JP2020182965A - Cast completion-controlling method - Google Patents

Cast completion-controlling method Download PDF

Info

Publication number
JP2020182965A
JP2020182965A JP2019088420A JP2019088420A JP2020182965A JP 2020182965 A JP2020182965 A JP 2020182965A JP 2019088420 A JP2019088420 A JP 2019088420A JP 2019088420 A JP2019088420 A JP 2019088420A JP 2020182965 A JP2020182965 A JP 2020182965A
Authority
JP
Japan
Prior art keywords
casting
end control
amount
slab
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019088420A
Other languages
Japanese (ja)
Other versions
JP7234785B2 (en
Inventor
寛幸 七辺
Hiroyuki Shichibe
寛幸 七辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019088420A priority Critical patent/JP7234785B2/en
Publication of JP2020182965A publication Critical patent/JP2020182965A/en
Application granted granted Critical
Publication of JP7234785B2 publication Critical patent/JP7234785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

To provide a completion method that prevents productivity from being reduced without causing steel leakage, when roll intervals are reduced or enlarged.SOLUTION: A method includes: a first step of setting the time when cast completion control begins; a second step of controlling the amount of secondary cooling water in a casting path to be 70% or more and 90% or less of the amount of secondary cooling water at steady casting time and controlling a casting speed to be 1.5 m/min or more and 1.8 m/min or less, from the time when the cast completion control begins to cast completion; and cooling an unsolidified cast piece with the amount of secondary cooling water set in the second step and then controlling the casting speed to be 1.2 m/min or more and 1.4 m/min or less, by the time when an end of the unsolidified cast piece on an upstream side in a casting direction reaches a horizontal level from time of the cast completion.SELECTED DRAWING: Figure 3

Description

本発明は連続鋳造における鋳込終了制御方法に関する。 The present invention relates to a casting end control method in continuous casting.

連続鋳造においては、レードル内の溶鋼を、タンディッシュを介して鋳型内に連続して鋳込、水冷鋳型により溶鋼外周に凝固シェルを形成し、続くガイドロール群で凝固シェルを支持しつつロール間の冷却スプレーにより凝固シェルを成長させ、完全凝固した鋳片をピンチロールで引き抜いているが、このような連続鋳造の鋳造末期においては溶鋼の供給がなくなるため、定常鋳造時とは異なる特別な制御で鋳込を終了する必要がある。 In continuous casting, the molten steel in the radle is continuously cast into the mold via a tundish, a solidified shell is formed on the outer circumference of the molten steel by a water-cooled mold, and the solidified shell is supported by the following guide roll group between the rolls. The solidified shell is grown by the cooling spray of the above, and the completely solidified slab is pulled out with a pinch roll, but since the supply of molten steel is cut off at the end of casting of such continuous casting, special control different from that during steady casting It is necessary to finish casting with.

この鋳込終了制御方法としては、従来から鋳込終了時に鋳造速度を減速して鋳込を停止し、鋳型内残溶鋼の最後端部(最ボトム部)に冷却材を投入して凝固させ、その後、所定の引抜速度で鋳片を引き抜く減速鋳込終了方法が知られていたが、この減速鋳込終了方法では、減速・停止、温度低下、ボトム処理作業などによる多くの問題があるため、最近では、連続鋳造機の生産性向上、鋳片の品質向上、高温出片化、作業負荷低減などを目的に、鋳造速度を減速させずに通常の鋳造速度を保持したまま鋳込を終了させる一定速引抜鋳込終了法が考えられている。 Conventionally, as this casting end control method, the casting speed is reduced at the end of casting to stop casting, and a cooling material is put into the rearmost end (bottom bottom) of the residual molten steel in the mold to solidify it. After that, a deceleration casting end method for pulling out the slab at a predetermined drawing speed was known, but this deceleration casting end method has many problems due to deceleration / stop, temperature drop, bottom processing work, etc. Recently, for the purpose of improving the productivity of continuous casting machines, improving the quality of slabs, producing high-temperature slabs, reducing the workload, etc., casting is completed while maintaining the normal casting speed without slowing down the casting speed. A constant speed drawing and casting end method is being considered.

従来法1(特許文献1〜3)では、鋳込終了時や終了後の鋳片引抜中において、この鋳片最後端部(最ボトム部)からの漏鋼を防止するために、まず鋳込終了前におけるタンディッシュ内の残鋼重量または残鋼レベルにより、予め決定された減速パターンにて適当に鋳込速度を減速し、タンディッシュ内に所定の少量の溶鋼を残して鋳込を停止し、次に最ボトム部へ冷却材(金属粒,金属片,水等)を投入しての凝固後、ボトム処理作業を行った後に、引抜速度を適当に増速して引き抜いている。 In the conventional method 1 (Patent Documents 1 to 3), first casting is performed in order to prevent steel leakage from the rearmost end (bottom bottom) of the slab at the end of casting or during drawing of the slab after the casting. Depending on the residual steel weight or residual steel level in the tundish before the end, the casting speed is appropriately reduced by a predetermined deceleration pattern, and casting is stopped leaving a predetermined small amount of molten steel in the tundish. Then, after the coolant (metal particles, metal pieces, water, etc.) is put into the bottommost part and solidified, the bottom treatment work is performed, and then the drawing speed is appropriately increased to pull out.

従来法2(特許文献4、5)では、鋳込終了前の鋳造速度の減速や停止およびボトム部処理作業を行わず、通常の鋳造速度を保持したまま鋳込を終了し、鋳片の最後端部である最ボトム部の凝固を鋳型直下の二次冷却水で行い、最ボトム部凝固完了後は、引抜速度を増速することにより高速の鋳込終了を可能としている。
また、高速の鋳込終了時に漏鋼を防止するための技術として、鋳型内溶鋼の最ボトム部に、数枚の水平の凝固層で仕切られた階層構造の空洞を形成することにより、未凝固溶鋼の絞り出しによる吹き上げが生じても、前記複数の凝固層で遮られて漏鋼に至らないようにしている。このような階層構造は、鋳型直下のガイドロールで鋳片に押し付け力を付加するなどして湯面を停滞・凝固させ、これを数回繰り返すことにより形成している。
In the conventional method 2 (Patent Documents 4 and 5), the casting is finished while maintaining the normal casting speed without decelerating or stopping the casting speed and processing the bottom portion before the end of casting, and the end of the slab. The bottommost part, which is the end part, is solidified with the secondary cooling water directly under the mold, and after the solidification of the bottommost part is completed, the drawing speed is increased to enable high-speed casting to be completed.
In addition, as a technique for preventing steel leakage at the end of high-speed casting, unsolidified cavities are formed at the bottom of the molten steel in the mold, which is partitioned by several horizontal solidified layers. Even if the molten steel is blown up by squeezing out, it is blocked by the plurality of solidified layers to prevent leakage of steel. Such a hierarchical structure is formed by stagnating and solidifying the molten metal surface by applying a pressing force to the slab with a guide roll directly under the mold, and repeating this several times.

従来法3(特許文献6)は、従来法2の課題であった諸条件の影響を受けずに安定して漏鋼を確実に防止できる引抜方法である。従来法3は、通常の鋳造速度を保持したまま鋳込を終了して鋳片を引抜、鋳型内への給湯ストップと同時に、最後端鋳片における未凝固部分の下方部位のロール間隔を拡大して鋳片外殻部分を意図的にバルジングさせ、このバルジングにより凝固収縮による溶鋼の絞り出しを吸収し、次いで、この拡幅した部分を後段のロールにより圧下して完全凝固部分で所定の鋳片厚みにする終了方法である。 The conventional method 3 (Patent Document 6) is a drawing method capable of stably and surely preventing steel leakage without being affected by various conditions which was a problem of the conventional method 2. In the conventional method 3, casting is completed while maintaining the normal casting speed, the slab is pulled out, hot water supply to the inside of the mold is stopped, and at the same time, the roll interval of the lower portion of the unsolidified portion in the rearmost slab is expanded. The outer shell of the slab is intentionally bulged, the bulging absorbs the squeezed out of molten steel due to solidification shrinkage, and then the widened portion is reduced by a roll in the subsequent stage to reach a predetermined slab thickness at the completely solidified portion. This is the end method.

特開昭62−124056号公報Japanese Unexamined Patent Publication No. 62-124056 特開昭62−203652号公報Japanese Unexamined Patent Publication No. 62-203652 特開昭62−244848号公報Japanese Unexamined Patent Publication No. 62-2444848 特開平6−262323号公報Japanese Unexamined Patent Publication No. 6-262323 特開平5−261501号公報Japanese Unexamined Patent Publication No. 5-261501 特開平10−244347号公報JP-A-10-244347

従来法1を実施する場合は、漏鋼の防止に対しては効果を発揮するが、鋳込終了前に鋳込速度を減速するので、連続鋳造機の生産性が減少してしまうと共に、タンディッシュ残鋼鋳造時間が長くなり残溶鋼の温度低下が大きくなって、最終鋳片の品質が悪化する虞がある。また前述したようにボトム処理作業を必要とするために、作業負荷が大きく、しかも冷却材の混入で最終鋳片の品質が悪化すると共に、冷却材購入コストがかかる。 When the conventional method 1 is implemented, it is effective in preventing steel leakage, but since the casting speed is reduced before the end of casting, the productivity of the continuous casting machine is reduced and the tongue is reduced. The casting time of the residual steel of the dish becomes long, the temperature of the residual molten steel drops significantly, and the quality of the final slab may deteriorate. Further, as described above, since the bottom treatment work is required, the work load is large, the quality of the final slab is deteriorated due to the mixing of the coolant, and the cost of purchasing the coolant is high.

従来法2を実施する場合は、鋳造終了までの鋳込速度や鋳造幅、モールド内のパウダー溶融状況等によって最ボトム部漏鋼が発生するため、最ボトム部漏鋼発生率が0%にならない。最ボトム部漏鋼による漏鋼発生位置のロール交換や漏鋼地金による鋳片への表面疵が発生し、生産性を大きく阻害するリスクを抱えている。 When the conventional method 2 is carried out, the bottommost steel leakage rate does not reach 0% because the bottommost steel leakage occurs depending on the casting speed until the end of casting, the casting width, the powder melting condition in the mold, and the like. .. There is a risk that the roll replacement at the position where the leaked steel occurs due to the leaked steel at the bottom and the surface flaws on the slab due to the leaked steel metal will greatly hinder productivity.

従来法3を実施する場合は、漏鋼のリスクがなくなる。それに加えて、通常の鋳造速度を保持したまま鋳込を終了して鋳片を引き抜くため生産性の減少も発生しない。しかし、設備的にロール間隔の縮小や拡大をすることができない場合は、従来法3を行うことはできない。 When the conventional method 3 is implemented, the risk of steel leakage is eliminated. In addition, since the casting is completed and the slab is pulled out while maintaining the normal casting speed, the productivity does not decrease. However, if the roll interval cannot be reduced or expanded in terms of equipment, the conventional method 3 cannot be performed.

そこで、本発明では、ロール間隔の縮小や拡大をしない場合において、漏鋼のリスクがなく、生産性の減少を抑える終了方法を提供することを課題とする。 Therefore, it is an object of the present invention to provide a termination method in which there is no risk of steel leakage and the decrease in productivity is suppressed when the roll interval is not reduced or expanded.

上記問題を解決するために、本発明者が鋭意検討した結果、鋳込終了時よりも前に鋳込終了制御開始時を設定し、鋳込終了制御開始時から鋳込終了時までにおいて所定の条件で連続鋳造機の制御を行い、さらに鋳込終了時から未凝固鋳片の鋳造方向の上流側の端部が連続鋳造機の水平部に達するときまでにおいて所定の条件で連続鋳造機の制御を行う設定にすることにより、ロール間隔の縮小や拡大をしなくとも、漏鋼のリスクがなく、生産性の減少を抑えることが可能であることを見出し、本発明を完成させた。 As a result of diligent studies by the present inventor in order to solve the above problem, the casting end control start time is set before the casting end time, and a predetermined time is set from the casting end control start time to the casting end time. The continuous casting machine is controlled under the conditions, and the continuous casting machine is controlled under the predetermined conditions from the end of casting to the time when the upstream end of the unsolidified slab in the casting direction reaches the horizontal part of the continuous casting machine. We have found that there is no risk of steel leakage and it is possible to suppress the decrease in productivity without reducing or expanding the roll interval, and completed the present invention.

すなわち、上記課題を解決するための本発明の第1の態様は、鋳造経路に水平部を有する垂直曲げ型もしくは湾曲型の連続鋳造機を用いて、鋳片を製造する連続鋳造の鋳込終了制御方法であって、定常鋳造時におけるメニスカスから鋳造経路に沿って水平部に達するまでの距離の半分の長さをAとした場合に、0.8A以上1.2A以下の長さの鋳片を製造するのに必要な溶融金属の量の範囲から鋳込終了制御開始量を設定し、定常鋳造時における連続鋳造機のタンディッシュ内の溶融金属の量が鋳込終了制御開始量になったときを鋳込終了制御開始時として設定する第1工程と、鋳込終了制御開始時から鋳込終了時まで、鋳造経路の二次冷却水量を定常鋳造時の二次冷却水量の70%以上90%以下の割合に制御し、かつ、鋳造速度を1.5m/min以上1.8m/min以下に制御する第2工程と、鋳込終了時から未凝固鋳片の鋳造方向の上流側の端部が水平部に達するときまで、第2工程で設定した二次冷却水量で未凝固鋳片を冷却し、かつ、鋳造速度を1.2m/min以上1.4m/min以下に制御する第3工程と、を備える、鋳込終了制御方法である。 That is, in the first aspect of the present invention for solving the above problems, the casting of continuous casting for producing slabs is completed by using a vertical bending type or curved type continuous casting machine having a horizontal portion in the casting path. In the control method, when A is half the length of the distance from the meniscus to the horizontal part along the casting path during steady casting, a slab with a length of 0.8A or more and 1.2A or less. The casting end control start amount was set from the range of the amount of molten metal required for manufacturing, and the amount of molten metal in the tundish of the continuous casting machine at the time of steady casting became the casting end control start amount. From the first step of setting the time as the start of casting end control and from the start of casting end control to the end of casting, the amount of secondary cooling water in the casting path is 70% or more of the amount of secondary cooling water during steady casting. The second step of controlling the ratio to% or less and controlling the casting speed to 1.5 m / min or more and 1.8 m / min or less, and the upstream end of the unsolidified slab from the end of casting in the casting direction. A third unit that cools the unsolidified slab with the amount of secondary cooling water set in the second step and controls the casting speed to 1.2 m / min or more and 1.4 m / min or less until the portion reaches the horizontal portion. It is a casting end control method including a step.

上記鋳込終了制御方法において、鋳片の板幅方向の長さが1450mm以下であることがよい。また、タンディッシュ内の溶融金属の溶鋼加熱度が10℃以上45℃以下であることがよい。さらに、連続鋳造機に備えられるロールのロール間隔の拡大又は縮小を行わないことがよい。 In the casting end control method, the length of the slab in the plate width direction is preferably 1450 mm or less. Further, the degree of heating of the molten metal of the molten metal in the tundish is preferably 10 ° C. or higher and 45 ° C. or lower. Further, it is preferable not to increase or decrease the roll interval of the rolls provided in the continuous casting machine.

本発明によれば、ロール間隔の縮小や拡大をしなくとも、漏鋼のリスクがなく、生産性の減少を抑えることが可能である。 According to the present invention, there is no risk of steel leakage and it is possible to suppress a decrease in productivity without reducing or increasing the roll interval.

連続鋳造機10の断面概略図である。It is sectional drawing of the continuous casting machine 10. 図1のIIで示した部分の拡大図である。It is an enlarged view of the part shown by II of FIG. 鋳込終了制御方法1のフローチャートである。It is a flowchart of a casting end control method 1. 鋳込終了制御方法1における鋳造速度と時間との関係の一例を示した図である。It is a figure which showed an example of the relationship between the casting speed and time in the casting end control method 1.

本発明は連続鋳造における鋳込終了制御方法である。以下に、本発明の一実施形態である鋳込終了制御方法1を用いて、詳しく説明する。 The present invention is a casting end control method in continuous casting. Hereinafter, the casting end control method 1 according to the embodiment of the present invention will be described in detail.

まず、鋳込終了制御方法1を行うための連続鋳造機10を用いて、レードルから供給された溶鋼20が鋳片30になって引き抜かれる過程を、図1、2を用いて説明する。図1は連続鋳造機10の断面概略図である。図2は、図1のIIを拡大した図である。 First, a process in which the molten steel 20 supplied from the ladle is pulled out as a slab 30 by using the continuous casting machine 10 for performing the casting end control method 1 will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic cross-sectional view of the continuous casting machine 10. FIG. 2 is an enlarged view of II of FIG.

連続鋳造機10は垂直曲げ型の連続鋳造機であって、レードル(不図示)と、タンディッシュ11と、浸漬ノズル12と、鋳型13と、複数のロール14と、複数の二次冷却スプレー15と、ピンチロール16を備えており、レードルから供給される溶鋼20を連続鋳造し、鋳片30を製造することができる。また、連続鋳造機10は鋳造方向の上流側から下流側に向かって、垂直部、曲げ部、湾曲部、矯正部、水平部を備えている。このような構成は、垂直曲げ型の連続鋳造機の一般的な構成である。 The continuous casting machine 10 is a vertical bending type continuous casting machine, and is a radle (not shown), a tundish 11, a dipping nozzle 12, a mold 13, a plurality of rolls 14, and a plurality of secondary cooling sprays 15. And, the pinch roll 16 is provided, and the molten steel 20 supplied from the radle can be continuously cast to produce the slab 30. Further, the continuous casting machine 10 includes a vertical portion, a bent portion, a curved portion, a straightening portion, and a horizontal portion from the upstream side to the downstream side in the casting direction. Such a configuration is a general configuration of a vertical bending type continuous casting machine.

「垂直部」とは、鋳造経路が垂直(曲率半径が無限大)である部分である。「曲げ部」とは、鋳造経路の曲率半径が無限大より小さく、湾曲部の曲率半径よりも大きい部分である。「湾曲部」とは、鋳造経路の曲率半径が最小である部分であり、マシンごとの固定値が定められている。「矯正部」とは、鋳造経路の曲率半径が湾曲部よりも大きく、無限大よりも小さい部分である。「水平部」とは、鋳造経路が水平(曲率半径が無限大)である部分である。
また、「鋳造方向」とは連続鋳造機10内の溶鋼20が鋳型に供給されてから、ピンチロール16で引き抜かれるまでの移動方向である。「鋳造方向の上流側」とは鋳型13側を意味し、「鋳造方向の下流側」とはピンチロール16側を意味する。
「鋳造経路」とは、ロール14の軸中心間の距離の中点を通る線に沿った経路である。
The "vertical portion" is a portion where the casting path is vertical (radius of curvature is infinite). The "bent portion" is a portion where the radius of curvature of the casting path is smaller than infinity and larger than the radius of curvature of the curved portion. The "curved portion" is a portion where the radius of curvature of the casting path is the minimum, and a fixed value is determined for each machine. The "corrected portion" is a portion where the radius of curvature of the casting path is larger than the curved portion and smaller than infinity. The "horizontal portion" is a portion where the casting path is horizontal (radius of curvature is infinite).
The "casting direction" is a moving direction from when the molten steel 20 in the continuous casting machine 10 is supplied to the mold until it is pulled out by the pinch roll 16. The "upstream side in the casting direction" means the mold 13 side, and the "downstream side in the casting direction" means the pinch roll 16 side.
The "casting path" is a path along a line passing through the midpoint of the distance between the axial centers of the roll 14.

鋳片の引抜は図1、2に記載されているとおりである。まず、レードル(不図示)から供給された溶鋼20(溶融金属)は、タンディッシュ11を介して浸漬ノズル12から鋳型13内に注入される。この際、注入された溶鋼20の外周は水冷されている鋳型13に接触しているため、溶鋼20の外周部には凝固シェル21が形成する。次いで、外側に凝固シェル21が形成された溶鋼20(未凝固鋳片22)は、上下1対に配置された複数のロール14によって支持され、鋳造方向の下流側へ移動しつつ、それぞれのロール14の間に設置された二次冷却スプレー15から噴射されるスプレー水により冷却される。そして、溶鋼20は完全に凝固して鋳片30となり、ピンチロール16により連続鋳造機10から引き抜かれる。 The drawing of the slab is as shown in FIGS. 1 and 2. First, the molten steel 20 (molten metal) supplied from the ladle (not shown) is injected into the mold 13 from the immersion nozzle 12 via the tundish 11. At this time, since the outer periphery of the injected molten steel 20 is in contact with the water-cooled mold 13, a solidified shell 21 is formed on the outer periphery of the molten steel 20. Next, the molten steel 20 (unsolidified slab 22) having the solidified shell 21 formed on the outside is supported by a plurality of rolls 14 arranged in a pair of upper and lower layers, and each roll moves to the downstream side in the casting direction. It is cooled by the spray water sprayed from the secondary cooling spray 15 installed between 14. Then, the molten steel 20 is completely solidified into slabs 30, which are pulled out from the continuous casting machine 10 by the pinch roll 16.

このようにして、溶鋼20について連続鋳造を行い、鋳片30を製造するが、上述したように溶鋼20が供給されている定常鋳造時とは異なり、鋳込終了時においては、鋳片30の最後端(鋳造方向の上流側)となる部分で溶鋼20の供給が終了するので、溶鋼20内部の未凝固溶鋼が漏鋼する虞がある。このため、鋳込終了後には、定常鋳造時とは異なる鋳込終了制御を行う必要がある。 In this way, the molten steel 20 is continuously cast to produce the slab 30, but unlike the steady casting in which the molten steel 20 is supplied as described above, at the end of casting, the slab 30 is produced. Since the supply of the molten steel 20 ends at the rearmost end (upstream side in the casting direction), the unsolidified molten steel inside the molten steel 20 may leak. Therefore, after the casting is completed, it is necessary to perform the casting end control different from that at the time of steady casting.

「漏鋼」とは、凝固収縮による溶鋼の絞り出しやバルジング部の圧下によって鋳片最後端から溶鋼が漏れることである。ボトム漏鋼とも称する。 “Leaked steel” means that molten steel leaks from the rearmost end of a slab due to squeezing of molten steel due to solidification shrinkage or reduction of a bulging portion. Also called bottom leak steel.

[鋳込終了制御方法1]
鋳込終了制御方法1は、鋳込終了後においてロール間隔の縮小や拡大をしなくとも、漏鋼のリスクがなく、生産性の減少を抑えることを目的とし、鋳込終了制御開始時を設定する第1工程S1(以下において、「第1工程S1」ということがある。)と、鋳込終了制御開始時から鋳込終了時まで、所定の条件で連続鋳造機10の制御を行う第2工程S2(以下において、「第2工程S2」ということがある。)と、鋳込終了時から未凝固鋳片22の鋳造方向の上流側の端部が連続鋳造機10の水平部に達するときまで、所定の条件で連続鋳造機10の制御を行う第3工程S3(以下において、「第3工程S3」ということがある。)と、を備えることを特徴とする。図3に鋳込終了制御方法1のフローチャートを示した。
以下に、第1工程S1〜第3工程S3について説明する。また、図4に鋳込終了制御方法1の1つの例を説明するグラフを示した。図4の縦軸は鋳造速度であり、横軸は時間である。
[Casting end control method 1]
The casting end control method 1 sets the start time of the casting end control for the purpose of suppressing the decrease in productivity without the risk of steel leakage even if the roll interval is not reduced or expanded after the casting is completed. The first step S1 (hereinafter, may be referred to as "first step S1") and the second step of controlling the continuous casting machine 10 under predetermined conditions from the start of casting end control to the end of casting. In step S2 (hereinafter, may be referred to as "second step S2") and when the end of the uncured slab 22 on the upstream side in the casting direction reaches the horizontal portion of the continuous casting machine 10 from the end of casting. It is characterized by including a third step S3 (hereinafter, may be referred to as "third step S3") that controls the continuous casting machine 10 under predetermined conditions. FIG. 3 shows a flowchart of the casting end control method 1.
The first step S1 to the third step S3 will be described below. Further, FIG. 4 shows a graph for explaining one example of the casting end control method 1. The vertical axis of FIG. 4 is the casting speed, and the horizontal axis is time.

(第1工程S1)
第1工程S1では、鋳込終了制御開始時Tを設定する。具体的には、鋳込終了時よりも前であり、かつ、レードルからタンディッシュ11への溶鋼20の最終供給後において、下記の工程を行うことにより、鋳込終了制御開始時Tを設定する。「最終供給」とは、レードルからタンディッシュ11への溶鋼20の供給が1回である場合は1回目の供給を意味し、複数回供給する場合は最後の供給を意味する。
設定方法は次のとおりである。
(First step S1)
In the first step S1, set the cast end control at the start T 1. Specifically, T 1 is set at the start of casting end control by performing the following steps before the end of casting and after the final supply of the molten steel 20 from the ladle to the tundish 11. To do. The “final supply” means the first supply when the molten steel 20 is supplied from the ladle to the tundish 11 once, and the last supply when the molten steel 20 is supplied a plurality of times.
The setting method is as follows.

まず、定常鋳造時におけるメニスカスから鋳造経路に沿って水平部に達するまでの距離の半分の長さをAとする。「水平部に達するまで」とは、具体的には、水平部の鋳造方向の上流側の端部に達するまでという意味である。図1においては、矯正部及び水平部の境界に達するまでである。
次に、0.8A以上1.2A以下の長さの鋳片を製造するのに必要な溶融金属の量の範囲から鋳込終了制御開始量を設定する。そして、定常鋳造時における連続鋳造機10のタンディッシュ11内の溶融金属の量が鋳込終了制御開始量になったときを鋳込終了制御開始時Tとして設定する。
一般的には、定常鋳込開始時から鋳込終了時までを定常鋳造時というが、鋳込終了制御方法1における「定常鋳造時」は、定常鋳込開始時から鋳込終了制御開始時までの間のことである。後述するように、鋳込終了制御方法1では、鋳込終了制御開始時T以降の操業条件に、定常鋳造時とは異なる操業条件を用いるためである。
First, let A be half the length of the distance from the meniscus to the horizontal portion along the casting path during steady casting. "Until reaching the horizontal portion" specifically means until reaching the upstream end of the horizontal portion in the casting direction. In FIG. 1, it is until the boundary between the straightening portion and the horizontal portion is reached.
Next, the casting end control start amount is set from the range of the amount of molten metal required to produce a slab having a length of 0.8 A or more and 1.2 A or less. Then, set when the amount of molten metal in tundish 11 of a continuous casting machine 10 during steady-state casting has become the casting end control starting amount as cast end control at the start T 1.
Generally, the period from the start of steady casting to the end of casting is called the steady casting, but the "steady casting" in the casting end control method 1 is from the start of steady casting to the start of casting end control. It is between. As described later, the casting end control method 1, the cast end control at the start T 1 after the operating conditions, in order to use different operating conditions from the steady state casting.

鋳込終了制御開始量を0.8A未満の長さの鋳片を製造するのに必要な溶融金属の量に設定すると、下記(1)〜(3)の操業変動により、鋳込終了制御開始が遅くなり、さらに第2工程以降の未凝固溶鋼の湯面の低下が少なくなるため、漏鋼リスクが増加する。また、鋳込終了制御開始量を1.2Aを超える長さの鋳片を製造するのに必要な溶融金属の量に設定すると、漏鋼防止機能が飽和する一方で、本来鋳片の製造に最適な冷却条件である定常鋳造時の冷却条件とは異なる冷却条件で製造される鋳片が増加するため、非定常な鋳造を行った鋳片(品質が定常部より劣位なスラブ)が多く発生する。
(1)鋳造幅、(2)定常鋳造終了タイミング(タンディシュ11内の溶融金属の量を何t残すか)、(3)鋳造速度(2ストランド以上のマシンの場合は影響有り)等により鋳込終了制御開始時Tが変化するため、タンディシュ11内の溶融金属の量に上記の範囲をもたせている。
When the casting end control start amount is set to the amount of molten metal required to produce a slab with a length of less than 0.8A, the casting end control start due to the operation fluctuations (1) to (3) below. Further, the decrease in the molten metal level of the unsolidified molten steel after the second step is reduced, so that the risk of steel leakage increases. Further, if the casting end control start amount is set to the amount of molten metal required to produce a slab having a length exceeding 1.2A, the steel leakage prevention function is saturated, but the slab is originally produced. Since the number of slabs manufactured under cooling conditions different from the cooling conditions during steady casting, which is the optimum cooling condition, increases, many slabs with unsteady casting (slabs whose quality is inferior to that of the steady part) are generated. To do.
Casting according to (1) casting width, (2) steady casting end timing (how many tons of molten metal is left in the tundish 11), (3) casting speed (affected in the case of a machine with two or more strands), etc. Since T 1 changes at the start of the end control, the amount of molten metal in the tundish 11 has the above range.

ここで、「メニスカス」とは、鋳型13内の溶鋼湯面のことである。Aは定常鋳造時のメニスカスから鋳造経路に沿って水平部に達するまでの距離の半分の長さと定義されているので、連続鋳造機に応じた固有の長さに決定される。 Here, the "meniscus" is the molten steel surface in the mold 13. Since A is defined as half the length of the distance from the meniscus during steady casting to reach the horizontal portion along the casting path, it is determined to be a unique length according to the continuous casting machine.

(第2工程S2)
第2工程S2では、鋳込終了制御開始時Tから鋳込終了時Tまで所定の条件で連続鋳造機10の制御を行う。具体的には、鋳造経路の二次冷却水量を、鋳込終了制御開始時よりも前の二次冷却水量の70%以上90%以下の割合に制御し、かつ、鋳造速度を1.5m/min以上1.8m/min以下に制御する。
図4では、鋳造速度を1.7m/minに設定している。
(Second step S2)
In the second step S2, the continuous casting machine 10 is controlled under predetermined conditions from T 1 at the start of casting end control to T 2 at the end of casting. Specifically, the amount of secondary cooling water in the casting path is controlled to a ratio of 70% or more and 90% or less of the amount of secondary cooling water before the start of casting end control, and the casting speed is 1.5 m /. Control to min or more and 1.8 m / min or less.
In FIG. 4, the casting speed is set to 1.7 m / min.

「鋳込終了時」とはタンディッシュ11から鋳型13内へ供給する溶鋼が無くなった時を言う。なお、「鋳込終了時」は溶鋼の有無で定義されるので、鋳込終了時にタンディッシュ11内にはスラグが残っている。残る量は、操業条件によるが、1.0〜5.0ton程度である。「二次冷却水量」とは二次冷却スプレー15から噴射される水の量である。 “At the end of casting” means when the molten steel supplied from the tundish 11 into the mold 13 is exhausted. Since "at the end of casting" is defined by the presence or absence of molten steel, slag remains in the tundish 11 at the end of casting. The remaining amount is about 1.0 to 5.0 ton, depending on the operating conditions. The "secondary cooling water amount" is the amount of water sprayed from the secondary cooling spray 15.

第2工程S2において、鋳造経路の二次冷却水量を、定常鋳造時の二次冷却水量の70%以上90%以下の割合に制御することにより、凝固シェル21が薄くなり、引け巣長さが伸び、鋳造終了時の未凝固溶鋼体積が増加する。未凝固溶鋼体積が増加すると、鋳造終了時Tの凝固収縮により未凝固溶鋼の湯面が低下するため、漏鋼の発生確率を低下させることができる。 In the second step S2, by controlling the amount of secondary cooling water in the casting path to a ratio of 70% or more and 90% or less of the amount of secondary cooling water during steady casting, the solidified shell 21 becomes thinner and the shrinkage cavity length becomes shorter. Elongation increases the volume of unsolidified molten steel at the end of casting. When unsolidified molten steel to increase the volume, since the molten metal surface of the unsolidified molten steel is decreased by solidification shrinkage of the casting at the end T 2, it is possible to reduce the probability of occurrence of Mohagane.

また、第2工程S2において、鋳造速度を1.5m/min以上1.8m/min以下に制御することにより、引け巣長さ過大による鋳片中心割れを防止でき、かつ漏鋼が発生しない引け巣長さを確保することができる。 Further, in the second step S2, by controlling the casting speed to 1.5 m / min or more and 1.8 m / min or less, it is possible to prevent cracking at the center of the slab due to an excessive shrinkage cavity length, and shrinkage without steel leakage. The nest length can be secured.

「引け巣」とは、一般的には溶鋼の凝固に伴う収縮により生成する空孔であり、鋳片の最後端部に生じる。 A "shrinkage cavity" is a hole generally formed by shrinkage of molten steel due to solidification, and is generated at the rearmost end of a slab.

(第3工程S3)
第3工程S3では、鋳込終了時Tから未凝固鋳片22の鋳造方向の上流側の端部が連続鋳造機10の水平部に達するときTまで、所定の条件で連続鋳造機10の制御を行う。具体的には、第2工程S2で設定した二次冷却水量で未凝固鋳片22を冷却し、かつ、鋳造速度を1.2m/min以上1.4m/min以下に制御する。
図4では、鋳造速度を1.3m/minに設定している。
(Third step S3)
In the third step S3, the continuous casting machine 10 is operated under predetermined conditions from T 2 at the end of casting to T 3 when the upstream end of the uncoiled slab 22 in the casting direction reaches the horizontal portion of the continuous casting machine 10. To control. Specifically, the unsolidified slab 22 is cooled by the amount of secondary cooling water set in the second step S2, and the casting speed is controlled to 1.2 m / min or more and 1.4 m / min or less.
In FIG. 4, the casting speed is set to 1.3 m / min.

第3工程において、第2工程S2で設定した二次冷却水量で未凝固鋳片22を冷却し、かつ、鋳造速度を1.2m/min以上1.4m/min以下に制御することにより、未凝固鋳片22の鋳造方向の上流側の端部が地面と水平に近い角度まで傾いた際に、未凝固部がわずかとなるため、漏鋼発生確率が低下する。図1においては、例えば矯正部付近での漏鋼発生確率が低下する。 In the third step, the unsolidified slab 22 is cooled by the amount of secondary cooling water set in the second step S2, and the casting speed is controlled to 1.2 m / min or more and 1.4 m / min or less. When the end portion of the solidified slab 22 on the upstream side in the casting direction is tilted to an angle close to horizontal to the ground, the unsolidified portion becomes small, so that the probability of steel leakage is reduced. In FIG. 1, for example, the probability of steel leakage near the straightening portion decreases.

以上のように、鋳込終了制御方法1は、第1工程S1〜第3工程S3を備えることにより、ロール間隔の縮小や拡大をしなくとも、漏鋼のリスクがなく、生産性の減少を抑えることが可能である。すなわち、鋳込終了制御方法1を実施する際には、連続鋳造機10に備えられるロール14のロール間隔の拡大又は縮小を行わなくてよい。 As described above, the casting end control method 1 includes the first step S1 to the third step S3, so that there is no risk of steel leakage and the productivity is reduced without reducing or expanding the roll interval. It is possible to suppress it. That is, when the casting end control method 1 is carried out, it is not necessary to increase or decrease the roll interval of the roll 14 provided in the continuous casting machine 10.

また、鋳込制御方法1において、タンディッシュ11内の溶融金属の溶鋼加熱度が10℃以上45℃以下であることがよい。連続鋳造操業の一般論としては、タンディッシュ11内の溶融金属の溶鋼加熱度は10〜60℃程度であるが、溶鋼加熱度が低すぎると凝固が速くなりすぎて、浸漬ノズルが詰まる等の操業不良が生じ、円滑な操業ができなくなる。一方で、溶鋼加熱度が高すぎると、溶鋼の凝固が完了せず、漏鋼のリスクが高くなる。よって、鋳込制御方法1においては、タンディッシュ11内の溶融金属の溶鋼加熱度を10℃以上45℃以下に設定することが良い。
タンディッシュ11内の溶融金属の溶鋼加熱度が10℃以上45℃以下であることにより、操業不良及び漏鋼のリスクが低減され、さらに引け巣長さが鋳造速度と二次冷却水量のみに依存した状態にすることができる(引け巣長さをコントロールできる)。
Further, in the casting control method 1, the degree of heating of the molten metal in the tundish 11 is preferably 10 ° C. or higher and 45 ° C. or lower. As a general theory of continuous casting operation, the molten steel heating degree of the molten metal in the tundish 11 is about 10 to 60 ° C., but if the molten steel heating degree is too low, the solidification becomes too fast and the immersion nozzle is clogged. Operation failure will occur and smooth operation will not be possible. On the other hand, if the degree of heating of the molten steel is too high, the solidification of the molten steel is not completed and the risk of steel leakage increases. Therefore, in the casting control method 1, it is preferable to set the degree of heating of the molten metal in the tundish 11 to 10 ° C. or higher and 45 ° C. or lower.
Since the molten steel heating degree of the molten metal in the tundish 11 is 10 ° C. or higher and 45 ° C. or lower, the risk of poor operation and steel leakage is reduced, and the shrinkage cavity length depends only on the casting speed and the amount of secondary cooling water. Can be in a closed state (the length of the shrinkage nest can be controlled).

「溶鋼加熱度」とは、実際に測定される溶鋼温度から平衡状態図等により求められる液相線温度を減じた温度差を意味する。「液相線温度」とは、材料が固液共存域から液相に変態する時の温度である。各成分組成により液相線温度は異なる。鋼の液相線温度は、周知の平衡状態図や熱力学データから知見することができる。材料の温度を上げてゆくと、純物質では固体から液体に変態する点が融点である。鋼は純物質ではないので、固体と液体の間に、固液共存域を有する。 The "molten steel heating degree" means a temperature difference obtained by subtracting the liquidus temperature obtained from an equilibrium state diagram or the like from the actually measured molten steel temperature. The "liquidus line temperature" is the temperature at which the material transforms from the solid-liquid coexistence region to the liquid phase. The liquidus temperature differs depending on the composition of each component. The liquidus temperature of steel can be found from well-known equilibrium diagrams and thermodynamic data. The melting point is the point at which a pure substance transforms from a solid to a liquid as the temperature of the material is raised. Since steel is not a pure substance, it has a solid-liquid coexistence zone between solid and liquid.

また、鋳込終了制御方法1において、製造する鋳片の板幅方向の長さは1450mm以下であることがよい。これにより、冷却材を投入しなくとも、漏鋼を防止することができる。 Further, in the casting end control method 1, the length of the slab to be manufactured in the plate width direction is preferably 1450 mm or less. As a result, steel leakage can be prevented without adding a coolant.

以上より、垂直曲げ型の連続鋳造機10を用い行う鋳込終了制御方法1について説明した。このように、本発明の鋳込終了制御方法は垂直曲げ型の連続鋳造機に適用可能である。ただし、本発明に適用可能な連続鋳造機はこれに限定されるものではない。例えば、鋳造経路に水平部を有する湾曲型の連続鋳造機を用いてもよい。湾曲型の連続鋳造機を用いたとしても、本発明の鋳込終了制御方法は同様の効果を奏する。 From the above, the casting end control method 1 performed by using the vertical bending type continuous casting machine 10 has been described. As described above, the casting end control method of the present invention is applicable to the vertical bending type continuous casting machine. However, the continuous casting machine applicable to the present invention is not limited to this. For example, a curved continuous casting machine having a horizontal portion in the casting path may be used. Even if a curved continuous casting machine is used, the casting end control method of the present invention has the same effect.

上記した鋳込終了制御方法を用いて、板幅方向の長さが1450mm以下である鋳片を製造した。鋳片の板幅方向の長さ以外の条件については、様々な条件を試みた。この際、タンディシュ内の溶融金属の溶鋼加熱度が10℃以上45℃以下になるように設定した。また、連続鋳造機のロールのロール間隔の拡大又は縮小は行わずに試験を行った。 Using the casting end control method described above, a slab having a length in the plate width direction of 1450 mm or less was produced. Various conditions were tried for conditions other than the length of the slab in the plate width direction. At this time, the degree of heating of the molten metal of the molten metal in the tundish was set to be 10 ° C. or higher and 45 ° C. or lower. In addition, the test was conducted without increasing or decreasing the roll interval of the rolls of the continuous casting machine.

その結果、3000回の鋳造操業実績において、漏鋼発生回数は0回であった。
特許文献4に溶鋼発生率が1%であることが記載されていることから、本発明の鋳込終了制御方法は漏鋼のリスクが非常に低いことが分かった。
As a result, the number of steel leaks was 0 in the 3000 casting operations.
Since Patent Document 4 describes that the molten steel generation rate is 1%, it was found that the casting end control method of the present invention has a very low risk of steel leakage.

10 連続鋳造機
11 タンディシュ
12 浸漬ノズル
13 鋳型
14 ロール
15 二次冷却スプレー
16 ピンチロール
20 溶鋼
21 凝固シェル
22 未凝固鋳片
30 鋳片
10 Continuous casting machine 11 Tandish 12 Immersion nozzle 13 Mold 14 Roll 15 Secondary cooling spray 16 Pinch roll 20 Molten steel 21 Solidified shell 22 Unsolidified slab 30 Shard

Claims (4)

鋳造経路に水平部を有する垂直曲げ型もしくは湾曲型の連続鋳造機を用いて、鋳片を製造する連続鋳造の鋳込終了制御方法であって、
定常鋳造時におけるメニスカスから前記鋳造経路に沿って前記水平部に達するまでの距離の半分の長さをAとした場合に、0.8A以上1.2A以下の長さの前記鋳片を製造するのに必要な溶融金属の量の範囲から鋳込終了制御開始量を設定し、前記定常鋳造時における前記連続鋳造機のタンディッシュ内の溶融金属の量が鋳込終了制御開始量になったときを鋳込終了制御開始時として設定する第1工程と、
前記鋳込終了制御開始時から鋳込終了時まで、前記鋳造経路の二次冷却水量を前記定常鋳造時の前記二次冷却水量の70%以上90%以下の割合に制御し、かつ、鋳造速度を1.5m/min以上1.8m/min以下に制御する第2工程と、
前記鋳込終了時から未凝固鋳片の鋳造方向の上流側の端部が前記水平部に達するときまで、前記第2工程で設定した前記二次冷却水量で前記未凝固鋳片を冷却し、かつ、鋳造速度を1.2m/min以上1.4m/min以下に制御する第3工程と、を備える、
鋳込終了制御方法。
A casting end control method for continuous casting in which slabs are manufactured using a vertical bending type or curved type continuous casting machine having a horizontal portion in the casting path.
When the length of half of the distance from the meniscus to reach the horizontal portion along the casting path during steady casting is A, the slab having a length of 0.8A or more and 1.2A or less is manufactured. When the casting end control start amount is set from the range of the amount of molten metal required for the casting end control, and the amount of molten metal in the tundish of the continuous casting machine at the time of the steady casting reaches the casting end control start amount. In the first step, which is set as the start of casting end control,
From the start of the casting end control to the end of casting, the amount of secondary cooling water in the casting path is controlled to a ratio of 70% or more and 90% or less of the amount of secondary cooling water in the steady casting, and the casting speed. The second step of controlling the speed to 1.5 m / min or more and 1.8 m / min or less, and
From the end of casting to the time when the upstream end of the unsolidified slab in the casting direction reaches the horizontal portion, the unsolidified slab is cooled with the secondary cooling water amount set in the second step. It also includes a third step of controlling the casting speed to 1.2 m / min or more and 1.4 m / min or less.
Casting end control method.
前記鋳片の板幅方向の長さが1450mm以下である、請求項1に記載の鋳込終了制御方法。 The casting end control method according to claim 1, wherein the length of the slab in the plate width direction is 1450 mm or less. 前記タンディッシュ内の前記溶融金属の溶鋼加熱度が10℃以上45℃以下である、請求項1又は2に記載の鋳込終了制御方法。 The casting end control method according to claim 1 or 2, wherein the molten steel heating degree of the molten metal in the tundish is 10 ° C. or higher and 45 ° C. or lower. 前記連続鋳造機に備えられるロールのロール間隔の拡大又は縮小を行わない、請求項1〜3のいずれか1項に記載の鋳込終了制御方法。 The casting end control method according to any one of claims 1 to 3, wherein the roll interval of the rolls provided in the continuous casting machine is not expanded or reduced.
JP2019088420A 2019-05-08 2019-05-08 Casting end control method Active JP7234785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019088420A JP7234785B2 (en) 2019-05-08 2019-05-08 Casting end control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019088420A JP7234785B2 (en) 2019-05-08 2019-05-08 Casting end control method

Publications (2)

Publication Number Publication Date
JP2020182965A true JP2020182965A (en) 2020-11-12
JP7234785B2 JP7234785B2 (en) 2023-03-08

Family

ID=73044550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019088420A Active JP7234785B2 (en) 2019-05-08 2019-05-08 Casting end control method

Country Status (1)

Country Link
JP (1) JP7234785B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184049A (en) * 1982-04-23 1983-10-27 Nippon Steel Corp Continuous casting method of steel in curbed type
JPH05261501A (en) * 1992-03-17 1993-10-12 Sumitomo Metal Ind Ltd Method for completing high speed casting in continuous casting
JPH05269556A (en) * 1992-03-25 1993-10-19 Sumitomo Metal Ind Ltd Method for completing casting in continuous casting
JPH06262323A (en) * 1991-09-02 1994-09-20 Sumitomo Metal Ind Ltd Method for controlling completion of high velocity casting in continuous casting
JPH09122845A (en) * 1995-11-07 1997-05-13 Sumitomo Metal Ind Ltd Method for completing casting in continuous casting
JPH09314289A (en) * 1996-05-24 1997-12-09 Sumitomo Metal Ind Ltd Method for completing casting in continuous casting
JPH10244347A (en) * 1997-02-28 1998-09-14 Sumitomo Metal Ind Ltd Method for completing casting at fixed drawing speed in continuous casting
JP2009291814A (en) * 2008-06-05 2009-12-17 Kobe Steel Ltd Method for casting slab
JP2016179485A (en) * 2015-03-24 2016-10-13 株式会社神戸製鋼所 Continuous casting method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184049A (en) * 1982-04-23 1983-10-27 Nippon Steel Corp Continuous casting method of steel in curbed type
JPH06262323A (en) * 1991-09-02 1994-09-20 Sumitomo Metal Ind Ltd Method for controlling completion of high velocity casting in continuous casting
JPH05261501A (en) * 1992-03-17 1993-10-12 Sumitomo Metal Ind Ltd Method for completing high speed casting in continuous casting
JPH05269556A (en) * 1992-03-25 1993-10-19 Sumitomo Metal Ind Ltd Method for completing casting in continuous casting
JPH09122845A (en) * 1995-11-07 1997-05-13 Sumitomo Metal Ind Ltd Method for completing casting in continuous casting
JPH09314289A (en) * 1996-05-24 1997-12-09 Sumitomo Metal Ind Ltd Method for completing casting in continuous casting
JPH10244347A (en) * 1997-02-28 1998-09-14 Sumitomo Metal Ind Ltd Method for completing casting at fixed drawing speed in continuous casting
JP2009291814A (en) * 2008-06-05 2009-12-17 Kobe Steel Ltd Method for casting slab
JP2016179485A (en) * 2015-03-24 2016-10-13 株式会社神戸製鋼所 Continuous casting method

Also Published As

Publication number Publication date
JP7234785B2 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
JP4948225B2 (en) Method for producing a slab having a sound internal structure by controlling the secondary cooling specific water amount of each continuous casting by strand
JP2020182965A (en) Cast completion-controlling method
JP5018441B2 (en) Method of drawing slab after completion of casting in continuous casting
JP4684204B2 (en) How to end continuous casting
JP3186631B2 (en) Termination method of constant speed drawing casting in continuous casting
JP2009291814A (en) Method for casting slab
JP7273307B2 (en) Steel continuous casting method
KR100986931B1 (en) Continuous casting method for reducing width deviation of ferritic stainless steel last-slab
JP7332870B2 (en) Extraction method of slab
WO2024004364A1 (en) Steel continuous casting method
WO1997000748A1 (en) Method of continuously casting thin cast pieces
KR102277295B1 (en) Continuous casting process of steel material by controlling ends of refractory in submerged entry nozzle
KR101243211B1 (en) Twin roll strip casting process of martensitic stainless strip
JPS58184049A (en) Continuous casting method of steel in curbed type
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
JP2001018042A (en) Continuous casting method
JPH11156509A (en) Continuous casting method
JP2770691B2 (en) Steel continuous casting method
JP2001150104A (en) Method for continuously casting steel
JP2720692B2 (en) High-speed casting end method in continuous casting
JP3063763B1 (en) Level control method and level control device for continuous casting machine
JP2020006408A (en) Pull-out method for cast slab
JP2903844B2 (en) Method of finishing casting in continuous casting
JPH0910899A (en) Method for controlling completion of casting in continuous casting
JP2003285146A (en) Continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230206

R151 Written notification of patent or utility model registration

Ref document number: 7234785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151