JP2020186464A - Composite copper member - Google Patents

Composite copper member Download PDF

Info

Publication number
JP2020186464A
JP2020186464A JP2019152552A JP2019152552A JP2020186464A JP 2020186464 A JP2020186464 A JP 2020186464A JP 2019152552 A JP2019152552 A JP 2019152552A JP 2019152552 A JP2019152552 A JP 2019152552A JP 2020186464 A JP2020186464 A JP 2020186464A
Authority
JP
Japan
Prior art keywords
copper member
composite copper
metal layer
less
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019152552A
Other languages
Japanese (ja)
Other versions
JP7352939B2 (en
Inventor
牧子 佐藤
Makiko Sato
牧子 佐藤
快允 小鍛冶
Yoshinobu Kokaji
快允 小鍛冶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to KR1020217026936A priority Critical patent/KR20220006035A/en
Priority to PCT/JP2020/018579 priority patent/WO2020226160A1/en
Priority to CN202080016300.2A priority patent/CN113474486A/en
Publication of JP2020186464A publication Critical patent/JP2020186464A/en
Priority to JP2023017290A priority patent/JP7479617B2/en
Application granted granted Critical
Publication of JP7352939B2 publication Critical patent/JP7352939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

To provide a new composite copper member.MEANS FOR SOLVING THE PROBLEM: A composite copper member includes a metal layer consisting of metal except copper on fine irregularities including copper and copper oxide on the surface of at least a part of a copper member. The surface of the composite copper member having the metal layer has fine irregularities; the average length (Rsm) of roughness curve elements of the surface of the composite copper member is 550 nm or less; a surface area rate is 1.3 or more and 2.2 or less; and the average thickness of the metal layer in the vertical direction is 15 nm or more and 150 nm or less.SELECTED DRAWING: None

Description

本発明は複合銅部材に関する。 The present invention relates to a composite copper member.

プリント配線板に使用される銅箔は、絶縁性樹脂基材との密着性が要求される。この密着性を向上させるため、エッチングなどで銅箔の表面を粗面化処理し、いわゆるアンカー効果による機械的接着力を上げる方法が用いられてきた。しかし、プリント配線板の高密度化や高周波帯域での伝送損失の観点から、銅箔表面の平坦化が要求されるようになってきた。それらの相反する要求を満たすため、酸化工程と還元工程を行うなどの銅表面処理方法が開発されている(特許文献1)。それによると、銅箔をプリコンディショニングし、酸化剤を含有する薬液に浸漬することで銅箔表面を酸化させて酸化銅の凹凸を形成した後、還元剤を含有する薬液に浸漬し、酸化銅を還元することで表面の凹凸を調整して表面の粗さを整える。さらに、酸化・還元を利用した銅箔の処理における密着性の改善方法として、酸化工程において表面活性分子を添加する方法(特許文献2)や、還元工程の後にアミノチアゾール系化合物等を用いて銅箔の表面に保護皮膜を形成する方法(特許文献3)が開発されている。
このような酸化銅の凹凸の各凸状部間の距離は可視光の波長域(例えば750nm〜380nm)よりも短く、粗化処理層に入射した可視光は、微細凹凸構造内で乱反射を繰り返す結果、減衰する。従って、粗面化処理層は、光を吸収する吸光層として機能し、当該粗化処理面の表面は粗化処理前と比較すると黒色化、茶褐色化等に暗色化する。それ故、銅箔の粗化処理面は、その色調にも特色があり、L表色系の明度Lの値は25以下となることが知られている(特許文献4)。
The copper foil used for the printed wiring board is required to have adhesion to the insulating resin base material. In order to improve this adhesiveness, a method has been used in which the surface of the copper foil is roughened by etching or the like to increase the mechanical adhesive force by the so-called anchor effect. However, from the viewpoint of increasing the density of printed wiring boards and transmission loss in the high frequency band, flattening of the copper foil surface has been required. In order to satisfy these conflicting requirements, copper surface treatment methods such as performing an oxidation step and a reduction step have been developed (Patent Document 1). According to the report, the copper foil is pre-conditioned and immersed in a chemical solution containing an oxidizing agent to oxidize the surface of the copper foil to form irregularities of copper oxide, and then immersed in a chemical solution containing a reducing agent to obtain copper oxide. By reducing the amount of water, the unevenness of the surface is adjusted and the roughness of the surface is adjusted. Further, as a method for improving the adhesion in the treatment of copper foil using oxidation / reduction, a method of adding a surface active molecule in the oxidation step (Patent Document 2) or copper using an aminothiazole compound or the like after the reduction step. A method of forming a protective film on the surface of a foil (Patent Document 3) has been developed.
The distance between each convex portion of the unevenness of copper oxide is shorter than the wavelength range of visible light (for example, 750 nm to 380 nm), and the visible light incident on the roughening treatment layer repeats diffuse reflection in the fine uneven structure. As a result, it decays. Therefore, the roughened surface functions as an absorption layer that absorbs light, and the surface of the roughened surface is darkened to black, brown, or the like as compared with that before the roughening treatment. Therefore, it is known that the roughened surface of the copper foil is also characterized in its color tone, and the value of the lightness L * of the L * a * b * color system is 25 or less (Patent Document 4). ).

一方、銅箔の粗化処理表面の凹凸に、めっきを施し、機械的接着力をあげる方法も報告されているが、上記凹凸がレベリングにより平滑化するのを防ぐため、微細な凹凸形状が埋まらないように、離散的に分布する金属粒子を有するめっき膜に留まっている(特許文献5)。 On the other hand, a method of plating the uneven surface of the roughened surface of the copper foil to increase the mechanical adhesive force has also been reported, but in order to prevent the unevenness from being smoothed by leveling, the fine uneven shape is filled. It remains on the plating film having metal particles distributed in a discrete manner so as not to be present (Patent Document 5).

また、粗面化処理された銅箔の表面を金属粒子でめっきしてしまうと、金属粒子が強磁性体の場合、めっきされた銅箔を用いて作製されたプリント配線板は、高周波帯域での伝送損失が悪化するということも知られていた(特許文献6)。 Further, when the surface of the roughened copper foil is plated with metal particles, when the metal particles are ferromagnetic, the printed wiring board produced using the plated copper foil is in the high frequency band. It was also known that the transmission loss of the metal plating was exacerbated (Patent Document 6).

国際公開2014/126193号公報International Publication No. 2014/126193 特表2013−534054号公報Special Table 2013-534054 特開平8−97559号公報Japanese Unexamined Patent Publication No. 8-97559 特開2017−48467号公報JP-A-2017-48467 特開2000−151096号公報Japanese Unexamined Patent Publication No. 2000-151096 特開2018−172790号公報Japanese Unexamined Patent Publication No. 2018-172790

本発明は、新規な複合銅部材を提供することを目的とする。 An object of the present invention is to provide a novel composite copper member.

本願発明者らは鋭意研究の結果、銅および銅酸化物で形成された微細凹凸上に離散的でなく、一様な厚さの金属層を有しながら、その表面のレベリングを抑えた、新規の複合銅部材を作製することに成功した。また、この複合銅部材を用いて、高周波(たとえば1GHz以上)の電流の伝送損失を抑えることができる積層体を作製することに成功した。
本発明は以下の実施態様を有する:
[1] 銅部材の少なくとも一部の表面の、銅および銅酸化物を含む微細凹凸上に銅以外の金属からなる金属層が形成されている複合銅部材であって、
前記金属層が形成されている前記複合銅部材の表面が微細な凹凸を有し、前記複合銅部材の前記表面の粗さ曲線要素の平均長さ(Rsm)が550nm以下で、表面積率が1.3以上2.2以下であり、
前記金属層の垂直方向の平均の厚さが15nm以上150nm以下である、複合銅部材。
[2] 前記複合銅部材の前記表面の、明度Lの値が35未満である、[1]に記載の複合銅部材。
[3] 前記金属層が、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、AuおよびPtからなる群から選ばれた少なくとも一種の金属を含む、[1]又は[2]に記載の複合銅部材。
[4] 前記複合銅部材の前記表面の微細な凹凸において、Rzが0.25μm以上1.2μm以下である、[1]〜[3]のいずれか一項に記載の複合銅部材。
[5] 前記複合銅部材の前記表面の微細な凹凸において、共焦点走査電子顕微鏡を用いた観察結果から輪郭曲線を作成し、JIS B 0601:2001に定められた方法により算出されたRzが0.25μm以上1.2μm以下である、[1]〜[3]のいずれか一項に記載の複合銅部材。
[6] 前記共焦点走査電子顕微鏡が、OPTELICS H1200(レーザーテック株式会社製)である、[5]に記載の複合銅部材。
As a result of diligent research, the inventors of the present application have developed a new metal layer having a uniform thickness and not discrete on the fine irregularities formed of copper and copper oxide, while suppressing the leveling of the surface thereof. Succeeded in producing the composite copper member of. Further, using this composite copper member, we have succeeded in producing a laminate capable of suppressing a transmission loss of a high frequency (for example, 1 GHz or more) current.
The present invention has the following embodiments:
[1] A composite copper member in which a metal layer made of a metal other than copper is formed on fine irregularities containing copper and copper oxide on the surface of at least a part of the copper member.
The surface of the composite copper member on which the metal layer is formed has fine irregularities, the average length (Rsm) of the roughness curve element on the surface of the composite copper member is 550 nm or less, and the surface area ratio is 1. .3 or more and 2.2 or less,
A composite copper member having an average vertical thickness of the metal layer of 15 nm or more and 150 nm or less.
[2] The composite copper member according to [1], wherein the value of the brightness L * on the surface of the composite copper member is less than 35.
[3] The metal layer contains at least one metal selected from the group consisting of Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au and Pt [1]. Or the composite copper member according to [2].
[4] The composite copper member according to any one of [1] to [3], wherein the Rz is 0.25 μm or more and 1.2 μm or less in the fine irregularities on the surface of the composite copper member.
[5] A contour curve is created from the observation results using a confocal scanning electron microscope in the fine irregularities on the surface of the composite copper member, and Rz calculated by the method specified in JIS B 0601: 2001 is 0. The composite copper member according to any one of [1] to [3], which is .25 μm or more and 1.2 μm or less.
[6] The composite copper member according to [5], wherein the confocal scanning electron microscope is OPTELICS H1200 (manufactured by Lasertec Co., Ltd.).

[7] [1]〜[4]のいずれか一項に記載の複合銅部材を用いて作製された積層体。
[8] [1]〜[4]のいずれか一項に記載の複合銅部材を用いて作製された電子部品。
[7] A laminate produced by using the composite copper member according to any one of [1] to [4].
[8] An electronic component manufactured by using the composite copper member according to any one of [1] to [4].

[1A] 銅部材の少なくとも一部の表面に、銅部材よりも導電率が低い銅酸化物層を有し、前記銅酸化物層の上に常温で強磁性を示す金属層が形成されている、
1GHz以上で使用する高周波伝送のための、複合銅部材。
[2A]前記銅部材を形成する銅の純度が、99%以上である、[1A]に記載の複合銅部材。
[3A] 前記金属層は、Fe、Co、Cr及びNiからなる群から選ばれた少なくとも一種の金属原子を含む、[1A]又は[2A]のいずれか一項に記載の複合銅部材。
[4A] 前記金属層が形成されている前記複合銅部材に対する、X線光電子分光法(X-ray Photoelectron Spectroscopy;XPS)による深さ方向分析において、最表面よりSiO換算で300nmまでの深さを連続測定して得られるCu原子数とO原子数に関し、Cu/(Cu+O)の割合が連続して50%以上95%以下となる深さの範囲が50nm以上である、[1A]〜[3A]のいずれか一項に記載の複合銅部材。
[5A] 前記金属層に含まれる金属原子がNiであり、
前記金属層が形成されている前記複合銅部材に対する、XPSによるイオンスパッタリングを用いた深さ方向分析において、最表面よりSiO換算で300nmまでの深さを連続測定して得られるNi原子数、Cu原子数、及びO原子数に関し、Ni/(Ni+Cu+O)の割合が連続して1%以上98%以下となる深さの範囲が100nm以上である、[4A]に記載の複合銅部材。
[6A] 前記金属層の垂直方向の平均の厚さが15nm以上150nm以下である、[1A]〜[5A]に記載の複合銅部材。
[7A] 前記金属層が形成されている複合銅部材の表面において、共焦点走査電子顕微鏡を用いた観察結果から輪郭曲線を作成し、JIS B 0601:2001に定められた方法により算出されたRzが0.25μm以上1.2μm以下である、[1A]〜[6A]のいずれか一項に記載の複合銅部材。
[8A] 前記共焦点走査電子顕微鏡が、OPTELICS H1200(レーザーテック株式会社製)である、[7A]に記載の複合銅部材。
[1A] A copper oxide layer having a lower conductivity than that of the copper member is provided on the surface of at least a part of the copper member, and a metal layer exhibiting ferromagnetism at room temperature is formed on the copper oxide layer. ,
Composite copper member for high frequency transmission used at 1 GHz or higher.
[2A] The composite copper member according to [1A], wherein the purity of the copper forming the copper member is 99% or more.
[3A] The composite copper member according to any one of [1A] and [2A], wherein the metal layer contains at least one metal atom selected from the group consisting of Fe, Co, Cr and Ni.
[4A] In the depth direction analysis by X-ray Photoelectron Spectroscopy (XPS) for the composite copper member on which the metal layer is formed, the depth from the outermost surface to 300 nm in terms of SiO 2 With respect to the number of Cu atoms and the number of O atoms obtained by continuously measuring the above, the range of the depth in which the ratio of Cu / (Cu + O) is continuously 50% or more and 95% or less is 50 nm or more, [1A] to [ 3A] The composite copper member according to any one of the items.
[5A] The metal atom contained in the metal layer is Ni, and the metal atom is Ni.
The number of Ni atoms obtained by continuously measuring the depth from the outermost surface to 300 nm in terms of SiO 2 in the depth direction analysis using ion sputtering by XPS for the composite copper member on which the metal layer is formed. The composite copper member according to [4A], wherein the depth range in which the ratio of Ni / (Ni + Cu + O) is continuously 1% or more and 98% or less with respect to the number of Cu atoms and the number of O atoms is 100 nm or more.
[6A] The composite copper member according to [1A] to [5A], wherein the average thickness of the metal layer in the vertical direction is 15 nm or more and 150 nm or less.
[7A] On the surface of the composite copper member on which the metal layer is formed, a contour curve is created from the observation results using a confocal scanning electron microscope, and Rz calculated by the method specified in JIS B 0601: 2001. The composite copper member according to any one of [1A] to [6A], wherein is 0.25 μm or more and 1.2 μm or less.
[8A] The composite copper member according to [7A], wherein the confocal scanning electron microscope is OPTELICS H1200 (manufactured by Lasertec Co., Ltd.).

[1B] [1]〜[6]及び[1A]〜[8A]のいずれか一項に記載の複合銅部材の前記金属層が形成されている表面に、誘電率が4以下の樹脂基材が積層されている、積層体。
[2B] 前記樹脂基材は、液晶ポリマー、フッ素樹脂、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリシクロオレフィン、ビスマレイミド樹脂、及び低誘電率ポリイミドからなる群から選ばれた少なくとも一つの樹脂を含む、[1B]に記載の積層体。
[3B] [1B]又は[2B]に記載の積層体から製造された配線基板。
[4B] [3B]に記載の配線基板を含む電子部品。
[1B] A resin base material having a dielectric constant of 4 or less is formed on the surface of the composite copper member according to any one of [1] to [6] and [1A] to [8A] on which the metal layer is formed. Laminated body.
[2B] The resin base material is at least one selected from the group consisting of a liquid crystal polymer, a fluororesin, a polyetherimide, a polyetheretherketone, a polyphenylene ether, a polycycloolefin, a bismaleimide resin, and a low dielectric constant polyimide. The laminate according to [1B], which contains a resin.
[3B] A wiring board manufactured from the laminate according to [1B] or [2B].
[4B] An electronic component including the wiring board according to [3B].

[1C] [1]に記載の複合銅部材を製造する方法であって、
銅部材表面に酸化処理によって微細な凹凸部を形成する第1の工程と、
前記金属層の垂直方向の平均の厚さが15nm以上150nm以下で、前記金属層が形成されている前記複合銅部材の表面が微細凹凸を有し、前記複合銅部材の前記表面の粗さ曲線要素の平均長さRsmが550nm以下で、表面積率が1.3以上2.2以下になるように、前記銅部材表面の微細な凹凸部の上に、銅以外の金属を用いてめっき処理する第2の工程と、
を含む複合銅部材の製造方法。
[2C] 前記金属層の垂直方向の平均の厚さが15nm以上150nm以下である、[1C]に記載の複合銅部材の製造方法。
[3C]第2の工程において、前記めっき処理が電解めっき処理である、[1C]または[2C]に記載の複合銅部材の製造方法。
[1C] The method for manufacturing the composite copper member according to [1].
The first step of forming fine irregularities on the surface of the copper member by oxidation treatment,
The average thickness of the metal layer in the vertical direction is 15 nm or more and 150 nm or less, the surface of the composite copper member on which the metal layer is formed has fine irregularities, and the roughness curve of the surface of the composite copper member. A metal other than copper is used for plating on the fine uneven portion on the surface of the copper member so that the average length Rsm of the element is 550 nm or less and the surface area ratio is 1.3 or more and 2.2 or less. The second step and
A method for manufacturing a composite copper member including.
[2C] The method for producing a composite copper member according to [1C], wherein the average thickness of the metal layer in the vertical direction is 15 nm or more and 150 nm or less.
[3C] The method for producing a composite copper member according to [1C] or [2C], wherein the plating treatment is an electrolytic plating treatment in the second step.

[1D] [1A]に記載の複合銅部材を製造する方法であって、
銅部材表面に酸化処理によって、銅部材を形成する銅よりも導電率が低い銅酸化物層を形成する第1の工程と、
前記銅酸化物層の上に常温で強磁性を示す金属層を形成する第2の工程と、
を含む複合銅部材を製造する方法。
[2D] 前記金属層の垂直方向の平均の厚さが15nm以上150nm以下である、[1D]に記載の複合銅部材の製造方法。
[3D] 第2の工程において、電解めっき処理により前記常温で強磁性を示す金属層が形成される、[1D]または[2D]に記載の複合銅部材の製造方法。
[1D] The method for manufacturing the composite copper member according to [1A].
The first step of forming a copper oxide layer having a lower conductivity than the copper forming the copper member by oxidation treatment on the surface of the copper member, and
A second step of forming a metal layer exhibiting ferromagnetism at room temperature on the copper oxide layer,
A method for manufacturing a composite copper member containing.
[2D] The method for producing a composite copper member according to [1D], wherein the average thickness of the metal layer in the vertical direction is 15 nm or more and 150 nm or less.
[3D] The method for producing a composite copper member according to [1D] or [2D], wherein in the second step, a metal layer exhibiting ferromagnetism at room temperature is formed by electroplating.

図1は、実施例1〜7及び比較例1〜14における、粗さ曲線要素の平均長さ(Rsm)とピール強度(常態)の関係を示す図である。FIG. 1 is a diagram showing the relationship between the average length (Rsm) of the roughness curve elements and the peel strength (normal state) in Examples 1 to 7 and Comparative Examples 1 to 14. 図2は、実施例1〜7及び比較例1〜14における、表面積率とピール強度(常態)の関係を示す図である。FIG. 2 is a diagram showing the relationship between the surface area ratio and the peel strength (normal state) in Examples 1 to 7 and Comparative Examples 1 to 14. 図3は、実施例1〜7及び比較例1〜14における、L表色系の明度Lとピール強度(常態)の関係を示す図である。FIG. 3 is a diagram showing the relationship between the brightness L * of the L * a * b * color system and the peel intensity (normal state) in Examples 1 to 7 and Comparative Examples 1 to 14. 図4は、実施例1〜7及び比較例2〜14における、めっき層の垂直方向の平均の厚さ(めっき厚)とΔEabの関係を示す図である。FIG. 4 is a diagram showing the relationship between the average vertical thickness (plating thickness) of the plating layer and ΔE * ab in Examples 1 to 7 and Comparative Examples 2 to 14. 図5は、実施例1〜7及び比較例2〜14における、めっき層の垂直方向の平均の厚さ(めっき厚)とピール強度(常態)の関係を示す図である。FIG. 5 is a diagram showing the relationship between the vertical average thickness (plating thickness) and the peel strength (normal state) of the plating layer in Examples 1 to 7 and Comparative Examples 2 to 14. 図6は、実施例2及び比較例1における、伝送損失測定の結果を示す図である。FIG. 6 is a diagram showing the results of transmission loss measurement in Example 2 and Comparative Example 1. 図7は、実施例1、5及び比較例8、13の試験片に対し、XPSによるイオンスパッタリングを用いた深さ方向分析を行った結果から得られる(Cu原子数/(Cu原子数+O原子数))を(%)で示す図である。FIG. 7 is obtained from the results of depth direction analysis using ion sputtering with XPS on the test pieces of Examples 1 and 5 and Comparative Examples 8 and 13 (Cu number of atoms / (Cu number of atoms + O atoms). It is a figure which shows the number)) by (%). 図8は、実施例1、5及び比較例8、13の試験片に対し、XPSによるイオンスパッタリングを用いた深さ方向分析を行った結果から得られる(Ni原子数/(Ni原子数+Cu原子数+O原子数))を(%)で示す図である。FIG. 8 is obtained from the results of depth direction analysis of the test pieces of Examples 1 and 5 and Comparative Examples 8 and 13 using ion sputtering by XPS (Ni atom number / (Ni atom number + Cu atom number). Number + number of O atoms)) is shown in (%). 図9は、図7及び8の結果から推定される、実施例1と比較例8、13の複合銅部材の断面の模式図である。FIG. 9 is a schematic cross-sectional view of the composite copper members of Example 1 and Comparative Examples 8 and 13, which are estimated from the results of FIGS. 7 and 8.

以下、本発明の好ましい実施の形態につき、添付図面を用いて詳細に説明するが、必ずしもこれに限定するわけではない。なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not necessarily limited thereto. The object, feature, advantage, and idea thereof of the present invention will be apparent to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification. it can. The embodiments and specific examples of the invention described below show preferred embodiments of the present invention and are shown for illustration or explanation purposes, and the present invention is described in them. It is not limited. It will be apparent to those skilled in the art that various modifications and modifications can be made based on the description of the present specification within the intent and scope of the present invention disclosed herein.

==複合銅部材==
本発明の一実施態様は、銅部材の少なくとも一部の表面に銅および銅酸化物で形成された微細凹凸上に銅以外の金属からなる金属層が形成されている複合銅部材である。銅部材とは、構造の一部となる、Cuを主成分として含む材料のことであり、電解銅箔や圧延銅箔およびキャリア付き銅箔等の銅箔、銅線、銅板、銅製リードフレームが含まれるが、これらに限定されない。
== Composite copper member ==
One embodiment of the present invention is a composite copper member in which a metal layer made of a metal other than copper is formed on fine irregularities formed of copper and copper oxide on the surface of at least a part of the copper member. A copper member is a material containing Cu as a main component, which is a part of the structure, and includes copper foils such as electrolytic copper foils, rolled copper foils, and copper foils with carriers, copper wires, copper plates, and copper lead frames. Included, but not limited to.

銅部材が銅箔の場合、銅箔の厚さは特に限定されないが、0.1μm以上100μm以下が好ましく、0.5μm以上50μm以下がより好ましい。 When the copper member is a copper foil, the thickness of the copper foil is not particularly limited, but is preferably 0.1 μm or more and 100 μm or less, and more preferably 0.5 μm or more and 50 μm or less.

本発明の一実施態様における複合銅部材において、銅以外の金属からなる金属層が形成された表面の粗さ曲線要素の平均長さ(RSm)は、550nm以下、好ましくは450nm、さらに好ましくは350nm以下である。ここで、RSmとは、ある基準長さ(lr)における粗さ曲線に含まれる1周期分の凹凸が生じている長さ(すなわち輪郭曲線要素の長さ:Xs1〜Xsm)の平均を表し、以下の式で算出される。
ここで算術平均粗さ(Ra)の10%を凹凸における最小の高さとし、基準長さ(lr)の1%を最小の長さとして1周期分の凹凸を定義する。一例として、Rsmは「原子間力顕微鏡によるファインセラミック薄膜の表面粗さ測定方法(JIS R 1683:2007)」に準じて測定算出することができる。
In the composite copper member according to the embodiment of the present invention, the average length (RSm) of the surface roughness curve element on which the metal layer made of a metal other than copper is formed is 550 nm or less, preferably 450 nm, more preferably 350 nm. It is as follows. Here, RSm represents the average of the lengths (that is, the lengths of contour curve elements: Xs1 to Xsm) in which unevenness for one cycle included in the roughness curve at a certain reference length (lr) occurs. It is calculated by the following formula.
Here, 10% of the arithmetic mean roughness (Ra) is defined as the minimum height of the unevenness, and 1% of the reference length (lr) is defined as the minimum length, and the unevenness for one cycle is defined. As an example, Rsm can be measured and calculated according to "Method for measuring surface roughness of fine ceramic thin film by atomic force microscope (JIS R 1683: 2007)".

本発明の一実施態様における複合銅部材の表面の表面積率は、1.3以上、好ましくは1.4以上、さらに好ましくは1.5以上であり、2.2以下、好ましくは2.1以下、さらに好ましくは2.0以下である。
ここで、表面積率とは、所定の範囲において、面積に対する表面積の比率である。例えば表面積率が1であれば、表面粗さのない完全な平面の状態にあり、表面積率が大きくなるほど、表面の凹凸が激しくなる。なお、所定の範囲における面積とは、その範囲の表面がフラットであるとした場合の、その範囲の表面積に等しい。
表面積率は一例として以下の方法で算出することができる。銅以外の金属を含む複合銅部材の微細な凹凸の表面を原子間力顕微鏡(AFM:Atomic Force Microscope)により観察し、AFMの形状像を得る。これを無作為に選び出された10箇所において繰り返し行い、表面積S1、S2、・・・、S10をAFMにより求める。次に、これらの表面積S1、S2、・・・、S10と、それぞれの観察領域の面積との比(表面積/面積)SR1、SR2、・・・、SR10を単純に算術平均して、複合銅部材の表面の平均表面積率を求めることができる。
The surface area ratio of the surface of the composite copper member in one embodiment of the present invention is 1.3 or more, preferably 1.4 or more, more preferably 1.5 or more, and 2.2 or less, preferably 2.1 or less. , More preferably 2.0 or less.
Here, the surface area ratio is the ratio of the surface area to the area in a predetermined range. For example, if the surface area ratio is 1, it is in a state of a completely flat surface without surface roughness, and the larger the surface area ratio, the more severe the unevenness of the surface. The area in a predetermined range is equal to the surface area in that range when the surface of the range is flat.
The surface area ratio can be calculated by the following method as an example. The surface of fine irregularities of a composite copper member containing a metal other than copper is observed with an atomic force microscope (AFM) to obtain a shape image of AFM. This is repeated at 10 randomly selected locations, and the surface areas S1, S2, ..., S10 are determined by AFM. Next, the ratio (surface area / area) SR1, SR2, ..., SR10 of these surface areas S1, S2, ..., S10 to the area of each observation area is simply arithmetically averaged to obtain composite copper. The average surface area ratio of the surface of the member can be obtained.

本発明の一実施態様における複合銅部材において、銅以外の金属からなる金属層が形成されている表面の明度Lは、35以下(又は未満)、好ましくは30以下(又は未満)、さらに好ましくは25以下(又は未満)である。
ここで、明度Lは、L表色系において、表面の粗さを測る指標の一つとして使用されており、測定サンプル表面に光を照射した際の光の反射量を測定して算出することができる。たとえば、L=0は黒、L=100は白の拡散色を表す。具体的な算出方法は、JIS Z8105(1982)にしたがえばよい。
金属層が形成されている、複合銅部材の表面の明度を測定する時、表面の凹凸部の隙間(すなわちRsm)が狭い時には、光の反射量が少なくなるため明度値が低くなり、凹凸部の隙間が広い時には光の反射量が大きくなり明度値が高くなる傾向がある。
In the composite copper member according to one embodiment of the present invention, the lightness L * of the surface on which the metal layer made of a metal other than copper is formed is 35 or less (or less), preferably 30 or less (or less), more preferably. Is 25 or less (or less).
Here, the brightness L * is used as one of the indexes for measuring the surface roughness in the L * a * b * color system, and determines the amount of light reflected when the surface of the measurement sample is irradiated with light. It can be measured and calculated. For example, L * = 0 represents a diffuse color of black and L * = 100 represents a diffuse color of white. The specific calculation method may be in accordance with JIS Z8105 (1982).
When measuring the brightness of the surface of a composite copper member on which a metal layer is formed, when the gap (that is, Rsm) of the uneven portion of the surface is narrow, the amount of light reflected is small, so the brightness value is low and the uneven portion When the gap is wide, the amount of light reflected tends to be large and the brightness value tends to be high.

本発明の一実施態様における複合銅部材において、銅以外の金属からなる金属層が形成されている表面のRzは1.00μm以下、好ましくは0.90μm以下、より好ましくは0.80μm以下であり、0.10μm以上、好ましくは0.15μm以上、より好ましくは0.20μm以上である。
ここで、最大高さ粗さ(Rz)とは、基準長さlにおいて、輪郭曲線(y=Z(x))の山の高さZpの最大値と谷の深さZvの最大値の和を表す。
RzはJIS B 0601:2001(国際基準ISO13565−1準拠)に定められた方法により算出できる。
In the composite copper member according to the embodiment of the present invention, the Rz of the surface on which the metal layer made of a metal other than copper is formed is 1.00 μm or less, preferably 0.90 μm or less, and more preferably 0.80 μm or less. , 0.10 μm or more, preferably 0.15 μm or more, more preferably 0.20 μm or more.
Here, the maximum height roughness (Rz) is the sum of the maximum value of the peak height Zp of the contour curve (y = Z (x)) and the maximum value of the valley depth Zv at the reference length l. Represents.
Rz can be calculated by the method specified in JIS B 0601: 2001 (based on international standard ISO13565-1).

金属層に含まれる金属の種類は、銅以外であれば特に限定されないが、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、AuおよびPtからなる群から選ばれた少なくとも一種の金属であることが好ましい。特に耐酸性及び耐熱性をもたせるためには、銅よりも耐酸性及び耐熱性の高い金属、例えばNi、Pd、AuおよびPtを用いることが好ましい。 The type of metal contained in the metal layer is not particularly limited as long as it is not copper, but is selected from the group consisting of Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au and Pt. It is preferably at least one kind of metal. In particular, in order to have acid resistance and heat resistance, it is preferable to use metals having higher acid resistance and heat resistance than copper, such as Ni, Pd, Au and Pt.

複合銅部材において、金属層に含まれる銅以外の金属の垂直方向の平均の厚さは特に限定されないが、15nm以上であることが好ましく、20nm以上、25nm以上であることがさらに好ましい。薄すぎると、金属層で銅酸化物層の凹凸を均一に覆うことができず、耐熱性が悪化し、また、マイグレーションも生じやすくなる。ただし、厚すぎると、レベリングにより複合銅部材の表面の微細な凹凸が平滑化してしまい、ピール強度も低下するため、150nm以下であることが好ましく、128nm以下、100nm以下、96nm以下あるいは75nm以下であることがさらに好ましい。
なお、金属層に含まれる銅以外の金属の垂直方向の平均の厚さは、金属層を酸性溶液で溶解し、ICP分析によって金属量を測定し、複合銅部材の面積で除して算出できる。あるいは、複合銅部材そのものを溶解し、金属層を形成する金属の量のみを検出測定することにより、算出できる。
In the composite copper member, the average thickness of the metal other than copper contained in the metal layer in the vertical direction is not particularly limited, but is preferably 15 nm or more, and more preferably 20 nm or more and 25 nm or more. If it is too thin, the metal layer cannot uniformly cover the unevenness of the copper oxide layer, the heat resistance deteriorates, and migration is likely to occur. However, if it is too thick, fine irregularities on the surface of the composite copper member will be smoothed by leveling, and the peel strength will also decrease. Therefore, it is preferably 150 nm or less, preferably 128 nm or less, 100 nm or less, 96 nm or less, or 75 nm or less. It is more preferable to have.
The average thickness of the metal other than copper contained in the metal layer in the vertical direction can be calculated by dissolving the metal layer in an acidic solution, measuring the amount of metal by ICP analysis, and dividing by the area of the composite copper member. .. Alternatively, it can be calculated by melting the composite copper member itself and detecting and measuring only the amount of metal forming the metal layer.

銅以外の金属からなる金属層は、めっきによって銅部材の表面に形成されてもよい。めっき方法は特に限定されず、電解めっき、無電解めっき、真空蒸着、化成処理などによってめっきすることができるが、一様で薄いめっき層を形成することが好ましいため、めっきは電解めっきが好ましい。以降、真空蒸着、化成処理を含めた被覆処理をめっきと呼ぶ。酸化処理をされた銅部材表面に電解めっきを施す場合、まず表面の酸化銅(CuO)が還元され、亜酸化銅(CuO)又は純銅になるのに電荷が使われるため、めっきされるまでに時間のラグが生じる。例えば、Niめっきを銅部材に施す場合、その厚さを上記好ましい範囲に収めるためには、電解めっき処理する銅部材の面積あたり、15C/dm以上〜75C/dm以下の電荷を施すことが好ましく、25C/dm以上〜65C/dm以下がより好ましい。 A metal layer made of a metal other than copper may be formed on the surface of the copper member by plating. The plating method is not particularly limited, and plating can be performed by electrolytic plating, electroless plating, vacuum deposition, chemical conversion treatment, or the like. However, since it is preferable to form a uniform and thin plating layer, electrolytic plating is preferable. Hereinafter, the coating treatment including vacuum deposition and chemical conversion treatment is referred to as plating. When performing electroplating copper member surface oxidation treatment, is first oxidized copper surface (CuO) is reduced, since the charge is used to be cuprous oxide (Cu 2 O) or pure copper, it is plated There will be a time lag before. For example, when performing Ni plating on a copper member, in order to fit the thickness of the above preferred range, the per area of the copper member that electrolytic plating process, the 15C / dm 2 or more ~75C / dm 2 or less of the charge applied preferably, 25C / dm 2 or more ~65C / dm 2 or less is more preferable.

本発明の別の実施態様における、1GHz以上で使用する高周波伝送のための複合銅部材は、銅部材の少なくとも一部の表面に、銅部材よりも導電率が低い銅酸化物層が形成され、前記銅酸化物層の上に常温で強磁性を示す金属層を有している。 In another embodiment of the present invention, in the composite copper member for high frequency transmission used at 1 GHz or higher, a copper oxide layer having a lower conductivity than that of the copper member is formed on the surface of at least a part of the copper member. A metal layer exhibiting ferromagnetism at room temperature is provided on the copper oxide layer.

1GHz以上で使用する高周波伝送のための複合銅部材において、銅部材に含まれる銅は、特に限定しないが、タフピッチ銅や無酸素銅といった高純度の銅(たとえば純度95%以上、99%以上、又は99.9%以上)が好ましい。 In the composite copper member for high frequency transmission used at 1 GHz or higher, the copper contained in the copper member is not particularly limited, but high-purity copper such as tough pitch copper or oxygen-free copper (for example, purity 95% or higher, 99% or higher, Or 99.9% or more) is preferable.

銅部材よりも導電率が低い銅酸化物層は、銅及び銅酸化物(CuO及び/又はCuO)を含む。純銅の比抵抗値が1.7×10−8(Ωm)なのに対して、酸化銅は1〜10(Ωm)、亜酸化銅は1×10〜1×10(Ωm)であるため、銅酸化物層を形成する分子のうち、少なくとも1%、5%、10%、20%、30%、40%又は50%以上CuO又はCuOが含まれていれば、銅部材よりも導電率が低い銅酸化物層と規定できる。 Copper oxide layer conductivity lower than copper member includes copper and copper oxide (CuO and / or Cu 2 O). Since the specific resistance value of pure copper is 1.7 × 10-8 (Ωm), copper oxide is 1 to 10 (Ωm) and cuprous oxide is 1 × 10 6 to 1 × 10 7 (Ωm). of the molecules forming the copper oxide layer, at least 1%, 5%, 10%, 20%, 30%, if it contains 40% or 50% or more CuO or Cu 2 O, conductive than copper member It can be defined as a copper oxide layer with a low rate.

常温で強磁性を示す金属層は、外部磁場が無くても常温で自発磁化できる金属原子を含む。この金属原子は特に限定しないが、Fe、Co、Cr、Niなどの原子が好ましい。また、常温で強磁性を示す金属層はFe、Co、Cr、Niなどを含む合金やこれらの金属の酸化物(例えば酸化クロム(IV))を含んでいてもよい。常温で強磁性を示す金属層は、結晶性を有する金属、合金又は金属酸化物であることが好ましく、結晶性に影響を及ぼすリン(P)などの原子や分子を重量比で10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、又は0.3%以上含まないことが好ましい。常温で強磁性を示す金属層がNiで構成されている場合、Niの純度は90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.7%、又は99.9%以上が好ましい。従って、かかる金属層は、高濃度のリンの共析を伴う無電解めっきでなく、ホウ素(B)の共析を伴う無電解めっき、ヒドラジンを用いた無電解めっき又は電解めっきで形成されることが好ましい。 The metal layer exhibiting ferromagnetism at room temperature contains metal atoms that can be spontaneously magnetized at room temperature without an external magnetic field. The metal atom is not particularly limited, but atoms such as Fe, Co, Cr, and Ni are preferable. Further, the metal layer exhibiting ferromagnetism at room temperature may contain an alloy containing Fe, Co, Cr, Ni and the like, and an oxide of these metals (for example, chromium (IV) oxide). The metal layer that exhibits ferromagnetism at room temperature is preferably a crystalline metal, alloy, or metal oxide, and contains atoms and molecules such as phosphorus (P) that affect the crystallinity in a weight ratio of 10%, 9 %, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or 0.3% or more is preferably not contained. When the metal layer exhibiting ferromagnetism at room temperature is composed of Ni, the purity of Ni is 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%. , 99.5%, 99.7%, or 99.9% or more is preferable. Therefore, such a metal layer is formed by electroless plating with boron (B) eutectoid, electroless plating with hydrazine or electroplating, instead of electroless plating with high concentration phosphorus eutectoid. Is preferable.

銅部材よりも導電率が低い銅酸化物層は、常温で強磁性を示す金属層と銅部材を隔てる形で含むことが好ましい。かかる導電性の低い層の存在により、金属層を形成する強磁性の金属の影響を抑え、銅部材(特にその表皮部分)に流れる交流電流の伝送損失を抑えることができる。 The copper oxide layer having a lower conductivity than the copper member is preferably contained in a form that separates the metal layer that exhibits ferromagnetism at room temperature from the copper member. Due to the presence of such a layer having low conductivity, the influence of the ferromagnetic metal forming the metal layer can be suppressed, and the transmission loss of the alternating current flowing through the copper member (particularly the skin portion thereof) can be suppressed.

銅部材よりも導電率が低い銅酸化物層は、XPSによるイオンスパッタリングを用いた深さ方向分析を行い、最表面よりSiO換算で300nmまでの深さを連続測定することにより検出できる。導電性の低い層は、Cu原子とO原子を含み、Cu/(Cu+O)の原子数の割合が50%以上が好ましく、55%以上、60%、又は66.7%以上がより好ましく、95%以下が好ましく、90%以下、85%以下、又は80%以下がより好ましい。また、導電性の低い層の、深さ方向の範囲は、SiO換算で25nm以上が好ましく、50nm以上、75nm以上、100nm以上であることがより好ましい。 The copper oxide layer having a lower conductivity than the copper member can be detected by performing a depth direction analysis using ion sputtering using XPS and continuously measuring the depth from the outermost surface to 300 nm in terms of SiO 2 . The layer having low conductivity contains Cu atoms and O atoms, and the ratio of the number of atoms of Cu / (Cu + O) is preferably 50% or more, more preferably 55% or more, 60%, or 66.7% or more, 95. % Or less is preferable, and 90% or less, 85% or less, or 80% or less is more preferable. Further, the range of the layer having low conductivity in the depth direction is preferably 25 nm or more, more preferably 50 nm or more, 75 nm or more, and 100 nm or more in terms of SiO 2 .

常温で強磁性を示す金属層は、銅酸化物層を覆う形で形成されており、かかる態様は、XPSによるイオンスパッタリングを用いた深さ方向分析を行い、最表面よりSiO換算で300nmまでの深さを連続測定することにより検出できる。常温で強磁性を示す金属層がNiを含む場合、最表面よりSiO換算で300nmまでの深さを連続測定して得られるNi原子数、Cu原子数及びO原子に関し、Cu/(Ni+Cu+O)の割合が連続して1%以上99%以下となる深さの範囲がSiO換算で100nm以上であることが好ましく、150nm、200nm、又は250nm以上であることがより好ましい。 The metal layer that exhibits ferromagnetism at room temperature is formed so as to cover the copper oxide layer, and in such an embodiment, depth direction analysis using ion sputtering by XPS is performed, and the surface is up to 300 nm in terms of SiO 2 from the outermost surface. It can be detected by continuously measuring the depth of. When the metal layer exhibiting ferromagnetism at room temperature contains Ni, Cu / (Ni + Cu + O) is obtained with respect to the number of Ni atoms, Cu atoms, and O atoms obtained by continuously measuring the depth from the outermost surface to 300 nm in terms of SiO 2. The range of the depth in which the ratio of 1% or more and 99% or less is continuously is preferably 100 nm or more in terms of SiO 2 , and more preferably 150 nm, 200 nm, or 250 nm or more.

==複合銅部材の製造方法==
本発明の一実施態様は、複合銅部材の製造方法であって、酸化処理によって銅部材表面に微細な凹凸を形成する第1の工程と、微細な凹凸が形成された銅部材表面にめっき処理する第2の工程と、を含む複合銅部材の製造方法である。
== Manufacturing method of composite copper member ==
One embodiment of the present invention is a method for manufacturing a composite copper member, in which a first step of forming fine irregularities on the surface of the copper member by an oxidation treatment and a plating treatment on the surface of the copper member on which the fine irregularities are formed are performed. This is a method for manufacturing a composite copper member including the second step.

まず、第1の工程において、銅部材表面を酸化剤で酸化して、銅酸化物の層を形成するとともに、表面に微細な凹凸を形成する。銅酸化物は、CuOおよびCuOを含む。この酸化工程以前に、エッチングなどの粗面化処理工程は必要ないが、行ってもよい。また、酸化処理以前に、脱脂処理、自然酸化膜除去によって表面を均一化するための酸洗浄、または酸洗浄後に酸化工程への酸の持ち込みを防止するためのアルカリ処理を行ってもよい。アルカリ処理の方法は特に限定されないが、好ましくは0.1〜10g/L、より好ましくは1〜2g/Lのアルカリ水溶液、例えば水酸化ナトリウム水溶液で、30〜50℃、0.5〜2分間程度処理すればよい。 First, in the first step, the surface of the copper member is oxidized with an oxidizing agent to form a layer of copper oxide and fine irregularities are formed on the surface. Copper oxides include CuO and CuO 2 . Prior to this oxidation step, a roughening treatment step such as etching is not necessary, but it may be performed. Further, before the oxidation treatment, an acid cleaning for homogenizing the surface by degreasing treatment and removal of a natural oxide film, or an alkali treatment for preventing the introduction of acid into the oxidation step after the acid cleaning may be performed. The method of alkaline treatment is not particularly limited, but is preferably 0.1 to 10 g / L, more preferably 1 to 2 g / L in an alkaline aqueous solution, for example, a sodium hydroxide aqueous solution at 30 to 50 ° C. for 0.5 to 2 minutes. It should be processed to some extent.

酸化剤は特に限定されず、例えば、亜塩素酸ナトリウム、次亜塩素酸ナトリウム、塩素酸カリウム、過塩素酸カリウム等の水溶液を用いることができる。酸化剤には、各種添加剤(たとえば、リン酸三ナトリウム十二水和物のようなリン酸塩)や表面活性分子を添加してもよい。表面活性分子としては、ポルフィリン、ポルフィリン大員環、拡張ポルフィリン、環縮小ポルフィリン、直鎖ポルフィリンポリマー、ポルフィリンサンドイッチ配位錯体、ポルフィリン配列、シラン、テトラオルガノ‐シラン、アミノエチル‐アミノプロピルートリメトキシシラン、(3‐アミノプロピル)トリメトキシシラン、(1‐[3‐(トリメトキシシリル)プロピル]ウレア)((l−[3−(Trimethoxysilyl)propyl]urea))、(3‐アミノプロピル)トリエトキシシラン、((3‐グリシジルオキシプロピル)トリメトキシシラン)、(3‐クロロプロピル)トリメトキシシラン、(3‐グリシジルオキシプロピル)トリメトキシシラン、ジメチルジクロロシラン、3‐(トリメトキシシリル)プロピルメタクリレート、エチルトリアセトキシシラン、トリエトキシ(イソブチル)シラン、トリエトキシ(オクチル)シラン、トリス(2‐メトキシエトキシ)(ビニル)シラン、クロロトリメチルシラン、メチルトリクロロシラン、四塩化ケイ素、テトラエトキシシラン、フェニルトリメトキシシラン、クロロトリエトキシシラン、エチレン‐トリメトキシシラン、アミン、糖などを例示できる。 The oxidizing agent is not particularly limited, and for example, an aqueous solution of sodium chlorite, sodium hypochlorite, potassium chlorate, potassium perchlorate or the like can be used. Various additives (for example, phosphates such as trisodium phosphate dodecahydrate) and surface active molecules may be added to the oxidizing agent. Surface active molecules include porphyrin, porphyrin-membered ring, expanded porphyrin, ring-reduced porphyrin, linear porphyrin polymer, porphyrin sandwich coordination complex, porphyrin sequence, silane, tetraorgano-silane, aminoethyl-aminopropyl-trimethoxysilane. , (3-Aminopropyl) Trimethoxysilane, (1- [3- (Trimethoxysilyl) Propyl] Urea) ((l- [3- (Trimethoxysilyl) Propyl] urea)), (3-Aminopropyl) Triethoxy Silane, ((3-glycidyloxypropyl) trimethoxysilane), (3-chloropropyl) trimethoxysilane, (3-glycidyloxypropyl) trimethoxysilane, dimethyldichlorosilane, 3- (trimethoxysilyl) propylmethacrylate, Ethyltriacetoxysilane, triethoxy (isobutyl) silane, triethoxy (octyl) silane, tris (2-methoxyethoxy) (vinyl) silane, chlorotrimethylsilane, methyltrichlorosilane, silicon tetrachloride, tetraethoxysilane, phenyltrimethoxysilane, Examples thereof include chlorotriethoxysilane, ethylene-trimethoxysilane, amine, and sugar.

酸化反応条件は特に限定されないが、酸化用薬液の液温は40〜95℃であることが好ましく、45〜80℃であることがより好ましい。反応時間は0.5〜30分であることが好ましく、1〜10分であることがより好ましい。 The oxidation reaction conditions are not particularly limited, but the temperature of the chemical solution for oxidation is preferably 40 to 95 ° C, more preferably 45 to 80 ° C. The reaction time is preferably 0.5 to 30 minutes, more preferably 1 to 10 minutes.

第1の工程において、酸化された銅部材表面を溶解剤で溶解して、銅部材表面の凹凸を調整してもよい。 In the first step, the surface of the oxidized copper member may be dissolved with a dissolving agent to adjust the unevenness of the surface of the copper member.

本工程で用いる溶解剤は特に限定されないが、キレート剤、特に生分解性キレート剤であることが好ましく、エチレンジアミン四酢酸、ジエタノールグリシン、L−グルタミン酸二酢酸・四ナトリウム、エチレンジアミン−N,N’−ジコハク酸、3−ヒドロキシ−2、2’−イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N−(2−ヒドロキシエチル)イミノ二酢酸ジナトリウム、グルコン酸ナトリウムなどが例示できる。 The solubilizer used in this step is not particularly limited, but a chelating agent, particularly a biodegradable chelating agent, is preferable, and ethylenediaminetetraacetic acid, diethanolglycine, L-glutamate diacetic acid / tetrasodium, ethylenediamine-N, N'- Examples thereof include disuccinic acid, 3-hydroxy-2, 2'-sodium iminodiacetic acid, methylglycine diacetate 3 sodium, aspartate diacetate 4 sodium, N- (2-hydroxyethyl) iminodiacetic acid disodium, sodium gluconate and the like. it can.

溶解用薬液のpHは特に限定されないが、アルカリ性であることが好ましく、pH8〜10.5であることがより好ましく、pH9.0〜10.5であることがさらに好ましく、pH9.8〜10.2であることがさらに好ましい。 The pH of the chemical solution for dissolution is not particularly limited, but it is preferably alkaline, more preferably pH 8 to 10.5, further preferably pH 9.00 to 10.5, and pH 9.8 to 10. It is more preferably 2.

また、第1の工程において、酸化された銅部材に形成された銅酸化物を、還元剤を含有する薬液(還元用薬液)を用いて還元し、凹凸の数や長さを調整してもよい。 Further, in the first step, the copper oxide formed on the oxidized copper member may be reduced by using a chemical solution containing a reducing agent (reducing chemical solution) to adjust the number and length of irregularities. Good.

還元剤としては、DMAB(ジメチルアミンボラン)、ジボラン、水素化ホウ素ナトリウム、ヒドラジン等を用いることができる。また、還元用薬液は、還元剤、アルカリ性化合物(水酸化ナトリウム、水酸化カリウム等)、及び溶媒(純水等)を含む液体である。 As the reducing agent, DMAB (dimethylamine borane), diborane, sodium borohydride, hydrazine and the like can be used. The chemical solution for reduction is a liquid containing a reducing agent, an alkaline compound (sodium hydroxide, potassium hydroxide, etc.), and a solvent (pure water, etc.).

次に、第2の工程において、微細凸部を形成した銅部材表面に対し、銅以外の金属でめっき処理をすることで、複合銅部材を製造する。めっき処理方法は、公知の技術を使うことができるが、例えば、銅以外の金属として、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、Au、Pt、あるいは様々な合金を用いることができる。めっき工程も特に限定されず、電解めっき、無電解めっき、真空蒸着、化成処理などによってめっきすることができる。本発明の一実施態様において一様で薄いめっき層を形成することが好ましいため、めっきは電解めっきが好ましい。従来、銅部材の銅表面に銅めっきによりこぶ状の凹凸を形成し、さらに耐熱性や耐薬品性を付与するために層状にめっき処理を行っていたが、本発明では、酸化処理によって形成された銅酸化物を含み、均一で微細な凹凸を有する銅部材の銅表面にめっき処理を行う。 Next, in the second step, a composite copper member is manufactured by plating the surface of the copper member on which the fine convex portion is formed with a metal other than copper. As a plating treatment method, a known technique can be used. For example, as a metal other than copper, Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au, Pt, or Various alloys can be used. The plating process is not particularly limited, and plating can be performed by electroplating, electroless plating, vacuum deposition, chemical conversion treatment, or the like. Electroplating is preferred for plating because it is preferable to form a uniform and thin plating layer in one embodiment of the present invention. Conventionally, hump-like irregularities are formed on the copper surface of a copper member by copper plating, and layered plating is performed in order to further impart heat resistance and chemical resistance. However, in the present invention, the copper surface is formed by oxidation treatment. The copper surface of a copper member containing copper oxide and having uniform and fine irregularities is plated.

電解めっきの場合はニッケルめっき及びニッケル合金めっきなどが好ましい。ニッケルめっき及びニッケル合金めっきは、純ニッケル、Ni−Cu合金、Ni−Cr合金、Ni−Co合金 、Ni−Zn合金、Ni−Mn合金、Ni−Pb合金、Ni−P合金等が挙げられる。
めっきイオンの供給剤として、例えば、硫酸ニッケル、スルファミン酸ニッケル、塩化ニッケル、臭化ニッケル、酸化亜鉛、塩化亜鉛、ジアンミンジクロロパラジウム、硫酸鉄、塩化鉄、無水クロム酸、塩化クロム、硫酸クロムナトリウム、硫酸銅、ピロリン酸銅、硫酸コバルト、硫酸マンガン、次亜リン酸ナトリウム、などが用いることができる。
pH緩衝剤や光沢剤などを含むその他添加剤として、例えば、ほう酸、酢酸ニッケル、クエン酸、クエン酸ナトリウム、クエン酸アンモニウム、ギ酸カリウム、リンゴ酸、リンゴ酸ナトリウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、塩化アンモニウム、シアン化ナトリウム、酒石酸カリウムナトリウム、チオシアン酸カリウム、硫酸、塩酸、塩化カリウム、硫酸アンモニウム、塩化アンモニウム、硫酸カリウム、硫酸ナトリウム、チオシアンナトリウム、チオ硫酸ナトリウム、臭酸カリウム、ピロリン酸カリウム、エチレンジアミン、硫酸ニッケルアンモニウム、チオ硫酸ナトリウム、ケイフッ酸、ケイフッ化ナトリウム、硫酸ストロンチウム、クレゾールスルホン酸、β−ナフトール、サッカリン、1,3,6−ナフタレントリスルホン酸、ナフタレン(ジ、トリ)、スルホン酸ナトリウム、スルホンアミド、スルフィン酸など1−4ブチンジオール、クマリン、ラウリル硫酸ナトリウムが使用される。
ニッケルめっきにおいて、その浴組成は、例えば、硫酸ニッケル(100g/L以上〜350g/L以下)、スルファミンニッケル(100g/L以上〜600g/L以下)、塩化ニッケル(0g/L以上〜300g/L以下)及びこれらの混合物を含むものが好ましいが、添加剤としてクエン酸ナトリウム(0g/L以上〜100g/L以下)やホウ酸(0g/L以上〜60g/L以下)が含まれていてもよい。
In the case of electrolytic plating, nickel plating, nickel alloy plating and the like are preferable. Examples of nickel plating and nickel alloy plating include pure nickel, Ni-Cu alloy, Ni-Cr alloy, Ni-Co alloy, Ni-Zn alloy, Ni-Mn alloy, Ni-Pb alloy, Ni-P alloy and the like.
As a filler of plating ions, for example, nickel sulfate, nickel sulfamate, nickel chloride, nickel bromide, zinc oxide, zinc chloride, diammine dichloropalladium, iron sulfate, iron chloride, chromic anhydride, chromium chloride, sodium chromium sulfate, Copper sulfate, copper pyrophosphate, cobalt sulfate, manganese sulfate, sodium hypophosphite, and the like can be used.
Other additives including pH buffers and brighteners include, for example, sulfonic acid, nickel acetate, citrate, sodium citrate, ammonium citrate, potassium formate, malic acid, sodium thiosulfate, sodium hydroxide, potassium hydroxide, etc. Sodium carbonate, ammonium chloride, sodium cyanide, sodium tartrate, potassium thiosulfate, sulfuric acid, hydrochloric acid, potassium chloride, ammonium sulfate, ammonium chloride, potassium sulfate, sodium sulfate, sodium thiosulfate, sodium thiosulfate, potassium bromide, potassium pyrophosphate , Ethylenediamine, nickel ammonium sulfate, sodium thiosulfate, silicic acid, sodium silicate, strontium sulfate, cresol sulfonic acid, β-naphthol, saccharin, 1,3,6-naphthalene trisulfonic acid, naphthalene (di, tri), sulfon 1-4 Butindiols such as sodium acid, sulfonic acid and sulfic acid, coumarin and sodium lauryl sulfate are used.
In nickel plating, the bath composition thereof is, for example, nickel sulfate (100 g / L or more to 350 g / L or less), sulfamine nickel (100 g / L or more to 600 g / L or less), nickel chloride (0 g / L or more to 300 g / L or less). The following) and a mixture thereof are preferable, but even if sodium citrate (0 g / L or more to 100 g / L or less) or boric acid (0 g / L or more to 60 g / L or less) is contained as an additive. Good.

無電解ニッケルめっきの場合は触媒を用いた処理を行うことが好ましい。触媒としては鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウムおよびそれらの塩を用いることが好ましい。触媒を用いた処理を行うことで、一様で粒子が点在しない金属層を得ることができる。それによって、複合銅箔の耐熱性が向上する。無電解ニッケルめっきの場合は、還元剤として、銅および酸化銅が触媒活性を有しない還元剤を用いることが好ましい。銅および酸化銅が触媒活性を有しない還元剤としては、次亜リン酸ナトリウムなどの次亜リン酸塩が挙げられる。 In the case of electroless nickel plating, it is preferable to perform treatment using a catalyst. As the catalyst, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and salts thereof are preferably used. By performing the treatment with a catalyst, a uniform metal layer in which particles are not scattered can be obtained. As a result, the heat resistance of the composite copper foil is improved. In the case of electroless nickel plating, it is preferable to use a reducing agent in which copper and copper oxide do not have catalytic activity. Examples of the reducing agent in which copper and copper oxide do not have catalytic activity include hypophosphates such as sodium hypophosphite.

このように、銅部材に対して、第1工程及び第2工程を行うことによって、銅部材の少なくとも一部の表面に銅以外の金属からなる金属層が形成されている複合銅部材であって、銅以外の金属からなる金属層を有する複合銅部材の表面が微細凹凸を有し、Rsmが550nm以下で、表面積率が1.3以上2.2以下であって、金属層の垂直方向の平均の厚さが12nm以上150nm以下あるいは15nm以上150nm以下である、複合銅部材を製造することができる。 As described above, by performing the first step and the second step on the copper member, the composite copper member is formed with a metal layer made of a metal other than copper on the surface of at least a part of the copper member. The surface of the composite copper member having a metal layer made of a metal other than copper has fine irregularities, the Rsm is 550 nm or less, the surface area ratio is 1.3 or more and 2.2 or less, and the metal layer is in the vertical direction. A composite copper member having an average thickness of 12 nm or more and 150 nm or less or 15 nm or more and 150 nm or less can be produced.

本発明の技術的特徴を損なわない限り、これらの工程で製造した複合銅部材に、シランカップリング剤などを用いたカップリング処理や分子接合処理、ベンゾトリアゾール類などを用いた防錆処理を行ってもよい。 As long as the technical features of the present invention are not impaired, the composite copper member produced in these steps is subjected to a coupling treatment using a silane coupling agent or the like, a molecular bonding treatment, or a rust prevention treatment using benzotriazoles or the like. You may.

==複合銅部材の利用方法==
本発明の複合銅部材は、プリント配線板に使用される銅箔、基板に配線される銅線、LIB負極集電体用の銅箔などとして、電子部品に用いることができる。
== How to use composite copper member ==
The composite copper member of the present invention can be used for electronic parts as a copper foil used for a printed wiring board, a copper wire wired to a substrate, a copper foil for a LIB negative electrode current collector, and the like.

例えば、本発明に係る複合銅箔を、樹脂基材と層状に接着させることによって積層板を作製し、その後、複合銅箔をパターン加工することにより、配線が形成されたプリント配線基板を製造するのに用いることができる。この場合の樹脂基材に含まれる樹脂の種類は特に限定されないが、ポリフェニレンエーテル(PPE)、エポキシ、ポリフェニレンオキシド(PPO)、ポリベンゾオキサゾール(PBO)、ポリテトラフルオロエチレン(PTFE)、液晶ポリマー(LCP)、またはトリフェニルフォサイト(TPPI)、フッ素樹脂、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリシクロオレフィン、ビスマレイミド樹脂、低誘電率ポリイミド、或いはこれらの混合樹脂であることが好ましい。樹脂基材はさらに無機フィラーやガラス繊維を含んでいてもよい。樹脂基材の一例としては、ポリフェニレンエーテル(PPE)20〜70重量%、シリカ0〜20重量%、ガラス繊維30〜70%からなるMEGTRON6(R5670KJ;パナソニック社製;誘電率3.71(1GHz))が挙げられる。
樹脂基材の誘電率は公知の方法で測定することができ、例えば、IPC TM(The Institute for Interconnecting and Packaging Electronic Circuits Test Method)−650 2.5.5.5やIPC TM−650 2.5.5.9といった規格に従って測定することができる。
本発明に係る複合銅箔を誘電率の低い(例えば、5以下、4.5以下、4以下、3.5以下、または3以下)樹脂基材に積層することにより、高周波(例えば1GHz以上、5GHz以上、または10GHz以上)の電流の伝送損失を抑えることができる。
For example, a laminated board is produced by adhering the composite copper foil according to the present invention in layers to a resin base material, and then the composite copper foil is patterned to produce a printed wiring board on which wiring is formed. Can be used for. The type of resin contained in the resin base material in this case is not particularly limited, but polyphenylene ether (PPE), epoxy, polyphenylene oxide (PPO), polybenzoxazole (PBO), polytetrafluoroethylene (PTFE), and liquid crystal polymer (PPE). LCP), or triphenylfosite (TPPI), fluororesin, polyetherimide, polyetheretherketone, polycycloolefin, bismaleimide resin, low dielectric constant polyimide, or a mixed resin thereof is preferable. The resin base material may further contain an inorganic filler or glass fiber. As an example of the resin base material, MEGTRON6 (R5670KJ; manufactured by Panasonic Corporation; dielectric constant 3.71 (1 GHz)) composed of 20 to 70% by weight of polyphenylene ether (PPE), 0 to 20% by weight of silica, and 30 to 70% of glass fiber. ).
The dielectric constant of the resin substrate can be measured by a known method, for example, IPC TM (The Institute for Interconnecting and Packaging Electronic Circuits Test Method) -650 2.5.5.5 or IPC TM-650 2.5. It can be measured according to a standard such as .5.9.
By laminating the composite copper foil according to the present invention on a resin substrate having a low dielectric constant (for example, 5 or less, 4.5 or less, 4 or less, 3.5 or less, or 3 or less), a high frequency (for example, 1 GHz or more) can be obtained. It is possible to suppress the transmission loss of the current (5 GHz or more, or 10 GHz or more).

また、本発明に係る複合銅箔をLIB負極集電体用に使用することで、銅箔と負極材料の密着性が向上し、容量劣化の小さい良好なリチウムイオン電池を得ることができる。リチウムイオン電池用の負極集電体は公知の方法に従って製造することができる。例えば、カーボン系活物質を含有する負極材料を調製し、溶剤もしくは水に分散させて活物質スラリーとする。この活物質スラリーを本発明に係る複合銅箔に塗布した後、溶剤や水を蒸発させるため乾燥させる。その後、プレスし、再度乾燥した後に所望の形になるよう負極集電体を成形する。なお、負極材には、カーボン系活物質よりも理論容量の大きいシリコンやシリコン化合物、ゲルマニウム、スズ、鉛などを含んでもよい。また、電解質として有機溶媒にリチウム塩を溶解させた有機電解液だけでなく、ポリエチレンオキシドやポリフッ化ビニリデンなどからなるポリマーを用いたものであってもよい。本発明に係る複合銅箔は、リチウムイオン電池だけでなく、リチウムイオンポリマー電池にも適用できる。 Further, by using the composite copper foil according to the present invention for the LIB negative electrode current collector, the adhesion between the copper foil and the negative electrode material is improved, and a good lithium ion battery with little capacity deterioration can be obtained. The negative electrode current collector for a lithium ion battery can be manufactured according to a known method. For example, a negative electrode material containing a carbon-based active material is prepared and dispersed in a solvent or water to prepare an active material slurry. After applying this active material slurry to the composite copper foil according to the present invention, it is dried to evaporate the solvent and water. Then, it is pressed, dried again, and then the negative electrode current collector is formed into a desired shape. The negative electrode material may contain silicon, a silicon compound, germanium, tin, lead, etc., which have a theoretical capacity larger than that of the carbon-based active material. Further, as the electrolyte, not only an organic electrolytic solution in which a lithium salt is dissolved in an organic solvent but also a polymer composed of polyethylene oxide, polyvinylidene fluoride or the like may be used. The composite copper foil according to the present invention can be applied not only to a lithium ion battery but also to a lithium ion polymer battery.

<1.複合銅箔の製造>
比較例5〜14並びに実施例1〜6は、銅箔としてDR−WS(古河電工株式会社製、厚さ:18μm)のシャイニー面を用いた。実施例7は、同じくDR−WSであるがマット面を用いた。比較例1〜4は、すでに粗化処理され、めっきが施されたFV−WS(古河電工株式会社製、厚さ:18μm)のマット面を用いた。なお、比較例1及び5の銅箔には、本発明に係る酸化処理、還元処理、めっき処理などの表面処理は行っていない。比較例2〜4は市販されているFV−WSのめっき層を一度剥離してから用いた。剥離は、液温50℃の234ml/Lの塩酸に6分間浸漬することにより行った。
<1. Manufacture of composite copper foil >
In Comparative Examples 5 to 14 and Examples 1 to 6, a shiny surface of DR-WS (manufactured by Furukawa Electric Co., Ltd., thickness: 18 μm) was used as the copper foil. In Example 7, the same DR-WS, but a matte surface was used. In Comparative Examples 1 to 4, a matte surface of FV-WS (manufactured by Furukawa Electric Co., Ltd., thickness: 18 μm) that had already been roughened and plated was used. The copper foils of Comparative Examples 1 and 5 were not subjected to surface treatment such as oxidation treatment, reduction treatment, and plating treatment according to the present invention. In Comparative Examples 2 to 4, the commercially available FV-WS plating layer was once peeled off before use. The peeling was carried out by immersing in hydrochloric acid at a liquid temperature of 50 ° C. at 234 ml / L for 6 minutes.

(1)前処理
[アルカリ脱脂処理]
銅箔を、液温50℃、40g/Lの水酸化ナトリウム水溶液に1分間浸漬した後、水洗を行った。
[酸洗浄処理]
アルカリ脱脂処理を行った銅箔を、液温25℃、10重量%の硫酸水溶液に2分間浸漬した後、水洗を行った。
[プレディップ処理]
酸洗浄処理を行った銅箔を、液温40℃、水酸化ナトリウム(NaOH)1.2g/Lのプレディップ用薬液に1分間浸漬した。
(1) Pretreatment [Alkaline degreasing treatment]
The copper foil was immersed in a sodium hydroxide aqueous solution at a liquid temperature of 50 ° C. and 40 g / L for 1 minute, and then washed with water.
[Acid cleaning treatment]
The copper foil subjected to the alkaline degreasing treatment was immersed in a sulfuric acid aqueous solution having a liquid temperature of 25 ° C. and 10% by weight for 2 minutes, and then washed with water.
[Pre-dip processing]
The acid-washed copper foil was immersed in a chemical solution for predip at a liquid temperature of 40 ° C. and sodium hydroxide (NaOH) of 1.2 g / L for 1 minute.

(2)酸化処理
アルカリ処理を行った銅箔を、実施例1〜7及び比較例9〜13は酸化処理用水溶液(NaClO 60g/L;NaOH 9g/L;3−グリシジルオキシプロピルトリメトキシシラン 2g/L)で73℃、2分間、酸化処理を行った。比較例14は、酸化処理用水溶液(NaClO 37.5g/L;NaOH 100g/L)で73℃、4分間、酸化処理を行った。これらの処理後、銅箔を水洗した。
(2) The copper foil was subjected to oxidation treatment alkali treatment, Examples 1 to 7 and Comparative Examples 9-13 oxidized aqueous solution (NaClO 2 60g / L; NaOH 9g / L; 3- glycidyloxypropyltrimethoxysilane Oxidation treatment was carried out at 73 ° C. for 2 minutes at 2 g / L). Comparative Example 14 was oxidized with an aqueous solution for oxidation treatment (NaClO 2 37.5 g / L; NaOH 100 g / L) at 73 ° C. for 4 minutes. After these treatments, the copper foil was washed with water.

比較例9は、酸化処理後、室温で1分間、還元剤(ジメチルアミンボラン 5g/L;水酸化ナトリウム 5g/L)に浸漬し、還元処理を行った。 In Comparative Example 9, after the oxidation treatment, the mixture was immersed in a reducing agent (dimethylamine borane 5 g / L; sodium hydroxide 5 g / L) for 1 minute at room temperature to perform the reduction treatment.

(3)めっき処理
実施例1〜7及び比較例11〜14については、酸化処理を行った銅箔に対し、ニッケルめっき用電解液(硫酸ニッケル 240g/L;塩化ニッケル 45g/L;クエン酸三ナトリウム 20g/L)を用いて電解めっきを施した(電流密度0.5A/dm 銅箔面積当たり)。比較例3、4、6〜8は酸化処理を行わずに、同じニッケルめっき用電解液を用いて電解めっきを施した。処理時間は、それぞれ50秒(実施例1)、60秒(実施例2)、70秒(実施例3)、80秒(実施例4)、100秒(実施例5)、120秒(実施例6)、130秒(実施例7)、20秒(比較例3)、60秒(比較例4)、10秒(比較例6)、20秒(比較例7)、60秒(比較例8)、40秒(比較例11)、150秒(比較例12)、350秒(比較例13)、220秒(比較例14)であった。
(3) Plating Treatment In Examples 1 to 7 and Comparative Examples 11 to 14, the electrolytic solution for nickel plating (nickel sulfate 240 g / L; nickel chloride 45 g / L; citrate 3) was applied to the oxidized copper foil. Electroplating was performed using sodium (20 g / L) (current density 0.5 A / dm 2 per copper foil area). In Comparative Examples 3, 4, 6 to 8, electrolytic plating was performed using the same electrolytic solution for nickel plating without performing oxidation treatment. The processing times are 50 seconds (Example 1), 60 seconds (Example 2), 70 seconds (Example 3), 80 seconds (Example 4), 100 seconds (Example 5), and 120 seconds (Example 5), respectively. 6), 130 seconds (Example 7), 20 seconds (Comparative Example 3), 60 seconds (Comparative Example 4), 10 seconds (Comparative Example 6), 20 seconds (Comparative Example 7), 60 seconds (Comparative Example 8) , 40 seconds (Comparative Example 11), 150 seconds (Comparative Example 12), 350 seconds (Comparative Example 13), 220 seconds (Comparative Example 14).

(4)カップリング処理
実施例1〜7及び比較例2〜14については、3-アミノプロピルトリエトキシシラン(1重量%)を用いて銅箔を室温で1分処理した後、110℃で1分焼付けを行った。
(4) Coupling Treatment For Examples 1 to 7 and Comparative Examples 2 to 14, the copper foil was treated with 3-aminopropyltriethoxysilane (1% by weight) for 1 minute at room temperature, and then 1 at 110 ° C. Separate baking was performed.

実施例及び比較例について、各々同じ条件で複数の試験片を作製した。
評価面は比較例6〜14及び実施例1〜6は表面処理を施したシャイニー面、実施例7及び比較例2〜4は表面処理を施したマット面、比較例1は粗面化処理され、めっきが施された面(マット面)、比較例5はシャイニー面を用いた。
For Examples and Comparative Examples, a plurality of test pieces were prepared under the same conditions.
As for the evaluation surface, Comparative Examples 6 to 14 and Examples 1 to 6 were surface-treated shiny surfaces, Examples 7 and Comparative Examples 2 to 4 were surface-treated matte surfaces, and Comparative Example 1 was roughened. , The plated surface (matte surface) and the shiny surface were used in Comparative Example 5.

<2.Rzの算出>
実施例及び比較例の試験片を、共焦点走査電子顕微鏡 OPTELICS H1200(レーザーテック株式会社製)を用いた観察結果から輪郭曲線を作成し、JIS B 0601:2001に定められた方法によりRzを算出した。測定条件として、スキャン幅は100μm、スキャンタイプはエリアとし、Light sourceはBlue、カットオフ値は1/5とした。オブジェクトレンズはx100、コンタクトレンズはx14、デジタルズームはx1、Zピッチは10nmの設定とし、3箇所のデータを取得し、Rzは3箇所の平均値とした。
<2. Calculation of Rz>
Contour curves were created from the observation results of the test pieces of Examples and Comparative Examples using a confocal scanning electron microscope OPTELICS H1200 (manufactured by Lasertec Co., Ltd.), and Rz was calculated by the method specified in JIS B 0601: 2001. .. As the measurement conditions, the scan width was 100 μm, the scan type was an area, the Light source was Blue, and the cutoff value was 1/5. The object lens was set to x100, the contact lens was set to x14, the digital zoom was set to x1, the Z pitch was set to 10 nm, data was acquired at three locations, and Rz was the average value of the three locations.

<3.RSm及び表面積率の測定>
実施例及び比較例の試験片のRSm及び表面積率を原子間力顕微鏡(AFM:Atomic Force Microscope)により観察し、JIS R 1683:2007に準じて算出した。比較例1のみRa=150nmとして計算した。
装置:日立ハイテクサイエンス製
プローブステーション AFM5000II
接続機種:AFM5300E
カンチレバー:SI−DF40
AFM5000IIにおける自動設定機能を使用して設定
(振幅減衰率、走査周波数、Iゲイン、Pゲイン、Aゲイン、Sゲイン)
走査領域:5μm角
画素数:512 x 512
測定モード:DFM
測定視野:5μm
SISモード:使用しない
スキャナ:20μmスキャナ
測定方法:3次補正を行い計測した。
◆RSm→平均断面解析(lr=5μm)
◆表面積率→面粗さ解析
<3. Measurement of RSm and surface area ratio>
The RSm and surface area ratio of the test pieces of Examples and Comparative Examples were observed with an atomic force microscope (AFM: Atomic Force Microscope) and calculated according to JIS R 1683: 2007. Only Comparative Example 1 was calculated with Ra = 150 nm.
Equipment: Made by Hitachi High-Tech Science
Probe station AFM5000II
Connection model: AFM5300E
Cantilever: SI-DF40
Set using the automatic setting function in AFM5000II
(Amplitude attenuation rate, scanning frequency, I gain, P gain, A gain, S gain)
Scanning area: 5 μm square
Number of pixels: 512 x 512
Measurement mode: DFM
Measurement field of view: 5 μm
SIS mode: Not used
Scanner: 20 μm Scanner Measuring method: Measured with third-order correction.
◆ RSm → Average cross-section analysis (lr = 5μm)
◆ Surface area ratio → Surface roughness analysis

<4.明度L測定>
表色系における明度Lの測定は、日本電色工業株式会社製 分光色差計 NF999(照明条件:C;視野角条件:2;測定項目:L)を用いて行った。
<4. Brightness L * Measurement>
The measurement of the brightness L * in the L * a * b * color system is the spectrocolor difference meter NF999 manufactured by Nippon Denshoku Industries Co., Ltd. (illumination condition: C; viewing angle condition: 2; measurement item: L * a * b * ) Was used.

<5.めっき厚さの測定、表面元素分析及び所定の深さにおける元素分析>
5.1 めっき厚さの測定
めっきの垂直方向の平均の厚さの測定方法としては、12%硝酸に銅部材を溶解させ、溶解液をICP発光分析装置5100 SVDV ICP-OES(アジレント・テクノロジー社製)を用いて解析して金属の濃度を測定し、金属の密度、金属層の表面積を考慮することで層状としての金属層の厚さを算出した。
5.2 表面元素分析
表面元素分析として、QuanteraSPM(ULVAC−PHI製)を用いて以下の工程で最表面Narrow分析を行い、金属層が形成されている表面上において銅と銅以外の金属が検出できるかを確認した。
(1)Survey spectrum
まず、以下の条件で元素を検出した。
X線ビーム径: 100μm(25w15kV)
パスエネルギー: 280eV,1eVステップ
ライン分析: φ100μm×700μm
積算回数 6回
(2)Narrow spectrum
(1)で検出した元素について、Narrow Spectrumを以下の条件で取得し、検出した成分中、N、C以外の元素量の合計を100%としたときの、各検出成分比を定量値として算出した。
X線ビーム径: 100μm(25w15kV)
パスエネルギー: 112eV,0.1eVステップ
ライン分析: φ100μm×700μm
5.3 深さ方向の分析
得られた実施例及び比較例の試験片を用いて、深さ方向の元素分析を、以下の条件で行った。
分析した元素は、炭素(C)、酸素(O)、銅(Cu)及びニッケル(Ni)であり、これらの元素の合計を100% として、各元素の濃度(at%)を算出した。算出した各元素濃度から、Cu/Cu+O(%)及びNi/Ni+Cu(%)を算出した。深さは、SiO2換算での距離(nm)として表した。
XPS装置としては、アルバック・ファイ株式会社製5600MCを用い、到達真空度:5.7×10- 9Torr、励起源: 単色化AlKα、出力:210W、検出面積:800μmΦ、入射角:45度、取り出し角:45度、中和銃なしとし、以下のスパッタ条件で測定した。
イオン種: Ar+
加速電圧: 3kV
掃引領域: 3mm × 3mm
レート: SiO2換算
Cu原子数/Cu原子数+O原子数の比(図7)、及びNi原子数/Ni原子数+Cu原子数+O原子の比(図8)を示す。
さらに、得られたデータから推定される、実施例1及び比較例8、13の垂直断面の模式図を図9に示す。実施例1は銅酸化物層によってNi層と銅部材が隔てられているのに対して、比較例8では銅酸化物層が存在せず、Ni層が直接銅部材表面に積層されている。比較例13は実施例1と同様、銅酸化物層は存在するものの、Ni層が厚すぎて、XPSによる深さ方向分析(300nmまで)では銅酸化物層を検出できない。
<5. Plating thickness measurement, surface elemental analysis and elemental analysis at a given depth>
5.1 Measurement of plating thickness As a method of measuring the average thickness in the vertical direction of plating, a copper member is dissolved in 12% nitrate, and the solution is used as an ICP emission spectrometer 5100 SVDV ICP-OES (Agilent Technology Co., Ltd.). The metal concentration was measured by analysis using (manufactured by), and the thickness of the metal layer as a layer was calculated by considering the density of the metal and the surface area of the metal layer.
5.2 Surface elemental analysis As surface elemental analysis, copper and metals other than copper are detected on the surface on which the metal layer is formed by performing the outermost surface Narrow analysis in the following steps using QuanteraSPM (manufactured by ULVAC-PHI). I checked if I could do it.
(1) Survey spectrum
First, the elements were detected under the following conditions.
X-ray beam diameter: 100 μm (25w15kV)
Path energy: 280 eV, 1 eV Step line analysis: φ100 μm × 700 μm
Accumulation number 6 times (2) Now spectrum
For the elements detected in (1), the Narrow Spectrum is acquired under the following conditions, and the ratio of each detected component is calculated as a quantitative value when the total amount of elements other than N and C among the detected components is 100%. did.
X-ray beam diameter: 100 μm (25w15kV)
Path energy: 112 eV, 0.1 eV Step line analysis: φ100 μm × 700 μm
5.3 Analysis in the depth direction Using the obtained test pieces of Examples and Comparative Examples, elemental analysis in the depth direction was performed under the following conditions.
The elements analyzed were carbon (C), oxygen (O), copper (Cu) and nickel (Ni), and the concentration (at%) of each element was calculated with the total of these elements as 100%. Cu / Cu + O (%) and Ni / Ni + Cu (%) were calculated from the calculated element concentrations. The depth is expressed as a distance (nm) in terms of SiO 2 .
The XPS apparatus, using a ULVAC-PHI Co. 5600MC, ultimate vacuum: 5.7 × 10 - 9 Torr, excitation source: monochromatic AlK, output: 210W, detection area: 800Myuemufai, incident angle: 45 °, Extraction angle: 45 degrees, no neutralizing gun, and measured under the following sputtering conditions.
Ion species: Ar +
Acceleration voltage: 3kV
Sweep area: 3mm x 3mm
Rate: The ratio of Cu atom number / Cu atom number + O atom number (FIG. 7) and the ratio of Ni atom number / Ni atom number + Cu atom number + O atom number (FIG. 8) in terms of SiO 2 are shown.
Further, FIG. 9 shows a schematic view of the vertical cross sections of Example 1 and Comparative Examples 8 and 13 estimated from the obtained data. In Example 1, the Ni layer and the copper member are separated by the copper oxide layer, whereas in Comparative Example 8, the copper oxide layer does not exist, and the Ni layer is directly laminated on the surface of the copper member. In Comparative Example 13, although the copper oxide layer is present as in Example 1, the Ni layer is too thick and the copper oxide layer cannot be detected by the depth direction analysis (up to 300 nm) by XPS.

<6.銅箔の耐熱性の測定>
実施例及び比較例の試験片について、加熱による色変化により耐熱性を調べた。熱処理前の試験片の色差(L、a、b)を測定後、225℃のオーブンで30分間処理し、熱処理後の試験片の色差を測定した。得られた値から、以下の式に従い、ΔEabを算出した。
[数2]
ΔEab = [(ΔL + (Δa + (Δb1/2
<6. Measurement of heat resistance of copper foil>
The heat resistance of the test pieces of Examples and Comparative Examples was examined by changing the color due to heating. After measuring the color difference (L * , a * , b * ) of the test piece before the heat treatment, the test piece was treated in an oven at 225 ° C. for 30 minutes, and the color difference of the test piece after the heat treatment was measured. From the obtained values, ΔE * ab was calculated according to the following formula.
[Number 2]
ΔE * ab = [(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ] 1/2

<7.常態と耐酸試験後のピール強度の測定>
また、実施例1〜6及び比較例1〜14の試験片について、酸処理前後のピール強度を測定した。具体的には、まず、各試験片に対し、プリプレグ R5670KJ(パナソニック株式会社製、厚さ100μm)を積層し、真空高圧プレス機を用いてプレス圧2.9MPa、温度210℃、プレス時間120分の条件で加熱圧着することにより、積層体を得た。
同様に、アドフレマNC0207を用いて、酸処理前後のピール強度を測定した。各試験片に対し、アドフレマNC0207(ナミックス社製)を積層し、真空高圧プレス機を用いてプレス圧1.0MPa、温度200℃、プレス時間1時間の条件で加熱圧着することにより、積層体を得た。
実施例及び比較例について、各々同じ条件で複数の積層体を作製した。酸に対する耐性を調べるため、積層体の一つはそのまま(常態)、もう一つは酸液浸漬後(耐酸試験後)、測定試料とした。なお、酸液浸漬は、積層体を4N HClに60℃で90分浸漬することにより行った。これらの測定試料に対して90°剥離試験(日本工業規格(JIS)C5016)によりピール強度(kgf/cm)を測定した。
<7. Measurement of peel strength under normal conditions and after acid resistance test>
In addition, the peel strength of the test pieces of Examples 1 to 6 and Comparative Examples 1 to 14 was measured before and after the acid treatment. Specifically, first, prepreg R5670KJ (manufactured by Panasonic Corporation, thickness 100 μm) is laminated on each test piece, and a press pressure of 2.9 MPa, a temperature of 210 ° C., and a press time of 120 minutes are used using a vacuum high-pressure press machine. A laminate was obtained by heat-pressing under the conditions of.
Similarly, the peel strength before and after the acid treatment was measured using Adflema NC0207. Adflema NC0207 (manufactured by Namics) is laminated on each test piece, and the laminate is heat-bonded using a vacuum high-pressure press under the conditions of a press pressure of 1.0 MPa, a temperature of 200 ° C., and a press time of 1 hour. Obtained.
For Examples and Comparative Examples, a plurality of laminates were prepared under the same conditions. In order to examine the resistance to acid, one of the laminates was used as it was (normal state), and the other was used as a measurement sample after being immersed in an acid solution (after an acid resistance test). The acid solution immersion was performed by immersing the laminate in 4N HCl at 60 ° C. for 90 minutes. The peel strength (kgf / cm) was measured for these measurement samples by a 90 ° peeling test (Japanese Industrial Standards (JIS) C5016).

<8.高周波特性の測定>
実施例2及び比較例1の試験片に樹脂基材プリプレグ R5670KJ(パナソニック株式会社製)を熱加圧成形により積層した後に、伝送特性測定用のサンプルを作製して高周波帯域における伝送損失を測定した。伝送特性の評価には、0〜40GHz帯域の測定に適する公知のストリップライン共振器法を用いて測定した。具体的には、S21パラメーターを、以下の条件でカバーレイフィルムなしの状態で測定した。
測定条件:マイクロストリップ構造;基材プリプレグ R5670KJ;回路長さ100mm;導体幅250μm;導体厚さ28μm;基材厚さ100μm;特性インピーダンス50Ω
結果を図6に示す。
さらに、実施例1〜7及び比較例1〜14の試験片に樹脂基材アドフレマNC0207(ナミックス社製)を熱加圧成形により積層した後に、伝送特性測定用のサンプルを作製して高周波帯域における伝送損失を測定した。伝送特性の評価には、0〜40GHz帯域の測定に適する公知のストリップライン共振器法を用いて測定した。具体的には、S21パラメーターを、以下の条件でカバーレイフィルムなしの状態で測定した。
測定条件:マイクロストリップ構造;基材プリプレグ アドフレマNC0207;回路長さ200mm;導体幅280μm;導体厚さ28μm;基材厚さ100μm;特性インピーダンス50Ω
<8. Measurement of high frequency characteristics>
After laminating the resin base material prepreg R5670KJ (manufactured by Panasonic Corporation) on the test pieces of Example 2 and Comparative Example 1 by thermal pressure molding, a sample for measuring transmission characteristics was prepared and the transmission loss in the high frequency band was measured. .. The transmission characteristics were evaluated using a known stripline resonator method suitable for measurement in the 0 to 40 GHz band. Specifically, the S21 parameter was measured under the following conditions without a coverlay film.
Measurement conditions: Microstrip structure; Base material prepreg R5670KJ; Circuit length 100 mm; Conductor width 250 μm; Conductor thickness 28 μm; Base material thickness 100 μm; Characteristic impedance 50 Ω
The results are shown in FIG.
Further, after laminating the resin base material Adflema NC0207 (manufactured by Namics) on the test pieces of Examples 1 to 7 and Comparative Examples 1 to 14 by thermal pressure molding, a sample for measuring transmission characteristics was prepared and in the high frequency band. The transmission loss was measured. The transmission characteristics were evaluated using a known stripline resonator method suitable for measurement in the 0 to 40 GHz band. Specifically, the S21 parameter was measured under the following conditions without a coverlay film.
Measurement conditions: Microstrip structure; Base material prepreg Adflema NC0207; Circuit length 200 mm; Conductor width 280 μm; Conductor thickness 28 μm; Base material thickness 100 μm; Characteristic impedance 50 Ω

<9.結果>
結果を表1及び図1〜9に示す。
<9. Result>
The results are shown in Table 1 and FIGS. 1-9.

比較例1はRSmが大きく、微細な凹凸は形成されておらずLが高くなった。RSmが大きく、表面積率が高いことから、表面積の増大は横方向の緻密さではなく高さ方向が大きくなっていると考えられ、Rzは大きく、図6に示すように表皮効果の影響により実際に高周波特性が悪くなった。比較例6及び7はRSmが大きく、表面積率が小さいことから密着性が得られなかったと考えられる。比較例9はめっきが無いため、耐熱変色(ΔEab)が大きかった。比較例10はめっきが無く、酸化処理のみであり、微細な凹凸においてCuOが主成分となるため、耐酸試験でピール強度が低下した。比較例11はめっきの厚さが不足しているため、耐熱変色が大きかった。比較例12はめっきが厚すぎるためレベリングが生じることで、RSmが大きくなり、さらに表面積率が小さくなったため、結果的にピール強度が低下した。比較例14は表面積率が大きすぎるため、めっきが一様ではなく、耐熱変色が生じた。
それに対して、表面の粗さ曲線要素の平均長さ(Rsm)が550nm以下で(図1)、表面積率が1.3以上2.2以下であり(図2)、金属層の垂直方向の平均の厚さが15nm以上150nm以下であり(図5)、明度Lの値が35未満である(図3)実施例1〜7の複合銅箔は、ピール強度が高く、耐熱変色(ΔEab)が小さく(図4)、耐酸性試験を経てもピール強度が低下しなかった。また、実施例2の高周波特性も良好であった。
In Comparative Example 1, RSm was large, fine irregularities were not formed, and L * was high. Since RSm is large and the surface area ratio is high, it is considered that the increase in surface area is not dense in the lateral direction but large in the height direction, and Rz is large, which is actually due to the influence of the skin effect as shown in FIG. The high frequency characteristics have deteriorated. It is probable that in Comparative Examples 6 and 7, adhesion could not be obtained because RSm was large and the surface area ratio was small. In Comparative Example 9, since there was no plating, heat-resistant discoloration (ΔE * ab) was large. In Comparative Example 10, there was no plating, only oxidation treatment was performed, and CuO was the main component in the fine irregularities, so that the peel strength was lowered in the acid resistance test. In Comparative Example 11, the heat-resistant discoloration was large because the plating thickness was insufficient. In Comparative Example 12, the plating was too thick and leveling occurred, resulting in a large RSm and a small surface area ratio, resulting in a decrease in peel strength. In Comparative Example 14, the surface area ratio was too large, so that the plating was not uniform and heat-resistant discoloration occurred.
On the other hand, the average length (Rsm) of the surface roughness curve element is 550 nm or less (Fig. 1), the surface area ratio is 1.3 or more and 2.2 or less (Fig. 2), and the metal layer is in the vertical direction. The composite copper foils of Examples 1 to 7 have a high average thickness of 15 nm or more and 150 nm or less (FIG. 5) and a lightness L * value of less than 35 (FIG. 3), and have high peel strength and heat-resistant discoloration (ΔE). * Ab) was small (Fig. 4), and the peel strength did not decrease even after the acid resistance test. In addition, the high frequency characteristics of Example 2 were also good.

比較例2、5、10では、金属層を持たないため、耐熱性が低かった。比較例13では常温で強磁性を示す金属層が厚すぎて、伝送損失が生じ、比較例7、8では銅酸化物を含む凸部が存在せず、常温で強磁性を示す金属層が直接銅箔に積層されているため、伝送損失が生じた。比較例1〜4は、Rzが大きく、表皮効果により、伝送損失が生じた。一方、実施例1、2、5は、常温で強磁性を示す金属層が、適切な厚みを有しており、かつ金属層と電流が流れる銅部分との間に銅部材よりも導電率の低い銅酸化物層が存在するため、10GHzの高周波電流の伝送損失が小さかった(図7〜9)。 In Comparative Examples 2, 5 and 10, the heat resistance was low because the metal layer was not provided. In Comparative Example 13, the metal layer exhibiting ferromagnetism at room temperature was too thick to cause transmission loss, and in Comparative Examples 7 and 8, the metal layer exhibiting ferromagnetism at room temperature was directly present without the convex portion containing copper oxide. Since it was laminated on the copper foil, transmission loss occurred. In Comparative Examples 1 to 4, Rz was large, and a transmission loss occurred due to the skin effect. On the other hand, in Examples 1, 2 and 5, the metal layer exhibiting ferromagnetism at room temperature has an appropriate thickness, and the conductivity between the metal layer and the copper portion through which the current flows is higher than that of the copper member. Due to the presence of the low copper oxide layer, the transmission loss of the high frequency current of 10 GHz was small (FIGS. 7-9).

本発明によって、新規な複合銅部材、並びにそれを用いた積層体及び電子部品、高周波伝送用の複合銅部材、並びにそれを用いた高周波伝送用積層体及び高周波伝送用電子部品を提供することができるようになった。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a novel composite copper member, a laminate and an electronic component using the same, a composite copper member for high frequency transmission, and a laminate for high frequency transmission and an electronic component for high frequency transmission using the same. I can now do it.

<1.複合銅箔の製造>
比較例5〜14並びに実施例1〜6は、銅箔としてDR−WS(古河電工株式会社製、厚さ:18μm)のシャイニー面(S面)(光沢面。反対面と比較したときに平坦である面。)を用いた。実施例7は、同じくDR−WSであるがマット面(M面)(艶消し面。反対面と比較したときに粗い面。)を用いた。比較例1〜4は、すでに粗化処理され、めっきが施されたFV−WS(古河電工株式会社製、厚さ:18μm)のマット面を用いた。なお、比較例1及び5の銅箔には、本発明に係る酸化処理、還元処理、めっき処理などの表面処理は行っていない。比較例2〜4は市販されているFV−WSのめっき層を一度剥離してから用いた。剥離は、液温50℃の234ml/Lの塩酸に6分間浸漬することにより行った。
<1. Manufacture of composite copper foil >
Comparative Examples 5 to 14 and Examples 1 to 6 have a shiny surface (S surface) (glossy surface, which is flat when compared with the opposite surface) of DR-WS (manufactured by Furukawa Electric Co., Ltd., thickness: 18 μm) as a copper foil . The surface that is.) Was used. In Example 7, although it was also DR-WS, a matte surface (M surface) (matte surface, which was rough when compared with the opposite surface) was used. In Comparative Examples 1 to 4, a matte surface of FV-WS (manufactured by Furukawa Electric Co., Ltd., thickness: 18 μm) that had already been roughened and plated was used. The copper foils of Comparative Examples 1 and 5 were not subjected to surface treatment such as oxidation treatment, reduction treatment, and plating treatment according to the present invention. In Comparative Examples 2 to 4, the commercially available FV-WS plating layer was once peeled off before use. The peeling was carried out by immersing in hydrochloric acid at a liquid temperature of 50 ° C. at 234 ml / L for 6 minutes.

Claims (23)

銅部材の少なくとも一部の表面の、銅および銅酸化物を含む微細凹凸上に銅以外の金属からなる金属層が形成されている複合銅部材であって、
前記金属層が形成されている前記複合銅部材の表面が微細な凹凸を有し、前記複合銅部材の前記表面の粗さ曲線要素の平均長さ(Rsm)が550nm以下で、表面積率が1.3以上2.2以下であり、
前記金属層の垂直方向の平均の厚さが15nm以上150nm以下である、複合銅部材。
A composite copper member in which a metal layer made of a metal other than copper is formed on fine irregularities containing copper and copper oxide on the surface of at least a part of the copper member.
The surface of the composite copper member on which the metal layer is formed has fine irregularities, the average length (Rsm) of the roughness curve element on the surface of the composite copper member is 550 nm or less, and the surface area ratio is 1. .3 or more and 2.2 or less,
A composite copper member having an average vertical thickness of the metal layer of 15 nm or more and 150 nm or less.
前記複合銅部材の前記表面の、明度Lの値が35未満である、請求項1または2に記載の複合銅部材。 The composite copper member according to claim 1 or 2, wherein the value of the brightness L * on the surface of the composite copper member is less than 35. 前記金属層が、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、AuおよびPtからなる群から選ばれた少なくとも一種の金属を含む、請求項1〜3のいずれか一項に記載の複合銅部材。 13. Of claims 1-3, the metal layer comprises at least one metal selected from the group consisting of Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au and Pt. The composite copper member according to any one item. 前記複合銅部材の前記表面の微細な凹凸において、共焦点走査電子顕微鏡を用いた観察結果から輪郭曲線を作成し、JIS B 0601:2001に定められた方法により算出されたRzが0.25μm以上1.2μm以下である、請求項1〜4のいずれか一項に記載の複合銅部材。 A contour curve is created from the observation results using a confocal scanning electron microscope on the fine irregularities on the surface of the composite copper member, and the Rz calculated by the method specified in JIS B 0601: 2001 is 0.25 μm or more. The composite copper member according to any one of claims 1 to 4, which is 1.2 μm or less. 前記共焦点走査電子顕微鏡が、OPTELICS H1200(レーザーテック株式会社製)である、請求項4に記載の複合銅部材。 The composite copper member according to claim 4, wherein the confocal scanning electron microscope is OPTELICS H1200 (manufactured by Lasertec Co., Ltd.). 銅部材の少なくとも一部の表面に、銅部材よりも導電率が低い銅酸化物層を有し、前記銅酸化物層の上に常温で強磁性を示す金属層が形成されている、
1GHz以上で使用する高周波伝送のための、複合銅部材。
A copper oxide layer having a lower conductivity than that of the copper member is provided on the surface of at least a part of the copper member, and a metal layer exhibiting ferromagnetism at room temperature is formed on the copper oxide layer.
Composite copper member for high frequency transmission used at 1 GHz or higher.
前記銅部材を形成する銅の純度が、99%以上である、請求項6に記載の複合銅部材。 The composite copper member according to claim 6, wherein the purity of the copper forming the copper member is 99% or more. 前記金属層は、Fe、Co、Cr及びNiからなる群から選ばれた少なくとも一種の金属原子を含む、請求項6又は7のいずれか一項に記載の複合銅部材。 The composite copper member according to any one of claims 6 or 7, wherein the metal layer contains at least one metal atom selected from the group consisting of Fe, Co, Cr and Ni. 前記金属層が形成されている前記複合銅部材に対する、X線光電子分光法による深さ方向分析において、最表面よりSiO換算で300nmまでの深さを連続測定して得られるCu原子数とO原子数に関し、Cu/(Cu+O)の割合が連続して50%以上95%以下となる深さの範囲が50nm以上である、請求項6〜8のいずれか一項に記載の複合銅部材。 In the depth direction analysis by X-ray photoelectron spectroscopy for the composite copper member on which the metal layer is formed, the Cu atomic number and O obtained by continuously measuring the depth from the outermost surface to 300 nm in terms of SiO 2 The composite copper member according to any one of claims 6 to 8, wherein the depth range in which the ratio of Cu / (Cu + O) is continuously 50% or more and 95% or less with respect to the number of atoms is 50 nm or more. 前記金属層に含まれる金属原子がNiであり、
前記金属層が形成されている前記複合銅部材に対する、XPSによるイオンスパッタリングを用いた深さ方向分析において、最表面よりSiO換算で300nmまでの深さを連続測定して得られるNi原子数、Cu原子数、及びO原子数に関し、Ni/(Ni+Cu+O)の割合が連続して1%以上98%以下となる深さの範囲が100nm以上である、請求項9に記載の複合銅部材。
The metal atom contained in the metal layer is Ni.
The number of Ni atoms obtained by continuously measuring the depth from the outermost surface to 300 nm in terms of SiO 2 in the depth direction analysis using ion sputtering by XPS for the composite copper member on which the metal layer is formed. The composite copper member according to claim 9, wherein the depth range in which the ratio of Ni / (Ni + Cu + O) is continuously 1% or more and 98% or less with respect to the number of Cu atoms and the number of O atoms is 100 nm or more.
前記金属層の垂直方向の平均の厚さが15nm以上150nm以下である、請求項6〜10に記載の複合銅部材。 The composite copper member according to claim 6 to 10, wherein the average thickness of the metal layer in the vertical direction is 15 nm or more and 150 nm or less. 前記金属層が形成されている複合銅部材の表面において、共焦点走査電子顕微鏡を用いた観察結果から輪郭曲線を作成し、JIS B 0601:2001に定められた方法により算出されたRzが0.25μm以上1.2μm以下である、請求項6〜11のいずれか一項に記載の複合銅部材。 On the surface of the composite copper member on which the metal layer is formed, a contour curve is created from the observation results using a confocal scanning electron microscope, and the Rz calculated by the method specified in JIS B 0601: 2001 is 0. The composite copper member according to any one of claims 6 to 11, which is 25 μm or more and 1.2 μm or less. 前記共焦点走査電子顕微鏡が、OPTELICS H1200(レーザーテック株式会社製)である、請求項12に記載の複合銅部材。 The composite copper member according to claim 12, wherein the confocal scanning electron microscope is OPTELICS H1200 (manufactured by Lasertec Co., Ltd.). 請求項1〜13のいずれか一項に記載の複合銅部材の前記金属層が形成されている表面に、誘電率が4以下の樹脂基材が積層されている、積層体。 A laminated body in which a resin base material having a dielectric constant of 4 or less is laminated on the surface of the composite copper member according to any one of claims 1 to 13 on which the metal layer is formed. 前記樹脂基材は、液晶ポリマー、フッ素樹脂、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリシクロオレフィン、ビスマレイミド樹脂、及び低誘電率ポリイミドからなる群から選ばれた少なくとも一つの樹脂を含む、請求項14に記載の積層体。 The resin substrate contains at least one resin selected from the group consisting of liquid crystal polymers, fluororesins, polyetherimides, polyetheretherketones, polyphenylene ethers, polycycloolefins, bismaleimide resins, and low dielectric constant polyimides. , The laminate according to claim 14. 請求項14又は15に記載の積層体から製造された配線基板。 A wiring board manufactured from the laminate according to claim 14 or 15. 請求項16に記載の配線基板を含む電子部品。 An electronic component including the wiring board according to claim 16. 請求項1に記載の複合銅部材を製造する方法であって、
銅部材表面に酸化処理によって微細な凹凸部を形成する第1の工程と、
前記金属層の垂直方向の平均の厚さが15nm以上150nm以下で、前記金属層が形成されている前記複合銅部材の表面が微細凹凸を有し、前記複合銅部材の前記表面の粗さ曲線要素の平均長さRsmが550nm以下で、表面積率が1.3以上2.2以下になるように、前記銅部材表面の微細な凹凸部の上に、銅以外の金属を用いてめっき処理する第2の工程と、
を含む複合銅部材の製造方法。
The method for manufacturing a composite copper member according to claim 1.
The first step of forming fine irregularities on the surface of the copper member by oxidation treatment,
The average thickness of the metal layer in the vertical direction is 15 nm or more and 150 nm or less, the surface of the composite copper member on which the metal layer is formed has fine irregularities, and the roughness curve of the surface of the composite copper member. A metal other than copper is used for plating on the fine uneven portion on the surface of the copper member so that the average length Rsm of the element is 550 nm or less and the surface area ratio is 1.3 or more and 2.2 or less. The second step and
A method for manufacturing a composite copper member including.
前記金属層の垂直方向の平均の厚さが15nm以上150nm以下である、請求項18に記載の複合銅部材の製造方法。 The method for producing a composite copper member according to claim 18, wherein the average thickness of the metal layer in the vertical direction is 15 nm or more and 150 nm or less. 第2の工程において、前記めっき処理が電解めっき処理である、請求項18または19に記載の複合銅部材の製造方法。 The method for manufacturing a composite copper member according to claim 18 or 19, wherein in the second step, the plating treatment is an electrolytic plating treatment. 請求項6に記載の複合銅部材を製造する方法であって、
銅部材表面に酸化処理によって、銅部材を形成する銅よりも導電率が低い銅酸化物層を形成する第1の工程と、
前記銅酸化物層の上に常温で強磁性を示す金属層を形成する第2の工程と、
を含む、複合銅部材を製造する方法。
The method for manufacturing a composite copper member according to claim 6.
The first step of forming a copper oxide layer having a lower conductivity than the copper forming the copper member by oxidation treatment on the surface of the copper member, and
A second step of forming a metal layer exhibiting ferromagnetism at room temperature on the copper oxide layer,
A method of manufacturing a composite copper member, including.
前記金属層の垂直方向の平均の厚さが15nm以上150nm以下である、請求項21に記載の複合銅部材の製造方法。 The method for producing a composite copper member according to claim 21, wherein the average thickness of the metal layer in the vertical direction is 15 nm or more and 150 nm or less. 第2の工程において、電解めっき処理により前記常温で強磁性を示す金属層が形成される、請求項21または22に記載の複合銅部材の製造方法。
The method for producing a composite copper member according to claim 21 or 22, wherein in the second step, the metal layer exhibiting ferromagnetism at room temperature is formed by the electrolytic plating treatment.
JP2019152552A 2019-05-09 2019-08-23 composite copper parts Active JP7352939B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217026936A KR20220006035A (en) 2019-05-09 2020-05-07 Composite copper member
PCT/JP2020/018579 WO2020226160A1 (en) 2019-05-09 2020-05-07 Composite copper member
CN202080016300.2A CN113474486A (en) 2019-05-09 2020-05-07 Composite copper material
JP2023017290A JP7479617B2 (en) 2019-05-09 2023-02-08 Composite copper components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019089120 2019-05-09
JP2019089120 2019-05-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023017290A Division JP7479617B2 (en) 2019-05-09 2023-02-08 Composite copper components

Publications (2)

Publication Number Publication Date
JP2020186464A true JP2020186464A (en) 2020-11-19
JP7352939B2 JP7352939B2 (en) 2023-09-29

Family

ID=73221688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019152552A Active JP7352939B2 (en) 2019-05-09 2019-08-23 composite copper parts

Country Status (3)

Country Link
JP (1) JP7352939B2 (en)
CN (1) CN113474486A (en)
TW (1) TWI818164B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271348A (en) * 1975-12-12 1977-06-14 Nippon Mining Co Surface treatment for copper foil of printed circuits
JPS61119699A (en) * 1984-11-13 1986-06-06 オリン コ−ポレ−シヨン System and method for producing foil of metal or metal alloy
JP2013534054A (en) * 2010-07-06 2013-08-29 イーサイオニック・スリーサウザンド・インコーポレーテッド Method for treating copper surfaces to enhance adhesion to organic substrates for use in printed wiring boards
WO2013147116A1 (en) * 2012-03-29 2013-10-03 Jx日鉱日石金属株式会社 Surface-treated copper foil
JP6726780B1 (en) * 2019-03-04 2020-07-22 ナミックス株式会社 Copper foil, negative electrode current collector for lithium ion battery including the same, and method for producing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100515167C (en) * 2004-02-17 2009-07-15 日矿金属株式会社 Copper foil having blackened surface or layer
TW200704833A (en) * 2005-06-13 2007-02-01 Mitsui Mining & Smelting Co Surface treated copper foil, process for producing surface treated copper foil, and surface treated copper foil with very thin primer resin layer
JPWO2011078077A1 (en) * 2009-12-24 2013-05-09 Jx日鉱日石金属株式会社 Surface treated copper foil
JP5242710B2 (en) * 2010-01-22 2013-07-24 古河電気工業株式会社 Roughening copper foil, copper clad laminate and printed wiring board
WO2013094766A1 (en) * 2011-12-22 2013-06-27 オーエム産業株式会社 Plated article and manufacturing method therefor
JP6111017B2 (en) * 2012-02-03 2017-04-05 Jx金属株式会社 Copper foil for printed wiring board, laminate using the same, printed wiring board, and electronic component
TWI543862B (en) * 2013-02-14 2016-08-01 三井金屬鑛業股份有限公司 Surface-treated copper foil and copper clad laminate using the same
MY181562A (en) * 2013-02-28 2020-12-29 Mitsui Mining & Smelting Co Ltd Black color surface-treated copper foil, method of manufacturing black color surface-treated copper foil, copper-clad laminate and flexible printed wiring board
MY182166A (en) * 2013-09-20 2021-01-18 Namics Corp Copper foil, copper foil with carrier foil, and copper-clad laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271348A (en) * 1975-12-12 1977-06-14 Nippon Mining Co Surface treatment for copper foil of printed circuits
JPS61119699A (en) * 1984-11-13 1986-06-06 オリン コ−ポレ−シヨン System and method for producing foil of metal or metal alloy
JP2013534054A (en) * 2010-07-06 2013-08-29 イーサイオニック・スリーサウザンド・インコーポレーテッド Method for treating copper surfaces to enhance adhesion to organic substrates for use in printed wiring boards
WO2013147116A1 (en) * 2012-03-29 2013-10-03 Jx日鉱日石金属株式会社 Surface-treated copper foil
JP6726780B1 (en) * 2019-03-04 2020-07-22 ナミックス株式会社 Copper foil, negative electrode current collector for lithium ion battery including the same, and method for producing the same

Also Published As

Publication number Publication date
TW202106931A (en) 2021-02-16
TWI818164B (en) 2023-10-11
CN113474486A (en) 2021-10-01
JP7352939B2 (en) 2023-09-29

Similar Documents

Publication Publication Date Title
US11781236B2 (en) Composite copper foil
WO2021132191A1 (en) Composite copper member treated with silane coupling agent
JP7479617B2 (en) Composite copper components
WO2021172096A1 (en) Composite copper member having voids
EP4050123A1 (en) Composite copper member
WO2020226158A1 (en) Apparatus for processing copper surface
JP7352939B2 (en) composite copper parts
JP7409602B2 (en) composite copper parts
WO2020226159A1 (en) Method for manufacturing metal member having metal layer
JP7328671B2 (en) laminate
WO2022050001A1 (en) Copper foil and laminate, and manufacturing methods therefor
WO2024219163A1 (en) Metal member
JP2023051784A (en) Copper member
WO2024219162A1 (en) Metal member

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230911

R150 Certificate of patent or registration of utility model

Ref document number: 7352939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230928

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20231002