JP2020186962A - Method of analyzing and controlling nano diamond particle concentration in composite plating solution - Google Patents

Method of analyzing and controlling nano diamond particle concentration in composite plating solution Download PDF

Info

Publication number
JP2020186962A
JP2020186962A JP2019090653A JP2019090653A JP2020186962A JP 2020186962 A JP2020186962 A JP 2020186962A JP 2019090653 A JP2019090653 A JP 2019090653A JP 2019090653 A JP2019090653 A JP 2019090653A JP 2020186962 A JP2020186962 A JP 2020186962A
Authority
JP
Japan
Prior art keywords
plating solution
concentration
particles
composite plating
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019090653A
Other languages
Japanese (ja)
Inventor
智明 間彦
Tomoaki Mahiko
智明 間彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP2019090653A priority Critical patent/JP2020186962A/en
Publication of JP2020186962A publication Critical patent/JP2020186962A/en
Priority to JP2023143694A priority patent/JP2023158070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Chemically Coating (AREA)

Abstract

To analyze the concentration of nano diamond particles in a composite plating solution quickly and accurately in a simple manner and control the composite plating solution appropriately.SOLUTION: A method of analyzing the concentration of nano diamond particles in a composite plating solution includes a step of measuring the absorbance of the composite plating solution containing the nano diamond particles and determining the concentration of the nano diamond particles on the basis of the measured value of the absorbance. The absorbance is measured with a wavelength selected from the range of 250 to 630 nm.SELECTED DRAWING: None

Description

本発明は、複合めっき液中のナノダイヤモンド粒子濃度の分析方法及び管理方法に関する。 The present invention relates to a method for analyzing and controlling the concentration of nanodiamond particles in a composite plating solution.

本明細書において、ナノダイヤモンドを「ND」と記載する場合がある。 In the present specification, nanodiamond may be referred to as "ND".

通常のめっき液にナノダイヤモンド粒子を混合分散させた複合めっき液が知られている(特許文献1)。ナノダイヤモンド粒子を含有する複合めっき液を使用することで、ナノダイヤモンド粒子が均一に分散しためっき皮膜が形成され、めっき皮膜の意匠性や機械的特性、機能性を高めることができる。 A composite plating solution in which nanodiamond particles are mixed and dispersed in a normal plating solution is known (Patent Document 1). By using a composite plating solution containing nanodiamond particles, a plating film in which nanodiamond particles are uniformly dispersed is formed, and the design, mechanical properties, and functionality of the plating film can be enhanced.

このような複合めっき液を用いて所望の特性を有するめっき皮膜を再現性良く形成するためには、複合めっき液中のナノダイヤモンド粒子の濃度を管理し、この濃度が所定濃度となるように適宜複合めっき液中にナノダイヤモンド粒子を添加し、ナノダイヤモンド粒子濃度を維持管理する必要がある。 In order to form a plating film having desired characteristics with good reproducibility using such a composite plating solution, the concentration of nanodiamond particles in the composite plating solution is controlled, and the concentration is appropriately adjusted to a predetermined concentration. It is necessary to add nanodiamond particles to the composite plating solution to maintain and manage the concentration of nanodiamond particles.

複合めっき液中のナノダイヤモンド粒子濃度は、例えばめっき皮膜中のナノダイヤモンド粒子量を定量することで推定できるが、この方法は煩雑な操作が必要になる。 The concentration of nanodiamond particles in the composite plating solution can be estimated, for example, by quantifying the amount of nanodiamond particles in the plating film, but this method requires complicated operations.

特開2018-83960号公報JP-A-2018-83960

本発明の目的は、複合めっき液中のナノダイヤモンド粒子の濃度を簡易な方法で迅速かつ的確に分析し、複合めっき液を適切に管理することにある。 An object of the present invention is to analyze the concentration of nanodiamond particles in a composite plating solution quickly and accurately by a simple method, and to appropriately manage the composite plating solution.

本発明は、以下の複合めっき液中のナノダイヤモンド粒子濃度の分析方法及び管理方法を提供するものである。
〔1〕 ナノダイヤモンド粒子を含む複合めっき液の吸光度を測定し、吸光度の測定値に基づきナノダイヤモンド粒子の濃度を求める工程を含み、前記吸光度は250〜630nm の範囲から選択される波長で測定される、複合めっき液中のナノダイヤモンド粒子濃度の分析方法。
〔2〕 〔1〕の方法で複合めっき液中のナノダイヤモンド粒子濃度を分析し、前記濃度が所定濃度となるように、必要に応じて複合めっき液にナノダイヤモンド粒子を添加する、複合めっき液中のナノダイヤモンド粒子濃度の管理方法。
The present invention provides a method for analyzing and controlling the concentration of nanodiamond particles in the following composite plating solution.
[1] Including a step of measuring the absorbance of a composite plating solution containing nanodiamond particles and determining the concentration of nanodiamond particles based on the measured absorbance, the absorbance is measured at a wavelength selected from the range of 250 to 630 nm. A method for analyzing the concentration of nanodiamond particles in a composite plating solution.
[2] A composite plating solution in which the concentration of nanodiamond particles in the composite plating solution is analyzed by the method of [1], and nanodiamond particles are added to the composite plating solution as necessary so that the concentration becomes a predetermined concentration. How to control the concentration of nanodiamond particles inside.

本発明によれば、複合めっき液中のナノダイヤモンド粒子濃度を、簡易かつ迅速に分析することができ、この分析方法を利用する本発明の複合めっき液の管理方法によれば、ナノダイヤモンド粒子の濃度の分析値をリアルタイムでナノダイヤモンド粒子の添加制御に反映させて、良好なめっき工程の維持管理のもとに、所望の特性を有する複合めっき皮膜を容易に得ることが可能になる。 According to the present invention, the concentration of nanodiamond particles in the composite plating solution can be easily and quickly analyzed, and according to the method for managing the composite plating solution of the present invention using this analysis method, the nanodiamond particles By reflecting the analysis value of the concentration in the addition control of nanodiamond particles in real time, it becomes possible to easily obtain a composite plating film having desired characteristics under good maintenance of the plating process.

ナノダイヤモンド粒子を添加していない銅めっき液(ND=0ppm)の吸光度。Absorbance of copper plating solution (ND = 0ppm) without adding nanodiamond particles. ナノダイヤモンド粒子を所定濃度で添加した銅めっき液(ND=50-1000ppm)の吸光度。Absorbance of copper plating solution (ND = 50-1000ppm) to which nanodiamond particles are added at a predetermined concentration. ナノダイヤモンド水分散液(50ppm、500ppm)の吸光度。Absorbance of nanodiamond aqueous dispersion (50ppm, 500ppm). 各濃度のナノダイヤモンド粒子(ND=300-360ppm)を添加した銅めっき液の検量線。Calibration curve of copper plating solution to which nanodiamond particles (ND = 300-360ppm) of each concentration are added. ナノダイヤモンド粒子を添加していないニッケルめっき液(ND=0ppm)の吸光度。Absorbance of nickel plating solution (ND = 0ppm) without adding nanodiamond particles. ナノダイヤモンド粒子を所定濃度で添加したニッケルめっき液(ND=50-1000ppm)の吸光度。Absorbance of nickel plating solution (ND = 50-1000ppm) to which nanodiamond particles are added at a predetermined concentration.

本明細書において、複合めっき浴は卑金属めっき液とナノダイヤモンド粒子(ND粒子)とを含む。前記卑金属めっき浴中におけるND粒子の濃度は、例えば0.001〜1.0g/L(下限は、好ましくは0.003g/L、より好ましくは0.006g/L、さらに好ましくは0.01g/L、特に好ましくは0.03g/Lである。ND粒子の濃度の上限は、好ましくは0.8g/L、さらに好ましくは0.6g/L、特に好ましくは0.5g/Lである)の範囲であり、好ましくは0.01〜0.5g/Lである。 In the present specification, the composite plating bath contains a base metal plating solution and nanodiamond particles (ND particles). The concentration of ND particles in the base metal plating bath is, for example, 0.001 to 1.0 g / L (the lower limit is preferably 0.003 g / L, more preferably 0.006 g / L, still more preferably 0.01 g / L). L, particularly preferably 0.03 g / L. The upper limit of the concentration of ND particles is preferably 0.8 g / L, more preferably 0.6 g / L, and particularly preferably 0.5 g / L). It is in the range, preferably 0.01 to 0.5 g / L.

卑金属としては、鉄、ニッケル、亜鉛、銅、スズ、アルミニウム、タングステン、モリブデン、タンタル、マグネシウム、コバルト、ビスマス、カドミウム、チタニウム、ジルコニウム、アンチモン、マンガン、ベリリウム、クロム、ゲルマニウム、バナジウム、ガリウム、ハフニウム、インジウム、ニオブ、レニウム及びタリウムからなる群から選ばれる少なくとも1種であり、好ましくは銅、ニッケル、亜鉛、スズ、クロム、パーマロイからなる群から選ばれる少なくとも1種であり、より好ましくは銅、ニッケル、亜鉛、スズからなる群から選ばれる少なくとも1種であり、特に好ましくは銅、ニッケルである。 Base metals include iron, nickel, zinc, copper, tin, aluminum, tungsten, molybdenum, tantalum, magnesium, cobalt, bismuth, cadmium, titanium, zirconium, antimony, manganese, beryllium, chromium, germanium, vanadium, gallium, hafnium, At least one selected from the group consisting of indium, niobium, renium and tallium, preferably at least one selected from the group consisting of copper, nickel, zinc, tin, chromium and permalloy, more preferably copper and nickel. , Zinc, at least one selected from the group consisting of tin, particularly preferably copper and nickel.

複合めっき液中のND粒子の粒径(D50)は、例えば95nm以下、好ましくは70nm以下、特に好ましくは60nm以下、最も好ましくは50nm以下である。ND粒子の粒径(D50)の下限は、例えば20nmである。 The particle size (D50) of the ND particles in the composite plating solution is, for example, 95 nm or less, preferably 70 nm or less, particularly preferably 60 nm or less, and most preferably 50 nm or less. The lower limit of the particle size (D50) of the ND particles is, for example, 20 nm.

卑金属めっき液は公知であり、公知の卑金属めっき液にND粒子又はその分散液を添加することで、複合めっき浴が得られる。ND粒子の分散液は、水溶液が好ましい。複合めっき浴は電解複合めっき浴と無電解複合めっき浴のいずれであってもよい。複合めっき浴は、水溶性卑金属塩、ND粒子を必須成分として含み、電導度塩、錯化剤、還元剤(無電解めっき浴)、アノード溶解促進剤(複合電解めっき浴の場合)、リン供給源(無電解ニッケル‐リン合金めっきの場合)、pH緩衝剤、界面活性剤、安定剤、皮膜の外観と物性を調整する添加剤(光沢化剤、平滑化剤、応力減少剤など)などから選択されるその他の成分をさらに含むことができる。前記水溶性卑金属塩は、卑金属めっき浴中においては卑金属イオンとして存在する。その他、卑金属の酸素酸イオンや、錯化剤と結合した卑金属錯イオンとして存在する場合もある。 複合めっき浴における水溶性卑金属塩の濃度は、複合めっき液に供給される卑金属イオン濃度換算で、例えば0.01〜0.5mol/Lであり、好ましくは0.05〜0.2mol/Lである。 Base metal plating solutions are known, and a composite plating bath can be obtained by adding ND particles or a dispersion thereof to the known base metal plating solutions. The dispersion liquid of the ND particles is preferably an aqueous solution. The composite plating bath may be either an electrolytic composite plating bath or an electroless composite plating bath. The composite plating bath contains a water-soluble base metal salt and ND particles as essential components, and supplies a conductivity salt, a complexing agent, a reducing agent (electroless plating bath), an anode dissolution accelerator (in the case of a composite electrolytic plating bath), and phosphorus. From sources (in the case of electroless nickel-phosphorus alloy plating), pH buffers, surfactants, stabilizers, additives that adjust the appearance and physical properties of the film (brightening agents, smoothing agents, stress reducing agents, etc.) Other components of choice may be further included. The water-soluble base metal salt exists as a base metal ion in the base metal plating bath. In addition, it may exist as a base metal oxygenate ion or a base metal complex ion bonded to a complexing agent. The concentration of the water-soluble base metal salt in the composite plating bath is, for example, 0.01 to 0.5 mol / L, preferably 0.05 to 0.2 mol / L, in terms of the concentration of base metal ions supplied to the composite plating solution. is there.

無電解複合めっき液に含有される還元剤としては、ホスホン酸又はホスホン酸塩(例えばホスホン酸ナトリウムなどのホスホン酸アルカリ金属塩)、ホスフィン酸又はホスフィン酸塩(例えばホスフィン酸ナトリウムなどのホスフィン酸アルカリ金属塩)などが挙げられる。還元剤としてホスフィン酸塩、ホスホン酸塩を採用する場合、無電解複合めっき液におけるホスフィン酸塩、ホスホン酸塩の濃度は、例えば0.02〜0.5mol/Lであり、好ましくは0.1〜0.2mol/Lである。 Examples of the reducing agent contained in the electroless composite plating solution include phosphonic acid or phosphonate (for example, an alkali metal phosphonate such as sodium phosphonate), phosphinic acid or phosphinate (for example, alkali phosphinate such as sodium phosphinate). Metal salt) and the like. When phosphinate or phosphonate is used as the reducing agent, the concentration of phosphinate or phosphonate in the electroless composite plating solution is, for example, 0.02 to 0.5 mol / L, preferably 0.1. It is ~ 0.2 mol / L.

電解及び無電解卑金属めっき浴に含有される錯化剤としては、例えば、クエン酸、乳酸、リンゴ酸、グリコール酸、およびこれらの塩が挙げられる。クエン酸としては、クエン酸ナトリウムやクエン酸カリウムなどのクエン酸アルカリ金属塩が挙げられる。クエン酸および/またはその塩を採用する場合、電解及び無電解卑金属めっき浴におけるクエン酸および/またはその塩の濃度は、例えば0.02〜1.0mol/Lであり、好ましくは0.1〜0.5mol/Lである。 Examples of the complexing agent contained in the electrolytic and electroless base metal plating bath include citric acid, lactic acid, malic acid, glycolic acid, and salts thereof. Examples of citric acid include alkali metal citrate salts such as sodium citrate and potassium citrate. When citric acid and / or a salt thereof is adopted, the concentration of citric acid and / or a salt thereof in the electrolytic and electroless base metal plating bath is, for example, 0.02 to 1.0 mol / L, preferably 0.1 to 0.1. It is 0.5 mol / L.

卑金属めっき浴のpHは、例えば5〜11である。 The pH of the base metal plating bath is, for example, 5 to 11.

本発明では、これらの複合めっき液の成分のうち、ND粒子の管理を行うものである。ND粒子以外の成分の管理は、常法に従い行うことができる。 In the present invention, among the components of these composite plating solutions, ND particles are controlled. The components other than the ND particles can be managed according to a conventional method.

本発明の好ましい1つの実施形態において、ND粒子以外の卑金属めっき用のめっき液としては、ND粒子、卑金属の硫酸塩、硫酸、塩化物イオンなどからなる硫酸卑金属めっき液;卑金属シアン化物、シアン化ナトリウム、炭酸アルカリ、ロッシェル塩などからなるシアン化卑金属めっき液;卑金属ピロリン酸塩、ピロリン酸カリウム、アンモニア水、硝酸カリウムなどからなるピロリン酸卑金属めっき液などが挙げられる。 In one preferred embodiment of the present invention, the plating solution for base metal plating other than ND particles is a base metal sulfate plating solution composed of ND particles, base metal sulfate, sulfuric acid, chloride ion, etc .; base metal cyanide, cyanation. Base metal cyanide plating solution composed of sodium, alkali carbonate, Rochelle salt and the like; base metal pyrophosphate plating solution composed of base metal pyrophosphate, potassium pyrophosphate, aqueous ammonia, potassium nitrate and the like can be mentioned.

ND粒子の表面は、OH、COOH、NHなどの親水性官能基を有していてもよい。また、これらの官能基を介して、親水性基を導入したND粒子を用いてもよい。親水性基としては、グリセリン、ポリグリセリン(PG)、エチレングリコール、プロピレングリコール、ブチレングリコールなどのC2−4アルキレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコールなどのポリ(C2−4アルキレングリコール)などが挙げられる。これらの親水性ND粒子は公知であるか、公知に方法により製造することができる。 The surface of the ND particles may have hydrophilic functional groups such as OH, COOH and NH 2 . Further, ND particles into which a hydrophilic group has been introduced via these functional groups may be used. Examples of the hydrophilic group include C 2-4 alkylene glycol such as glycerin, polyglycerin (PG), ethylene glycol, propylene glycol and butylene glycol, and poly (C 2-4 alkylene glycol) such as polyethylene glycol, polypropylene glycol and polybutylene glycol. ) And so on. These hydrophilic ND particles are known or can be produced by a known method.

ND粒子は、固体を(複合)めっき浴に配合してもよく、ND粒子分散液を(複合)めっき浴に配合してもよい。ND粒子分散液中のND粒子濃度は、例えば1〜100g/L程度である。 For the ND particles, the solid may be blended in the (composite) plating bath, or the ND particle dispersion may be blended in the (composite) plating bath. The ND particle concentration in the ND particle dispersion is, for example, about 1 to 100 g / L.

前記ND粒子としては、分散性に優れる点において、親水性高分子でコーティングもしくは修飾された親水性ND粒子が好ましく、特に好ましくはポリグリセリン鎖を含む水溶性高分子を有する親水性ND粒子である。 The ND particles are preferably hydrophilic ND particles coated or modified with a hydrophilic polymer in terms of excellent dispersibility, and particularly preferably hydrophilic ND particles having a water-soluble polymer containing a polyglycerin chain. ..

本発明の複合めっき液中のND粒子濃度の分析は、以下のようにして行うことができる。
(i)先ず、ND粒子の濃度を分析すべき複合めっき液に対して、ND粒子濃度を管理すべき範囲において、様々な配合量でND粒子を配合したND粒子濃度の既知の複数種類の複合めっき液を調製する。
(ii)次に、上記(i)で調製した複合めっき液について、各々、吸光度を測定する。
(iii)上記(ii)の結果をもとに、図4に示すように如く、複合めっき液の吸光度とND粒子濃度の関係を示す検量線を作成する。
The analysis of the ND particle concentration in the composite plating solution of the present invention can be performed as follows.
(i) First, with respect to the composite plating solution for which the concentration of ND particles should be analyzed, a plurality of known composites having ND particle concentrations in which ND particles are blended in various blending amounts within a range in which the ND particle concentration should be controlled. Prepare the plating solution.
(ii) Next, the absorbance of each of the composite plating solutions prepared in (i) above is measured.
(iii) Based on the result of (ii) above, as shown in FIG. 4, a calibration curve showing the relationship between the absorbance of the composite plating solution and the ND particle concentration is prepared.

複合めっき液の吸光度を測定する波長は、250〜630nmの範囲から選択され、この範囲内であれば、任意の波長で検量線を作成し、複合めっき液中のND粒子濃度を分析することができる。検量線を作成する波長は、NDを含まないめっき液を基準として、ND粒子の濃度を高めていったときの吸光度変化の大きい波長が好ましい。例えば、図1〜3に示す銅めっき液の場合、好ましくは280nm〜630nm、より好ましくは300nm〜600nm、さらに好ましくは310nm〜500nmである。また、図5〜6に示すニッケルめっき液の場合、好ましくは300nm〜370nmと430nm〜580nm、より好ましくは305nm〜360nmと440nm〜560nm、さらに好ましくは310nm〜350nmと440nm〜550nmである。銅めっき液とニッケルめっき液であったとしても、めっき液に含まれる成分や濃度が変化すれば、検量線作成の好ましい波長は変化し得る。また、卑金属めっき液の卑金属の種類が銅、ニッケルから鉄、亜鉛、スズ、アルミニウム、タングステン、モリブデン、タンタル、マグネシウム、コバルト、ビスマス、カドミウム、チタニウム、ジルコニウム、アンチモン、マンガン、ベリリウム、クロム、ゲルマニウム、バナジウム、ガリウム、ハフニウム、インジウム、ニオブ、レニウム、タリウムなどの他の卑金属に変わった場合にも、検量線作成の好ましい波長は変化し得る。検量線作成の好ましい波長の決定は、銅めっき液とニッケルめっき液の結果を参考にして容易に行うことができる。検量線は、1つの波長のみで作成してもよく、複数の波長(好ましくが2つの波長もしくは3つの波長)で作成してもよい。図3に示すように、ND粒子の水分散液の吸光度は、ND粒子の濃度によっても大きく影響を受けるので、このことを考慮して、検量線を作成する波長を決定することが好ましい。ND粒子濃度の管理すべき範囲内で、ND粒子濃度の決定に有利な吸光度の測定波長を検量線により決定する。複合めっき液のND粒子の濃度は、予め作製された検量線を用いて、吸光度の測定値により分析することができる。ND粒子濃度の分析は、ND粒子の濃度を特定するように行ってもよく、ND粒子濃度が許容範囲を逸脱する可能性が生じ、ND粒子を例えば水分散液の形態で複合めっき液に添加するべきか否かを判断できるように濃度ゾーンで分析してもよい。 The wavelength for measuring the absorbance of the composite plating solution is selected from the range of 250 to 630 nm, and within this range, a calibration curve can be created at any wavelength and the ND particle concentration in the composite plating solution can be analyzed. it can. The wavelength at which the calibration curve is created is preferably a wavelength having a large change in absorbance when the concentration of ND particles is increased, based on a plating solution containing no ND. For example, in the case of the copper plating solution shown in FIGS. 1 to 3, it is preferably 280 nm to 630 nm, more preferably 300 nm to 600 nm, and further preferably 310 nm to 500 nm. Further, in the case of the nickel plating solution shown in FIGS. 5 to 6, it is preferably 300 nm to 370 nm and 430 nm to 580 nm, more preferably 305 nm to 360 nm and 440 nm to 560 nm, and further preferably 310 nm to 350 nm and 440 nm to 550 nm. Even if the copper plating solution and the nickel plating solution are used, the preferable wavelength for preparing the calibration curve can change if the components and concentrations contained in the plating solution change. In addition, the types of base metals in the base metal plating solution are copper, nickel, iron, zinc, tin, aluminum, tungsten, molybdenum, tantalum, magnesium, cobalt, bismuth, cadmium, titanium, zirconium, antimony, manganese, beryllium, chromium, germanium, etc. The preferred wavelength of calibration line preparation can also change when changing to other base metals such as vanadium, gallium, hafnium, indium, niobium, renium, tantalum. The preferred wavelength for preparing the calibration curve can be easily determined by referring to the results of the copper plating solution and the nickel plating solution. The calibration curve may be produced with only one wavelength, or may be produced with a plurality of wavelengths (preferably two wavelengths or three wavelengths). As shown in FIG. 3, the absorbance of the aqueous dispersion of ND particles is greatly affected by the concentration of ND particles, and it is preferable to determine the wavelength at which the calibration curve is prepared in consideration of this. Within the range to be controlled of the ND particle concentration, the measurement wavelength of the absorbance which is advantageous for determining the ND particle concentration is determined by the calibration curve. The concentration of ND particles in the composite plating solution can be analyzed by measuring the absorbance using a calibration curve prepared in advance. The analysis of the ND particle concentration may be performed so as to specify the concentration of the ND particles, and the ND particle concentration may deviate from the permissible range, and the ND particles are added to the composite plating solution in the form of an aqueous dispersion, for example. It may be analyzed in the concentration zone so that it can be determined whether or not it should be done.

本発明の複合めっき液のND粒子濃度の管理方法では、めっき槽から複合めっき液をサンプリングし、上述のような方法で複合めっき液中のND粒子の濃度を分析し、分析結果に基づきND粒子濃度が次のサンプリングまで許容範囲内にとどまると判断されればND粒子の添加は行わず、分析結果に基づきND粒子濃度が次のサンプリング時には許容範囲外になる可能性があると判断される場合には、必要に応じてめっき槽中の複合めっき液にND粒子を例えば水分散液の形態で添加し、ND粒子濃度が許容範囲内でめっきが行われるようにする。 In the method for controlling the ND particle concentration of the composite plating solution of the present invention, the composite plating solution is sampled from the plating tank, the concentration of the ND particles in the composite plating solution is analyzed by the method as described above, and the ND particles are based on the analysis result. If it is judged that the concentration remains within the permissible range until the next sampling, ND particles are not added, and based on the analysis results, it is judged that the ND particle concentration may be out of the permissible range at the time of the next sampling. If necessary, ND particles are added to the composite plating solution in the plating tank in the form of, for example, an aqueous dispersion so that the plating is performed within an allowable range of the ND particle concentration.

本発明のND濃度の管理方法について、例えば複合めっき液からめっき液をポンプなどでサンプリングするサンプリング手段、サンプリングした試料の吸光度を測定する分析手段、分析手段の結果の信号を受け取り、ND粒子を複合めっき液に添加するか否かと添加量を決定する制御手段、前記制御手段によりND粒子の添加を制御されるND粒子添加手段を備えたシステムにより自動的にND粒子の濃度管理を行ってもよく、管理者がめっきの状況を見ながら適切なタイミングで複合めっき液のサンプリング及び吸光度測定を手動で行い、その結果から、複合めっき液へのND粒子の添加の要否、添加する場合にはその添加量を管理者が判断して実施してもよい。 Regarding the method for controlling the ND concentration of the present invention, for example, a sampling means for sampling a plating solution from a composite plating solution with a pump or the like, an analysis means for measuring the absorbance of the sampled sample, and a signal of the result of the analysis means are received to combine ND particles. The concentration of ND particles may be automatically controlled by a system provided with a control means for determining whether or not to add to the plating solution and an addition amount, and an ND particle addition means for which the addition of ND particles is controlled by the control means. , The administrator manually samples the composite plating solution and measures the absorbance at an appropriate timing while observing the plating status, and based on the results, whether or not to add ND particles to the composite plating solution, and if so, The manager may determine the amount of addition and carry out the process.

以下、本発明を実施例を挙げてより詳細に説明する。
実施例1
銅めっき液(商品名「電解めっき液」、清川めっき工業(株)製)に、ポリグリセリン(PG)で修飾することで親水化処理されたND粒子水分散液(PG−ND粒子水分散液((株)ダイセル製)を、銅めっき液中のPG−ND濃度が0、50、100、200、300、400、500、1000ppmとなるように添加して、各種ND濃度の複合めっき液を調製した。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
ND particle water dispersion (PG-ND particle water dispersion) that has been hydrophilized by modifying copper plating solution (trade name "electroplating solution", manufactured by Kiyokawa Plating Industry Co., Ltd.) with polyglycerin (PG). (Manufactured by Daicel Co., Ltd.) is added so that the PG-ND concentration in the copper plating solution is 0, 50, 100, 200, 300, 400, 500, 1000 ppm to add composite plating solutions having various ND concentrations. Prepared.

得られた複合銅めっき液について、分光光度計((株)日立ハイテクフィールディング社製「U-3900H Spectrophotometer)を用い、波長300nm、310nm、320nm、330nm、340nm、350nm、355nm、360nmで吸光度測定を行い、検量線を作成した(図4)。図1は、PG−NDを添加していない銅めっき液の吸光度測定結果を示し、図2は、PG−NDを50ppm、100ppm、200ppm、300ppm、400ppm、500ppm、1000ppmを各々添加した銅めっき液の吸光度測定結果を示す。また、図3は、PG−ND濃度が50ppmと500ppmのときのPG−ND水分散液の吸光度を示す。 Absorbance measurement of the obtained composite copper plating solution was performed at wavelengths of 300 nm, 310 nm, 320 nm, 330 nm, 340 nm, 350 nm, 355 nm, and 360 nm using a spectrophotometer (U-3900H Spectrophotometer manufactured by Hitachi High-Tech Fielding Co., Ltd.). A calibration curve was prepared (FIG. 4). FIG. 1 shows the absorbance measurement results of the copper plating solution to which PG-ND was not added, and FIG. 2 shows PG-ND at 50 ppm, 100 ppm, 200 ppm, and 300 ppm. The absorbance measurement results of the copper plating solution to which 400 ppm, 500 ppm, and 1000 ppm are added are shown. FIG. 3 shows the absorbance of the PG-ND aqueous dispersion when the PG-ND concentrations are 50 ppm and 500 ppm, respectively.

図4の結果から、ND粒子の濃度は吸光度により決定でき、複合めっき液中のND粒子濃度を適切に管理できることが明らかになった。 From the results of FIG. 4, it was clarified that the concentration of ND particles can be determined by the absorbance, and the concentration of ND particles in the composite plating solution can be appropriately controlled.

実施例2
ニッケルめっき液(商品名「電解ニッケルめっき液」、清川めっき工業(株)製)に、ポリエチレングリコール(PG)で修飾することで親水化処理されたND粒子水分散液(PG−ND粒子水分散液((株)ダイセル製)を、銅めっき液中のPG−ND濃度が0、50、100、200、300、400、500、1000ppmとなるように添加して、各種ND濃度の複合めっき液を調製した。
Example 2
ND particle water dispersion (PG-ND particle water dispersion) that has been hydrophilized by modifying nickel plating solution (trade name "electrolytic nickel plating solution", manufactured by Kiyokawa Plating Industry Co., Ltd.) with polyethylene glycol (PG). A liquid (manufactured by Daicel Co., Ltd.) is added so that the PG-ND concentration in the copper plating liquid becomes 0, 50, 100, 200, 300, 400, 500, 1000 ppm, and a composite plating liquid having various ND concentrations is added. Was prepared.

得られた複合銅めっき液について、分光光度計を用いて吸光度測定を行った。図5は、PG−NDを添加していない銅めっき液の吸光度測定結果を示し、図6は、PG−NDを50ppm、100ppm、200ppm、300ppm、400ppm、500ppm、1000ppmを各々添加した銅めっき液の吸光度測定結果を示す。 The absorbance of the obtained composite copper plating solution was measured using a spectrophotometer. FIG. 5 shows the absorbance measurement results of the copper plating solution to which PG-ND was not added, and FIG. 6 shows the copper plating solution to which PG-ND was added at 50 ppm, 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, and 1000 ppm, respectively. The results of the absorbance measurement of.

図5,6の結果から、ND粒子の濃度は吸光度により決定でき、銅めっき液中のND粒子濃度を適切に管理できることが明らかになった。 From the results of FIGS. 5 and 6, it was clarified that the concentration of ND particles can be determined by the absorbance and the concentration of ND particles in the copper plating solution can be appropriately controlled.

Claims (2)

ナノダイヤモンド粒子を含む複合めっき液の吸光度を測定し、吸光度の測定値に基づきナノダイヤモンド粒子の濃度を求める工程を含み、前記吸光度は250〜630nmの範囲から選択される波長で測定される、複合めっき液中のナノダイヤモンド粒子濃度の分析方法。 The composite comprises the step of measuring the absorbance of the composite plating solution containing the nanodiamond particles and determining the concentration of the nanodiamond particles based on the measured absorbance, the absorbance being measured at a wavelength selected from the range of 250 to 630 nm. A method for analyzing the concentration of nanodiamond particles in a plating solution. 請求項1の方法で複合めっき液中のナノダイヤモンド粒子濃度を分析し、前記濃度が所定濃度となるように、必要に応じて複合めっき液にナノダイヤモンド粒子を添加する、複合めっき液中のナノダイヤモンド粒子濃度の管理方法。 The nanodiamond particle concentration in the composite plating solution is analyzed by the method of claim 1, and nanodiamond particles are added to the composite plating solution as necessary so that the concentration becomes a predetermined concentration. How to control the concentration of diamond particles.
JP2019090653A 2019-05-13 2019-05-13 Method of analyzing and controlling nano diamond particle concentration in composite plating solution Pending JP2020186962A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019090653A JP2020186962A (en) 2019-05-13 2019-05-13 Method of analyzing and controlling nano diamond particle concentration in composite plating solution
JP2023143694A JP2023158070A (en) 2019-05-13 2023-09-05 Method of analyzing and controlling nano diamond particle concentration in composite plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019090653A JP2020186962A (en) 2019-05-13 2019-05-13 Method of analyzing and controlling nano diamond particle concentration in composite plating solution

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023143694A Division JP2023158070A (en) 2019-05-13 2023-09-05 Method of analyzing and controlling nano diamond particle concentration in composite plating solution

Publications (1)

Publication Number Publication Date
JP2020186962A true JP2020186962A (en) 2020-11-19

Family

ID=73223217

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019090653A Pending JP2020186962A (en) 2019-05-13 2019-05-13 Method of analyzing and controlling nano diamond particle concentration in composite plating solution
JP2023143694A Pending JP2023158070A (en) 2019-05-13 2023-09-05 Method of analyzing and controlling nano diamond particle concentration in composite plating solution

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023143694A Pending JP2023158070A (en) 2019-05-13 2023-09-05 Method of analyzing and controlling nano diamond particle concentration in composite plating solution

Country Status (1)

Country Link
JP (2) JP2020186962A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047575A (en) * 2000-05-22 2002-02-15 C Uyemura & Co Ltd Automatic analyser and controller of electroless composite plating liquid
CN1786686A (en) * 2005-11-11 2006-06-14 哈尔滨工业大学 Method for measuring nano particle content in electroplate liquid or layer by spectrophotometer
US20190044185A1 (en) * 2017-08-01 2019-02-07 Drexel University Additives for suppressing dendritic growth in batteries

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047575A (en) * 2000-05-22 2002-02-15 C Uyemura & Co Ltd Automatic analyser and controller of electroless composite plating liquid
CN1786686A (en) * 2005-11-11 2006-06-14 哈尔滨工业大学 Method for measuring nano particle content in electroplate liquid or layer by spectrophotometer
US20190044185A1 (en) * 2017-08-01 2019-02-07 Drexel University Additives for suppressing dendritic growth in batteries

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEIHUA LIU ET AL.: "Effect of Nanodiamond Concentration and the Current Density of the Electrolyte on the Texture and Me", MATERIALS, vol. Vol.12, No.7, 1105, JPN6022050004, 3 April 2019 (2019-04-03), ISSN: 0004994912 *

Also Published As

Publication number Publication date
JP2023158070A (en) 2023-10-26

Similar Documents

Publication Publication Date Title
CN107604393B (en) A kind of no cyanogen alkali copper electroplating composition and preparation method thereof
US8142639B2 (en) Hard gold alloy plating bath
CN101946028B (en) Composite coatings for whisker reduction
US9347144B2 (en) Dark colored chromium based electrodeposits
JP6951465B2 (en) Trivalent chrome plating solution and chrome plating method using this
JPH04276081A (en) Method for electroless plating of tin, lead, or alloy
TWI452179B (en) Gold plating solution
AT514818B1 (en) Deposition of Cu, Sn, Zn coatings on metallic substrates
JP2011520036A (en) Pd electrolyte bath and Pd-Ni electrolyte bath
DE60022480T2 (en) copper plating
CN105229204A (en) The galvanic deposit of silver and fluoropolymer nanoparticle
CN101070604B (en) Electroplating method
JP2020186962A (en) Method of analyzing and controlling nano diamond particle concentration in composite plating solution
Osaka et al. Evaluation of Substrate (Ni)‐Catalyzed Electroless Gold Plating Process
Kublanovsky et al. Cobalt-molybdenum-phosphorus alloys: electroplating and corrosion properties
JP2014105338A (en) Determination method of gold concentration in gold-containing solution, and determination device of gold concentration
TWI558858B (en) Non-cyanide gold-palladium alloy plating solution and plating method
WO2018216320A1 (en) Molten salt titanium plating solution composition and method for manufacturing titanium-plated member
Luyima et al. Examination of copper electrowinning smoothing agents. Part IV: Nucleation and growth of copper on stainless steel
JP7220494B1 (en) Gold concentration measuring device and measuring method in gold-containing plating solution
JPH05163581A (en) Composite electroless nickel plating solution
TW546418B (en) Method of producing AuCuGa alloy coating using electrolysis, and alloys produced by such a method
CN112095127A (en) Neutral tin additive and preparation method and application thereof
Pan Ammonia in the Electrodeposition of Brass
JPH04276082A (en) Analysis of copper ion concentration in bath for electroless plating of tin, lead, or those alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230606