JP2023158070A - Method of analyzing and controlling nano diamond particle concentration in composite plating solution - Google Patents

Method of analyzing and controlling nano diamond particle concentration in composite plating solution Download PDF

Info

Publication number
JP2023158070A
JP2023158070A JP2023143694A JP2023143694A JP2023158070A JP 2023158070 A JP2023158070 A JP 2023158070A JP 2023143694 A JP2023143694 A JP 2023143694A JP 2023143694 A JP2023143694 A JP 2023143694A JP 2023158070 A JP2023158070 A JP 2023158070A
Authority
JP
Japan
Prior art keywords
plating solution
concentration
particles
composite plating
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023143694A
Other languages
Japanese (ja)
Inventor
智明 間彦
Tomoaki Mahiko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP2023143694A priority Critical patent/JP2023158070A/en
Publication of JP2023158070A publication Critical patent/JP2023158070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To analyze the concentration of nano diamond particles in a composite plating solution quickly and accurately in a simple manner and control the composite plating solution appropriately.SOLUTION: A method of analyzing the concentration of nano diamond particles in a composite plating solution includes a step of measuring the absorbance of the composite plating solution containing the nano diamond particles and determining the concentration of the nano diamond particles on the basis of the measured value of the absorbance. The absorbance is measured with a wavelength selected from the range of 250 to 630 nm.SELECTED DRAWING: None

Description

本発明は、複合めっき液中のナノダイヤモンド粒子濃度の分析方法及び管理方法に関する。 The present invention relates to a method for analyzing and managing the concentration of nanodiamond particles in a composite plating solution.

本明細書において、ナノダイヤモンドを「ND」と記載する場合がある。 In this specification, nanodiamond may be referred to as "ND".

通常のめっき液にナノダイヤモンド粒子を混合分散させた複合めっき液が知られている(特許文献1)。ナノダイヤモンド粒子を含有する複合めっき液を使用することで、ナノダイヤモンド粒子が均一に分散しためっき皮膜が形成され、めっき皮膜の意匠性や機械的特性、機能性を高めることができる。 A composite plating solution in which nanodiamond particles are mixed and dispersed in a normal plating solution is known (Patent Document 1). By using a composite plating solution containing nanodiamond particles, a plating film in which nanodiamond particles are uniformly dispersed is formed, and the design, mechanical properties, and functionality of the plating film can be improved.

このような複合めっき液を用いて所望の特性を有するめっき皮膜を再現性良く形成するためには、複合めっき液中のナノダイヤモンド粒子の濃度を管理し、この濃度が所定濃度となるように適宜複合めっき液中にナノダイヤモンド粒子を添加し、ナノダイヤモンド粒子濃度を維持管理する必要がある。 In order to form a plating film with desired characteristics with good reproducibility using such a composite plating solution, the concentration of nanodiamond particles in the composite plating solution must be controlled and adjusted as appropriate so that this concentration becomes a predetermined concentration. It is necessary to add nanodiamond particles to the composite plating solution and maintain and manage the nanodiamond particle concentration.

複合めっき液中のナノダイヤモンド粒子濃度は、例えばめっき皮膜中のナノダイヤモンド粒子量を定量することで推定できるが、この方法は煩雑な操作が必要になる。 The nanodiamond particle concentration in the composite plating solution can be estimated, for example, by quantifying the amount of nanodiamond particles in the plating film, but this method requires complicated operations.

特開2018-83960号公報Japanese Patent Application Publication No. 2018-83960

本発明の目的は、複合めっき液中のナノダイヤモンド粒子の濃度を簡易な方法で迅速かつ的確に分析し、複合めっき液を適切に管理することにある。 An object of the present invention is to quickly and accurately analyze the concentration of nanodiamond particles in a composite plating solution using a simple method, and to appropriately manage the composite plating solution.

本発明は、以下の複合めっき液中のナノダイヤモンド粒子濃度の分析方法及び管理方法を提供するものである。
〔1〕 ナノダイヤモンド粒子を含む複合めっき液の吸光度を測定し、吸光度の測定値に基づきナノダイヤモンド粒子の濃度を求める工程を含み、前記吸光度は250~630nm の範囲から選択される波長で測定される、複合めっき液中のナノダイヤモンド粒子濃
度の分析方法。
〔2〕 〔1〕の方法で複合めっき液中のナノダイヤモンド粒子濃度を分析し、前記濃度が所定濃度となるように、必要に応じて複合めっき液にナノダイヤモンド粒子を添加する、複合めっき液中のナノダイヤモンド粒子濃度の管理方法。
The present invention provides the following method for analyzing and managing the concentration of nanodiamond particles in a composite plating solution.
[1] A step of measuring the absorbance of a composite plating solution containing nanodiamond particles and determining the concentration of nanodiamond particles based on the measured value of the absorbance, wherein the absorbance is measured at a wavelength selected from the range of 250 to 630 nm. A method for analyzing the concentration of nanodiamond particles in a composite plating solution.
[2] A composite plating solution in which the nanodiamond particle concentration in the composite plating solution is analyzed by the method of [1], and nanodiamond particles are added to the composite plating solution as necessary so that the concentration becomes a predetermined concentration. How to control the concentration of nanodiamond particles inside.

本発明によれば、複合めっき液中のナノダイヤモンド粒子濃度を、簡易かつ迅速に分析することができ、この分析方法を利用する本発明の複合めっき液の管理方法によれば、ナノダイヤモンド粒子の濃度の分析値をリアルタイムでナノダイヤモンド粒子の添加制御に反映させて、良好なめっき工程の維持管理のもとに、所望の特性を有する複合めっき皮膜を容易に得ることが可能になる。 According to the present invention, the nanodiamond particle concentration in a composite plating solution can be easily and quickly analyzed, and according to the composite plating solution management method of the present invention that utilizes this analysis method, the nanodiamond particle concentration By reflecting the concentration analysis value in the control of nanodiamond particle addition in real time, it becomes possible to easily obtain a composite plating film with desired characteristics under good maintenance management of the plating process.

ナノダイヤモンド粒子を添加していない銅めっき液(ND=0ppm)の吸光度。Absorbance of copper plating solution (ND=0ppm) without adding nanodiamond particles. ナノダイヤモンド粒子を所定濃度で添加した銅めっき液(ND=50-1000ppm)の吸光度。Absorbance of copper plating solution (ND=50-1000ppm) containing nanodiamond particles at a specified concentration. ナノダイヤモンド水分散液(50ppm、500ppm)の吸光度。Absorbance of nanodiamond aqueous dispersion (50ppm, 500ppm). 各濃度のナノダイヤモンド粒子(ND=300-360ppm)を添加した銅めっき液の検量線。Calibration curve of copper plating solution added with various concentrations of nanodiamond particles (ND=300-360ppm). ナノダイヤモンド粒子を添加していないニッケルめっき液(ND=0ppm)の吸光度。Absorbance of nickel plating solution (ND=0ppm) without adding nanodiamond particles. ナノダイヤモンド粒子を所定濃度で添加したニッケルめっき液(ND=50-1000ppm)の吸光度。Absorbance of nickel plating solution (ND=50-1000ppm) containing nanodiamond particles at a specified concentration.

本明細書において、複合めっき浴は卑金属めっき液とナノダイヤモンド粒子(ND粒子)とを含む。前記卑金属めっき浴中におけるND粒子の濃度は、例えば0.001~1.0g/L(下限は、好ましくは0.003g/L、より好ましくは0.006g/L、さらに好ましくは0.01g/L、特に好ましくは0.03g/Lである。ND粒子の濃度の上限は、好ましくは0.8g/L、さらに好ましくは0.6g/L、特に好ましくは0.5g/Lである)の範囲であり、好ましくは0.01~0.5g/Lである。 In this specification, a composite plating bath includes a base metal plating solution and nanodiamond particles (ND particles). The concentration of ND particles in the base metal plating bath is, for example, 0.001 to 1.0 g/L (the lower limit is preferably 0.003 g/L, more preferably 0.006 g/L, and even more preferably 0.01 g/L). L, particularly preferably 0.03 g/L. The upper limit of the concentration of ND particles is preferably 0.8 g/L, more preferably 0.6 g/L, particularly preferably 0.5 g/L). range, preferably 0.01 to 0.5 g/L.

卑金属としては、鉄、ニッケル、亜鉛、銅、スズ、アルミニウム、タングステン、モリブデン、タンタル、マグネシウム、コバルト、ビスマス、カドミウム、チタニウム、ジルコニウム、アンチモン、マンガン、ベリリウム、クロム、ゲルマニウム、バナジウム、ガリウム、ハフニウム、インジウム、ニオブ、レニウム及びタリウムからなる群から選ばれる少なくとも1種であり、好ましくは銅、ニッケル、亜鉛、スズ、クロム、パーマロイからなる群から選ばれる少なくとも1種であり、より好ましくは銅、ニッケル、亜鉛、スズからなる群から選ばれる少なくとも1種であり、特に好ましくは銅、ニッケルである。 Base metals include iron, nickel, zinc, copper, tin, aluminum, tungsten, molybdenum, tantalum, magnesium, cobalt, bismuth, cadmium, titanium, zirconium, antimony, manganese, beryllium, chromium, germanium, vanadium, gallium, hafnium, At least one member selected from the group consisting of indium, niobium, rhenium, and thallium, preferably at least one member selected from the group consisting of copper, nickel, zinc, tin, chromium, and permalloy, more preferably copper and nickel. , zinc, and tin, and particularly preferably copper and nickel.

複合めっき液中のND粒子の粒径(D50)は、例えば95nm以下、好ましくは70nm以下、特に好ましくは60nm以下、最も好ましくは50nm以下である。ND粒子の粒径(D50)の下限は、例えば20nmである。 The particle size (D50) of the ND particles in the composite plating solution is, for example, 95 nm or less, preferably 70 nm or less, particularly preferably 60 nm or less, and most preferably 50 nm or less. The lower limit of the particle size (D50) of the ND particles is, for example, 20 nm.

卑金属めっき液は公知であり、公知の卑金属めっき液にND粒子又はその分散液を添加することで、複合めっき浴が得られる。ND粒子の分散液は、水溶液が好ましい。複合めっき浴は電解複合めっき浴と無電解複合めっき浴のいずれであってもよい。複合めっき浴は、水溶性卑金属塩、ND粒子を必須成分として含み、電導度塩、錯化剤、還元剤(無電解めっき浴)、アノード溶解促進剤(複合電解めっき浴の場合)、リン供給源(無電解ニッ
ケル‐リン合金めっきの場合)、pH緩衝剤、界面活性剤、安定剤、皮膜の外観と物性を
調整する添加剤(光沢化剤、平滑化剤、応力減少剤など)などから選択されるその他の成分をさらに含むことができる。前記水溶性卑金属塩は、卑金属めっき浴中においては卑金属イオンとして存在する。その他、卑金属の酸素酸イオンや、錯化剤と結合した卑金属錯イオンとして存在する場合もある。 複合めっき浴における水溶性卑金属塩の濃度は、複
合めっき液に供給される卑金属イオン濃度換算で、例えば0.01~0.5mol/Lであり、好ましくは0.05~0.2mol/Lである。
Base metal plating solutions are known, and a composite plating bath can be obtained by adding ND particles or a dispersion thereof to a known base metal plating solution. The dispersion liquid of ND particles is preferably an aqueous solution. The composite plating bath may be either an electrolytic composite plating bath or an electroless composite plating bath. The composite plating bath contains water-soluble base metal salts and ND particles as essential components, conductivity salts, complexing agents, reducing agents (electroless plating baths), anode dissolution promoters (in the case of composite electrolytic plating baths), and phosphorus supply. sources (in the case of electroless nickel-phosphorus alloy plating), pH buffering agents, surfactants, stabilizers, additives that adjust the appearance and physical properties of the film (brightening agents, smoothing agents, stress reducing agents, etc.), etc. Other selected ingredients may further be included. The water-soluble base metal salt exists as base metal ions in the base metal plating bath. In addition, it may exist as a base metal oxyacid ion or a base metal complex ion combined with a complexing agent. The concentration of the water-soluble base metal salt in the composite plating bath is, for example, 0.01 to 0.5 mol/L, preferably 0.05 to 0.2 mol/L, in terms of base metal ion concentration supplied to the composite plating solution. be.

無電解複合めっき液に含有される還元剤としては、ホスホン酸又はホスホン酸塩(例えばホスホン酸ナトリウムなどのホスホン酸アルカリ金属塩)、ホスフィン酸又はホスフィン酸塩(例えばホスフィン酸ナトリウムなどのホスフィン酸アルカリ金属塩)などが挙げられる。還元剤としてホスフィン酸塩、ホスホン酸塩を採用する場合、無電解複合めっき液におけるホスフィン酸塩、ホスホン酸塩の濃度は、例えば0.02~0.5mol/L
であり、好ましくは0.1~0.2mol/Lである。
The reducing agent contained in the electroless composite plating solution includes phosphonic acid or phosphonate (for example, alkali metal phosphonate such as sodium phosphonate), phosphinic acid or phosphinate (for example, alkali phosphinate such as sodium phosphinate), metal salts), etc. When a phosphinate or phosphonate is used as a reducing agent, the concentration of the phosphinate or phosphonate in the electroless composite plating solution is, for example, 0.02 to 0.5 mol/L.
and preferably 0.1 to 0.2 mol/L.

電解及び無電解卑金属めっき浴に含有される錯化剤としては、例えば、クエン酸、乳酸、リンゴ酸、グリコール酸、およびこれらの塩が挙げられる。クエン酸としては、クエン酸ナトリウムやクエン酸カリウムなどのクエン酸アルカリ金属塩が挙げられる。クエン酸および/またはその塩を採用する場合、電解及び無電解卑金属めっき浴におけるクエン酸および/またはその塩の濃度は、例えば0.02~1.0mol/Lであり、好ましくは0.1~0.5mol/Lである。 Examples of complexing agents contained in electrolytic and electroless base metal plating baths include citric acid, lactic acid, malic acid, glycolic acid, and salts thereof. Examples of citric acid include alkali metal citrates such as sodium citrate and potassium citrate. When employing citric acid and/or its salt, the concentration of citric acid and/or its salt in the electrolytic and electroless base metal plating bath is, for example, 0.02 to 1.0 mol/L, preferably 0.1 to 1.0 mol/L. It is 0.5 mol/L.

卑金属めっき浴のpHは、例えば5~11である。 The pH of the base metal plating bath is, for example, 5 to 11.

本発明では、これらの複合めっき液の成分のうち、ND粒子の管理を行うものである。ND粒子以外の成分の管理は、常法に従い行うことができる。 In the present invention, among the components of these composite plating solutions, ND particles are managed. Components other than ND particles can be managed according to conventional methods.

本発明の好ましい1つの実施形態において、ND粒子以外の卑金属めっき用のめっき液としては、ND粒子、卑金属の硫酸塩、硫酸、塩化物イオンなどからなる硫酸卑金属めっき液;卑金属シアン化物、シアン化ナトリウム、炭酸アルカリ、ロッシェル塩などからなるシアン化卑金属めっき液;卑金属ピロリン酸塩、ピロリン酸カリウム、アンモニア水、硝酸カリウムなどからなるピロリン酸卑金属めっき液などが挙げられる。 In one preferred embodiment of the present invention, the plating solution for base metal plating other than ND particles includes a sulfuric acid base metal plating solution consisting of ND particles, base metal sulfate, sulfuric acid, chloride ions, etc.; base metal cyanide, cyanide, etc. Examples include base metal cyanide plating solutions made of sodium, alkali carbonate, Rochelle's salt, etc.; base metal pyrophosphate plating solutions made of base metal pyrophosphates, potassium pyrophosphate, aqueous ammonia, potassium nitrate, etc.

ND粒子の表面は、OH、COOH、NHなどの親水性官能基を有していてもよい。また、これらの官能基を介して、親水性基を導入したND粒子を用いてもよい。親水性基としては、グリセリン、ポリグリセリン(PG)、エチレングリコール、プロピレングリコール、ブチレングリコールなどのC2-4アルキレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコールなどのポリ(C2-4アルキレングリコール)などが挙げられる。これらの親水性ND粒子は公知であるか、公知に方法により製造することができる。 The surface of the ND particles may have hydrophilic functional groups such as OH, COOH, and NH2 . Furthermore, ND particles into which hydrophilic groups are introduced via these functional groups may also be used. Examples of hydrophilic groups include glycerin, polyglycerin (PG), C 2-4 alkylene glycols such as ethylene glycol, propylene glycol, and butylene glycol, and poly(C 2-4 alkylene glycols) such as polyethylene glycol, polypropylene glycol, and polybutylene glycol. ), etc. These hydrophilic ND particles are known or can be produced by known methods.

ND粒子は、固体を(複合)めっき浴に配合してもよく、ND粒子分散液を(複合)めっき浴に配合してもよい。ND粒子分散液中のND粒子濃度は、例えば1~100g/L程度である。 As for the ND particles, a solid form may be blended into the (composite) plating bath, or a ND particle dispersion may be blended into the (composite) plating bath. The ND particle concentration in the ND particle dispersion is, for example, about 1 to 100 g/L.

前記ND粒子としては、分散性に優れる点において、親水性高分子でコーティングもしくは修飾された親水性ND粒子が好ましく、特に好ましくはポリグリセリン鎖を含む水溶性高分子を有する親水性ND粒子である。 The ND particles are preferably hydrophilic ND particles coated or modified with a hydrophilic polymer in terms of excellent dispersibility, and particularly preferably hydrophilic ND particles having a water-soluble polymer containing a polyglycerin chain. .

本発明の複合めっき液中のND粒子濃度の分析は、以下のようにして行うことができる。
(i)先ず、ND粒子の濃度を分析すべき複合めっき液に対して、ND粒子濃度を管理すべ
き範囲において、様々な配合量でND粒子を配合したND粒子濃度の既知の複数種類の複合めっき液を調製する。
(ii)次に、上記(i)で調製した複合めっき液について、各々、吸光度を測定する。
(iii)上記(ii)の結果をもとに、図4に示すように如く、複合めっき液の吸光度とND粒子濃度の関係を示す検量線を作成する。
Analysis of the ND particle concentration in the composite plating solution of the present invention can be performed as follows.
(i) First, for the composite plating solution whose ND particle concentration is to be analyzed, multiple types of composites with known ND particle concentrations are mixed with various amounts of ND particles within the range in which the ND particle concentration should be controlled. Prepare plating solution.
(ii) Next, measure the absorbance of each of the composite plating solutions prepared in (i) above.
(iii) Based on the results of (ii) above, create a calibration curve showing the relationship between the absorbance of the composite plating solution and the ND particle concentration, as shown in FIG.

複合めっき液の吸光度を測定する波長は、250~630nmの範囲から選択され、この範囲内であれば、任意の波長で検量線を作成し、複合めっき液中のND粒子濃度を分析することができる。検量線を作成する波長は、NDを含まないめっき液を基準として、ND粒子の濃度を高めていったときの吸光度変化の大きい波長が好ましい。例えば、図1~3に示す銅めっき液の場合、好ましくは280nm~630nm、より好ましくは300nm~600nm、さらに
好ましくは310nm~500nmである。また、図5~6に示すニッケルめっき液の場合、好ましくは300nm~370nmと430nm~580nm、より好ましくは305nm~360nmと440nm~560nm、さらに好ましくは310nm~350nmと440nm~550nmである。銅めっき液とニッケルめっき液であったとしても、めっき液に含まれる成分や濃度が変化すれば、検量線作成の好ましい波長は変化し得る。また、卑金属めっき液の卑金属の種類が銅、ニッケルから鉄、亜鉛、スズ、アルミニウム、タングステン、モリブデン、タンタル、マグネシウム、コバルト、ビスマス、カドミウム、チタニウム、ジルコニウム、アンチモン、マンガン、ベリリウム、クロム、ゲルマニウム、バナジウム、ガリウム、ハフニウム、インジウム、ニオブ、レニウム、タリウムなどの他の卑金属に変わった場合にも、検量線作成の好ましい波長は変化し得る。検量線作成の好ましい波長の決定は、銅めっき液とニッケルめっき液の結果を参考にして容易に行うことができる。検量線は、1つの波長のみで作成してもよく、複数の波長(好ましくが2つの波長もしくは3つの波長)で作成してもよい。図3に示すように、ND粒子の水分散液の吸光度は、ND粒子の濃度によっても大きく影響を受けるので、このことを考慮して、検量線を作成する波長を決定することが好ましい。ND粒子濃度の管理すべき範囲内で、ND粒子濃度の決定に有利な吸光度の測定波長を検量線により決定する。複合めっき液のND粒子の濃度は、予め作製された検量線を用いて、吸光度の測定値により分析することができる。ND粒子濃度の分析は、ND粒子の濃度を特定するように行ってもよく、ND粒子濃度が許容範囲を逸脱する可能性が生じ、ND粒子を例えば水分散液の形態で複合めっき液に添加するべきか否かを判断できるように濃度ゾーンで分析してもよい。
The wavelength for measuring the absorbance of the composite plating solution is selected from the range of 250 to 630 nm, and within this range, it is possible to create a calibration curve at any wavelength and analyze the ND particle concentration in the composite plating solution. can. The wavelength at which the calibration curve is created is preferably a wavelength that causes a large change in absorbance when the concentration of ND particles is increased with respect to a plating solution that does not contain ND. For example, in the case of the copper plating solutions shown in FIGS. 1 to 3, the wavelength is preferably 280 nm to 630 nm, more preferably 300 nm to 600 nm, and even more preferably 310 nm to 500 nm. In the case of the nickel plating solution shown in FIGS. 5 and 6, the wavelengths are preferably 300nm to 370nm and 430nm to 580nm, more preferably 305nm to 360nm and 440nm to 560nm, and still more preferably 310nm to 350nm and 440nm to 550nm. Even if the plating solution is a copper plating solution and a nickel plating solution, if the components or concentrations contained in the plating solution change, the preferred wavelength for creating a calibration curve may change. In addition, the types of base metals in the base metal plating solution range from copper, nickel to iron, zinc, tin, aluminum, tungsten, molybdenum, tantalum, magnesium, cobalt, bismuth, cadmium, titanium, zirconium, antimony, manganese, beryllium, chromium, germanium, When changing to other base metals such as vanadium, gallium, hafnium, indium, niobium, rhenium, thallium, etc., the preferred wavelength for creating a calibration curve may also change. The preferred wavelength for creating a calibration curve can be easily determined by referring to the results for the copper plating solution and the nickel plating solution. The calibration curve may be created using only one wavelength, or may be created using multiple wavelengths (preferably two or three wavelengths). As shown in FIG. 3, the absorbance of an aqueous dispersion of ND particles is greatly affected by the concentration of ND particles, so it is preferable to take this into consideration when determining the wavelength for creating a calibration curve. An absorbance measurement wavelength that is advantageous for determining the ND particle concentration is determined using a calibration curve within the range in which the ND particle concentration should be controlled. The concentration of ND particles in the composite plating solution can be analyzed by measuring absorbance using a calibration curve prepared in advance. Analysis of the ND particle concentration may be performed to specify the concentration of ND particles, but there is a possibility that the ND particle concentration will deviate from the permissible range, and ND particles may be added to the composite plating solution in the form of an aqueous dispersion, for example. You may also analyze the concentration zones to determine whether or not to do so.

本発明の複合めっき液のND粒子濃度の管理方法では、めっき槽から複合めっき液をサンプリングし、上述のような方法で複合めっき液中のND粒子の濃度を分析し、分析結果に基づきND粒子濃度が次のサンプリングまで許容範囲内にとどまると判断されればND粒子の添加は行わず、分析結果に基づきND粒子濃度が次のサンプリング時には許容範囲外になる可能性があると判断される場合には、必要に応じてめっき槽中の複合めっき液にND粒子を例えば水分散液の形態で添加し、ND粒子濃度が許容範囲内でめっきが行われるようにする。 In the method for controlling the concentration of ND particles in a composite plating solution of the present invention, the composite plating solution is sampled from the plating tank, the concentration of ND particles in the composite plating solution is analyzed by the method described above, and the ND particles are determined based on the analysis results. If it is determined that the concentration will remain within the permissible range until the next sampling, ND particles will not be added, and if it is determined that the ND particle concentration may be outside the permissible range at the next sampling based on the analysis results. In this step, ND particles are added, for example, in the form of an aqueous dispersion, to the composite plating solution in the plating tank as needed, so that plating is performed with the ND particle concentration within an allowable range.

本発明のND濃度の管理方法について、例えば複合めっき液からめっき液をポンプなどでサンプリングするサンプリング手段、サンプリングした試料の吸光度を測定する分析手段、分析手段の結果の信号を受け取り、ND粒子を複合めっき液に添加するか否かと添加量を決定する制御手段、前記制御手段によりND粒子の添加を制御されるND粒子添加手段を備えたシステムにより自動的にND粒子の濃度管理を行ってもよく、管理者がめっきの状況を見ながら適切なタイミングで複合めっき液のサンプリング及び吸光度測定を手動で行い、その結果から、複合めっき液へのND粒子の添加の要否、添加する場合にはその添加量を管理者が判断して実施してもよい。 Regarding the ND concentration management method of the present invention, for example, a sampling means for sampling the plating solution from a composite plating solution using a pump, an analysis means for measuring the absorbance of the sampled sample, a signal of the result of the analysis means is received, and the ND particles are combined into a composite plating solution. The concentration of ND particles may be automatically managed by a system comprising a control means for determining whether to add the ND particles to the plating solution and the amount to be added, and an ND particle addition means for controlling the addition of ND particles by the control means. The manager manually samples the composite plating solution and measures the absorbance at appropriate times while monitoring the plating situation, and based on the results, determines whether or not to add ND particles to the composite plating solution, and if so, whether or not to do so. The amount added may be determined by the administrator.

以下、本発明を実施例を挙げてより詳細に説明する。
実施例1
銅めっき液(商品名「電解めっき液」、清川めっき工業(株)製)に、ポリグリセリン(PG)で修飾することで親水化処理されたND粒子水分散液(PG-ND粒子水分散液((株)ダイセル製)を、銅めっき液中のPG-ND濃度が0、50、100、200、300、400、500、1000ppmとなるように添加して、各種ND濃度の複合めっき
液を調製した。
Hereinafter, the present invention will be explained in more detail by giving examples.
Example 1
ND particle aqueous dispersion (PG-ND particle aqueous dispersion) is made by modifying a copper plating solution (trade name "electrolytic plating solution", manufactured by Kiyokawa Plating Industry Co., Ltd.) with polyglycerin (PG) to make it hydrophilic. (manufactured by Daicel Corporation) was added so that the PG-ND concentration in the copper plating solution was 0, 50, 100, 200, 300, 400, 500, and 1000 ppm to prepare a composite plating solution with various ND concentrations. Prepared.

得られた複合銅めっき液について、分光光度計((株)日立ハイテクフィールディング社製「U-3900H Spectrophotometer)を用い、波長300nm、310nm、320nm、330nm、340nm
、350nm、355nm、360nmで吸光度測定を行い、検量線を作成した(図4)。図1は、PG-N
Dを添加していない銅めっき液の吸光度測定結果を示し、図2は、PG-NDを50ppm、100ppm、200ppm、300ppm、400ppm、500ppm、1000ppmを各々添加した銅めっき液の吸光度測定結果を示す。また、図3は、PG-ND濃度が50ppmと500ppmのときのPG-ND水分散液の吸光度を示す。
The obtained composite copper plating solution was measured at wavelengths of 300 nm, 310 nm, 320 nm, 330 nm, and 340 nm using a spectrophotometer (“U-3900H Spectrophotometer” manufactured by Hitachi High-Tech Fielding Co., Ltd.).
, 350 nm, 355 nm, and 360 nm, and a calibration curve was created (Figure 4). Figure 1 shows the PG-N
Figure 2 shows the absorbance measurement results of a copper plating solution to which D was not added, and Figure 2 shows the absorbance measurement results of a copper plating solution to which 50 ppm, 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, and 1000 ppm of PG-ND were added. . Further, FIG. 3 shows the absorbance of the PG-ND aqueous dispersion when the PG-ND concentration was 50 ppm and 500 ppm.

図4の結果から、ND粒子の濃度は吸光度により決定でき、複合めっき液中のND粒子濃度を適切に管理できることが明らかになった。 The results shown in FIG. 4 reveal that the concentration of ND particles can be determined by absorbance, and that the concentration of ND particles in the composite plating solution can be appropriately controlled.

実施例2
ニッケルめっき液(商品名「電解ニッケルめっき液」、清川めっき工業(株)製)に、ポリエチレングリコール(PG)で修飾することで親水化処理されたND粒子水分散液(PG-ND粒子水分散液((株)ダイセル製)を、銅めっき液中のPG-ND濃度が0、50、100、200、300、400、500、1000ppmとなるように添加して、各
種ND濃度の複合めっき液を調製した。
Example 2
ND particle aqueous dispersion (PG-ND particle aqueous dispersion) is a nickel plating solution (product name: "Electrolytic Nickel Plating Solution", manufactured by Kiyokawa Plating Industry Co., Ltd.) that has been made hydrophilic by modifying it with polyethylene glycol (PG). (manufactured by Daicel Corporation) was added so that the PG-ND concentration in the copper plating solution was 0, 50, 100, 200, 300, 400, 500, and 1000 ppm to prepare a composite plating solution with various ND concentrations. was prepared.

得られた複合銅めっき液について、分光光度計を用いて吸光度測定を行った。図5は、PG-NDを添加していない銅めっき液の吸光度測定結果を示し、図6は、PG-NDを50ppm、100ppm、200ppm、300ppm、400ppm、500ppm、1000ppmを各々添加した銅めっき液の吸光度測定結果を示す。 The absorbance of the obtained composite copper plating solution was measured using a spectrophotometer. Figure 5 shows the absorbance measurement results of the copper plating solution to which PG-ND was not added, and Figure 6 shows the absorbance measurement results of the copper plating solution to which PG-ND was added at 50 ppm, 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, and 1000 ppm, respectively. The absorbance measurement results are shown.

図5,6の結果から、ND粒子の濃度は吸光度により決定でき、銅めっき液中のND粒子濃度を適切に管理できることが明らかになった。 From the results shown in FIGS. 5 and 6, it was revealed that the concentration of ND particles can be determined by absorbance, and that the concentration of ND particles in the copper plating solution can be appropriately controlled.

Claims (2)

ナノダイヤモンド粒子を含む複合めっき液の吸光度を測定し、吸光度の測定値に基づきナノダイヤモンド粒子の濃度を求める工程を含み、前記吸光度は250~630nmの範囲から選択される波長で測定される、複合めっき液中のナノダイヤモンド粒子濃度の分析方法。 measuring the absorbance of a composite plating solution containing nanodiamond particles and determining the concentration of nanodiamond particles based on the measured value of the absorbance, the absorbance being measured at a wavelength selected from a range of 250 to 630 nm; Method for analyzing nanodiamond particle concentration in plating solution. 請求項1の方法で複合めっき液中のナノダイヤモンド粒子濃度を分析し、前記濃度が所定濃度となるように、必要に応じて複合めっき液にナノダイヤモンド粒子を添加する、複合めっき液中のナノダイヤモンド粒子濃度の管理方法。 The nanodiamond particles in the composite plating solution are analyzed by the method of claim 1, and the nanodiamond particles are added to the composite plating solution as necessary so that the concentration becomes a predetermined concentration. How to control diamond particle concentration.
JP2023143694A 2019-05-13 2023-09-05 Method of analyzing and controlling nano diamond particle concentration in composite plating solution Pending JP2023158070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023143694A JP2023158070A (en) 2019-05-13 2023-09-05 Method of analyzing and controlling nano diamond particle concentration in composite plating solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019090653A JP2020186962A (en) 2019-05-13 2019-05-13 Method of analyzing and controlling nano diamond particle concentration in composite plating solution
JP2023143694A JP2023158070A (en) 2019-05-13 2023-09-05 Method of analyzing and controlling nano diamond particle concentration in composite plating solution

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019090653A Division JP2020186962A (en) 2019-05-13 2019-05-13 Method of analyzing and controlling nano diamond particle concentration in composite plating solution

Publications (1)

Publication Number Publication Date
JP2023158070A true JP2023158070A (en) 2023-10-26

Family

ID=73223217

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019090653A Pending JP2020186962A (en) 2019-05-13 2019-05-13 Method of analyzing and controlling nano diamond particle concentration in composite plating solution
JP2023143694A Pending JP2023158070A (en) 2019-05-13 2023-09-05 Method of analyzing and controlling nano diamond particle concentration in composite plating solution

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019090653A Pending JP2020186962A (en) 2019-05-13 2019-05-13 Method of analyzing and controlling nano diamond particle concentration in composite plating solution

Country Status (1)

Country Link
JP (2) JP2020186962A (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654534B2 (en) * 2000-05-22 2011-03-23 上村工業株式会社 Automatic analysis and management equipment for electroless composite nickel plating solution
CN1786686A (en) * 2005-11-11 2006-06-14 哈尔滨工业大学 Method for measuring nano particle content in electroplate liquid or layer by spectrophotometer
US10873107B2 (en) * 2017-08-01 2020-12-22 Drexel University Additives for suppressing dendritic growth in batteries

Also Published As

Publication number Publication date
JP2020186962A (en) 2020-11-19

Similar Documents

Publication Publication Date Title
EP1892321B1 (en) A Hard Gold Alloy Plating Bath
Wang et al. Stability improvement of Prussian blue in nonacidic solutions via an electrochemical post-treatment method and the shape evolution of Prussian blue from nanospheres to nanocubes
US9976223B2 (en) Nickel and/or chromium plated member and method for manufacturing the same
JP6608597B2 (en) Cyanide-free acidic matte silver electroplating composition and method
JPH04276081A (en) Method for electroless plating of tin, lead, or alloy
CN104790014A (en) Metal material with bismuth film attached and method for producing same, surface treatment liquid used in said method, and cationic electrodeposition coated metal material and method for producing same
Baldessin et al. The influence of Ni and Co concentration in the electroplating bath on Ni‐Co‐W alloys properties
JP6951465B2 (en) Trivalent chrome plating solution and chrome plating method using this
JP2023158070A (en) Method of analyzing and controlling nano diamond particle concentration in composite plating solution
Pizzetti et al. Cyanide-free silver electrodeposition with polyethyleneimine and 5, 5-dimethylhydantoin as organic additives for an environmentally friendly formulation
Nikolić et al. Morphological and crystallographic characteristics of lead powder obtained by electrodeposition from an environmentally friendly electrolyte
Kazimierczak et al. Electrodeposition of Zn-Mn-Mo layers from citrate-based aqueous electrolytes
TWI622762B (en) Gold concentration quantitative method in gold-containing solution, and gold concentration quantitative device
Dobre et al. Electrochemical synthesis of silver nanoparticles in aqueous electrolytes
WO2018216320A1 (en) Molten salt titanium plating solution composition and method for manufacturing titanium-plated member
Kublanovsky et al. Cobalt-molybdenum-phosphorus alloys: electroplating and corrosion properties
Luyima et al. Examination of copper electrowinning smoothing agents. Part IV: Nucleation and growth of copper on stainless steel
TWI558858B (en) Non-cyanide gold-palladium alloy plating solution and plating method
JP2008274423A (en) Fine silver particle, and process for producing fine silver particle
KR20200096932A (en) Trivalent chromium plating solution and trivalent chromium plating method using the same
Eroglu et al. Effect of a cationic polymer, polyethyleneimine, on Ni/SiC co-deposition
US20190316268A1 (en) Method of plating a metallic substrate to achieve a desired surface coarseness
JP2024031708A (en) Measuring apparatus and measuring method for gold concentration in gold-containing plating liquid
JP2017190477A (en) NON-CYAN-BASED Au-Sn ALLOY PLATING LIQUID
Bek et al. Kinetics of silver anodic dissolution in thiosulfate electrolytes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230905