of heating source, and inspection device
US20220262661A1 (en) Temperature control device, temperature control method, and inspection apparatus
KR102647972B1 (en) Substrate support and inspection apparatus
JP7393986B2 (en) Mounting table and inspection equipment
WO2023234049A1 (en) Inspection apparatus and mounting base
JP2022032473A (en) Inspection method and inspection apparatus
JP2023177195A (en) Inspection apparatus and mounting table
JP2022071468A (en) Mounting table, inspection device, and inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7336256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150