JPH0910899A - Method for controlling completion of casting in continuous casting - Google Patents

Method for controlling completion of casting in continuous casting

Info

Publication number
JPH0910899A
JPH0910899A JP16057595A JP16057595A JPH0910899A JP H0910899 A JPH0910899 A JP H0910899A JP 16057595 A JP16057595 A JP 16057595A JP 16057595 A JP16057595 A JP 16057595A JP H0910899 A JPH0910899 A JP H0910899A
Authority
JP
Japan
Prior art keywords
casting
cooling water
speed
mold
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16057595A
Other languages
Japanese (ja)
Inventor
Kazuto Sekino
一人 関野
Isao Nozaki
勇雄 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16057595A priority Critical patent/JPH0910899A/en
Publication of JPH0910899A publication Critical patent/JPH0910899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To safely and surely prevent steam explosion caused by the leakage of molten steel and the spray water stream due to supercooling and to surely eliminate internal crack of a cast slab due to the shortage of cooling in the completion of a fast casting capable of improving productivity and quality, etc. CONSTITUTION: At the time of drawing out the cast slab after completing the casting while holding the ordinary casting speed without executing a deceleration of the casting speed and stopping and a treating work of the bottom part at the uppermost part of the cast slab when a continuous casting is completed, in the interval between S0 and S1 , at least secondary cooling water quantity is reduced to the lower limit or above where the interval crack due to the shortage of cooling is not caused and at the same time, the red-heated refractory 21 is temporarily submerged into the bottommost part. By this method, a small quantity of the leaked steel is held by the solidified shell (b) at the bottommost part and the spray water stream is interrupted by the solidified shell (b) so that a distance between the solidified shell (b) at the bottommost part and the molten metal surface (a) at the bottommost part just below a mold become a prescribed distance T.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、タンディッシュ内の
溶融金属を連続的に鋳込んで鋳片とする連続鋳造機にお
ける鋳込終了制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a casting completion control method in a continuous casting machine in which molten metal in a tundish is continuously cast into a slab.

【0002】[0002]

【従来の技術】連続鋳造は、レードル内の溶鋼をタンデ
ィッシュを介してモールドに連続して鋳込み、鋳型とこ
れに続くガイドロール群の二次冷却帯で冷却して凝固シ
ェルを形成し、完全凝固した鋳片をピンチロールで引き
抜いているが、鋳造末期においては溶鋼の供給がなくな
るため、特別な制御で鋳込みを終了する必要がある。
2. Description of the Related Art In continuous casting, molten steel in a ladle is continuously cast into a mold through a tundish and cooled in a secondary cooling zone of a mold and a group of guide rolls following it to form a solidified shell. Although the solidified slab is pulled out by a pinch roll, the molten steel is no longer supplied at the end of casting, so it is necessary to finish casting with special control.

【0003】従来のこの種の鋳込終了方法としては、連
続鋳造機におけるオートストップ方法(特開昭62-24848
号公報),鋳込終了制御方法(特開昭 62-124056号〔特公
平 3-54025〕号公報),帯鋼鋳造装置の鋳造作業終了方法
(特開昭 62-203652号公報)などが一般に知られてい
る。以下、これらの方法を従来法1とする。
As a conventional casting end method of this type, an automatic stop method in a continuous casting machine (Japanese Patent Laid-Open No. 62-24848)
Gazette), casting end control method (JP-A-62-124056 [JP-B 3-54025]), casting operation end method of strip steel casting apparatus (JP-A-62-203652), etc. Are known. Hereinafter, these methods are referred to as conventional method 1.

【0004】この従来法1においては、まず予め決定さ
れた減速パターンを使用し、鋳込終了前におけるタンデ
ィシュ内の残鋼重量または残鋼レベルに応じて鋳込速度
を減速し、タンディッシュ内に所定の少量の溶鋼を残し
て鋳込みを停止させている(図4(b)参照)。次に、
この鋳込停止後、図4(a)に示すように、鋳型内残量
溶鋼の最後端部すなわち所謂最ボトム部へ冷却材(金属
粒,金属片,水など)を投入し、この冷却材で鋳型内の
ボトム部を凝固させる、所謂ボトム処理作業を行い、そ
の後、引抜き速度を適当に増速して引き抜いている(図
4(b)参照)。
In this conventional method 1, first, a predetermined deceleration pattern is used, the pouring speed is decelerated according to the weight or the level of the remaining steel in the tundish before the end of the pouring, and the tundish is stored. Casting is stopped by leaving a predetermined small amount of molten steel (see FIG. 4 (b)). next,
After the pouring is stopped, as shown in FIG. 4 (a), a coolant (metal particles, metal pieces, water, etc.) is charged to the last end portion of the molten steel remaining in the mold, that is, the so-called bottom portion, and the coolant is The so-called bottom processing work is performed to solidify the bottom portion in the mold, and then the drawing speed is appropriately increased to carry out the drawing (see FIG. 4 (b)).

【0005】しかし、これら減速終了の従来法1では、
鋳込終了前に鋳込速度を減速するので、連続鋳造機の
生産性が低下する、タンディッシュ残鋼鋳造時間が長
くなり、残溶鋼の温度低下が大きくなって、最終鋳片の
品質が悪化する、減速により鋳片のクレータエンド
(未凝固部先端)位置が移動し、中心偏析が悪化する、
ボトム処理作業を必要とするため、作業負荷が大き
く、しかも冷却材の混入で最終鋳片の品質が悪化し、ま
た冷却材購入コストがかかる、ボトム処理作業時に鋳
込みが停止するため、ガイドロール間で鋳片バルジング
が増大し、引抜再開後、未凝固溶鋼が絞り出しにより最
ボトム部から漏鋼することがある。また、鋳込終了時に
連鋳機内にある鋳片の温度が下がり、熱延へのホットチ
ャージやダイレクトロールの実施時に不利となる。
However, in the conventional method 1 for ending the deceleration,
Since the casting speed is reduced before the end of casting, the productivity of the continuous casting machine is reduced, the tundish residual steel casting time is lengthened, the temperature drop of the residual molten steel becomes large, and the quality of the final slab deteriorates. Yes, the deceleration moves the crater end (tip of the unsolidified portion) position of the slab, and the center segregation deteriorates
Since bottom processing work is required, the work load is large, the quality of the final slab deteriorates due to the mixing of coolant, and the cost of purchasing the coolant is high. As a result, the slab bulging increases, and after restarting the drawing, the unsolidified molten steel may leak from the bottommost portion due to squeezing. Further, the temperature of the slab in the continuous casting machine is lowered at the end of casting, which is disadvantageous at the time of performing hot charging for hot rolling or direct roll.

【0006】この対応策として、先に本出願人は、連続
鋳造における高速鋳込み終了制御方法(特開平6-262323
号公報〔特願平3-221702号〕) を出願している。以下、
この方法を従来法2とする。
As a countermeasure against this, the present applicant has previously proposed that a method for controlling high-speed pouring end in continuous casting (Japanese Patent Laid-Open No. 6-262323).
Japanese patent application [Japanese Patent Application No. 3-221702]). Less than,
This method is referred to as Conventional Method 2.

【0007】この従来法2においては、鋳込終了前の鋳
込速度の減速・停止作業やボトム処理作業を廃止し、通
常の鋳込速度を保持したまま鋳込みを終了し、その後、
引抜速度を増速して鋳片を引き抜いている(図4(C)
参照)。また、この従来法2では、ボトム部の凝固を鋳
型直下の二次冷却水によって行い、この鋳型直下におけ
る二次冷却水の最適制御化と、鋳込終了後の引抜速度増
速パターンの最適化とにより、ボトム部からの漏鋼を防
止している。
In this conventional method 2, the work of decelerating / stopping the pouring speed before the end of pouring and the bottom processing work are abolished, and the pouring is ended while maintaining the normal pouring speed, and thereafter,
The slab is pulled out by increasing the drawing speed (Fig. 4 (C)).
reference). Further, in this conventional method 2, solidification of the bottom portion is performed by the secondary cooling water immediately below the mold, and the optimal control of the secondary cooling water immediately below this mold and the optimization of the drawing speed increasing pattern after completion of the casting are performed. This prevents steel leakage from the bottom.

【0008】しかし、この高速終了の従来法2は、前述
した従来法1の生産性や品質上の問題点などを大幅に解
決したものではあるが、ボトム部の漏鋼を防止するの
に、鋳型直下の二次冷却水による凝固促進を行う必要が
あるため、ボトム部の漏鋼頻度が上昇する問題がある。
即ち、タンディッシュから溶融金属すなわち熱源が供給
されている時と同等の二次冷却水量でボトム部を冷却す
ると、過冷却による凝固シェルの変形が発生し、これに
より未凝固溶鋼が上方に押し出され、漏鋼(ボトム吹き
上げ)が発生する問題がある(図2(b)参照)。ま
た、この二次冷却水が溶融パウダーや溶鋼内部に浸入
し、水蒸気爆発を起こすこともある。
However, although the conventional method 2 of high-speed termination has largely solved the problems in productivity and quality of the conventional method 1 described above, in order to prevent steel leakage at the bottom, Since it is necessary to accelerate the solidification by the secondary cooling water just below the mold, there is a problem that the frequency of steel leakage at the bottom increases.
That is, if the bottom portion is cooled with the same amount of secondary cooling water as when the molten metal, that is, the heat source is being supplied from the tundish, the solidified shell is deformed due to overcooling, which causes the unsolidified molten steel to be extruded upward. However, there is a problem that steel leakage (bottom blow-up) occurs (see FIG. 2B). In addition, this secondary cooling water may penetrate into the molten powder or molten steel and cause a steam explosion.

【0009】この問題を解決すべく、特開平5-269556号
公報(特願平 4-67107号) では、最ボトム位置がS0 (
メニスカス)〜S1(凝固シェル厚が充分である位置) 間
において、ボトム部の冷却水量を凝固シェルが変形しな
いように減少させ、未凝固溶鋼の絞り出しによる吹き上
げの発生を防止している。具体的には、メニスカスS0
からの距離によって異なるが、モールド冷却水量を、例
えば通常鋳込み時の0%〜98%に抑制し、特に二次冷
却帯のスプレー冷却水量を、凝固シェルに変形を与えな
いような冷却水量、例えば通常鋳込み時の0%〜30%
に抑制している。以下、この方法を従来法3とする。
In order to solve this problem, in Japanese Unexamined Patent Publication No. 5-269556 (Japanese Patent Application No. 4-67107), the most bottom position is S 0 (
Between the meniscus) and S 1 (the position where the thickness of the solidified shell is sufficient), the amount of cooling water at the bottom is reduced so that the solidified shell is not deformed, and blown up due to squeezing of unsolidified molten steel is prevented. Specifically, the meniscus S 0
Depending on the distance from, the mold cooling water amount is suppressed to, for example, 0% to 98% at the time of normal casting, and particularly, the spray cooling water amount in the secondary cooling zone is set to a cooling water amount that does not deform the solidification shell, for example, 0% to 30% of normal casting
Is suppressed. Hereinafter, this method is referred to as Conventional Method 3.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、モール
ド冷却水量および二次冷却水量を減少させる従来法3に
おいて、凝固シェルの収縮変形を防止するためには、最
ボトム位置から相当な長さのスラブに対して、シェル厚
さ,シェル温度を正確に推定し、収縮力と静鉄圧がバラ
ンスするように冷却水量を制御する必要がある。具体的
には、スラブ長さは、S1 ≦( T1/K)2 0 /4[T
1:モールド厚み(mm), V0:鋳造速度(m/min),K: 定数(m
m/min1/2) ]の式を満たすS1 で求められ、例えばT1
=250mm, V0 =1.5m/min ,K=27mm/min1/2
とすると、最長32mのスラブ長さとなる。
However, in the conventional method 3 for reducing the mold cooling water amount and the secondary cooling water amount, in order to prevent the shrinkage deformation of the solidified shell, a slab having a considerable length from the bottom position is used. On the other hand, it is necessary to accurately estimate the shell thickness and shell temperature and control the amount of cooling water so that the contraction force and the static iron pressure are balanced. Specifically, the slab length is S 1 ≤ (T 1 / K) 2 V 0/4 [T
1 : Mold thickness (mm), V 0 : Casting speed (m / min), K: Constant (m
m / min 1/2 )], S 1 that satisfies the formula, for example, T 1
= 250mm, V 0 = 1.5m / min, K = 27mm / min 1/2
Then, the maximum slab length is 32 m.

【0011】このため、鋳造速度・鋳片サイズ・二次冷
却パターン・鋼種(成分)に応じ、毎回コンピューター
による複雑な計算を行っても、計算誤差および操業(二
次冷却水量・水温など)のばらつきで多少の過冷却が生
じる場合が起こり、凝固シェル収縮による吹き上げを完
全に防止することができない。また、これらばらつきを
吸収するほど冷却水を過剰に低下させると、逆に凝固シ
ェルのロール間バルジングが増加し、内部割れが発生す
ることもある。
Therefore, even if a complicated calculation is performed by a computer every time according to the casting speed, the slab size, the secondary cooling pattern, and the steel type (component), the calculation error and the operation (secondary cooling water amount, water temperature, etc.) Due to variations, some supercooling may occur, and blow-up due to shrinkage of the solidified shell cannot be completely prevented. Further, if the cooling water is excessively lowered to absorb these variations, conversely the bulging between the rolls of the solidified shell may increase and internal cracking may occur.

【0012】この発明は、前述のような問題点を解消す
べくなされたもので、その目的は、生産性や品質等の向
上を図れる所謂高速鋳込終了において、過冷却による凝
固シェル変形によって生じる漏鋼およびスプレー水浸入
による水蒸気爆発を完全に確実に防止することができ、
しかも冷却不足による鋳片内部割れも確実に解消するこ
とのできる鋳込終了制御方法を提供することにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to cause solidification shell deformation due to supercooling at the end of so-called high-speed casting which can improve productivity, quality and the like. It is possible to completely and reliably prevent steam explosion due to steel leakage and spray water intrusion.
Moreover, it is an object of the present invention to provide a pouring end control method capable of reliably eliminating internal cracks in a cast due to insufficient cooling.

【0013】[0013]

【課題を解決するための手段】この発明に係る鋳込終了
制御方法は、タンディッシュ内の溶融金属を連続的に鋳
込んで鋳片とする連続鋳造機の鋳込終了時において、鋳
造速度の減速または停止と、鋳片の最後端部であるボト
ム部の処理作業を行うことなく、通常の鋳造速度を保持
したまま鋳込みを終了して鋳片を引き抜く際に、二次冷
却水の制御を行うと同時に、鋳片最上端のボトム部の湯
面をモールド直下においてボトム部の凝固シェル上端よ
り所定量以上だけ下方に位置するように制御することを
特徴とする。即ち、以下に示すような各制御を行う。
SUMMARY OF THE INVENTION A pouring end control method according to the present invention is a method of controlling a pouring speed at the end of pouring of a continuous casting machine in which molten metal in a tundish is continuously cast into slabs. Without slowing down or stopping and processing the bottom part, which is the last end of the slab, to control the secondary cooling water when the casting is completed and the slab is withdrawn while maintaining the normal casting speed. At the same time, the molten metal surface of the bottom portion of the uppermost end of the slab is controlled to be positioned below the upper end of the solidified shell of the bottom portion by a predetermined amount or more immediately below the mold. That is, the following controls are performed.

【0014】(1) 冷却水の制御に関しては、従来法3と
同様に、ボトム部の極度な過冷収縮を防止するため、図
1(a)に示すように、鋳込終了時にメニスカスS0
凝固シェル厚が十分である位置S1 でのモールド2の冷
却水量およびスプレーノズル4による二次冷却水量を、
図1(c),(d)に示すように、通常時のQ3 ,Q4
からQ1 ,Q2 へそれぞれ減少させる。ここで、特に二
次冷却水量は、図3(a)に示すように、スプレー冷却
水不足に起因するバルジングによる内部割れが発生しな
いような水量以上で、かつ最ボトム部漏鋼が生じても少
量であるような減少した水量とする。なお、モールド冷
却水量はそのままで二次冷却水量だけを減少させるよう
にしてもよい。
[0014] (1) with respect to control of the cooling water, similarly to Conventional Method 3, in order to prevent extreme supercooling shrinkage of the bottom portion, as shown in FIG. 1 (a), the meniscus S 0 at casting ended ~
The cooling water amount of the mold 2 and the secondary cooling water amount by the spray nozzle 4 at the position S 1 where the solidified shell thickness is sufficient are
As shown in FIGS. 1 (c) and 1 (d), Q 3 and Q 4 in the normal state
To Q 1 and Q 2 , respectively. Here, in particular, as shown in FIG. 3 (a), the secondary cooling water amount is equal to or more than the amount of water that does not cause internal cracking due to bulging due to insufficient spray cooling water, and is small even if the bottommost steel leak occurs. The reduced water volume is as follows. The mold cooling water amount may be left unchanged and only the secondary cooling water amount may be decreased.

【0015】(2) ボトム部の湯面の位置制御は、鋳込終
了時に、図1(a),(b)に示すように、モールド内
溶鋼Aに十分予熱(例えば、1200°C)した耐火物
21を引抜速度・スラブサイズに対応した下降速度Vm
で浸漬させ、鋳込終了後〜所定の引抜長L1 までモール
ド内湯面レベルを通常鋳込時と同レベルS0 に保持す
る。その後、耐火物21の浸漬をS2 位置で停止させ
る。これにより、引抜の進行に伴い、浸漬していた耐火
物21が溶鋼A内から抜き出され、最ボトム部湯面が通
常の湯面下降量より耐火物体積分だけ大きく下降する。
これにより、鋳型直下では、最ボトム部凝固シェルbの
上端に対して最ボトム部湯面aが所定量Tだけ低下する
ことになる。
(2) As for the position control of the molten metal surface of the bottom part, as shown in FIGS. 1 (a) and 1 (b), the molten steel A in the mold was sufficiently preheated (for example, 1200 ° C.) at the end of casting. lowering speed V m corresponding refractory 21 to the drawing speed and the slab size
After completion of the casting, the level of the molten metal surface in the mold is maintained at the same level S 0 as in the normal casting until the predetermined drawing length L 1 . Then, the immersion of the refractory material 21 is stopped at the S 2 position. As a result, with the progress of drawing, the immersed refractory material 21 is extracted from the molten steel A, and the bottom-most molten metal surface is largely lowered by the refractory material integral from the normal molten metal descent amount.
As a result, immediately below the mold, the molten metal surface a at the bottommost part is lowered by the predetermined amount T with respect to the upper end of the solidified shell b at the bottommost part.

【0016】(3) その後は、従来法2または従来法3と
同様の方法で引抜速度を制御し、鋳片を引き抜く。即
ち、最ボトム位置が凝固シェル厚が十分である位置S1
に達すると、必要に応じて二次冷却水量を通常鋳込時の
二次冷却水量に戻し、引抜速度Vを所定の加速度により
5 まで増速し、この引抜速度V5 で鋳片を引き抜く。
(3) After that, the drawing speed is controlled by the same method as the conventional method 2 or the conventional method 3 to draw the slab. That is, the bottommost position is the position S 1 where the thickness of the solidified shell is sufficient.
When it reaches, the amount of secondary cooling water is returned to the amount of secondary cooling water at the time of normal casting as needed, the drawing speed V is increased to V 5 by a predetermined acceleration, and the cast piece is drawn at this drawing speed V 5. .

【0017】[0017]

【作用】以上のような構成において、定常状態の鋳造速
度を保持したまま鋳込みが終了し(高速鋳込終了)、図
1(a)に示すように、鋳片最上端であるボトム部がモ
ールド冷却水Wm および二次冷却帯のスプレー冷却水W
s により冷却される。高速鋳込終了において鋳型直下の
凝固促進を行う従来法2では、ボトム側の凝固シェルが
鋳込終了後の浸漬ノズルからの熱源供給停止による過冷
却によって収縮し、未凝固溶鋼がボトム側へ絞り出され
る場合があるが(図2(b)参照)、本発明では、この
モールド冷却水量および二次冷却帯のスプレー冷却水量
は、従来法3と同様に抑制されているため、過冷却によ
る凝固シェルの変形収縮が防止され、最ボトム部からの
溶鋼吹き上がりを防止することが可能となる。
With the above construction, the casting is completed while maintaining the steady-state casting speed (high-speed casting is completed), and as shown in FIG. Cooling water W m and spray cooling water W in the secondary cooling zone
cooled by s . In the conventional method 2 which accelerates solidification immediately below the mold at the end of high-speed casting, the solidified shell on the bottom side shrinks due to supercooling by stopping the supply of heat source from the immersion nozzle after the end of casting, and unsolidified molten steel is squeezed to the bottom side. However, in the present invention, since the mold cooling water amount and the spray cooling water amount in the secondary cooling zone are suppressed in the same manner as in the conventional method 3, solidification by supercooling occurs. The deformation and shrinkage of the shell are prevented, and it is possible to prevent the molten steel from rising from the bottommost portion.

【0018】しかし、従来法3では、図3(a)に示す
ように、スプレー冷却水量をQ2 に減少させたとして
も、最ボトム部の漏鋼を完全に防止することはできない
ため、スプレー冷却水量をQ5 まで大幅に減少させ、前
述の凝固シェルの収縮を完全に抑え、ボトム部の漏鋼発
生率が零になるようにすると、逆に冷却水不足で鋳片表
面温度が高くなることにより、今度はロール間バルジン
グにより内部割れを引き起こすことになる。これに対し
て、本発明では、図3(a)に示すように、二次冷却帯
のスプレー冷却水量を内部割れの発生しないスプレー冷
却水量Q2 としても(少量の収縮により若干の漏鋼が生
じる)、図2(a)に示すように、鋳型直下において最
ボトム部凝固シェルb上端から最ボトム部湯面aが所定
量Tだけ下がっているため、少量の収縮により薄い凝固
層を破って噴出する溶鋼絞り出しを前記凝固シェルbに
よって保持することができ、連続鋳造マシン内への漏鋼
を皆無とすることができ、内部割れも確実に防止でき
る。
However, in the conventional method 3, as shown in FIG. 3 (a), even if the spray cooling water amount is reduced to Q 2 , it is not possible to completely prevent the steel leak at the bottom, so that the spraying is not possible. If the amount of cooling water is greatly reduced to Q 5, the shrinkage of the solidified shell described above is completely suppressed, and the steel leakage occurrence rate at the bottom becomes zero, conversely the slab surface temperature rises due to insufficient cooling water. This in turn causes internal cracking due to bulging between the rolls. On the other hand, in the present invention, as shown in FIG. 3A, even if the spray cooling water amount in the secondary cooling zone is set to the spray cooling water amount Q 2 in which internal cracking does not occur (a small amount of leakage steel may cause 2), as shown in FIG. 2 (a), since the molten metal surface a at the bottommost portion a is lowered by a predetermined amount T from the upper end of the solidification shell b at the bottommost portion immediately below the mold, the thin solidification layer is broken by a small amount of shrinkage. The squeeze out of molten steel can be held by the solidified shell b, steel leakage into the continuous casting machine can be eliminated, and internal cracking can be reliably prevented.

【0019】さらに、二次冷却帯のスプレー水流が、最
ボトム部湯面aから上方に突出する凝固シェルbにより
遮られ、スプレー水流が最ボトム部湯面に当たり浸入し
て引き起こされる水蒸気爆発を確実に防止することがで
きる(図3(b)参照)。
Further, the spray water flow in the secondary cooling zone is blocked by the solidification shell b projecting upward from the bottommost molten metal surface a, so that the spray water flow hits the bottommost molten metal surface and invades to cause steam explosion. Can be prevented (see FIG. 3B).

【0020】[0020]

【実施例】以下、この発明を図示する一実施例に基づい
て詳細に説明する。図1(a)において、連続鋳造機の
上流側は、上から順に、スライディングノズル・浸漬ノ
ズルを備えたタンディッシュ1と、冷却水路を有するモ
ールド2と、多数のガイドロール3の間にスプレーノズ
ル4を配設した二次冷却帯としてのガイドロール群から
なり、タンディッシュ1からの溶鋼Aはモールド2によ
り一次冷却されて表面に凝固シェルBが形成され、続く
二次冷却帯により凝固シェルBが成長し、完全凝固した
鋳片がピンチロール(図示省略)により引き抜かれる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a first embodiment of the present invention; In FIG. 1 (a), the upstream side of the continuous casting machine is, in order from the top, a tundish 1 having a sliding nozzle and a dipping nozzle, a mold 2 having a cooling water channel, and a spray nozzle between a number of guide rolls 3. The molten steel A from the tundish 1 is primarily cooled by the mold 2 to form the solidified shell B on the surface, and the solidified shell B is formed by the subsequent secondary cooling zone. Is grown, and the completely solidified slab is pulled out by a pinch roll (not shown).

【0021】制御装置は、ガイドロール群における駆動
用ロール3aおよびピンチロールに作動信号(ロール押
付力・回転数)を送る速度制御部10と、モールド2の
冷却水Wm および各スプレーノズル4への二次冷却水W
s の流量を制御する冷却水制御部11と、鋳造速度・鋳
片の引抜長さLに基づいて速度制御部10および冷却水
制御部11へ制御信号を送るプロセスコンピューター1
2を備えている。
The control device sends a speed control unit 10 which sends an operation signal (roll pressing force / rotation speed) to the driving roll 3a and the pinch roll in the guide roll group, the cooling water W m of the mold 2 and each spray nozzle 4. Secondary cooling water W
A cooling water control unit 11 that controls the flow rate of s , and a process computer 1 that sends a control signal to the speed control unit 10 and the cooling water control unit 11 based on the casting speed and the drawing length L of the slab.
2 is provided.

【0022】このような連続鋳造設備において、本発明
では、モールド2の上部に最ボトム湯面制御装置20を
設置する。この最ボトム湯面制御装置20は、モールド
2内の溶鋼A内に浸漬される所定の体積を有する耐火物
21と、この耐火物21の上部に取付けられて耐火物2
1を支持する支持部材22と、この支持部材22を上下
移動可能に支持し、耐火物21を所定の浸漬速度で下降
させることのできる駆動装置23から構成されている。
In such a continuous casting facility, according to the present invention, the bottommost molten metal level control device 20 is installed above the mold 2. This bottom-most level control device 20 is a refractory 21 having a predetermined volume, which is immersed in the molten steel A in the mold 2, and a refractory 2 attached to the upper part of the refractory 21.
1 and a drive device 23 that supports the support member 22 so as to be vertically movable and can lower the refractory material 21 at a predetermined immersion speed.

【0023】この駆動装置23は、例えばモータとスク
リューやモータとラック・ピニオンによる駆動方式と
し、速度制御部10により制御し、後述するように、引
抜速度V0 に対応した浸漬速度Vm で耐火物21を下降
させる。耐火物21は、モールド2のキャビティ横断面
に対応し、かつ後述するようにモールド内壁面から所定
の間隔をおいた形状であり、スラブ用のモールドであれ
ば、横断面が長方形の直方体形状となる。
The drive device 23 is, for example, a drive system using a motor and a screw or a motor and a rack and pinion, is controlled by the speed control unit 10, and as will be described later, fire-proof at an immersion speed V m corresponding to the drawing speed V 0. The object 21 is lowered. The refractory 21 has a shape corresponding to the cavity cross section of the mold 2 and having a predetermined distance from the inner wall surface of the mold as described later. In the case of a slab mold, the cross section has a rectangular parallelepiped shape with a rectangular cross section. Become.

【0024】以上のような構成において、次に示すよう
に鋳込終了制御を行う。
With the above-mentioned structure, the pouring end control is performed as follows.

【0025】(1) 鋳込みの終了 鋳造速度の減速や停止と、鋳片のボトム処理作業とを行
うことなく、通常の鋳造速度を保持したまま、タンディ
ッシュ1のスライディングノズルを閉じて鋳込みを終了
する。
(1) Completion of casting The casting is completed by closing the sliding nozzle of the tundish 1 while maintaining the normal casting speed without slowing or stopping the casting speed and performing the bottom treatment of the slab. To do.

【0026】(2) モールド冷却水・スプレーノズル冷却
水の抑制 鋳込みが終了すると、溶鋼Aが供給されなくなった後の
モールド2への冷却水流量およびスプレーノズル4への
冷却水流量と、モールド2内への耐火物21の浸漬速度
m と、駆動用ロール3aによる引抜速度V0 とをコン
トロールするために、最ボトム位置の引抜長さLをプロ
セスコンピューター12によりトラッキングする。
(2) Suppression of Mold Cooling Water / Spray Nozzle Cooling Water When the casting is completed, the cooling water flow rate to the mold 2 and the cooling water flow rate to the spray nozzle 4 after the molten steel A is no longer supplied, and the mold 2 In order to control the immersion speed V m of the refractory material 21 inside and the drawing speed V 0 by the driving roll 3a, the drawing length L at the bottom position is tracked by the process computer 12.

【0027】そして、予め決定したメニスカスS0
ら、凝固シェル厚が充分である位置S1 間では、冷却水
制御部11により、図1(c),(d)に示すように、
モールド冷却水量をQ1 (<Q3:通常鋳込時のモールド
冷却水量)に制御し、二次冷却帯のスプレー冷却水量
を、各スプレー毎に鋳片各部の凝固シェル厚さ・シェル
温度・凝固シェルの変形抵抗・静鉄圧から計算される凝
固シェルBに変形を与えない冷却水量Q2 ( <Q4:通常
鋳込時のスプレー冷却水量) に制御する。
Then, between the predetermined meniscus S 0 and the position S 1 at which the solidified shell thickness is sufficient, the cooling water control unit 11 causes the cooling water control unit 11 to change the thickness as shown in FIGS. 1 (c) and 1 (d).
Mold cooling water to Q 1: is controlled to (<Q 3 normal mold cooling water at the time of casting), the spray amount of cooling water of the secondary cooling zone, the solidified shell thickness, shell temperature, the slab each unit for each spray The cooling water amount Q 2 (<Q 4 : spray cooling water amount during normal casting) that does not deform the solidification shell B calculated from the deformation resistance and static iron pressure of the solidification shell is controlled.

【0028】ここで、具体的には、S1 はモールド厚み
1(mm) と鋳造速度V0(m/min)とから、S1 ≦( T1/
K)2 0 /4[Kは定数,25〜35(mm/min1/2) ]の式
により求められる値である。また、Q1 はモールド冷却
水流速≧4(m/sec) で、Q3 は通常鋳造中と同量であ
る。Q2 はスプレー冷却水量<Q4 (l/kg・steel)で、
4 は通常鋳造中と同量のスプレー水量、2.0(l/kg
・steel)≧Q4 ≧0.3(l/kg・steel)の範囲である。
Here, specifically, S 1 is S 1 ≤ (T 1 / from the mold thickness T 1 (mm) and the casting speed V 0 (m / min).
K) 2 V 0/4 [ K is a constant, 25~35 (mm / min 1/2) ] is a value determined by the formula. Further, Q 1 is a mold cooling water flow rate ≧ 4 (m / sec), and Q 3 is the same amount as during normal casting. Q 2 is the spray cooling water amount <Q 4 (l / kg ・ steel),
Q 4 is the same amount of spray water as during normal casting, 2.0 (l / kg
・ Steel) ≧ Q 4 ≧ 0.3 (l / kg · steel).

【0029】ここで、二次冷却水量はメニスカスS0
らの距離によって異なり、通常鋳込時に比べ、ほぼ同量
もしくは減少させ、上記水量範囲で前記した計算により
制御する。このS1 ,Q1 ,Q2 の数値限定理由は、Q
1 ,Q2 を前記範囲外にて行うと、引抜中における最ボ
トム部からの漏鋼発生率が高くなるか、もしくはバルジ
ングによる内部割れの発生が起こる場合があるためであ
る(図3(a)参照)。
Here, the amount of secondary cooling water differs depending on the distance from the meniscus S 0, and is made to be approximately the same amount or decreased as compared with the time of normal casting, and is controlled by the above calculation within the above water amount range. The reason for limiting the numerical values of S 1 , Q 1 and Q 2 is Q
This is because, if 1 and Q 2 are performed outside the above range, the occurrence rate of steel leakage from the bottommost portion during drawing may increase, or internal cracking due to bulging may occur (Fig. 3 (a )reference).

【0030】(3) ボトム湯面制御による漏鋼等の防止 本発明では、内部割れ防止の観点から、スプレー冷却水
量Q2 の計算結果水量が≦0.3(l/kg・steel)となっ
ても、これ以上は冷却水量を減少させず、図3(a)に
示すように、この時発生する、または、計算誤差・操業
ばらつきにて発生する多少の凝固収縮による、溶鋼絞り
出しは、以下の方法で解消し、漏鋼防止を図る。
(3) Prevention of Steel Leakage by Bottom Level Control In the present invention, from the viewpoint of prevention of internal cracks, the calculation result of the spray cooling water amount Q 2 is ≦ 0.3 (l / kg · steel). However, the amount of cooling water is not reduced any further, and as shown in FIG. 3 (a), the molten steel is squeezed out at this time or due to some solidification shrinkage caused by calculation error / operational variations. To solve the problem and prevent steel leakage.

【0031】即ち、図1(a)に示すように、(2) の冷
却水制御に加えて鋳込終了時に赤熱耐火物21を速度V
m にて浸漬させる。この時の速度Vm (m/min) は、 A・Vm ≦t1 ・W・V0 ×1.5……(1)式 A:耐火物断面積(mm2) ,t1 :スラブ厚(mm) W:スラブ幅(mm),V0 :引抜速度(m/min) で制御する。この数値限定理由は、耐火物21の浸漬速
度Vm が速すぎると、モールド内メニスカス上昇速度が
大きく、モールドパウダー流れ込み不良による凝固シェ
ル拘束発生率が上昇するためである。
That is, as shown in FIG. 1 (a), in addition to the cooling water control of (2), the red hot refractory 21 is moved to the speed V at the end of casting.
Immerse at m . The velocity V m (m / min) at this time is A · V m ≦ t 1 · W · V 0 × 1.5 (1) Formula A: refractory cross-sectional area (mm 2 ), t 1 : slab Thickness (mm) W: Slab width (mm), V 0 : Controlled by drawing speed (m / min). The reason for limiting the numerical values is that if the immersion speed V m of the refractory material 21 is too fast, the meniscus rising speed in the mold is large, and the solidified shell restraint occurrence rate due to defective mold powder inflow increases.

【0032】また、耐火物21は予め1200°C以上
に予熱する必要がある。さらに、耐火物21の表面〜モ
ールド2の内壁面の間隔PはP≧50mmとなるように耐
火物21の横断面積を決めなければならない。これら耐
火物21の予熱温度および間隔Pは、上記範囲外では、
耐火物浸漬時にボトム部溶鋼が一部凝固し、品質悪化・
引抜不能を引き起こす場合がある。
The refractory material 21 must be preheated to 1200 ° C. or higher in advance. Furthermore, the cross-sectional area of the refractory 21 must be determined so that the interval P between the surface of the refractory 21 and the inner wall surface of the mold 2 is P ≧ 50 mm. The preheating temperature and the interval P of these refractories 21 are outside the above range,
When the refractory is dipped, the molten steel at the bottom partly solidifies and the quality deteriorates.
May cause undrawable.

【0033】次いで、耐火物21は、次式を満たす浸漬
深さT2(mm) だけ溶鋼A内に浸漬させた後、S2 位置で
停止させ、 T2 ・A=T・W・t1 ……(2)式 T:モールド直下での凝固シェル上端からの最ボトム湯
面低下距離(mm) その後の引抜きにより、モールド直下では、耐火物21
の浸漬体積に比例した分だけ最ボトム部湯面aが最ボト
ム部凝固シェルbの上端よりもTだけ下がる。
Next, the refractory material 21 is immersed in the molten steel A by the immersion depth T 2 (mm) satisfying the following equation, and then stopped at the S 2 position, T 2 · A = T · W · t 1 ...... (2) Formula T: Distance of the bottommost molten metal lowering (mm) from the upper end of the solidified shell directly below the mold (mm).
The bottom-most molten metal surface a is lowered by T from the upper end of the bottom-most solidified shell b by an amount proportional to the immersion volume.

【0034】図3(a)に示すように、スプレー冷却水
量Q2 を0.3(l/kg・steel)より減少させないことに
より、引抜中に凝固シェル収縮により少量の漏鋼が発生
するが、ここでT≧100mmとなるように、(2)式に
より浸漬深さT2 を決めることで、少量の収縮により薄
い凝固層を破って噴出する溶鋼絞り出しを鋳片凝固シェ
ルbで保持することができ、漏鋼が完全に防止され、内
部割れも完全に防止される。また、スプレーノズル4か
らのスプレー水流が直接、最ボトム湯面に当たって浸入
し水蒸気爆発を起こすことも防止される。
As shown in FIG. 3 (a), if the spray cooling water amount Q 2 is not reduced below 0.3 (l / kg · steel), a small amount of leakage steel is generated due to shrinkage of the solidified shell during drawing. By deciding the immersion depth T 2 by the formula (2) so that T ≧ 100 mm, the molten steel squeezing that breaks the thin solidified layer and ejects due to a small amount of shrinkage is held by the cast solidified shell b. It is possible to prevent leakage steel and internal cracks. Further, it is also possible to prevent the spray water flow from the spray nozzle 4 from directly impinging on the bottommost molten metal surface to enter and cause a steam explosion.

【0035】(4) 最ボトム位置がS1 に到達すると、ス
プレー冷却水量を他の定常部と同量のQ4 に戻し、かつ
引抜速度V0 を所定の加速度で所定の引抜速度V5 まで
増速する。なお、前記加速度は、増速時のロール間鋳片
バルジング量の変化によって溶鋼の絞り出しが生じない
ような予め決定した値以下とする必要がある。
(4) When the bottommost position reaches S 1 , the spray cooling water amount is returned to Q 4 which is the same amount as the other stationary parts, and the drawing speed V 0 is increased to a predetermined extraction speed V 5 at a predetermined acceleration. Speed up. Note that the acceleration needs to be equal to or less than a predetermined value that prevents the molten steel from being squeezed out due to a change in the slab bulging amount between rolls during acceleration.

【0036】図3(a)は、スプレー冷却水量に対する
最ボトム部漏鋼発生率を示すグラフであり、本発明で
は、S0 〜S1 間のスプレー冷却水量をQ2 以上(≧
0.3(l/kg・steel)とすることにより、バルジングに
よる内部割れを完全に解消することができ、これに伴う
少量の漏鋼は前述したように凝固シェルbで保持するこ
とができ、ストランド外への漏鋼を完全に確実に防止す
ることができる。図3(b)は、ボトム水蒸気爆発発生
頻度を示すグラフであり、本発明では、凝固シェルbに
よるスプレー水流の遮蔽によって、ボトム水蒸気爆発を
従来法2および従来法3に比べて大幅に低減できること
がわかる。
FIG. 3 (a) is a graph showing the steel leakage rate at the bottommost portion with respect to the spray cooling water amount, and in the present invention, the spray cooling water amount between S 0 and S 1 is Q 2 or more (≧
By setting 0.3 (l / kg · steel), internal cracking due to bulging can be completely eliminated, and a small amount of leaked steel due to this can be retained by the solidified shell b as described above, Steel leaks to the outside of the strand can be completely and reliably prevented. FIG. 3B is a graph showing the occurrence frequency of bottom steam explosion. In the present invention, the bottom steam explosion can be significantly reduced as compared with the conventional method 2 and the conventional method 3 by shielding the spray water flow by the solidification shell b. I understand.

【0037】[0037]

【発明の効果】前述の通り、この発明は、鋳造速度の減
速・停止およびボトム処理作業を行うことなく、通常の
鋳造速度を保持したまま鋳込みを終了して鋳片を引き抜
く際に、二次冷却水の制御を行うと同時に、最ボトム部
に赤熱耐火物を一時的に浸漬させることにより、鋳型直
下における最ボトム部凝固シェル上端〜最ボトム部湯面
の距離が所定量以上となるように構成したため、次のよ
うな効果を奏する。
As described above, according to the present invention, when the casting is finished and the slab is pulled out while the casting speed is maintained and the normal casting speed is maintained, the secondary casting is performed without slowing down / stopping the casting speed and performing the bottom treatment work. At the same time as controlling the cooling water, by temporarily immersing the red-hot refractory material in the bottommost part, the distance from the top of the bottommost solidified shell to the bottom of the molten metal immediately below the mold becomes a predetermined amount or more. Since it is configured, the following effects are achieved.

【0038】(1) 高速鋳込終了により、従来法2,3と
同様に生産性や品質等を大幅に向上させた上で、少量の
漏鋼を最ボトム部凝固シェルで保持することにより、冷
却水量の計算誤差や操業のばらつきがあっても、最ボト
ム部からの漏鋼およびスプレー水流による水蒸気爆発を
完全に確実に防止することができる。
(1) After the high speed casting is completed, the productivity, quality, etc. are greatly improved in the same manner as in the conventional methods 2 and 3, and a small amount of leaked steel is held by the bottommost solidified shell. Even if there is a calculation error of the cooling water amount or a variation in the operation, it is possible to completely and reliably prevent the steam explosion due to the steel leak and the spray water flow from the bottom.

【0039】(2) さらに、少量の漏鋼を許すことによ
り、スプレー冷却水量を適度に確保することができ、冷
却不足による内部割れの発生も完全に解消することがで
きる。
(2) Further, by allowing a small amount of steel leakage, the amount of spray cooling water can be appropriately secured, and the occurrence of internal cracks due to insufficient cooling can be completely eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る鋳込終了制御方法であり、
(a),(b)はその最ボトム湯面制御を順に示す設備
の概略断面図、(c),(d)は冷却水制御を示すグラ
フである。
FIG. 1 is a pouring end control method according to the present invention,
(A), (b) is a schematic sectional drawing of the equipment which shows the bottom bottom level control in order, (c), (d) is a graph which shows cooling water control.

【図2】(a)は本発明による鋳型直下における最ボト
ム部の状態を示す断面図、(b)は従来法2における未
凝固部吹き上げを示す断面図である。
2A is a cross-sectional view showing a state of a bottommost portion just below a mold according to the present invention, and FIG. 2B is a cross-sectional view showing blowing up of an unsolidified portion in Conventional Method 2.

【図3】(a)はスプレー水量と最ボトム部漏鋼発生率
の関係を示すグラフ、(b)はボトム水蒸気爆発の発生
頻度を示すグラフである。
FIG. 3A is a graph showing the relationship between the amount of spray water and the occurrence rate of steel leak at the bottom, and FIG. 3B is a graph showing the frequency of bottom steam explosions.

【図4】(a)は従来法1におけるボトム処理作業を示
す概略斜視図、(b)は従来法1による鋳込み終了時の
鋳造速度パターンを示すグラフ、(c)は従来法2によ
る鋳込み終了時の鋳造速度パターンを示すグラフであ
る。
4A is a schematic perspective view showing a bottom processing operation in the conventional method 1, FIG. 4B is a graph showing a casting speed pattern at the end of casting by the conventional method 1, and FIG. It is a graph which shows a casting speed pattern at the time.

【符号の説明】[Explanation of symbols]

A…溶鋼,a…最ボトム部湯面 B…凝固シェル,b…最ボトム部凝固シェル Wm …モールド冷却水,Ws …スプレー(二次)冷却水 1…タンディッシュ 2…モールド 3…ガイドロール,3a…駆動用ロール 4…スプレーノズル 10…速度制御部 11…冷却水制御部 12…プロセスコンピューター 20…最ボトム湯面制御装置 21…耐火物 22…支持部材 23…駆動装置A ... Molten steel, a ... Bottom surface of molten metal B ... Solidified shell, b ... Bottom solidified shell W m ... Mold cooling water, W s ... Spray (secondary) cooling water 1 ... Tundish 2 ... Mold 3 ... Guide Rolls, 3a ... Driving rolls 4 ... Spray nozzles 10 ... Speed control unit 11 ... Cooling water control unit 12 ... Process computer 20 ... Bottom liquid level control device 21 ... Refractory material 22 ... Support member 23 ... Drive device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 タンディッシュ内の溶融金属を連続的に
鋳込んで鋳片とする連続鋳造機の鋳込終了時において、
鋳造速度の減速または停止と、鋳片の最後端部であるボ
トム部の処理作業を行うことなく、通常の鋳造速度を保
持したまま鋳込みを終了して鋳片を引き抜く際に、二次
冷却水の制御を行うと同時に、鋳片最上端のボトム部の
湯面をモールド直下においてボトム部の凝固シェル上端
より所定量以上だけ下方に位置するように制御すること
を特徴とする連続鋳造における鋳込終了制御方法。
1. At the end of casting of a continuous casting machine for continuously casting molten metal in a tundish to form a slab,
The secondary cooling water is used when the casting is finished and the slab is withdrawn without slowing or stopping the casting speed and processing the bottom part, which is the last end of the slab, while maintaining the normal casting speed. At the same time, the molten metal surface of the bottom of the uppermost end of the slab is controlled so as to be located below the upper end of the solidified shell of the bottom by a predetermined amount or more immediately below the mold. Termination control method.
JP16057595A 1995-06-27 1995-06-27 Method for controlling completion of casting in continuous casting Pending JPH0910899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16057595A JPH0910899A (en) 1995-06-27 1995-06-27 Method for controlling completion of casting in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16057595A JPH0910899A (en) 1995-06-27 1995-06-27 Method for controlling completion of casting in continuous casting

Publications (1)

Publication Number Publication Date
JPH0910899A true JPH0910899A (en) 1997-01-14

Family

ID=15717936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16057595A Pending JPH0910899A (en) 1995-06-27 1995-06-27 Method for controlling completion of casting in continuous casting

Country Status (1)

Country Link
JP (1) JPH0910899A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087055A (en) * 2006-10-03 2008-04-17 Kobe Steel Ltd Method for completing continuous casting
CN109648055A (en) * 2019-01-23 2019-04-19 山东钢铁股份有限公司 Bearing steel continuous casting tail billet method of quality control under the conditions of a kind of transient casting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087055A (en) * 2006-10-03 2008-04-17 Kobe Steel Ltd Method for completing continuous casting
CN109648055A (en) * 2019-01-23 2019-04-19 山东钢铁股份有限公司 Bearing steel continuous casting tail billet method of quality control under the conditions of a kind of transient casting
CN109648055B (en) * 2019-01-23 2021-03-30 山东钢铁股份有限公司 Bearing steel continuous casting tail billet quality control method under unsteady state pouring condition

Similar Documents

Publication Publication Date Title
JPS602144B2 (en) Horizontal continuous casting method
JPH0910899A (en) Method for controlling completion of casting in continuous casting
JP3186631B2 (en) Termination method of constant speed drawing casting in continuous casting
KR20120087526A (en) Device for preventing crack of strand in continuous casting process and method therefor
KR101277707B1 (en) Method for decreasing pin-hole defect in continuous casting process
JP2712920B2 (en) High speed casting end control method in continuous casting
JP3152276B2 (en) Continuous casting method of SUS304 stainless steel
JP2000288696A (en) Casting finishing method of continuous casting for thin ingot
JP7234785B2 (en) Casting end control method
JP2720692B2 (en) High-speed casting end method in continuous casting
KR102277295B1 (en) Continuous casting process of steel material by controlling ends of refractory in submerged entry nozzle
KR102122656B1 (en) Apparatus for predicting gas on the pipeline leakage in continuous casting process and method therefor
JP3470537B2 (en) Inclusion removal method in tundish for continuous casting
JP2903844B2 (en) Method of finishing casting in continuous casting
JPS58184049A (en) Continuous casting method of steel in curbed type
KR101466203B1 (en) Method for reducing defect in bloom
JP2921352B2 (en) Discharge flow control method for continuous casting machine
JPS62187556A (en) Continuous casting method
JPH07112255A (en) Method for completing casting in continuous casting
KR20150069272A (en) continuous casting apparatus and controlling system for cast of using it
JPH09122845A (en) Method for completing casting in continuous casting
JPH07227659A (en) Method for controlling cooling water of mold for continuous casting
JPH0847759A (en) Method for continuously casting wide and thin cast slab
JP2770691B2 (en) Steel continuous casting method
JP2991073B2 (en) Wide thin slab casting method